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ABSTRACT

Cryptographic algorithms are fundamental to modern se-
curity, yet their implementations frequently harbor subtle
logic flaws that are hard to detect. We introduce CRYP-
TOSCOPE, a novel framework for automated cryptographic
vulnerability detection powered by Large Language Models
(LLMs). CRYPTOSCOPE combines Chain-of-Thought (CoT)
prompting with Retrieval-Augmented Generation (RAG),
guided by a curated cryptographic knowledge base contain-
ing over 12,000 entries. We evaluate CRYPTOSCOPE on
LLM-CLVA, a benchmark of 92 cases primarily derived
from real-world CVE vulnerabilities, complemented by cryp-
tographic challenges from major Capture The Flag (CTF)
competitions and synthetic examples across 11 programming
languages. CRYPTOSCOPE consistently improves perfor-
mance over strong LLM baselines, boosting DeepSeek-V3
by 11.62%, GPT-4o-mini by 20.28%, and GLM-4-Flash by
28.69%. Additionally, it identifies 9 previously undisclosed
flaws in widely used open-source cryptographic projects.

Index Terms— Cryptographic logic vulnerabilities,
Large language models, Retrieval-Augmented Generation,
Chain-of-Thought

1. INTRODUCTION

Cryptographic algorithms and protocols are fundamental to
securing computer systems, offering confidentiality, integrity,
and authentication based on strong mathematical foundations.
However, translating these principles into correct implemen-
tations remains challenging and error-prone [1]. Developers
must implement algorithms accurately, handle inputs prop-
erly, select parameters carefully, and optimize performance,
with mistakes potentially compromising entire systems. Fur-
thermore, insufficient cryptographic expertise and the increas-
ing use of large language models (LLMs) like GPT-3.5 [2] for
coding assistance may introduce subtle vulnerabilities. Such
flaws in widely used cryptographic libraries can propagate to
numerous dependent projects, as exemplified by the critical
ECDSA bypass vulnerability (CVE-2022-21449) [3] in Ora-
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cle Java SE and GraalVM, which allowed attackers to forge
digital signatures and bypass authentication.

Existing automated detection efforts largely target crypto-
graphic API misuse [4–8]. In contrast, only a few studies [9–
12] have explored the automated detection of cryptographic
logic flaws [1], which often suffer from limited automation,
strong language dependencies, and restricted generalizability.

To address this gap, we propose CRYPTOSCOPE, the first
LLM-based framework for detecting cryptographic logic vul-
nerabilities. It initiates with a pre-detection step verifying al-
gorithm correctness and employs few-shot learning [13] com-
bined with Chain-of-Thought (CoT) prompting [14] to guide
the LLM in analyzing code parameters and logic. We fur-
ther build a cryptographic knowledge base by extracting di-
verse, multi-source domain information and integrate relevant
knowledge via Retrieval-Augmented Generation (RAG) [15]
to enhance reasoning accuracy. Detection results are output
in a structured, developer friendly format.

We evaluate CRYPTOSCOPE on LLM-CLVA, a 92-
sample benchmark covering real-world vulnerabilities, Cap-
ture The Flag (CTF) [16] challenges, and synthetic cases in
11 programming languages, using the LLM-as-a-Judge [17]
framework across six representative LLMs [18–23]. De-
ployed on 20 open-source projects, CRYPTOSCOPE discov-
ered 9 previously unknown cryptographic flaws, demonstrat-
ing its practical effectiveness.

The contributions of this work can be summarized as fol-
lows.

• Benchmark: LLM-CLVA, comprising 92 multi-language
cryptographic vulnerability samples with manual reports
and comprehensive evaluation metrics.

• Framework: CRYPTOSCOPE, a language-agnostic LLM-
based system leveraging CoT and RAG for cryptographic
logic vulnerability detection without code execution.

• Empirical validation: Strong experimental gains across
architectures, validated by ablations, real-world discover-
ies, and improved human analysis through knowledge aug-
mentation.
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2. RELATED WORK

Automated detection of cryptographic logic vulnerabilities
generally falls into two main categories: test vector–based
validation and fuzzing. Project Wycheproof [9], developed
by Google, provides a comprehensive suite of curated test
vectors targeting known issues in cryptographic algorithms.
It includes over 80 test cases and has helped uncover more
than 40 implementation bugs. However, its use across differ-
ent programming languages requires custom parsers and test
harnesses, which can limit portability and scalability.

Fuzzing-based approaches have also gained traction. Dif-
Fuzz [11] identifies side-channel vulnerabilities by generating
inputs that maximize differences in resource consumption be-
tween program variants. CDF [10] integrates fuzzing with
stateless test vectors to explore known edge cases in cryp-
tographic operations. Cryptofuzz [24] employs differential
testing across cryptographic libraries by comparing algorithm
outputs to detect inconsistencies, and, with the help of sani-
tizers, can also reveal memory-related issues. However, many
fuzzing-based techniques depend on triggering specific fail-
ure conditions and require manual inspection of anomalous
behaviors to assess the underlying flaw.

3. METHOD

3.1. Construction of the LLM-CLVA Benchmark

In our preliminary research, we developed a novel bench-
mark, LLM-CLVA (LLM for Cryptographic Logic Vulnerability
Analysis), to address the absence of specialized benchmarks
for evaluating LLMs in detecting cryptographic logic vulner-
abilities. Our dataset comprises:
• Code samples of cryptographic logic vulnerabilities from

CVE entries (57%).
• High-quality cryptographic challenges from major interna-

tional CTF competitions (30%).
• Artificially constructed algorithm implementations violat-

ing cryptographic standards (13%).
For each code snippet in the dataset, we conducted manual

auditing to summarize the cryptographic logic vulnerabilities
present in the code, which served as the ground truth. To
comprehensively assess model performance, we defined four
evaluation metrics:

• Credibility Score: A composite metric assessing relevance,
informativeness, and logical soundness of reasoning. It
serves as the primary indicator of model performance.

• Cosine Similarity: Measures semantic similarity between
generated and reference reasoning via sentence embeddings
(MiniLM-L6-v2), with scores in [0,1].

• Semantic Match Rate: Assesses semantic consistency using
LLM-as-a-Judge to determine alignment with the reference.
Scores range from 0 to 1.

• Coverage Score: Estimates the proportion of informative
and relevant content in the output, judged by LLM-as-a-
Judge.

3.2. The Architecture of CRYPTOSCOPE

In this work, we present a novel LLM-based cryptographic
vulnerability detection framework CRYPTOSCOPE, the main
idea of which is to leverage the semantic comprehension abil-
ity and the reasoning ability of LLM to simulate the process
of cryptanalysts analyzing vulnerabilities. We summarize the
process of manually analyzing cryptographic logic vulnera-
bilities into the following steps: understanding the semantics
of the code, verifying its compliance with cryptographic
algorithm standards, examining the code for potential vulner-
abilities by referencing established vulnerability categories,
and leveraging knowledge from vulnerability databases and
best practices for cryptographic algorithm implementation
to identify issues in the code. Accordingly, we applied this
paradigm to the vulnerability detection model. Figure 1
shows the overview of our approach, which includes the
following three phases.

• Phase-1 Diversified Cryptographic Knowledge Base Con-
struction: Cryptographic knowledge is extracted from var-
ious unstructured documents via LLMs to construct the di-
versified cryptographic knowledge base.

• Phase-2 Pre-detection and Knowledge Retrieval: CRYPTO-
SCOPE summarizes the input code to extract its algorithmic
and mathematical structure, then conducts a preliminary se-
curity analysis by either comparing it with cryptographic
algorithm specifications or using few-shot CoT prompting.
Both summaries are independently used to retrieve the most
relevant knowledge block.

• Phase-3 Knowledge-Augmented Vulnerability Detection:
The LLM learns from the two retrieved knowledge blocks
and conducts an in-depth analysis of code defects by in-
tegrating the pre-detection analytical process, ultimately
deriving conclusions.
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Fig. 1: Overview of CRYPTOSCOPE



3.3. Diversified Cryptographic Knowledge Base Con-
struction

We construct a high-quality knowledge base of over 12,000
cryptography-related chunks, termed the diversified crypto-
graphic knowledge base, by crawling a wide range of open-
source unstructured materials and applying large-model-
assisted extraction and segmentation. Vectorized for effi-
cient retrieval, this base supports downstream vulnerability
detection.
Data Sources. The corpus integrates diverse cryptographic
resources, summarized in Table 1.

Table 1: Sources of the Cryptographic Knowledge Base

Source Type Description

298 CTF Writeups CTF crypto challenge writeups from top
competitions.

11 Cryptographic Blogs Expert blogs on common cryptographic
flaws.

15 CWE Rules CWE rules related to cryptographic
vulnerabilities.

3 Books [25–27] Books on cryptographic implementation
and security flaws.

738 Research Abstracts Abstracts of cutting-edge cryptanalysis
research.

3909 StackExchange [28] Posts Practical cryptography Q&A from
StackExchange.

Knowledge Extraction. For CTF writeups, we use an
LLM to extract fine-grained knowledge units per challenge.
Blogs in Markdown format are manually segmented by third-
level headers, then parsed into structured units by the LLM.
Other sources are preprocessed through heuristic or fixed-size
chunking.

Embedding. Knowledge units are stored in JSON Lines for-
mat. During vector index construction, all sources are embed-
ded using cosine similarity. StackExchange questions serve
as retrieval keys; question-answer pairs are returned. For
other sources, each unit is used as both the key and content.

3.4. Pre-detection

The pre-detection phase has three components: Semantic
Summary, Compliance Verification, and CoT-Based Reason-
ing.

First, the LLM generates a semantic summary of the tar-
get code, emphasizing cryptographic logic, parameter sizes,
and algebraic structures to aid understanding and support re-
trieval.

Next, compliance with standards is verified. We manu-
ally prepare reference documents for 42 common algorithms
based on FIPS [29], covering logic flow, parameter limits, and
security assumptions. The LLM checks conformity by ana-
lyzing parameter generation and encryption/decryption, sim-
ulating manual audits. Results form a retrieval index.

For non-standard algorithm code, few-shot CoT prompt-
ing guides the LLM to detect potential flaws by breaking
down security goals—confidentiality, integrity, authentica-
tion—into concrete checks. Prompts focus on typical issues
like input validation, primitive misuse, and error handling.
Representative cases enable expert-level reasoning and gen-
eralization, enhancing accuracy and interpretability.

Figure 2 shows the prompt format, consisting of three
parts: Instruction (principle and reasoning steps), Example
(code walkthrough), and Notice (output format and key re-
minders).

Instruction

Introduce vulnerability 
& guide reasoning

Few-Shot

Vulnerable sample Step-by-step resoning Final analysis outcome

Notice

Output format 
& reasoning rules

Fig. 2: CoT prompt structure.

To detect weak elliptic curves [30], we integrate a remote
SageMath [31] execution environment. The LLM extracts
curve parameters from the code, converts them into Sage-
compatible syntax, and submits the code for remote execu-
tion. It then analyzes the returned results to assess potential
vulnerabilities.

3.5. RAG-based Vulnerability Analysis

Although CoT-based reasoning helps the LLM identify po-
tential vulnerabilities, it is still prone to false positives, false
negatives, and imprecise analyses. To mitigate this, we inte-
grate a RAG mechanism that leverages external cryptographic
knowledge to enhance and support the reasoning process.

Our retrieval strategy uses two signals: the semantic sum-
mary of the code and intermediate outputs from CoT-based
reasoning. The former captures core cryptographic constructs
and parameter attributes for matching structurally or seman-
tically similar code fragments, while the latter highlights vul-
nerability logic paths that often correspond to known flaw pat-
terns. These signals are embedded into vectors, and the top-k
relevant entries are retrieved using cosine similarity.

To avoid semantically irrelevant or misleading results, we
apply a similarity threshold τ and retain only entries with
cossim ≥ τ . This process is detailed in Algorithm 1. In
subsequent experiments, we set the similarity threshold τ =
0.75, as empirical results indicate this value achieves the best
trade-off between relevance and precision.

In the generation phase, the retrieved knowledge is com-
bined with the original semantic and reasoning features and
provided to the LLM. This design ensures that the model
benefits from historical vulnerability patterns and domain-
specific knowledge, while still retaining its internal reasoning
capacity.



Algorithm 1 Threshold-Based Cryptographic Knowledge
Retrieval
Input: Query q, number k, and threshold τ
Output: Top-k similar results R
1: docs with scores← similarity search(q, k)
2: Initialize result text R← ∅; counter c← 1
3: for each (d, s) in docs with scores do
4: cos sim← 1− s
5: if cos sim ≥ τ then
6: Append content of d to R with index c
7: c← c+ 1
8: if d contains an ID then
9: Extract ID and lookup full Q&A from Crypto StackExchange

10: Append question and answer to R
11: end if
12: end if
13: end for
14: return R

4. EVALUATION SETUP

We evaluate the performance and practical value of CRYPTO-
SCOPE by addressing the following four research questions:

• RQ1: Compared to the baseline: How does CRYPTO-
SCOPE perform compared to the baseline?

• RQ2: Ablation study: To what extent does each compo-
nent of our framework contribute to the overall performance
of vulnerability detection?

• RQ3: Real-world evaluation: How well does CRYPTO-
SCOPE detect cryptographic vulnerabilities in real-world
cryptographic libraries?

5. RESULTS AND ANALYSES

5.1. RQ1: Effectiveness Compared to Baselines

To evaluate the effectiveness of CRYPTOSCOPE, we com-
pare it against vanilla LLMs on the LLM-CLVA benchmark
across six representative LLMs using four metrics. The re-
sults in Table 2 demonstrate consistent improvements across
all models.

CRYPTOSCOPE significantly enhances the performance
of strong baselines such as DeepSeek-V3 and GPT-4o-mini.
DeepSeek-V3 improves from 80.73 to 90.11 in Credibil-
ity Score and from 76.14% to 83.04% in Semantic Match
Rate. GPT-4o-mini exhibits substantial gains in both cred-
ibility (+13.33) and coverage (+18.32%). While the gains
for Qwen-Plus and Gemini 1.5 Flash are more moderate,
improvements are still observed across key metrics.

These findings indicate the generalizability of CRYPTO-
SCOPE: it systematically boosts cryptographic reasoning ca-
pabilities across diverse model backbones.

5.2. RQ2: Ablation Study

We conduct an ablation study to evaluate the impact of
two core components in CRYPTOSCOPE: the Pre-detection
module (which employs Chain-of-Thought-based reasoning)

Table 2: Comparison of baseline LLMs and CRYPTOSCOPE
on the LLM-CLVA benchmark.

Model Credibility Cosine Sim. (%) Semantic Match (%) Coverage (%)

DeepSeek-V3 (Base) 80.73 69.78 76.14 50.61
DeepSeek-V3 (CRYPTOSCOPE) 90.11 72.71 83.04 56.15

Qwen-Plus (Base) 72.39 67.18 69.57 47.12
Qwen-Plus (CRYPTOSCOPE) 75.76 67.84 71.41 49.79

GPT-4o-mini (Base) 65.74 61.45 61.96 36.38
GPT-4o-mini (CRYPTOSCOPE) 79.07 65.05 68.04 54.70

Gemini 1.5 Flash (Base) 64.92 62.76 62.17 53.35
Gemini 1.5 Flash (CRYPTOSCOPE) 71.34 68.78 66.88 49.04

GLM-4-Flash (Base) 53.93 60.40 48.21 28.62
GLM-4-Flash (CRYPTOSCOPE) 69.40 65.19 60.27 43.20

Claude 3 Haiku (Base) 53.34 60.71 48.37 39.46
Claude 3 Haiku (CRYPTOSCOPE) 59.51 67.44 49.24 37.48

and the Knowledge-Augmented Analysis module based on
Retrieval-Augmented Generation (RAG). The experiments
are performed on two representative large language mod-
els, DeepSeek-V3 and GLM-4-Flash, which serve as proxies
for distinct categories of LLM architectures—DeepSeek-
V3 representing open-source models optimized for multi-
round reasoning tasks, and GLM-4-Flash exemplifying high-
throughput models designed for efficient short-context infer-
ence. Table 3 reports the resulting Credibility Scores under
various configurations, highlighting the contribution of each
component across different model capabilities.

Table 3: Ablation study results (Credibility Score).

Model Baseline Full w/o CoT w/o RAG

DeepSeek-V3 80.73 90.11 83.02 85.45
GLM-4-Flash 53.93 69.40 65.32 56.16

5.3. RQ3: Real-world Evaluation

To assess practicality, we applied CRYPTOSCOPE (with
DeepSeek-V3) to 20 real-world cryptographic codebases.
The tool uncovered various logic-level flaws, such as im-
proper ECDSA signature range checks, insecure padding in
RSA, ECB-mode misuse, and weak key derivation practices.

Table 4 presents representative cases. Notably, many is-
sues had not been previously reported, confirming CRYPTO-
SCOPE’s potential in real-world auditing.

Table 4: Vulnerabilities discovered in open-source crypto-
graphic projects.

Project Commit File Vulnerability
goEncrypt be7042 rsacrypt.go PKCS#1 v1.5 misuse
cryptography 5dc3c3 controllers-ck.js ECB mode, weak KDF
crypto-random-string 25f893 core.js Modulo bias
nimcrypto 4a0633 pbkdf2.nim Weak iteration count
generate-password d11ddd generate.js Modulo bias
simple-crypto 13559f publickeysystem.py Insecure RSA padding
ecurve ee8a22 curve.js Incorrect square root algo-

rithm
fastecdsa 4617ef ecdsa.c Missing r/s range check

allows signature bypass
crypto 7112a2 diffiehellman.py Weak prime generation



6. CONCLUSION

We introduced CRYPTOSCOPE, a novel framework for au-
tomated cryptographic logic vulnerability detection using
LLMs. By combining CoT prompting and RAG with a
curated knowledge base, CRYPTOSCOPE identifies com-
plex flaws without code execution. On our LLM-CLVA
benchmark, it consistently and significantly boosted the
performance of various baseline models and discovered 9
undisclosed vulnerabilities in real-world projects. This work
demonstrates that knowledge-augmented LLMs are a power-
ful, scalable, and language-agnostic tool for security auditing.
Future work will enhance the knowledge base and reasoning
capabilities.
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