
1

Activate Me!: Designing Efficient Activation
Functions for Privacy-Preserving Machine Learning

with Fully Homomorphic Encryption
Nges Brian Njungle and Michel A. Kinsy

Secure, Trusted, and Assured Microelectronics (STAM) Center
Ira A. Fulton Schools of Engineering

Arizona State University, Tempe, AZ 85281, USA
Emails: nnjungle@asu.edu, mkinsy@asu.edu

Abstract— The rapid integration of machine learning into
applications in sensitive domains like healthcare and defense
raises serious privacy and security concerns. These applications
require strong privacy protections, as they rely on large amounts
of sensitive data for both training and inference. Fully Homomor-
phic Encryption (FHE) offers a promising solution by allowing
computations on encrypted data, thereby preserving confiden-
tiality throughout the entire machine-learning pipeline. However,
FHE only supports linear operations natively. This poses chal-
lenges for implementing non-linear activation functions, which
are crucial for modern machine learning applications, under FHE
constraints.

In this study, we design, implement, and evaluate activation
functions optimized for FHE-based machine learning applica-
tions. We focus on two widely used functions: the Square function
and the Rectified Linear Unit (ReLU). Our experiments utilize
the LeNet-5 and ResNet-20 architectures implemented with the
CKKS scheme from the OpenFHE library.

For ReLU, we compare two approaches. First, we explore
the popular low-degree polynomial approximation approach.
Second, we introduce a novel scheme-switching technique that
also securely evaluates ReLU under FHE constraints. Our results
show that the square function is highly effective in shallow models
like LeNet-5, achieving 99.4% accuracy with an inference time
of 128 seconds per image. In deeper networks like ResNet-20,
ReLU is more appropriate. The FHE-based ResNet-20 model
implemented with ReLU polynomial approximation resulted in
an accuracy of 83.8% and an inference time of 1,145 seconds
per image. Further, our proposed scheme-switching algorithm
achieved a higher accuracy of 89.8%, with an increased inference
time of 1,697 seconds per image on a ResNet-20 model as well.
These results highlight the key trade-off to be considered when
selecting activation functions for FHE-based machine learning
applications. The activation functions that reduce computation
time tend to significantly lower accuracy, while those that
preserve accuracy incur higher computational costs.

I. INTRODUCTION

Machine learning (ML) has emerged as a cornerstone of
Artificial Intelligence (AI) and is often regarded a key driver
for the Fourth Industrial Revolution [1], [2]. Over the past
decade, it has experienced unprecedented growth, becoming an
essential asset to technology across various sectors, including
healthcare, finance, and defense. The ability of ML to derive
insights from vast datasets has proven invaluable in critical
systems such as medical diagnostics, predictive healthcare,
and military decision making [2]. In defense, for example,

ML is used in high-stakes applications such as autonomous
weapon systems, threat detection, cybersecurity, and intelli-
gence analysis [3]. These capabilities enable faster, data-driven
decision making while significantly enhancing operational
efficiency and mission effectiveness. However, the successful
deployment of ML in these critical applications is highly
dependent on access to large volumes of sensitive data for both
training and inference. This dependency also presents serious
privacy and security challenges. The privacy and security
of data are particularly acute in military applications, since
the data involved are often classified or highly confidential.
Unauthorized access, leakage, or misuse of these data could
compromise national security, operational plans, or strategic
assets. As a result, ensuring the security and privacy of data
in ML workflows in military systems is not only a technical
necessity but a matter of national security [4].

Traditional cryptographic methods, although effective at
securing data during storage or transmission, fall short when
it comes to protecting data during processing. In most cases,
data must be decrypted before it can be processed, potentially
exposing it to unauthorized access [5]. Fully Homomorphic
Encryption (FHE) has emerged as a promising solution to
this drawback by enabling computations directly on encrypted
data [6]. It ensures that privacy and security are maintained
throughout the entire life cycle of data, making it particu-
larly valuable for privacy-preserving machine learning (PPML)
applications, where data security and privacy are paramount.
Despite its potential, the application of FHE in ML models
presents two key challenges: a very high computational cost
of evaluating models and the inability to efficiently evaluate
non-linear functions [7]. Artificial neural networks are the
dominant sub-field of ML today. These networks depend
on non-linear activation functions to introduce complexity
and enable effective learning. However, the FHE schemes of
today typically support only linear operations. This limitation
severely restricts the size and practical application of artificial
neural networks under FHE constraints [8].

Prior research on the intersection of ML and FHE has cen-
tered on enhancing computational efficiency through various
optimizations in the design of FHE-based models. In contrast,
this work is focused on the design and implementation of
activation functions tailored for FHE-based ML models. We

ar
X

iv
:2

50
8.

11
57

5v
1 

 [
cs

.C
R

] 
 1

5 
A

ug
 2

02
5

https://orcid.org/0009-0006-3393-6851
https://orcid.org/0000-0002-1432-6939
https://arxiv.org/abs/2508.11575v1


examine two commonly used activation functions in FHE-
based neural networks architectures: the square function and
the Rectified Linear Unit (ReLU). Early FHE-compatible mod-
els predominantly employed simple polynomial activations,
with the square function being the most widely used. However,
recent advancements in the field have shifted FHE-based
models toward the adoption of polynomial approximations of
the ReLU activation function [9]. While the approximation
of ReLU approach resulted in performance improvements,
there have been little systematic investigation regarding the
contexts and model architectures where different activation
functions perform best under FHE constraints. This work
bridges that gap by implementing FHE-based neural networks
using various activation functions and rigorously evaluating
their effectiveness.

We evaluate the performance of these different activation
functions using the LeNet-5 and ResNet-20 architectures.
These architectures represent shallow and deep artificial neu-
ral network models, respectively. For the non-linear ReLU
activation function, we implement the widely adopted poly-
nomial approximation technique. We also introduced a novel
algorithm that leverages FHE scheme-switching capabilities
to enable a high precision evaluation of ReLU under FHE
constraints. We compare the approaches based on inference
latency and accuracy, emphasizing the trade-offs involved in
designing activation functions for FHE-based ML models. Our
results indicate that the square function is highly effective
for shallow networks like LeNet-5, while ReLU proves more
suitable for deeper architectures like ResNet-20. The polyno-
mial approximation-based approach delivered a relatively low
inference latency but introduced a higher accuracy degrada-
tion. In contrast, our scheme-switching method achieved a
higher model accuracy with minimal degradation, albeit at
the cost of increased computational overhead. These findings
provide important insights into the design of FHE-compatible
activation functions and contribute to the development of more
practical yet efficient PPML models and solutions. Our main
contributions in this work are as follows:

• Design and Implementation of Activation Functions for
FHE-based ML models namely, the square and ReLU
activation functions.

• Introduction of a novel algorithm using the scheme-
switching capabilities of FHE to evaluate the ReLU
activation function in the encrypted domain.

• We conduct a comprehensive evaluation of the square
function, the polynomial approximation of ReLU, and the
proposed scheme-switching ReLU method using LeNet-
5 and ResNet-20 models under FHE constraints. We
highlight the trade-offs of these approaches in terms of
model accuracy and inference latency.

II. RELATED WORKS

Artificial neural networks have become the dominant ap-
proach in modern machine learning applications. They are
generally composed of interconnected linear layers and ac-
tivation functions. Activation functions play a crucial role in
these models as they enable them to capture complex, non-
linear patterns in data [10]. In recent years, artificial neural

network models incorporating FHE for enhanced security and
privacy have made significant advancements. However, re-
search has predominantly focused on enhancing the efficiency
of encrypted inference. While notable advancements have been
achieved in this direction, training artificial neural networks
under FHE constraints remains an open challenge. This is
because of the substantial computational overhead and inherent
accuracy loss of models when trained in the encrypted domain.
The high computational cost and accuracy loss associated
with FHE-based training arises from the complexity of oper-
ations like backpropagation, which must be executed on large
amounts of encrypted data while maintaining high precision.
Thus, making the process a very expensive and challenging
computational task [11].

PPML applications utilizing FHE are generally categorized
into two generations. The first-generation approaches are
characterized by limited model depth and high computational
overhead. The second-generation methods introduced ad-
vanced cryptographic optimizations including approximation
of ReLU and Bootstrapping. These advancements significantly
improved efficiency and enabling more practical applications
of FHE in machine learning applications. There are other exist-
ing FHE-based ML applications which leverage other privacy
preserving techniques like multi-party computation [12] to
facilitate the evaluation of non-linear activation functions with
examples being Gazelle [13], MiniONN [14], and XONN [15].
However, these works are generally considered as hybrid due
to their integration of multiple techniques to provide privacy
and security thus we do not employ this approach in this work.
In this work, we focus on strict FHE-based ML applications
specifically artificial neural networks.

The first generation of FHE-based neural networks began
with CryptoNets from Microsoft Research in 2016. The frame-
work achieved a 99% accuracy on the MNIST dataset using
a neural network custom architecture designed specifically for
this task [16]. CryptoNets main adjustment to neural network
architectures was the use of the square function as their
activation function which removed the complexity involved
with non-linear activation functions. In 2017, Ehsan et al.
proposed CryptoDL, which shitted from the simple square
to a more complex low degree polynomial as the activation
function [17]. Another notable contribution came from Al
Badawi et al. who accelerated HE inference using GPUs with a
custom AlexNet-like architecture [18] still utilizing the square
activation function. Other works in this generation such as;
E2DM [19], and DiNN [20] have also adopted the approach
of using simple low-degree polynomial functions as activation
functions.

The second generation of FHE-based neural networks in-
troduced more sophisticated architectures with significant per-
formance improvements. These works employed sophisticated
techniques like bootstrapping which enables computations of
arbitrary depth networks. They also introduced the evaluation
of non-linear activation functions using polynomial approxi-
mation methods to enable privacy-preserving computation in
complex and deep neural networks under FHE constraints.
During training, non-linear functions are utilized (specifi-
cally the ReLU activation function). For encrypted inference,



the non-linear functions are replaced with their polynomial
approximations. A primary focus of various works in this
generation has been optimizing resource usage and perfor-
mance in HE-based neural networks. Works in this generation
generally adopt the CKKS or TFHE homomorphic encryption
schemes. The TFHE scheme is known for its fast and efficient
bootstrapping after every multiplication called programmable
bootstrapping [21]. This approach enables the evaluation of
binary neural networks of arbitrary depth circuits while main-
taining small ciphertext sizes with minimal precision loss.
The most recent and most efficient of these works is the
work of Benamira et al. [22], which proposed a TFHE-based
architecture that achieved 74.1% accuracy on the CIFAR-10
dataset using a custom TFHE-CNN friendly architecture. The
main limitation of these works stems from the fact that TFHE
is inherently slow in large-scale data processing compared
to other FHE schemes, like CKKS and BGV. This is due
to its lack of support for parallel data processing. Also, the
TFHE scheme operates on bit-wise data, which contrasts the
floating-point arithmetic generally used in modern machine
learning models applications. These limitations make TFHE
not very tractable for processing complex or deep neural
network architectures [23]. On the other hand, the CKKS
scheme has emerged as the most compatible FHE scheme
for ML works given that it is the only mainstream FHE
scheme that supports floating-point arithmetic and parallel data
processing [24] [25]. These capabilities significantly accelerate
computations while providing a possible direct mapping of
functionalities with unencrypted ML works. In 2022, Lee et
al. proposed an FHE inference system that achieved 91.31%
accuracy on the CIFAR-10 dataset in 2,271 seconds [25]
using the polynomial approximation of the ReLU activation
function. Building on this, Kim et al. introduced a more
efficient approach, achieving 92.04% accuracy on CIFAR-10
with a single image inference time of 255 seconds [26]. Most
recently, Rovida et al. proposed an optimized implementation
of Kim et al.’s work, achieving 91.53% accuracy on the
CIFAR-10 dataset in 260 seconds while using only 15.1 GB of
memory [27]. All works mentioned have used the polynomial
approximation of the ReLU activation function to evaluate
ResNet-20 models.

Unlike most FHE-based ML works today, which primarily
focus on optimizing FHE inference while applying the ap-
proximation of ReLU or using low-degree polynomials like the
square function, our work takes a different approach. We focus
on evaluating different activation functions suitable for PPML
solutions under FHE constraints. By analyzing different meth-
ods, we identify where the different activation functions are
most effective in constructing FHE-based models. Through a
comprehensive analysis of results, this work provides insights
that will assist in selecting activation functions that best fit the
privacy preserving needs of different applications.

III. BACKGROUND

A. Fully Homomorphic Encryption

Homomorphic Encryption (HE) is a cryptographic paradigm
that enables direct computations on encrypted data without

requiring decryption. This concept was originally introduced in
1978 under the term Privacy Homomorphism [28], shortly af-
ter the introduction of the RSA public key encryption scheme
[6]. The introduction of HE marked a significant advancement
in secure computation, allowing encrypted data to be manip-
ulated while preserving confidentiality. A major breakthrough
in this sub field of cryptography occurred in 2009 when Craig
Gentry introduced the first Fully Homomorphic Encryption
(FHE) scheme [29] in his PhD thesis. FHE enables an arbitrary
number of computations on encrypted data, overcoming the
limitations from earlier HE schemes that only supported
a restricted set of operations and only very limited depth
circuits. Gentry’s work laid the foundation for practical FHE
by introducing two fundamental techniques: bootstrapping and
squashing. These innovations provided a structured approach
to extending somewhat homomorphic encryption schemes to
fully homomorphic ones. Gentry’s scheme was based on ideal
lattices, that inherently support homomorphic addition and
multiplication for circuits of very limited depth. A critical
challenge and limitation of lattice based HE schemes is noise
accumulation within ciphertexts. As computations proceed, the
noise level increases, and if it surpasses a certain threshold,
the ciphertext becomes undecipherable thus rendering the
encrypted message to be irretrievable. To address this issue,
Gentry used an expensive computational operation called boot-
strapping. He defined bootstrapping as a mechanism that peri-
odically reduces noise within a ciphertext, thereby enabling
indefinite computations on encrypted data. This approach
established a foundation for subsequent improvements in FHE
schemes, making them increasingly efficient and practical for
real-world applications.

While other mainstream FHE schemes such as Brakerski-
Gentry-Vaikuntanathan (BGV) [30], Brakerski/Fan-
Vercauteren (BFV) [31], and Fast Fully Homomorphic
Encryption over the Torus (TFHE) [21] exist, the Cheon-
Kim-Kim-Song (CKKS) scheme [24] is the most suitable
for machine learning applications. It is the only mainstream
FHE scheme that supports both approximate arithmetic and
parallel data processing, therefore being the only scheme
that aligns perfectly well with the needs of modern machine
learning workflows and workloads. Figure 1 illustrates a
privacy preserving outsourced ML inference scenario utilizing
HE. In this setup, a user is seeking to perform inference on
an encrypted model stored in the cloud. First, they encrypt
their input data using their public key and transmit it to the
cloud. The cloud server processes the encrypted data using
the encrypted model without ever decrypting it. Once the
processing is completed, it returns the encrypted inference
result to the user. Upon receiving the encrypted result, the
user then decrypts it using their private key to gain access
to the model’s inference output. It is important to note that,
at no point in this process did the cloud provider or anyone
else gain access to the input data or inference result except
for the user. Also, the cloud provider cannot extract any
information from the encrypted model, since they do not
have access to the private key. Furthermore, even in the event
of a cloud breach, the user data and model stay protected,
since all information is maintained in its encrypted form.



This mechanism upholds confidentiality of both the user’s
data and the model, making HE a robust solution for secure
cloud-based machine learning inference.

FHE
engine

Encrypted Data

Plaintext
Data

Inference
results of Data

Public 
Key

Secret
Key

Encryption
Operation

Decryption
Operation

User End
Cloud Server

FHE-friendly Model

Encrypted Inference Results

HE Security 
Parameters

FHE
engine

Public Key

HE Security 
Parameters

Model Provider

Model

Fig. 1: Privacy-preserving machine learning inference in an
outsourced cloud scenario showing a user inferring encrypted

data over an encrypted model.

B. Cheon-Kim-Kim-Song (CKKS) Scheme

In 2016, Cheon, Kim, Kim, and Song introduced the CKKS
scheme, a HE scheme specifically designed for approximate
arithmetic [24]. Its security is based on the Ring Learning with
Errors (RLWE) problem, a structured extension of the Learn-
ing with Errors (LWE) problem proposed by Regev in 2005
[32] and later refined for polynomial rings by Lyubashevsky et
al. [33]. The LWE problem involves recovering a hidden vector
from noisy linear equations generated using random samples.
Formally, given a matrix A ∈ Zm×n

q and a vector b ∈ Zm
q , the

goal is to find an unknown vector s ∈ Zn
q satisfying:

As+ e = b mod q, (1)

where e is a noise vector sampled from a predefined error
distribution, and q is a large prime modulus.

Expanding on this, the RLWE problem generalizes LWE
to polynomial rings, leveraging their algebraic properties for
computational efficiency. A key advantage of CKKS is its
ability to encode multiple plaintext values into a single poly-
nomial through a technique known as “slot packing”. This
feature enables efficient parallel computations using the Single
Instruction Multiple Data (SIMD) paradigm, significantly ac-
celerating homomorphic operations through batch processing
of data. The CKKS scheme defines a range of homomorphic
operations, including addition, subtraction, multiplication, ro-
tation, and bootstrapping. These operations enable users to
build a wide range of applications that support encrypted data
processing with CKKS making it well-suited for PPML and
other critical applications that require privacy computations on
real-valued data.

C. Machine Learning

Machine learning (ML) is a sub-field of artificial intelli-
gence that empowers computers to recognize patterns within
data and generate predictions or decisions without requiring
explicit programming [34]. The field of ML is broadly catego-
rized into three paradigms: supervised learning, unsupervised

learning, and reinforcement learning. Supervised learning in-
volves training models using labeled datasets, enabling them
to make precise predictions based on known input-output pairs
[35]. In contrast, unsupervised learning identifies hidden struc-
tures and patterns within unlabeled data, uncovering insights
without predefined outcomes [36]. Reinforcement learning is
distinct from these approaches. It employs a trial-and-error
mechanism where models interact with an environment, then
develop optimal strategies through rewards and penalties [37].

A significant advancement within the field of ML is the
area of deep learning. Deep learning utilizes artificial neural
networks (mainly convolution neural networks) with multiple
layers to process complex and high-dimensional data repre-
sentations [38]. These networks typically comprise of linear
layers and activation functions. The linear layers generally
include the convolution layers, the pooling layers, and the
fully connected layers. These linear layers have been widely
studied under FHE constraints as they generally account for
the bulk of the computational cost of FHE-based models. For
this reason, we will not discuss them in this work. Instead,
we will focus on activation functions since they have not
been well studied under FHE constraints. Activation functions
are particularly interesting as they introduce nonlinearity in
learning, allowing ML model to capture intricate relationships
within data. Commonly used activation functions in modern
ML applications include the Rectified Linear Unit (ReLU),
Sigmoid, and Hyperbolic Tangent (Tanh), each contributing
uniquely to model efficiency and performance. Deep learning
techniques can be applied across all three ML paradigms,
enhancing supervised learning with highly accurate mod-
els, enabling advanced clustering in unsupervised learning,
and improving decision-making capabilities in reinforcement
learning.

IV. FHE-BASED ACTIVATION FUNCTIONS

Activation functions play a fundamental role in ML models.
Particularly in artificial neural networks, they introduce non-
linearity and enabling complex pattern learning [39]. This
non-linearity allows networks to learn complex patterns and
relationships in data that linear models cannot capture. By
determining how neurons process and transmit signals through
layers, activation functions fundamentally shape a network’s
ability to learn and generalize from data. Traditional activation
functions like the sigmoid and hyperbolic tangent (tanh) were
widely used in early neural networks due to their smooth,
differentiable properties. However, they often suffered from
vanishing gradient issues, which made training deep networks
difficult [40], [41]. In response, more recent advancements
have favored the Rectified Linear Unit (ReLU) and its variants
because they provide faster convergence, reduce the gradient-
related problems, and encourage sparse activations [42], [43].

While activation functions are relatively straightforward to
implement in the plaintext domain, they present significant
challenges in PPML settings, particularly when using FHE.
For instance, ReLU, is non-polynomial and non-smooth, mak-
ing it incompatible with the algebraic operations supported
by most FHE schemes. To address this issue, researchers



have proposed FHE-based alternatives based on low-degree
polynomial functions including simple square functions and
polynomial approximations of ReLU. In this section, we
examined the design and implementation of these activation
functions in the FHE context, highlighting their algorithms,
benefits, and the trade-offs they entail.

A. Square Activation function

Popular activation functions used in ML, such as the ReLU
and sigmoid functions, involve non-polynomial operations that
are difficult to compute under FHE constraints. In contrast,
the square function is inherently polynomial, making it well-
suited for homomorphic evaluation. Its algebraic simplicity
aligns naturally with the linear structures supported by most
FHE schemes, making it both easy to understand and straight-
forward to implement. Due to these advantages, the square
activation function gained significant attention in the context
of FHE-based PPML solutions. As a low-degree polynomial,
it was the first activation function adopted for encrypted neural
networks computation. Among other low-degree polynomials,
it is valued for its simplicity, computational efficiency, and
compatibility with homomorphic operations. Mathematically,
the square activation function is defined in Equation 2.

f(x) = x2 (2)

where x is the input to the function f .

The implementation of the square activation function using
the CKKS scheme is outlined in Algorithm 1.

Algorithm 1 The Square Function Algorithm in FHE

1: Input: x (input ciphertext)
2: Output: y
3: y ← CKKSmultiply(x, x)
4: return y

The square activation function is smooth and differentiable
everywhere, which facilitates stable gradient propagation dur-
ing training. However, its derivative, given by f ′(x) = 2x,
is also a linear function. Unlike non-linear activation func-
tions whose gradients exhibit non-linear behavior promoting
piecewise non-linearity and sparsity, the square function’s
linear derivative introduces certain optimization challenges. In
particular, the lack of saturation regions and the absence of
a thresholding mechanism reduce the network’s capacity to
capture complex hierarchical features effectively. Another key
limitation of the square function is its inherent non-negativity.
By squaring all inputs, it eliminates sign information and pro-
duces only non-negative outputs without any accumulations.
This behavior can lead to redundancy in activation patterns
and increase the correlation among neuron outputs, which may
negatively affect the model’s ability to generalize. Moreover,
the unbounded nature of the derivative 2x for large input
magnitudes can cause gradient instability during training. This
is especially problematic in deep architectures, where the ac-
cumulation of large gradients can result in exploding gradient
phenomena, ultimately destabilizing the learning process.

These challenges make it difficult to train deep neural net-
works effectively using the square activation function. Modern

architectures like ResNet-20, rely on residual connections that
perform best when activation functions maintain controlled
gradient norms. The unbounded growth of the square func-
tion’s derivative disrupts this balance, leading to unstable
weight updates. As a result, while the square function is
computationally efficient and works well in shallow FHE-
based models, it is not suitable for deeper architectures. For
instance, training the ResNet-20 model with the square acti-
vation function was proved infeasible due to instability during
backpropagation. The exploding gradients prevented effective
learning and completely hindered the network’s ability to
generalize.

B. ReLU Activation Function

Rectified Linear Unit (ReLU) is the most widely adopted
activation function in ML today due to its simplicity and
effectiveness [43]. ReLU applies a threshold operation where
all negative values are set to 0. This non-linearity accelerates
convergence and helps reduce the vanishing gradient problem
in training. Equation 3 shows the mathematical representation
of the ReLU activation function.

f(x) = max(0, x) (3)

Unlike traditional activation functions such as sigmoid and
tanh, that suffer from vanishing gradient problems, ReLU
preserves gradient flow for positive inputs, allowing for faster
convergence and improved performance in deep architectures.
By setting all negative inputs to zero, ReLU introduces sparsity
in activations, reducing computational complexity and enhanc-
ing model generalization by mitigating unnecessary neuron
activations. This sparsity also contributes to an implicit form
of regularization, preventing over-fitting in large networks.

1) Polynomial Approximation of ReLU: In FHE-based ML
models, the implementation of ReLU poses challenges due
to its non-polynomial nature, making direct computation on
encrypted data inefficient especially in the CKKS scheme.
Previous FHE-based neural networks implementations have
focused on Polynomial approximation of the ReLU activation
function mainly using the Chebyshev’s Polynomial Approxi-
mation.

Chebyshev polynomials form a family of orthogonal poly-
nomials defined on the interval [−1, 1]. They are highly
effective in approximating complex, non-linear functions with
both efficiency and precision [44]. These polynomials are
denoted by Tn(x) and are defined recursively as follows:

T0(x) = 1, (4)
T1(x) = x, (5)
Tn(x) = 2xTn−1(x)− Tn−2(x), for n ≥ 2. (6)

A distinctive feature of Chebyshev polynomials is the dis-
tribution of their roots. A polynomial of degree n has exactly
n roots, all of which are located within the interval [−1, 1].
These roots are expressed in the following form:

xk = cos

(
kπ

n

)
, for 0 ≤ k < n. (7)



The Chebyshev polynomials offer an efficient way to ex-
press non-linear functions as a sum of polynomials. This
approach proves especially useful in FHE applications as
polynomials seamlessly integrate with the underlining data
representations. By employing Chebyshev polynomial approx-
imations, the ReLU function can be approximated securely
within the encrypted domain.

To correctly apply Chebyshev approximations, it is impor-
tant to normalize the input data to lie within the interval
[−1, 1]. We achieved this by introducing a scaling factor β
that adjusts the input vector accordingly. The input vector is
scaled by multiplying it with 1

β , as shown in Equation 8:

xs =
1

β
· x (8)

The parameter β is selected through an analysis of values
across different datasets and networks. This process ensures
that the data is accurately normalized while maintaining the
representational integrity of the ReLU activation function
under FHE constraints. When β > 1, a scaling mask is applied
to the input vector x to ensure proper scaling of data before
processing. Once scaled, the modified input is passed to the
Chebyshev approximation function. The results are then scaled
back by multiplying them by β, as shown in Algorithm 2.

Algorithm 2 Secure ReLU Using Homomorphic Encryption

1: Input: x, β
2: Output: y
3: Initialization: D, v ← x
4: if β > 1 then
5: v ← CKKSMultiply(x, β)
6: end if
7: Define f(z) : f(z)← 0 if z < 0; f(z)← β · z otherwise
8: y ← ChebyshevFunction(f(z), v,D)
9: return y

In Algorithm 2, D is the degree of the Chebyshev poly-
nomial used for approximating the function. The value of
D determines the accuracy of the Chebyshev Approximation
of the ReLU function. The higher the degree, the better the
approximation but the higher the computational cost. To deter-
mine the right value of D to use, we conducted an experiment
with varying values for the polynomial degree between 10
and 100. We studied how well the function approximated the
results of the ReLU function. We determined that when D
is equal 50, we obtain a good balance between accuracy and
the resources used for the polynomial approximation of the
ReLU activation function. This value of D consumes a noise
budget equivalent to that of eight multiplications thus efficient
for use in applications with FHE parameters that can lead to a
multiplication depth after bootstrapping to still be greater than
eight.

C. Secure ReLU Evaluation via Scheme Switching

FHE schemes exhibit varying degrees of efficiency and
computational capabilities, making them suitable for different
types of encrypted computations and operations. The CKKS
scheme, in particular, is well-suited for approximate arithmetic

and supports efficient parallel computation. These properties
make CKKS the optimal choice for evaluating linear opera-
tions in FHE-based ML applications. However, CKKS is in-
herently limited in its ability to perform non-linear operations,
such as the comparison operation required for thresholding in
the ReLU activation function.

In contrast, the FHEW [45] and TFHE schemes [21]
are specifically designed for efficient evaluation of boolean
gates. They enable precise computation of non-linear functions
such as comparisons, sign determination, and the floor func-
tion [21]. These functions are expressed as boolean circuits
which are then constructed from basic logic gates such as
AND, OR, NOR, and XOR defined in these schemes. This
gate-based approach allows for accurate discrete computation
of functions under FHE constraints. While FHEW and TFHE
offer high accuracy in such boolean computations, they do not
support SIMD-style parallelism. Consequently, they introduce
significant computational overhead when applied to large-scale
data processing tasks like those commonly encountered in ML
applications.

To leverage the strengths of both encryption schemes, we
adopt a scheme-switching approach that integrates CKKS with
TFHE. Specifically, CKKS is used to efficiently evaluate all
linear layers in the model, while TFHE is employed in the
evaluation of non-linear activation functions. During inference,
ciphertexts are switched back and forth between the two
schemes depending on the type of layer and operation been
evaluated. This hybrid strategy enables efficient computation
while maintaining compatibility with the constraints of FHE
and capitalizing on the complementary strengths of both
schemes. The concept of scheme switching between different
homomorphic encryption schemes was first introduced by
Christina et al. in 2018 under the name CHIMERA [46].
This technique is feasible between CKKS and TFHE because
both schemes are rooted in the LWE problem. As a result,
ciphertexts in either scheme share the same foundational alge-
braic structures, making translation between schemes mathe-
matically viable. In essence, scheme switching involves trans-
forming the underlying representation of ciphertexts from one
scheme to another while preserving the encrypted data and its
semantic integrity.

In this method of evaluating the ReLU activation function,
we first determine the sign of each encrypted value within a
CKKS SIMD ciphertext by switching to the TFHE scheme,
which supports precise comparison operations. Once the signs
are computed in TFHE, we switch back to CKKS and use
the resulting ciphertext to construct a binary mask. This mask
is then homomorphically multiplied with the original CKKS
ciphertext, effectively zeroing out the negative values and
thereby implementing a more precise, secure, and privacy-
preserving ReLU activation function. This algorithm consumes
just a single multiplication depth in the noise budget of
ciphertext. The complete procedure is outlined in Algorithm 3.

This proposed scheme-switching technique effectively inte-
grates the strengths of CKKS and TFHE, enabling efficient
and secure ReLU activation in encrypted neural networks.
CKKS provides high throughput in evaluating linear layers,
while TFHE assist in a precise computation of the compar-



ison operation needed to effectively evaluate the non-linear
ReLU activation function. This hybrid approach allows for
the construction of high-precision PPML models under FHE
constraints. Although the scheme-switching process of ReLU
still results in some errors, the resulting errors are much
smaller than those incur in the approximation when using low-
degree polynomials.

Algorithm 3 Secure Scheme-Switching ReLU Algorithm

1: Input: cenc (encrypted input vector), csec (second cipher-
text), vector size

2: Output: cresult
3: Set slots of cenc to vector size
4: tcenc ← CKKSSwitchToTFHEW(cenc)
5: tcsec ← CKKSSwitchToTFHEW(csec)
6: ccomp ← TFHECompare(tcenc, tcsec, vector size)
7: mask← GenerateCKKSPlaintextMask(1, vector size)
8: csign ← CKKSSubtract(mask, ccomp)
9: cresult ← CKKSMultiply(csign, cenc)

10: return cresult

V. EXPERIMENT AND RESULTS

All experiments in this study were performed on a AMD
Ryzen 9 5900X 12-core processor with 64GB of RAM. We
build all our models on OpenFHE v1.2.3 which is the most
stable version of the library at the time of development. We
chose OpenFHE because it is the most advanced FHE library
available to the development community. Additionally, it is
the only FHE library that supports implementations for both
CKKS and FHEW/TFHE gates [47] [48].

A. Network Architectures

To comprehensively evaluate the performance of these dif-
ferent activation function implementations under FHE, we
evaluate two distinct neural network architectures: LeNet-5
and ResNet-20. These models differ significantly in complex-
ity and application domains, making them ideal candidates
for assessing the trade-offs between efficiency and accuracy
in privacy-centric applications.

LeNet-5 is a relatively simple and shallow artificial neural
network originally designed for grayscale image classification
tasks such as handwritten digits recognition [49]. Despite its
simplicity, LeNet-5 remains one of the most widely studied
architectures in ML literature, making it an excellent baseline
for evaluating activation functions in FHE settings. For this
study, we trained two versions of LeNet-5 on the MNIST
dataset using the ReLU activation function and using the
square activation function. The training process was conducted
in PyTorch, and the learned model weights were exported as
CSV files which were then loaded into the encrypted models
for inference. Within the encrypted domain, we implemented
three different evaluation models. Our first model used the
square activation function with equivalent weights exported
from the model trained on the square activation function. Our
second model used the polynomial approximation of ReLU
activation function while our third model used the scheme-
switching evaluation of ReLU activation function. The last two

FHE-based LeNet-5 models used the weights from the model
trained with the ReLU activation functions. Each encrypted
model was evaluated using 750 images from the MNIST
validation set. Figures 2 illustrate the detailed architectures
of the LeNet-5 models used in this study including the
input channels, output channels, kernel, padding, and striding
configurations.

C
on

vo
lu

tio
n

A
ct

iv
at

io
n 

Fu
nc

tio
n

Av
er

ag
e 

Po
ol

in
g

C
on

vo
lu

tio
n

A
ct

iv
at

io
n 

Fu
nc

tio
n

Av
er

ag
e 

Po
ol

in
g

Fu
lly

 C
on

ne
ct

ed

A
ct

iv
at

io
n 

Fu
nc

tio
n

Fu
lly

 C
on

ne
ct

ed

A
ct

iv
at

io
n 

Fu
nc

tio
n

Fu
lly

 C
on

ne
ct

ed

In Chan = 1
Out Chan = 6
Kernel = 5 x5
Padding = 0
Striding = 1

In Chan = 6
Out Chan = 16
Kernel = 5 x5
Padding = 0
Striding = 1

In Chan = 256
Out Chan = 120

In Chan = 120
Out Chan = 84

In Chan = 84
Out Chan = 10

28 x 28

Image

Fig. 2: The LeNet-5 Architecture used in this work:
In Chan = input channels, Out Chan = output channels

The ResNet models are some of the most widely adopted
deep learning models for complex image classification tasks
today [50]. The core innovation in ResNets is the introduction
of residual connections, which mitigate the vanishing gradient
problem and enable efficient training of deeper networks. Due
to its balance of depth and computational feasibility, ResNet-
20 has been commonly employed in prior FHE research and
serves as an ideal benchmark for our study.

C
on

vo
lu

tio
n

A
ct

iv
at

io
n 

Fu
nc

tio
n

B
as

ic
 B

lo
ck

B
as

ic
 B

lo
ck

In Chan = 3
Out Chan = 16
Kernel = 3 x 3
Padding = 1
Striding = 1

3 x 32 x 32

Image

B
as

ic
 B

lo
ck

B
as

ic
 B

lo
ck

B
as

ic
 B

lo
ck

B
as

ic
 B

lo
ck

B
as

ic
 B

lo
ck

B
as

ic
 B

lo
ck

B
as

ic
 B

lo
ck

Av
er

ag
e 

Po
ol

in
g

Fu
lly

 C
on

ne
ct

ed

ImageImage

C
on

vo
lu

tio
n

A
ct

iv
at

io
n 

Fu
nc

tio
n

C
on

vo
lu

tio
n

A
dd

iti
on

Sh
or

tc
ut

C
on

vo
lu

tio
n

A
ct

iv
at

io
n

In Chan = 16
Out Chan = 16
Kernel = 3 x 3
Padding = 1
Striding = 1

In Chan = 16
Out Chan = 32
Kernel = 3 x 3
Padding = 1

Striding = 2,1

In Chan = 32
Out Chan = 64
Kernel = 3 x 3
Padding = 1

Striding = 2,1

Basic Block Structure: The Shortcut convolution is just a
special convolution that works only when the striding value

is 2 which is in block 2 and 3 of the ResNet-20 model

Layer 1Layer 0 Layer 2 Layer 3

Fig. 3: ResNet-20 Architecture. The Blocks show the ResNet
blocks. The Block Structure shows the details and how the
convolutions are connected

For our evaluation, we trained a ResNet-20 model on the
CIFAR-10 dataset using the ReLU activation function. In
contrast to LeNet-5, we found that training ResNet-20 with
the square activation function was infeasible due to its limited
capacity to approximate non-linear behaviors in deep archi-
tectures (see Section IV). This result highlights a fundamental
limitation of low-degree polynomial activation functions in
privacy-preserving deep learning, as their expressive power
diminishes with increasing network depth.



After training the ResNet-20 model with ReLU activation
functions, the resulting model weights were also exported as
CSV files for use with the FHE-based models to inference
on encrypted data. Within the encrypted domain, we imple-
mented two evaluation models: one utilizing a polynomial
approximation of ReLU and the other employing the scheme-
switching approach introduced in Algorithm 3. We conducted
encrypted inference on both models on a subset of 250 images
from the CIFAR-10 validation set. The key metrics evaluated
were accuracy retention and inference latency for the two
ReLU implementation approaches. To achieve fast inference
for accuracy evaluation, we utilized the SOL supercomputer
at Arizona State University [51]. Latency measurements, how-
ever, were collected directly from a local consumer-grade
setup using an AMD Ryzen 9 5900X CPU. Figures 3 illustrate
the ResNet-20 architectures used in this study including the
input channels, output channels, kernel, padding and striding
configurations. Its residual connections show the additional
convolutions evaluated in the down-sampling stage of ResNets.

Furthermore, since noise accumulation is a critical challenge
in FHE, we incorporated bootstrapping operations at necessary
points to preserve computational integrity. Table I summarizes
the number of bootstrapping operations required for each
model to ensure accurate and efficient encrypted inference.
The placement of bootstraps within the models were carefully
determined based on the estimated noise levels at various
stages of the inference process. These estimates were derived
from a detailed analysis of ciphertext modulus consumption
throughout the computation pipeline. By strategically applying
bootstrapping only when the noise threatened to exceed the de-
cryption threshold, we minimized overhead while maintaining
correctness in the encrypted domain.

TABLE I: Number of Bootstrapping Operations required in
Encrypted Models

Architecture Number of Bootstraps used
LeNet-5 With Square 0
LeNet-5 with Approximation 4
LeNet-5 with Scheme Switch 0
ResNet-20 with Approxima-
tion

18

ResNet-20 with Scheme
Switching

8

Table II provides an overview of the security parameters
used in our encrypted inference experiments. These parameters
were carefully chosen to maintain a security level around 128
bits of security with maximum throughput within the models,
ensuring robustness against cryptographic attacks while opti-
mizing computational efficiency.

TABLE II: The CKKS Parameter sets used to evaluate the
LeNet-5 and ResNet-20

Parameter LeNet-5 ResNet-20
Polynomial Degree 16384 32768
Number of Slots 8192 16384
Multiplications after Bootstrap 10 10

B. Results

Table III presents the accuracy of the evaluated neural net-
work models under both plaintext and under FHE constraints,
as well as the latency measurements in the encrypted domain.
The primary objective of this evaluation was to investigate
the trade-offs between computational overhead and model
accuracy associated with different methods for evaluating acti-
vation functions under FHE constraints. Our analysis compares
the three activation function evaluation approaches in the
encrypted domain: the low-degree polynomial square func-
tion, polynomial approximations of the ReLU function, and
the scheme-switching ReLU evaluation method. The results
show the inherent trade-offs between accuracy retention and
computational efficiency in FHE-based PPML solutions.

For the LeNet-5 architecture, all three activation function
methods achieve comparable performance, exhibiting mini-
mal accuracy loss between plaintext and encrypted inference.
Notably, the square activation function achieves the highest
encrypted accuracy of 99.4%, with only a 0.2% degradation
from its plaintext counterpart. However, it offers latency
performance higher than that of the ReLU polynomial approxi-
mations which significantly outperforms the scheme-switching
method in terms of runtime. A key advantage of the square
function lies in its seamless compatibility with the CKKS
scheme, which allows it to be implemented using a single
homomorphic multiplication thereby eliminating the need for
bootstrapping and further improving computational efficiency
in shallow architectures like LeNet-5.

The ReLU approximation method shows a modest accuracy
degradation of 0.3% in the encrypted LeNet-5 model while
maintaining the best latency across all evaluations. Mean-
while, the scheme-switching ReLU approach also incurs a
0.3% accuracy loss but introduces significant computational
overhead. Specifically, it requires approximately 168 seconds
to inference a single image which is about 1.7× the latency
of the approximation-based method. This increased cost arises
from the additional operations required to switch between
CKKS and TFHE schemes, along with the inherently higher
computational complexity of TFHE operations. Despite its
slower performance, the scheme-switching method still offers
latency that is practical for many real-world applications.

In deeper architectures like ResNet-20, the choice of activa-
tion function plays a critical role in determining the model’s
performance. Residual networks, in particular, rely on non-
linear activations to enable effective feature transformation
across layers. Consequently, the selection of an appropriate
activation function directly affects the model’s expressiveness
and accuracy. When employing polynomial approximations of
the ReLU function within the CKKS framework, we observed
an 8.4% accuracy degradation relative to the plaintext model.
This substantial drop in performance can be attributed to
the limited capacity of low-degree polynomials to accurately
approximate the non-linear behavior of ReLU, thereby lead-
ing to suboptimal feature transformations during inference.
Nevertheless, this method remains computationally efficient,
as it avoids the need for scheme-switching or bootstrapping,
making it well-suited for latency-sensitive applications where



minor accuracy compromises are acceptable. In contrast, the
scheme-switching ReLU evaluation method achieves signif-
icantly higher accuracy, incurring only a 2.4% drop from
the plaintext baseline. This demonstrates the effectiveness of
leveraging TFHE’s precise operations capabilities to recon-
struct the ReLU function more efficiently within the encrypted
domain. However, the improved accuracy comes at the cost
of increased computational complexity. The scheme-switching
model required approximately 1, 697 seconds for inference,
representing a 1.5× increase in runtime compared to the
polynomial approximation approach.
TABLE III: Accuracy Comparison Between Plaintext and FHE
Settings as well as the latency in the FHE setting for the
LeNet-5 models and ResNet-20 models

Architecture Plaintext
(%)

Encrypted
(%)

Latency
(s)

LeNet-5 Square 99.6 99.4 128
LeNet-5 Approximation 99.2 98.9 95
LeNet-5 Scheme Switch 99.2 98.9 168
ResNet-20 Approximation 92.2 83.8 1,145
ResNet Scheme Switch 99.2 89.8 1,697

These results highlight a fundamental trade-off in PPML
applications that rely on FHE. While polynomial approxi-
mations of ReLU activation functions substantially accelerate
encrypted inference, they introduce notable accuracy degrada-
tion, particularly in deeper network architectures. Conversely,
our introduced scheme-switching methods offer a more faithful
representation of ReLU, preserving model accuracy at the cost
of increased computational overhead.

With shallow neural networks like LeNet-5, polynomial
activation functions, particularly the square function, offer
an optimal balance between accuracy and computational effi-
ciency under FHE constraints. This function aligns well with
the CKKS encryption scheme and avoids costly bootstrapping
operations in this model, making it especially suitable for real-
time applications in resource-limited settings. ReLU-based
LeNet-5 models also performed well, with the approximation
approach achieving the lowest latency in the FHE-based
LeNet-5 models. For deeper architectures like ResNet-20,
the optimal activation function strategy depends heavily on
application-specific requirements. If accuracy preservation is
paramount, the scheme-switching ReLU approach provides a
robust solution with minimal degradation. However, if infer-
ence latency and computational resources are the primary con-
straints, ReLU approximation methods offer a practical alter-
native, albeit with a slight compromise in accuracy. Ultimately,
these findings underscore that activation function selection
in PPML is not a one-size-fits-all decision. Researchers and
practitioners must carefully evaluate their deployment require-
ments in other to balance accuracy, latency, and model depth
when selecting an appropriate activation function strategy for
FHE-based neural networks.

VI. CONCLUSION

In this work, we explored the impact of activation func-
tions on the efficiency and accuracy of privacy-preserving
neural networks under Fully Homomorphic Encryption (FHE)

constraints. We also introduce a novel algorithm for high
precision evaluation of the ReLU activation function based on
scheme-switching between the TFHE and CKKS schemes. Our
results, highlight the trade-offs between the square activation
function, ReLU approximation, and our proposed scheme-
switching ReLU activation functions in both shallow and deep
neural network architectures. For shallow networks like LeNet-
5, the square activation function proved to be the most efficient
choice, offering the best accuracy with a comparable latency.
Additionally, its implementation allowed us to eliminate the
need for bootstrapping. This further enhance computational
efficiency of models like LeNet-5 in scenarios where boot-
strapping implementation is not possible. On the other hand,
the challenges that come with low degree polynomial activa-
tion functions makes it difficult to adopt the square activation
function in deep models. For deeper architectures like ResNet-
20, the choice of activation function had a more pronounced
effect. The polynomial approximation approach for evaluating
ReLU was computationally efficient but resulted in a notable
accuracy drop of 8.4%. In contrast, the scheme-switching
method preserved accuracy with only a 2.4% degradation.
This lower accuracy degradation came at though the cost of
increased latency.

These findings highlight a fundamental trade-off in the se-
lection of activation functions for privacy-preserving machine
learning application based on FHE. Polynomial activations
like the square activation function are computationally effi-
cient and well-suited for shallow models such as LeNet-5,
whereas the scheme-switching method is better aligned with
deep architectures where maintaining precision is critical. In
performance sensitive applications, the ReLU approximation
approach emerges as the most practical choice, underscoring
the importance of fine-grained tuning to reduce accuracy
degradation. In high precision settings, our proposed scheme-
switching approach of evaluating the ReLU activation func-
tion is the most appropriate though it comes with a higher
computational cost compared to the approximation approach.
Thus, the choice between activation functions in FHE-based
machine learning applications should be guided by the specific
accuracy and efficiency requirements of the target application.
Future research should prioritize optimizing scheme-switching
mechanisms to reduce inference latency without compromising
accuracy. Another interesting research direction is the fine-
tuning of the polynomial approximation technique to reduce
their accuracy degradation rates as well as hybrid applications
of these techniques. These advancements will enhance the
feasibility and scalability of FHE-based solutions in modern
machine learning applications.

REFERENCES

[1] H. Magd, H. Jonathan, S. A. Khan, and M. El Geddawy, “Artificial
intelligence—the driving force of industry 4.0,” A roadmap for enabling
industry 4.0 by artificial intelligence, pp. 1–15, 2022.

[2] D. Virmani, M. A. S. Ghori, N. Tyagi, R. Ambilwade, P. R. Patil, and
M. Sharma, “Machine learning: The driving force behind intelligent
systems and predictive analytics,” in 2024 International Conference on
Trends in Quantum Computing and Emerging Business Technologies.
IEEE, 2024, pp. 1–6.



[3] E. J. Alcántara Suárez and V. Monzon Baeza, “Evaluating the role
of machine learning in defense applications and industry,” Machine
Learning and Knowledge Extraction, vol. 5, no. 4, pp. 1557–1569, 2023.

[4] M. I. Tariq, N. A. Memon, S. Ahmed, S. Tayyaba, M. T. Mushtaq,
N. A. Mian, M. Imran, and M. W. Ashraf, “A review of deep learning
security and privacy defensive techniques,” Mobile Information Systems,
vol. 2020, no. 1, p. 6535834, 2020.

[5] R. R. Salavi, M. M. Math, and U. Kulkarni, “A survey of various crypto-
graphic techniques: From traditional cryptography to fully homomorphic
encryption,” in Innovations in Computer Science and Engineering:
Proceedings of the Sixth ICICSE 2018. Springer, 2019, pp. 295–305.

[6] D. Tourky, M. ElKawkagy, and A. Keshk, “Homomorphic encryption
the “holy grail” of cryptography,” in 2016 2nd IEEE International
Conference on Computer and Communications (ICCC), 2016, pp. 196–
201, accessed: 2024-03-06.

[7] B. Pulido-Gaytan, A. Tchernykh, J. M. Cortés-Mendoza, M. Babenko,
G. Radchenko, A. Avetisyan, and A. Y. Drozdov, “Privacy-preserving
neural networks with homomorphic encryption: C hallenges and oppor-
tunities,” Peer-to-Peer Networking and Applications, vol. 14, no. 3, pp.
1666–1691, 2021.

[8] N. B. Njungle, E. Jahns, Z. Wu, L. Mastromauro, M. Stojkov, and
M. Kinsy, “Guardianml: Anatomy of privacy-preserving machine learn-
ing techniques and frameworks,” IEEE Access, 2025.

[9] C. Banerjee, T. Mukherjee, and E. Pasiliao Jr, “An empirical study on
generalizations of the relu activation function,” in Proceedings of the
2019 ACM Southeast Conference, 2019, pp. 164–167.

[10] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural
networks,” Towards Data Sci, vol. 6, no. 12, pp. 310–316, 2017.

[11] R. Podschwadt, D. Takabi, P. Hu, M. H. Rafiei, and Z. Cai, “A survey
of deep learning architectures for privacy-preserving machine learning
with fully homomorphic encryption,” IEEE Access, vol. 10, pp. 117 477–
117 500, 2022.

[12] D. Catalano, R. Cramer, G. Di Crescenzo, I. Darmgård, D. Pointcheval,
T. Takagi, R. Cramer, and I. Damgård, “Multiparty computation, an
introduction,” Contemporary cryptology, pp. 41–87, 2005.

[13] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A low latency framework for secure neural network inference,”
in 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, Aug. 2018, pp.
1651–1669. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/juvekar

[14] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC conference on computer and communications security,
2017, pp. 619–631.

[15] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushan-
far, “{XONN}:{XNOR-based} oblivious deep neural network infer-
ence,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 1501–1518.

[16] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International conference on
machine learning. PMLR, 2016, pp. 201–210.

[17] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural
networks over encrypted data,” arXiv preprint arXiv:1711.05189, 2017.

[18] A. Al Badawi, C. Jin, J. Lin, C. F. Mun, S. J. Jie, B. H. M. Tan,
X. Nan, K. M. M. Aung, and V. R. Chandrasekhar, “Towards the alexnet
moment for homomorphic encryption: Hcnn, the first homomorphic cnn
on encrypted data with gpus,” IEEE Transactions on Emerging Topics
in Computing, vol. 9, no. 3, pp. 1330–1343, 2020.

[19] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced
matrix computation and application to neural networks,” Cryptology
ePrint Archive, Paper 2018/1041, 2018. [Online]. Available: https:
//eprint.iacr.org/2018/1041

[20] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic
evaluation of deep discretized neural networks,” Cryptology ePrint
Archive, Paper 2017/1114, 2017. [Online]. Available: https://eprint.iacr.
org/2017/1114

[21] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe:
Fast fully homomorphic encryption over the torus,” Cryptology
ePrint Archive, Paper 2018/421, 2018, https://eprint.iacr.org/2018/421.
[Online]. Available: https://eprint.iacr.org/2018/421

[22] A. A. Badawi and Y. Polyakov, “Demystifying bootstrapping in fully
homomorphic encryption,” Cryptology ePrint Archive, Paper 2023/149,
2023. [Online]. Available: https://eprint.iacr.org/2023/149

[23] H. Narumanchi, D. Goyal, N. Emmadi, and P. Gauravaram, “Perfor-
mance analysis of sorting of fhe data: integer-wise comparison vs bit-

wise comparison,” in 2017 IEEE 31st International Conference on
Advanced Information Networking and Applications (AINA). IEEE,
2017, pp. 902–908.

[24] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” Cryptology
ePrint Archive, Paper 2016/421, 2016. [Online]. Available: https:
//eprint.iacr.org/2016/421

[25] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim, et al., “Privacy-preserving machine learning
with fully homomorphic encryption for deep neural network,” iEEE
Access, vol. 10, pp. 30 039–30 054, 2022.

[26] D. Kim and C. Guyot, “Optimized privacy-preserving cnn inference
with fully homomorphic encryption,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 2175–2187, 2023.

[27] L. Rovida and A. Leporati, “Encrypted image classification with low
memory footprint using fully homomorphic encryption,” Cryptology
ePrint Archive, Paper 2024/460, 2024. [Online]. Available: https:
//eprint.iacr.org/2024/460

[28] E. F. Brickell and Y. Yacobi, “On privacy homomorphisms (extended
abstract),” in Advances in Cryptology — EUROCRYPT’ 87, D. Chaum
and W. L. Price, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1988, pp. 117–125.

[29] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009, crypto.stanford.edu/craig.

[30] N. Aggarwal, C. Gupta, and I. Sharma, “Fully homomorphic symmetric
scheme without bootstrapping,” pp. 14–17, 2014.

[31] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.
[Online]. Available: https://api.semanticscholar.org/CorpusID:1467571

[32] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Procedings of the thirty-seventh annual ACM symposium
on Theory of Computing, 2005.

[33] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” Cryptology ePrint Archive, Paper
2012/230, 2012. [Online]. Available: https://eprint.iacr.org/2012/230

[34] M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine learning:
Threats and solutions,” IEEE Security & Privacy, vol. 17, no. 2, pp.
49–58, 2019.

[35] Z. Ghahramani, Unsupervised Learning. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 72–112.

[36] T. Jiang, J. L. Gradus, and A. J. Rosellini, “Supervised machine learning:
A brief primer,” Behav Ther, vol. 51, no. 5, pp. 675–687, May 2020.

[37] K. Sivamayil, E. Rajasekar, B. Aljafari, S. Nikolovski,
S. Vairavasundaram, and I. Vairavasundaram, “A systematic study
on reinforcement learning based applications,” Energies, vol. 16, no. 3,
2023. [Online]. Available: https://www.mdpi.com/1996-1073/16/3/1512

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://papers.nips.cc/paper files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[39] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation
functions in deep learning: A comprehensive survey and benchmark,”
Neurocomputing, vol. 503, pp. 92–108, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231222008426

[40] M. Roodschild, J. Gotay Sardiñas, and A. Will, “A new approach for the
vanishing gradient problem on sigmoid activation,” Progress in Artificial
Intelligence, vol. 9, no. 4, pp. 351–360, 2020.

[41] Y. Hu, A. Huber, J. Anumula, and S.-C. Liu, “Overcoming the van-
ishing gradient problem in plain recurrent networks,” arXiv preprint
arXiv:1801.06105, 2018.

[42] N. Gupta, P. Bedi, and V. Jindal, “Effect of activation functions on
the performance of deep learning algorithms for network intrusion
detection systems,” in Proceedings of ICETIT 2019: Emerging Trends
in Information Technology. Springer, 2020, pp. 949–960.

[43] J. He, L. Li, J. Xu, and C. Zheng, “Relu deep neural networks and linear
finite elements,” arXiv preprint arXiv:1807.03973, 2018.

[44] L. A. Gil-Alana and J. C. Cuestas, “A non-linear approach with long
range dependence based on chebyshev polynomials,” 2012.

[45] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds,”
Cryptology ePrint Archive, Paper 2016/870, 2016. [Online]. Available:
https://eprint.iacr.org/2016/870

[46] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, “CHIMERA:
Combining ring-LWE-based fully homomorphic encryption schemes,”

https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
https://eprint.iacr.org/2018/1041
https://eprint.iacr.org/2018/1041
https://eprint.iacr.org/2017/1114
https://eprint.iacr.org/2017/1114
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2023/149
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2024/460
https://eprint.iacr.org/2024/460
crypto.stanford.edu/craig
https://api.semanticscholar.org/CorpusID:1467571
https://eprint.iacr.org/2012/230
https://www.mdpi.com/1996-1073/16/3/1512
https://papers.nips.cc/paper_files/paper/2012/ file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper_files/paper/2012/ file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://eprint.iacr.org/2016/870


Cryptology ePrint Archive, Paper 2018/758, 2018. [Online]. Available:
https://eprint.iacr.org/2018/758

[47] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu,
D. Micciancio, I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor,
D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca, “Openfhe:
Open-source fully homomorphic encryption library,” Cryptology
ePrint Archive, Paper 2022/915, 2022, https://eprint.iacr.org/2022/915.
[Online]. Available: https://eprint.iacr.org/2022/915

[48] A. Al Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio,
I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor, D. Suponitsky,
M. Triplett, V. Vaikuntanathan, and V. Zucca, “Openfhe: Open-
source fully homomorphic encryption library,” in Proceedings of the
10th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, ser. WAHC’22. New York, NY, USA: Association
for Computing Machinery, 2022, pp. 53–63. [Online]. Available:
https://doi.org/10.1145/3560827.3563379

[49] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[51] D. M. Jennewein, J. Lee, C. Kurtz, W. Dizon, I. Shaeffer, A. Chapman,
A. Chiquete, J. Burks, A. Carlson, N. Mason, A. Kobawala,
T. Jagadeesan, P. B. Basani, T. Battelle, R. Belshe, D. McCaffrey,
M. Brazil, C. Inumella, K. Kuznia, J. Buzinski, D. D. Shah, S. M.
Dudley, G. Speyer, and J. Yalim, “The sol supercomputer at arizona
state university,” ser. PEARC ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 296–301. [Online]. Available:
https://doi.org/10.1145/3569951.3597573

https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://doi.org/10.1145/3560827.3563379
https://arxiv.org/abs/1512.03385
https://doi.org/10.1145/3569951.3597573

	Introduction
	Related Works
	Background
	Fully Homomorphic Encryption
	Cheon-Kim-Kim-Song (CKKS) Scheme
	Machine Learning

	FHE-based Activation Functions
	Square Activation function
	ReLU Activation Function
	Polynomial Approximation of ReLU

	Secure ReLU Evaluation via Scheme Switching

	Experiment and Results
	Network Architectures
	Results

	Conclusion
	References

