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ABSTRACT

Searchable encryption (SE) is the most scalable cryptographic primi-

tive for searching on encrypted data. Typical SE constructions often

allow access-pattern leakage, revealing which encrypted records

are retrieved in the server’s responses. All the known generic crypt-

analyses assume either that the queries are issued uniformly at

random or that the attacker observes the search-pattern leakage. It

remains unclear what can be reconstructed when using only the

access-pattern leakage and knowledge of the query distribution.

In this work, we focus on a cryptanalytic technique called fre-
quency analysis in the context of leakage-abuse attacks on schemes

that support encrypted range queries. Frequency analysis matches

the frequency of retrieval of an encrypted record with a plaintext

value based on its probability of retrieval that follows from the

knowledge of the query distribution. We generalize this under-

explored cryptanalytic technique and introduce a generic attack

framework called LAMa (from Leakage-Abuse via Matching) that

works even on high-dimensional encrypted data. We identify a pa-

rameterization of LAMa that brings frequency analysis to its limit–

that is, we prove that there is no additional frequency matching

that an attacker can perform to refine the result. Given the above

result, we identify query distributions that make frequency analy-

sis challenging for the attacker and, thus, can act as a mitigation

mechanism. Finally, we implement and benchmark LAMa and re-

construct, for the first time, plaintext data from encrypted range

queries spanning up to four dimensions.

1 INTRODUCTION

Searchable Encryption [39] is a cryptographic primitive that enables

searching encrypted data efficiently by revealing information about

the pattern of querying/accessing, known as a leakage profile. The
first SE schemewas introduced by Curtmola et al. [9]. Since then, the
community has produced research covering topics such as dynamic

schemes [7, 24, 25, 36], geometric queries [6, 11, 12, 14], locality-

aware schemes [3, 8, 10, 13], leakage suppression [2, 17, 23], and

quantifying the privacy of SE constructions [5, 27]. Recently, there

has been a surge in leakage-abuse attacks aimed at reconstructing

plaintext databases or queries using typical leakage profiles [4,

15, 18–22, 26, 28–30, 33, 34, 37, 40, 41]. In this work, we focus on

schemes with access-pattern leakage, which allow the adversary to

observe which encrypted records are retrieved as part of a response

to an encrypted query. Previous attacks exploiting access-pattern

leakage have relied either on additional leakage (e.g. the search-

pattern) or on the assumption that the clients queries come from a

specific known distribution (e.g. uniform). Here, we present the first

rigorous treatment of frequency analysis, a cryptanalytic technique

that only relies on (𝑖) knowledge of the query distribution and

(𝑖𝑖) access pattern. Our results contextualize earlier efforts, and

analyze the full reconstructive power of frequency analysis for

range schemes.

An Overview of the First Frequency Analysis. In the context

of range queries, Kellaris, Kollios, Nissim, and O’Neal proposed the

first leakage-abuse attack [26]. The adversarial strategy employed

relied heavily on frequency matching, i.e., the attacker matches the

observed frequency of accessing encrypted records (derived from

access-pattern leakage) to the theoretical probability of accessing a

plaintext value (derived from knowledge of the query distribution).

Specifically, the adversary is assumed to: (𝑖) know that each query

issued has the same probability of appearance, the so-called unifor-
mity assumption, (𝑖𝑖) observe the access-pattern leakage. Given their
knowledge of the query distribution, the adversary can compute

the probability of accessing a plaintext value 𝑣 .

As a first step, the adversary tries to match the observed fre-

quency of an encrypted record id to the theoretical frequency of a

plaintext value. Under the uniformity assumption, each encrypted

record will match to exactly two plaintext candidates: its true value

and its "reflection." This phenomenon is illustrated in Figure 1-(A),

where the plaintext domain ranges from 1 to 20 on the𝑋 -axis, while

the 𝑌 -axis represents the retrieval probability. The plot’s concave

and symmetric shape, resulting from the uniformity assumption,

ensures that only two plaintext values share the same retrieval

probability. Consequently, the attacker identifies two candidate val-

ues for each of the 𝑛 encrypted records, leading to 𝑂 (2𝑛) plausible
reconstructions.

As a next step, the attack from [26] identifies the record id∗ with
the lowest frequency, which under a uniform query distribution

indicates an extreme value (either the min or max). The attacker

then commits to one of these two candidate values for id∗. Next,
for each encrypted record id, the attacker checks how often id
appears together with id∗ in responses. This frequency analysis of

simultaneous retrievals helps discard one of the two candidates for

id, narrowing down plausible database reconstructions from𝑂 (2𝑛)
to just 2. If the guess for id∗’s extremity is correct, the reconstruction

is accurate; otherwise, the true database is its reflection.

Limitations of Current Approaches. In the following, we

present several limitations of the previous approaches:

Previous Frequency Analysis Attacks Are Customized For Uniform
Query Distributions. All cryptanalytic techniques [18, 26, 31] that
use frequency analysis in one-dimensional plaintext data assume

that the queries are issued uniformly at random. We emphasize that

the uniformity assumption shapes the retrieval probability of plain-

texts “favorably” for the attacker, as seen in Figure 1-(A). Without

this assumption, attacks can yield arbitrarily bad reconstructions.

To illustrate this point, if the query distribution is such that the
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(A) (B) (C)

Figure 1: Subfigure (A): The probability of retrieving a record with a fixed plaintext value (denoted on 𝑋 -axis) when queries

come from the uniform query distribution. Subfigure (B): An example of a query distribution for which every record is

retrieved with the same probability regardless of its plaintext value. Subfigure (C): The probability of retrieving a pair of

records together as part of a response for the same query distribution as Subfigure (B).

probability of accessing a plaintext is as shown in Figure 1-(B),

each encrypted record could have as many candidate reconstruc-

tions as there are plaintext values. However, this limitation does

not preclude other cryptanalytic methods from achieving accurate

reconstructions. For example, using the query distribution from

Figure 1-(B) to calculate the probability that two distinct records

are accessed together as part of the same response, the attacker

gets Figure 1-(C) where each bar has a distinct height, indicating
a unique candidate reconstruction for each observed frequency.

This illustrates that a more nuanced frequency analysis can address

previous challenges, underscoring the need for further exploration

of frequency analysis’ limitations.

Previous Approaches Need Search-Pattern Leakage. All prior crypt-
analytic approaches that do not assume the query distribution is

uniform must observe the search-pattern leakage, i.e., the attacker’s
ability to determine if encrypted queries are being repeated. For

the case of one-dimensional ranges, the work by Kornaropoulos et
al. [29] is the first attack that overcomes the uniformity assump-

tion by using the search pattern. For the case of two-dimensional

ranges, the works by Markatou et al. [33], and Falzon et al. [15] cru-
cially rely on the search-pattern leakage to infer how many distinct

ranges return the same response. All of the above works overcome

the uniformity assumption by relying on additional leakage (which

recent efforts show that it is possible to suppress [23]) and thus it

is still an open question how attackers can overcome uniformity

by using only access-pattern leakage.

Existing High-Dimension Attacks Make Different Assumptions or
Achieve Approximate Reconstruction.Only two previous attacks, [32]
and [35], operate inmore than two dimensions. The attack proposed

in [32] critically relies on constructions with a non-standard leakage

profile. Specifically, [32] is tailored to constructions like [16] that

map each plaintext query to multiple encrypted queries, thereby

exposing the interrelation among tokens. It also relies on the as-

sumption of search-pattern leakage made by the attacks mentioned

above.

The attack presented in [35] succeeds at approximate recon-

struction in dimensions beyond 2 and assumes only access-pattern

leakage. By contrast, our attack makes the additional assumption

that the adversary knows the query distribution of the client but tar-

gets exact reconstruction. As we explain in Section 4, our proposed

attack only outputs reconstructions whose leakage is indistinguish-

able from that of the true database. We see [35] as a viable attack

complementary to our own, but distinct in that it uses very differ-

ent techniques and does not consider adversarial knowledge of the

query distribution, on which the frequency analysis is focused. A

promising direction for future work may involve a hybrid approach

that combines the leakage amplification techniques of [35] with

frequency analysis.

Our Contributions.We make the following contributions:

• The Foundations of Frequency Analysis for Arbitrary Dimensions.
This is the first work that focuses on frequency analysis and

pushes this cryptanalytic technique to its limits (in §4). We only

assume access-pattern leakage and knowledge of the query dis-

tribution (which can differ from uniform). We formalize the basic

ideas of frequency analysis (in §3) and generalize prior attempts,

meaning any previous and future frequency analysis attack can

be cast using this unifying framework, which allows direct com-

parison between approaches.

• A Cryptanalytic Framework that Automates Frequency Analysis.
In §3, we present our framework Leakage-Abuse via Matching,

or simply LAMa , that abstracts and streamlines the operations to

execute frequency analysis. For the first time, we draw interesting

connections with Satisfiability Modulo Theories (SMT) solvers,

which we use to efficiently identify database reconstructions

that satisfy the observed frequencies of retrieval. LAMa supports
frequency analysis for any arbitrary conditional retrieval, e.g.,

frequency of retrieving id𝑎 but not id𝑏 . In §6 we implement and

evaluate a LAMa prototype on real-world healthcare datasets.

• A Parameterization of Frequency Analysis That Maximizes the Re-
constructive Power. In §4, we present a parametrization of LAMa
so that no other (generic) frequency analysis could produce a
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more accurate reconstruction. To support that, we prove that our

parameterization allows LAMa to output only databases with

the same response distribution as the true database, representing

the optimal outcome achievable through frequency analysis.

• Thwarting Frequency Analysis by Adjusting the Query Distribution.
In §5 we show how the defender can “flatten” the probability

of retrievals so as to (partially) mitigate frequency analysis. We

also show that it is impossible to adjust the query distribution

so that nothing is revealed (unless queries with probability 0 are

allowed).

Overall, our results are consequential for both attackers and

defenders in the context of leakage-abuse attacks. For attackers,

we show that frequency analysis can effectively reconstruct data

when the query distribution is known, even in high dimensions and
with only access-pattern leakage. For defenders, we show that con-

trolling the query distribution can greatly increase the number of

equally plausible reconstructions, effectively increasing adversarial

uncertainty.

2 BACKGROUND AND PRELIMINARIES

Notation. For any integer 𝑦, let [𝑦] denote the set {1, 2, . . . , 𝑦}. Let
[𝑦]𝑘 denote the 𝑘-fold Cartesian product, i.e., {1, 2, . . . , 𝑦} × . . . ×
{1, 2, . . . , 𝑦} for 𝑘 sets. For any integer 𝑁 , if 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) and
𝑏 = (𝑏1, . . . , 𝑏𝑘 ) are points in the 𝑘-dimensional plaintext domain
V = [𝑁 ]𝑘 , and𝑎𝑖 ≤ 𝑏𝑖 for all dimensions 𝑖 ∈ [𝑘], thenwe say that𝑏
dominates 𝑎 (or equivalently, 𝑎 is dominated by𝑏), denoted 𝑎 ⪯ 𝑏. To

be consistent with previous works, we refer to points inV = [𝑁 ]𝑘
as values, even though they are 𝑘-dimensional vectors. We define

the distance between two values 𝑎, 𝑏 ∈ V , denoted 𝑑𝑖𝑠𝑡 (𝑎, 𝑏), as the
𝐿1 (or Manhattan distance): 𝑑𝑖𝑠𝑡 (𝑎, 𝑏) = ∑𝑘

𝑖=1 |𝑎𝑖 − 𝑏𝑖 |.
Structured Encryption for Range Queries. LetV = [𝑁 ]𝑘 be

the domain of values, where 𝑁 and 𝑘 are positive integers. Let I
be the set of identifiers of the database used to uniquely identify

encrypted records. A database DB = {(id, 𝑣) | id ∈ I, 𝑣 ∈ [𝑁 ]𝑘 }
is a collection of identifier-value pairs. A dimension ofV can be

seen as a database attribute, e.g., “AGE” and each identifier as an

encrypted medical file of a patient. We use record and identifier
interchangeably, as each encrypted record has a unique identifier

id ∈ I. We denote the value 𝑣 of id as DB(id).
A structured encryption scheme for range queries (R-STE) is a

primitive for encrypted search. An R-STE scheme allows the client

to encrypt and outsource DB to a server and perform queries. A

range query 𝑞 inV can be seen as a hyperrectangle in [𝑁 ]𝑘 . That is,
a query 𝑞 = [𝑎, 𝑏] is defined by two vertices of the corresponding

hyperrectangle, i.e., the vertex 𝑎 ∈ V that is dominated by all

other vertices of the hyperrectangle and the vertex 𝑏 ∈ V that

dominates all other vertices of the hyperrectangle. The universe of

all queries (with respect to [𝑁 ]𝑘 ) is denoted as Q. We say that a

query 𝑞 = [𝑎, 𝑏] covers value 𝑣 if 𝑎 ⪯ 𝑣 ⪯ 𝑏.

Query Phase. In the query phase of an R-STE, the client issues

an encrypted range query to the server. The server then responds

with the identifiers whose values lie in the range specified by the

query. The set of returned identifiers is called a response, denoted
rsp, and the universe of responses R is the power set of identifiers

R = P(I). Some schemes support update operations and are called

dynamic. Those that do not are called static.

Algorithms.We define a static R-STE scheme consisting of the

following algorithms: Setup, which takes the security parameter 𝜆

andDB and outputs the secret key sk to the client and the encrypted
database EDB to the server; Trpdr, which takes the secret key sk
and the query 𝑞 from the client and outputs a token (i.e., a trapdoor)

for query 𝑞 to the client; and Search, which takes a token 𝑡 from

the client and encrypted database EDB from the server and outputs

a set of identifiers rsp ⊆ I to the client.

An R-STE scheme is correct if every response contains the iden-

tifiers whose value is covered by the query. In this work, we focus

on the R-STE scheme that contains only the identifiers needed for

the scheme to be correct, i.e., no false positives. More formally:

Definition 1. Let Σ = (Setup, Trpdr, Search) be an R-STE scheme
and let DB be database over I and V . We say that Σ is correct
if, for every 𝑞 = (𝑎, 𝑏) in Q, after the execution of (sk, EDB) ←
Σ.Setup(𝜆,DB), 𝑡 ← Σ.Trpdr(sk, 𝑞), and rsp ← Σ.Search(𝑡, EDB),
the following holds for rsp: rsp = {id | 𝑎 ⪯ DB(id) ⪯ 𝑏}.

Notice that in our analysis, every identifier is associated with

exactly one value. For simplicity, we make one further assumption:

that every value 𝑣 ∈ V is associated with at most one identifier

id ∈ I. We note that this is a standard simplifying assumption, and

there are several ways [29] to extend our analysis to the general

case.

Leakage Profile. The information revealed to the server while

running R-STE algorithms is defined as a set of functions over the

plaintext data called leakage functions. Taken together, these func-

tions make up the leakage profile Λ of a scheme, and are typically

categorized as either setup leakage L𝑆𝑒𝑡𝑢𝑝 or query leakage L𝑄𝑢𝑒𝑟𝑦 ,

where Λ = (L𝑆𝑒𝑡𝑢𝑝 ,L𝑄𝑢𝑒𝑟𝑦).
Following the notation in [23], we define three leakage func-

tions relevant to our analysis. The total response-length pattern
trlen takes DB and outputs the total number of identifiers in all

responses returned for queries 𝑞 ∈ Q. The response-identity pattern
rid(𝑞) (often called the access pattern) reveals, for each execution of

Search, the identifiers contained in the response. The query-equality
pattern qeq (often called the search pattern) takes an array of queries
[𝑞1, . . . , 𝑞𝑀 ] and outputs an𝑀×𝑀 binary matrix where𝑀 [𝑖, 𝑗] = 1

if 𝑞𝑖 = 𝑞 𝑗 , and 𝑀 [𝑖, 𝑗] = 0 otherwise. A common leakage profile,

both with respect to earlier constructions [11, 14] and cryptanalytic

efforts [29], for R-STE schemes is Λ = {trlen, (qeq, rid)}.
In this work, we focus on a less revealing leakage profile (i.e.,

a more challenging scenario for the attacker), Λ = {trlen, rid}, to
demonstrate the effectiveness of frequency analysis even when

search pattern is suppressed, as in [23]. We use a Real/Ideal security

game to define adaptive security:

Definition 2. Let Σ = (Setup, Trpdr, Search) be an R-STE scheme
and let DB be a database over I andV . Σ is adaptively secure with
respect to leakage profile Λ if for any probabalistic polynomial time
(ppt) adversary 𝐴𝑑𝑣 issuing poly(𝜆) queries, there exists a stateful ppt
simulator 𝑆𝑖𝑚 and a negligible function 𝑛𝑒𝑔𝑙 (𝜆) such that

| Pr[𝑅𝑒𝑎𝑙𝑅−𝑆𝑇𝐸
𝐴𝑑𝑣,Σ (𝜆) = 1]−

Pr[𝐼𝑑𝑒𝑎𝑙𝑅−𝑆𝑇𝐸
𝐴𝑑𝑣,𝑆𝑖𝑚,Λ (𝜆) = 1] | ≤ 𝑛𝑒𝑔𝑙 (𝜆) . (1)
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Query and Response Distributions. Following Kellaris et
al. [26], we model client queries as i.i.d. samples from a distri-

bution on the universe of queries Q. We call this distribution the

query distribution, denoted 𝑄𝐷 . Formally, let 𝑋 be a random vari-

able over Q that follows the distribution 𝑄𝐷 and denotes a query

issued by the client. We denote the probability that 𝑋 = 𝑞 as

Pr[𝑋 = 𝑞] = Pr𝑄𝐷 [𝑞].
We may omit the subscript 𝑄𝐷 for brevity if it is clear from the

context. Interestingly, by fixing a distribution on the universe of

queries Q, we fix a distribution on the universe of responses R
for a given DB, that we call the response distribution, denoted 𝑅𝐷 .
Intuitively, the probability that a response rsp will be returned is

equal to the sum of probabilities of all queries that return rsp. The
response distribution is thus a function of both the database and the

query distribution. Let Q(rsp,DB) denote the set of queries with
response rsp in database DB. Formally, let 𝑌 be a random variable

over the responses R that follow 𝑅𝐷 . We denote the probability

that 𝑌 = rsp as

Pr[𝑌 = rsp] = Pr

𝑅𝐷
[rsp] =

∑︁
𝑞∈Q(rsp,DB)

Pr

𝑄𝐷
[𝑞]

where again, we drop the subscript 𝑅𝐷 when clear from context.

The last sum indicates that the probability that a response rsp
will be returned by a query sampled from 𝑄𝐷 is the sum of the

probabilities of all queries that return rsp.
Adversarial Goal. Let DB be a database over the identifiers

I and domain [𝑁 ]𝑘 , and associated with query distribution 𝑄𝐷 ,

and let Σ be an instance of the R-STE scheme defined above. The

adversary that we consider in this work is the server in Σ, who
attempts to learn DB by observing the access-pattern leakage. As

is common in the leakage cryptanalysis literature [15, 26, 29], we

assume that the server knows the domain [𝑁 ]𝑘 and universe of

queries Q. More importantly, we assume that the server knows the

query distribution 𝑄𝐷 , much like Kellaris et al. [26].

3 LAMa: A CRYPTANALYSIS FRAMEWORK

FOR ARBITRARY DIMENSIONS

We introduce a new framework calledLeakage-Abuse viaMatching,

or simply LAMa , for performing database reconstruction using

frequency-matching analysis. LAMa consists of the components

Selector, Translator, and Solver, where each one has well-defined

and synergistic input and output. The abstraction of LAMa permits

a range of instantiations that can capture past and future leakage-

abuse attacks based on frequency analysis.

At a high level, Selector specifies the left-hand expressions of

frequency probability pairs, i.e. ex𝐿 in pair fp = (ex𝐿, ex𝑅). In the

proposed framework LAMa we only consider matching pairs. The
reason behind this design choice is efficiency. We deem it more

efficient to identify all table entries with precomputed probabilities

thatmatch an observed frequency than to identify all the entries that

do not match the aforementioned frequency. After this, Translator
does the following: (𝑖) identifies values that form a matching pair

given what Selector chose, and (𝑖𝑖) translates the matching pairs

into a logical formula. Lastly, Solver takes the logical formula, solves

the satisfiability instance, and outputs a database consistent with

the matching pairs.

We use the following running example throughout this section.

Let the domain be V = [5] and the records/value assignments

be DB(id𝑎) = 3 and DB(id𝑏 ) = 4. The query distribution 𝑄𝐷 is:

Queries [2, 4], [3, 4], [4, 4] have probability 1

42
. Queries [1, 2], [1, 4],

[2, 3], [2, 5], [3, 3], [4, 5] have probability 2

42
. Queries [1, 3], [3, 5]

have probability
3

42
. Queries [1, 1], [5, 5] have probability 5

42
. Query

[2, 2] has probability 4

42
and query [1, 5] has probability 7

42
.

Selector : Choosing Record-Retrieval Events. The Selector
component is responsible for determining which record-retrieval

set expressions will be used for the attack. In this way, Selector
has a large impact on the runtime and accuracy of the attack. If

the set expressions it chooses are too few, or too small, the re-

sulting reconstruction may fall outside the set 𝐼𝑅𝐷𝑄𝐷 (DB). If the
set expressions are too many, or too large, the runtime of the re-

construction algorithm may dramatically increase. Rather than

explicitly generating matching pairs, Selector outputs only the

left-hand-side expressions (i.e., ex𝐿 in our definition of frequency

probability pair) as a collection EX𝐿 = {ex𝐿,1, ex𝐿,2, . . .}. In our

running example, suppose that Selector chooses two expressions:

EX𝐿 = {ex𝐿,1, ex𝐿,2} = {𝑒id𝑎 , 𝑒id𝑎 ∩ 𝑒id𝑏 }.
Translator: One Formula fromAllMatchingPairs. Translator

finds matching pairs and then “translates” them into a logical for-

mula that constrains the value-to-record assignments. To do this,

Translator finds all right-hand expressions that form a matching

pair for each left-hand expression given by Selector. That is, for
every ex𝐿,𝑖 in EX𝐿 , Translator finds every expression ex𝑗

𝑅,𝑖
(where

𝑗 iterates over all matching pairs for ex𝐿,𝑖 ) such that 𝑓 (ex𝐿,𝑖 ) =
Pr[ex𝑗

𝑅,𝑖
] .

In our example, Translatorwould find, for the expression ex𝐿,1 =
𝑒id𝑎 , the two expressions ex1

𝑅,1
= 𝑒2 and ex2

𝑅,1
= 𝑒3, denoted

more generally as EX𝑅,𝑖 = {ex1
𝑅,𝑖

, ex2
𝑅,𝑖

, . . .}. For the expression

ex𝐿,2 = 𝑒id𝑎 ∩ 𝑒id𝑏 , Translator would find the two expressions

ex1
𝑅,2

= (𝑒3 ∩ 𝑒4) and ex2
𝑅,2

= (𝑒4 ∩ 𝑒3). In Figure 2, the bottom

section shows the frequency (from L𝑄𝑢𝑒𝑟𝑦 ) of each expression gen-

erated by the Selector being computed. The middle section shows

how the precomputed probabilities are used to find right-hand ex-

pressions that match the initial left-hand expressions. Once all the

matching pairs have been found, Translator uses them to generate

a logical formula𝐶 . The purpose of𝐶 is to constrain the assignment

of values to records which will take place in Solver. Therefore, 𝐶
consists of assignment statements of the form id = 𝑣 . We drop the

DB(id) notation to emphasize that we are not making claims about

the true value of id in DB.
In order to ensure that every 𝐶-satisfying reconstruction output

by Solver is consistent with all matching pairs, the statements in

𝐶 are joined by logical operators (depicted in the top section of

Figure 2). In the following, each logical variable can have at most

one value assigned to it, e.g., id𝑎 cannot be both 3 and 4. The logical

formula is constructed based on three observations:

(A) A Matching Pair May Imply Multiple Simultaneous Assign-
ments. In our running example, the equality 𝑓 (𝑒id𝑎 ∩𝑒id𝑏 ) = Pr[𝑒4∩
𝑒3] implies the simultaneous assignments id𝑎 = 4 and id𝑏 = 3. Thus,

in𝐶 , these assignments are connected with the logical AND to form

a single statement (id𝑎 = 4 ∧ id𝑏 = 3). Generally, Translator uses
the ∧ operator to bind assignments from the same matching pair.
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Figure 2: Internal view of Translator identifying matching

pairs and generating the formula passed to the Solver.

(B) Matching Pairs With the Same Left-Hand Expression Imply
Mutually Exclusive Assignments. Staying with our example, notice

that the results 𝑓 (𝑒id𝑎 ∩ 𝑒id𝑏 ) = Pr[𝑒4 ∩ 𝑒3] and 𝑓 (𝑒id𝑎 ∩ 𝑒id𝑏 ) =
Pr[𝑒3∩𝑒4] imply the mutually exclusive statements (id𝑎 = 4∧id𝑏 =

3) and (id𝑎 = 3 ∧ id𝑏 = 4). In 𝐶 , they are joined by the logical OR

operator ∨, yielding (id𝑎 = 4 ∧ id𝑏 = 3) ∨ (id𝑎 = 3 ∧ id𝑏 = 4).
Where we use the fact that a logical variable can have at most one

value and, thus, at most, one of the OR-ed expressions can be true.

More generally, all statements from matching pairs with identical

left-hand expressions are joined by the ∨ operator.

(C) The True Database Satisfies All Matching Pairs Simultane-
ously. In our example, at least one assignment statement coming

from the expression ex𝐿,1 must correspond to the true underlying

plaintext DB, and the same is true for the assignment statements

coming from ex𝐿,2. To reduce the search space of reconstructions,

Translator requires all logical expressions from (A) and (B) to hold

simultaneously, i.e., we join them with the ∧ operator.

In our example, the following formula𝐶 is output by Translator:

𝐶 =

(
(id𝑎 = 4 ∧ id𝑏 = 3) ∨ (id𝑎 = 3 ∧ id𝑏 = 4)

)
∧(

(id𝑎 = 2) ∨ (id𝑎 = 3)
)
.

The following concisely expresses 𝐶 as described above:

𝐶 =

©­­­­­«
∧

ex𝐿,𝑖 ∈EX𝐿

∨
ex𝑗

𝑅,𝑖
∈EX𝑅,𝑖

∧
𝑒id from

fp=(ex𝐿,𝑖 ,ex𝑗𝑅,𝑖 )

id = 𝑔fp (id)
ª®®®®®¬
,

where we highlight that 𝑔fp is the value-to-record assignment with

respect to the specific fp matching pair.

Solver : Reconstruction as Constraint-Satisfaction. Solver
takes the formula 𝐶 output by Translator and finds an assignment

of values to identifiers that satisfies 𝐶 . Notice that any assignment

that satisfies𝐶 will have exactly one value per record. Furthermore,

any assignment that satisfies𝐶 will satisfy all matching pairs output

by Selector, and one of these assignments is guaranteed to be the

true database DB. In our example, there is only one assignment

that satisfies the constraints, that is (id𝑎, id𝑏 ) = (3, 4).
In our experiments in Section 6, we use a constraint solver, but

any method for finding a 𝐶-satisfying assignment will do. It is

possible to make Solver output more assignments by having it

repeatedly find a satisfying assignment and then add a constraint

that explicitly forbids the new assignment. In this way, multiple

𝐶-satisfying assignments can be found, one of which is guaranteed

to be the true database DB.

4 THE MATCHING PAIRS THAT BRING

FREQUENCY ANALYSIS TO ITS LIMIT

In this section, we introduce an instantiation
1
of LAMa from Sec-

tion 3 that works in high dimensions and outputs databases ex-
clusively from the set of identical-response-distribution databases

𝐼𝑅𝐷𝑄𝐷 (DB) which, as we covered in 3.2, is the best outcome a

frequency analysis attack can hope for.

Specifically, we show that for any database, domain, and query

distribution, there always exists a collection of left-hand expres-

sions of matching pairs, denoted as 𝑇∩, such that (𝑖) it only uses

intersection operations – see (Q1) in 3.2, (𝑖𝑖) the corresponding

matching pairs implied by𝑇∩ are sufficient to reconstruct databases
exclusively from 𝐼𝑅𝐷𝑄𝐷 (DB), and (𝑖𝑖𝑖) the size of the largest ex-
pression in 𝑇∩ grows linearly with the dimension 𝑘 of the plaintext

domain – see (Q3) in 3.2.

The last characteristic is a rather surprising finding given the

almost universal applicability of the so-called “curse of dimensional-

ity” in different contexts, i.e., the phenomenonwhere the complexity

of a task increases exponentially to the number of dimensions.

In terms of the universality of this finding, we emphasize that

the choice of left-hand expressions in 𝑇∩ is agnostic as to which

query distribution is operating on the DB, i.e., it holds under all
query distributions and databases. Additionally, the proof of the suf-

ficiency of𝑇∩ serves as an upper-bound on the number of matching

pairs required to reconstruct any database, see (Q2) in 3.2.

The Instantiationwith T∩. Informally, the collection in𝑇∩ con-
tains the following set expressions: for every 𝑖 ∈ [2𝑘], all possible(𝑛
𝑖

)
subsets of records of DB that are connected under intersec-

tion (the ordering is arbitrary). If we were to list these expressions

we would have the following: for 𝑖 = 1 we get 𝑒id1 , . . . , 𝑒id𝑛 , for

𝑖 = 2 we get the family of pairs 𝑒id1∩id2 , 𝑒id1∩id3 . . . , 𝑒id1∩id𝑛 , 𝑒id2∩id3 ,
. . . , 𝑒id𝑛−1∩id𝑛 , for 𝑖 = 3 the family of triplets 𝑒id1∩id2∩id3 , . . . all the
way to the family of 2𝑘-tuples. More formally, for a set of records

I and domainV = [𝑁 ]𝑘 , the collection 𝑇∩ is defined as:

𝑇∩ =

{ ⋃
𝑖1≤𝑛

𝑒id𝑖
1

, . . . ,
⋃

𝑖1<...<𝑖2𝑘 ≤𝑛
𝑒id𝑖

1

∩ . . . ∩ 𝑒id𝑖
2𝑘

}
Next, we characterize all the databases that result from an in-

stantiation of LAMa where Selector uses 𝑇∩.

1
A naive approach would have the Selector component select every possible match-

ing test, which quickly becomes computationally infeasible, even for small plaintext

domains.
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Definition 3. Let 𝑄𝐷 be a query distribution that operates on
DB. Let DB′ be the output of LAMa (where the frequency of retrievals
is taken in the limit) in which the Selector uses 𝑇∩ as its EX𝐿 . A
database DB′ is called 𝑇∩-passing if and only if the value-to-record
assignment of DB′ implies a collection of ex𝑅 for 𝑇∩ such that all
resulting frequency-probability pairs (with respect to the values of
DB′) are also matching pairs in the limit.

This definition labels a database as 𝑇∩-passing if it can be given

as an output by LAMa when Selector uses 𝑇∩ (with respect to

some true database DB). We note that in the following, we make

reference to ex𝐿 expressions that correspond to different databases.

To disambiguate, we will use a superscript, i.e., the notation exDB
𝐿

indicates that this left-hand expression refers to retrievals from

database DB.
In the following, we point out how a𝑇∩-passing database relates

to the true database. Recall that the frequency of a subset 𝑆 of

records retrieved simultaneously in a response is defined relative

to a fixed true database DB. Therefore, if one finds a 𝑇∩-passing
database DB′ that is different than DB, it follows that the subset
of records 𝑆 is retrieved simultaneously in a response with the

same frequency in both DB and DB′, even though the assigned

plaintext values in DB′ are different from DB. More formally, for

all (ex𝐿, ex𝑅) ∈ 𝑇∩ we have 𝑓 (exDB
𝐿
) = 𝑓 (exDB′

𝐿
). If we expand the

above relation by using the expressions of 𝑇∩ (which consists of

intersections of events), we get:

𝑓

( ⋂
id∈𝑆

𝑒DBid

)
= 𝑓

( ⋂
id∈𝑆

𝑒DB
′

id

)
, for all 𝑆 ⊆ I : |𝑆 | ≤ 2𝑘. (2)

Equation 2 will be used in the proof of Theorem 4.1.

All Reconstructions via T∩ Are In IRDQD (DB). In the following,

we show that the response distributions of DB and any 𝑇∩-passing
database DB′ are the same. This is a surprising finding, as it shows

that a global property of a candidate reconstruction database (i.e.,

matching the response distribution of the original) can be guaran-

teed by ensuring that a set of local properties holds (matching the

frequencies of simultaneous retrieval for certain subsets of records).

Furthermore, by discovering a database that satisfies these local

properties, one effectively generates a database with a response dis-

tribution identical to the true one, i.e., one from 𝐼𝑅𝐷𝑄𝐷 (DB). Since
the attacker in this setting cannot prioritize over members from

𝐼𝑅𝐷𝑄𝐷 (DB), this means that no parameterization can do better

than 𝑇∩.
As a first step, we give a lemma concerning the geometry of

queries inV = [𝑁 ]𝑘 .

Lemma 1. For any set of values 𝑉 in V = [𝑁 ]𝑘 , there exists a
subset 𝑉 ∗ ⊆ 𝑉 of size at most 2𝑘 , such that any query covering all
values in 𝑉 ∗ covers all values in 𝑉 .

Proof. To see that this is true, notice that for any set of values𝑉

in [𝑁 ]𝑘 , there is, for each attribute/dimension, at least one minimal

value and at least one maximal value.

If, for each dimension, we define 𝑉 ∗ as the set such that for

the 𝑖-th dimension (where 1 ≤ 𝑖 ≤ 𝑘), we include in 𝑉 ∗ the point
from 𝑉 that is minimal and the point from 𝑉 that is maximal with

respect to the 𝑖-th dimension, we have at most |𝑉 ∗ | = 2𝑘 distinct

points. Geometrically, each of these 2𝑘 values resides on the face

of a hyper-rectangle in the 𝑘-dimensional space where all values

of 𝑉 are either internal to the hyper-rectangle or on its face. Any

query covering the 2𝑘 values of 𝑉 ∗ will cover all values in 𝑉 . □

A
ttr
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ut

e 
3

Attribute 2 Attribute 1

min/max Value for Attribute 1
min/max Value for Attribute 2
min/max Value for Attribute 3
Internal Value

Figure 3: Values of a DB in 𝑘=3 dimensions.

Red/blue/yellow/black points comprise the associated

values of records that are part of rsp. Queries that cover

the 2𝑘 = 6 min/max “colored” values from rsp with respect

to Attribute-1, Attribute-2, and Attribute-3 must cover all
records of rsp with internal values.

Figure 3 illustrates Lemma 1 in the context of record retrieval:

in any response rsp with 𝑉 associated values, there is always a set

𝑉 ∗ of 2𝑘 or fewer values from𝑉 such that every query covering𝑉 ∗

also covers all other records in 𝑉 .

Theorem 4.1. LetDB andDB′ be databases overI andV = [𝑁 ]𝑘 .
Let 𝑄𝐷 be the query distribution that issues queries for DB and DB′,
and let 𝑅𝐷 , 𝑅𝐷′ be the respective response distributions of DB and
DB′, both induced by 𝑄𝐷 . If DB′ is 𝑇∩-passing, then 𝑅𝐷 = 𝑅𝐷′.

Proof. Assume, for the sake of contradiction, that 𝑅𝐷 ≠ 𝑅𝐷′.
Since the response distributions differ, then there must be at least

one response rsp ∈ R whose probability in 𝑅𝐷 is different from its

probability in 𝑅𝐷′, i.e., Pr𝑅𝐷 [rsp] ≠ Pr𝑅𝐷 ′ [rsp]. Let rsplrg be the
response with the largest number of records whose probability dif-

fers in 𝑅𝐷 and 𝑅𝐷′. Notice that rsplrg cannot be the empty response,

since if 𝑅𝐷 and 𝑅𝐷′ differ on the empty rsplrg, then they must differ

on at least one other response rsp′, which will be non-empty. In

that case, |rsp′ | > |rsplrg | which contradicts the fact that rsplrg has
the largest number of retrieved records.

The set of values inV associated with the records in rsplrg are
referred to as𝑉 . Assume w.l.o.g. that the probability of rsplrg in 𝑅𝐷
is greater than its probability in 𝑅𝐷′, that is:

Pr

𝑅𝐷
[rsplrg] > Pr

𝑅𝐷 ′
[rsplrg] . (3)

By Lemma 1, there exists a subset of records rsp∗lrg ⊆ rsplrg whose

values comprise a set 𝑉 ∗ such that 𝑉 ∗ ⊆ 𝑉 and |𝑉 ∗ | ≤ 2𝑘 . Specifi-

cally, set 𝑉 ∗ contains the minimal and maximal values (among the

choices in rsplrg) for each dimension. Given that, DB′ is𝑇∩-passing,
from Equation (2), we have that the records associated with the val-

ues in 𝑉 ∗ must have the same probability of simultaneous retrieval
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in 𝑅𝐷 and 𝑅𝐷′, that is:

𝑓
©­­«

⋂
id∈rsp∗lrg

𝑒DBid

ª®®¬ = 𝑓
©­­«

⋂
id∈rsp∗lrg

𝑒DB
′

id

ª®®¬ . (4)

According to a generalization of relation (2), each frequency of Equa-

tion (4) can be written as a sum of the probability of all responses

that contain all records from rsp∗lrg.
Notice that the response rsplrg will contribute to both the ex-

pansion of the left and right frequency terms of (4). But given the

inequality Pr𝑅𝐷 [rsplrg] > Pr𝑅𝐷 ′ [rsplrg], the contribution of term

Pr𝑅𝐷 [rsplrg] is larger towards 𝑓
(⋂

id∈rsp∗lrg 𝑒
DB
id

)
than its counter-

part Pr𝑅𝐷 ′ [rsplrg] towards 𝑓
(⋂

id∈rsp∗lrg 𝑒
DB′
id

)
. But since the two

frequencies must be equal according to (4), there must be a different

response, call it rsp′′, containing all the records in rsp∗lrg, such that

rsp′′ has a higher probability in 𝑅𝐷′ than 𝑅𝐷 . We proceed with

case analysis:

• Case where rsp′′ has larger size than rsplrg. This contradicts the
assumption that rsplrg is the largest response whose probability

differs in 𝑅𝐷 and 𝑅𝐷′.
• Case where rsp′′ has smaller size than rsplrg. Recall that for

rsp′′ to contribute towards 𝑓

(⋂
id∈rsp∗lrg 𝑒

DB′
id

)
, it has to contain all

records from rsp∗lrg. From Lemma 1, all responses that contain rsp∗lrg
must also contain the internal values of rsplrg, thus, there can not

be a response containing rsp∗lrg with smaller size than rsplrg. We

can dismiss this case.

• Case where rsp′′ and rsplrg have the same size. Recall that
rsp∗lrg is the subset of records in rsplrg which are maximal/minimal

among rsplrg. If rsp
′′
contains these records, it must also contain

the other records of rsplrg, since they are internal, which means

that rsp′′ = rsplrg. If rsp
′′ = rsplrg, then recall that we already

assumed
2
from 3 that Pr𝑅𝐷 [rsplrg] > Pr𝑅𝐷 ′ [rsplrg] which means

that it is not possible to have Pr𝑅𝐷 [rsp′′lrg] < Pr𝑅𝐷 ′ [rsp′′lrg] which
is what needed to balance out the sums and get 4 to hold. Thus, no

response containing rsp∗lrg exists which has greater probability in

𝑅𝐷′ than 𝑅𝐷 , i.e., 𝑅𝐷 = 𝑅𝐷′. □

We emphasize here that our analysis holds for all databases and

query distributions (even in high dimensions). Beyond our findings,

which apply universally to all query distributions, we conjecture

that it is possible to devise matching tests tailored to specific query

distributions. Such a finding would permit a smaller set of matching

pairs, e.g., one such example is the work of Kellaris et al. [26] for
one-dimensional data and uniform query distribution. We leave

this question as an open problem for future work.

T∩ Gives a Tight Upper Bound. Recall that 𝑇∩ represents

the set of expressions that use only the intersection operator ∩,
with the largest expressions in 𝑇∩ containing up to 2𝑘 terms. This

result, therefore, establishes 2𝑘 as an upper bound on the size of

intersection-based expressions required so that LAMa outputs only

2
We note here that if one changes the inequality of 3 to go the opposite direction, this

last case of the case analysis will again reach a contradiction; this time because we

can not find a rsp′′ such that Pr𝑅𝐷 [rsp′′lrg ] > Pr𝑅𝐷′ [rsp′′lrg ].

databases within 𝐼𝑅𝐷𝑄𝐷 (DB). To show that this upper bound is

tight, we compare the parameterization 𝑇∩ to the parameterization

𝑇 ′∩, which differs only in that𝑇
′
∩ excludes expressions of size exactly

2𝑘 . In doing so, we find that for any dimension 𝑘 , there exists a

case where a database DB′ (distinct from the true database DB) is
𝑇 ′∩-passing but not 𝑇∩-passing. This confirms that expressions of

size 2𝑘 provide a more accurate reconstruction than those limited

to size 2𝑘 − 1.
We give a constructive proof for the next Theorem that shows

how, for any 𝑘 , an appropriate DB, DB′, 𝑁 , and 𝑄𝐷 can be found,

which will satisfy Theorem 4.2. The proof works by finding two

disjoint sets of values, 𝑉 and 𝑉 ′, each of size 2𝑘 . The values in 𝑉

will be assigned to records under DB, and the values in 𝑉 ′ will be
assigned to records under DB′.

Theorem 4.2. For any dimension 𝑘 and 𝑁 ≥ 6, there exists a
domainV = [𝑁 ]𝑘 , a database DB, and a query distribution𝑄𝐷 such
that, given the query leakage from DB, at least one database DB′ is
𝑇 ′∩-passing but not 𝑇∩-passing (in the limit).

Proof. Let 𝑘 and 𝑁 be positive integers where 𝑁 ≥ 6. Let DB
and DB′ be databases over the set of records I = id1, . . . , id2𝑘 and

over the domainV = 𝑁𝑘
. Let 𝑄𝐷 be the uniform distribution over

Q, the query universe for domain V . For ease of exposition, we

represent the query distribution as an assignment of weights to

queries: each query 𝑞𝑖 has a positive integer weight 𝑤𝑖 , and the

probability of query 𝑞𝑖 is given by its weight divided by the sum

of all query weights, i.e.
𝑤𝑖

Σ 𝑗 ∈ [|Q|]𝑤𝑗
. We initialize the distribution to

be uniform by requiring that𝑤𝑖 = 𝛼 for all 𝑖 ∈ [|Q|], where 𝛼 is a

positive integer.

Next, we define two disjoint sets of values, 𝑆 = {𝑠1, . . . , 𝑠2𝑘 } ⊂ V
and 𝑆 ′ = {𝑠′

1
, . . . , 𝑠′

2𝑘
} ⊂ V . Intuitively, 𝑆 will be the values assigned

to the records in database DB, and 𝑆 ′ will be the values assigned to

the records in databaseDB′, so thatDB(id𝑖 ) = 𝑠𝑖 andDB′ (id𝑖 ) = 𝑠′
𝑖
.

Nowwe define the values in 𝑆 and 𝑆 ′, thereby defining the values
of records in each database. For 𝑖 ∈ [𝑛], let 𝑠𝑖 be the 𝑘-vector with
1 on all dimensions, except for dimension ⌈ 𝑖

2
⌉, on which it is 1 if

𝑖 is odd and 3 if 𝑖 is even. For 𝑖 ∈ [𝑛], let 𝑠′
𝑖
be the 𝑘-vector with

𝑁 − 1 on all dimensions, except for dimension ⌈ 𝑖
2
⌉, on which it is

𝑁 if 𝑖 is odd and 𝑁 − 2 if 𝑖 is even. For every value 𝑠𝑖 ∈ 𝑆 , we say
that it has a corresponding value 𝑠′

𝑖
∈ 𝑆 ′, and that every subset

{𝑠𝑎, 𝑠𝑏 , . . . , 𝑠𝑐 } ⊂ 𝑆 has a corresponding subset {𝑠′𝑎, 𝑠′𝑏 , . . . , 𝑠
′
𝑐 } ⊂ 𝑆 ′.

Note that both databases have the following nice property: for

𝑖 ∈ [2𝑘], each set of 𝑖 records in DB (resp. DB′) has a minimum-

bounding query that covers no other records in DB (resp. DB′).
Next, we adjust the query distribution by altering the weights

of queries, according to the following procedure: For 𝑖 ∈ [2𝑘], if 𝑖
is odd, decrease the weight of the MBQ of every 𝑖-sized subset of

𝑆 by 𝛿 , and if 𝑖 is even, increase the weight of the MBQ of every

𝑖-sized subset of 𝑆 by 𝛿 .

At the end of this procedure, the following holds:

(1) The probability of simultaneously querying all values in 𝑆 ,

is 𝛿 greater than the probability of simultaneously querying

all values in 𝑆 ′, i.e. Pr[𝑆] > Pr[𝑆 ′].
7
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(2) The probability of simultaneously querying any strict sub-

set of 𝑆 is equal to the probability of simultaneously query-

ing its corresponding subset in 𝑆 ′, i.e. Pr[𝑆∗] = Pr[𝑆 ′∗] for
all strict non-empty subsets 𝑆∗ ⊂ 𝑆 .

To see that the first statement is true, notice that the set of queries

that cover 𝑆 and the set of queries that cover 𝑆 ′ begin with a uniform
weighting, and that the only such query altered by the procedure

is the MBQ of 𝑆 . Crucially, this query does not cover 𝑆 ′ since, by
construction, every value in 𝑆 ′ dominates every value in 𝑆 , which

means that their MBQ’s do not cover any of the same values.

To see that the second statement is true, consider a strict, non-

empty subset 𝑆∗ ⊂ 𝑆 . For each subset of 𝑆 containing 𝑆∗, the cor-
responding MBQ is increased by 𝛿 if the subset’s size is even, and

decreased by 𝛿 if its size is odd. For any 𝑖 between |𝑆∗ | and |𝑆 |, there
are

( |𝑆 |− |𝑆∗ |
𝑖

)
subsets of size 𝑖 that contain 𝑆 . Thus, the total weight

added to queries covering 𝑆∗ is given by

𝛿

|𝑆 |− |𝑆∗ |∑︁
𝑖=0

(
|𝑆 | − |𝑆∗ |

𝑖

)
(−1)𝑖

which equals zero:

0 = 𝛿 (1 − 1) |𝑆 |− |𝑆∗ |

= 𝛿

|𝑆 |− |𝑆∗ |∑︁
𝑖=0

(
|𝑆 | − |𝑆∗ |

𝑖

)
1
|𝑆 |− |𝑆∗ |−𝑖 (−1)𝑖

= 𝛿

|𝑆 |− |𝑆∗ |∑︁
𝑖=0

(
|𝑆 | − |𝑆∗ |

𝑖

)
(−1)𝑖 .

Thus, for all strict subsets 𝑆∗ ⊂ 𝑆 , it holds that Pr[𝑆∗] = Pr[𝑆 ′∗].
To complete the proof, we assume that DB is the real database,

over which the leakage occurs. The database DB′ will not be 𝑇∩-
passing, since DB and DB′ differ on 𝑓 (𝑒1 ∩ 𝑒2 ∩ . . . ∩ 𝑒

2𝑘 ), which
will be checked by 𝑇∩’s 2𝑘-sized expression. However, DB′ will be

𝑇 ′∩-passing, since every set containing fewer than 2𝑘 records will

have the same frequency of being simultaneously queried in DB
and DB′, and 𝑇 ′∩ has no expressions larger than 2𝑘 − 1. □

5 TWEAKING QUERY DISTRIBUTIONS TO

FLATTEN FREQUENCY OF RETRIEVALS

Having shown that a database DB with query distribution 𝑄𝐷 can

be reconstructed up to 𝐼𝑅𝐷𝑄𝐷 (DB), we ask:
“What can a defender do to mitigate the reconstructive power of

frequency analysis?”

A natural approach is to attempt to increase the size of 𝐼𝑅𝐷𝑄𝐷 (DB),
which in turn introduces more “uncertainty” to the attacker since

𝐼𝑅𝐷𝑄𝐷 (DB) contains plausible reconstructions under this attack
setting. To accomplish this increase, one has to change either DB,
𝑄𝐷 , or both. Altering the data is not ideal since this may undermine

the correctness of the R-STE scheme. Therefore, the defender’s

alternative recourse lies in the choice of the query distribution 𝑄𝐷 .

In this section, we study how a defender can “tweak” the query

distribution to increase the number of plausible reconstructions

for an attacker mounting a frequency analysis attack. Any change

in the query distribution will translate to an updated response

distribution 𝑅𝐷 , affecting the frequency of retrievals.

Desired Properties of Query Distributions. A first approach

would be to tailor the query distribution to the underlying DB, but
such a strategy would directly leak information about DB since, in

this setting, we assume that 𝑄𝐷 is known to the attacker. Thus,

we only study query distributions that are independent of the data-
base DB they operate on. This way, our (universal) analysis holds
regardless of which database is queried. In particular, we focus

on expressive query distributions, i.e., distributions where every

query 𝑞 ∈ Q has a non-zero probability of being issued. We avoid

non-expressive distributions for the same reason that we avoid

altering the data: forbidding queries degrades the functionality of

the scheme.

First, we examine the limitations of increasing 𝐼𝑅𝐷𝑄𝐷 (DB) through
the choice of query distribution. We then explore whether select-

ing an appropriate 𝑄𝐷 can ensure a meaningful privacy property

for the databases within 𝐼𝑅𝐷𝑄𝐷 (DB). As an affirmative answer,

we show an expressive distribution 𝑄𝐷 which guarantees, for any

database DB, a corresponding 𝐼𝑅𝐷𝑄𝐷 (DB) containing all databases

with the same pairwise 𝐿1 distances as those of DB.

5.1 Flattening the Frequency Across

Record-Retrieval Events

For the defender, an ideal query distribution 𝑄𝐷∗ would imply an

𝐼𝑅𝐷𝑄𝐷∗ (DB) that consists of every possible database over I,V . In

such a case, an attacker using frequency analysis would have no

advantage over a random guess from the set of all possible databases

over I,V .

Recall from Theorem 4.1 that any two databases for which Equa-

tion (2) holds must have the same response distribution. It follows

that if we could construct a query distribution𝑄𝐷∗ under which: all
values are queried with probability 𝑝∗

1
, all intersections of pairs of

values are queried with probability 𝑝∗
2
,. . . , all intersections of 2𝑘-sets

of values are queried with probability 𝑝∗
2𝑘
, then all databases oper-

ating under𝑄𝐷∗ would have the same response distribution. In this

case, the attacker can identify which of the 𝑝∗
1
, . . . , 𝑝∗

2𝑘
probabilities

is being processed but cannot infer anything about the underlying

plaintext values because all possible geometries of plaintexts in a

subset 𝑆 of values gives exactly the same probability 𝑝∗|𝑆 | .

Algorithm 1: Flatten Probability of Single Values

Data: Input𝑄𝐷 is seen as a dictionary that maps queries 𝑞 ∈ Q to

weights𝑄𝐷 [𝑞 ] = 𝑤𝑞

1 . Define 𝑣mx as 𝑣mx = argmax𝑣∈V Pr[𝑒𝑣 ] and call Pr[𝑒𝑣mx ] as 𝑝∗1 ;
2 Find the sum 𝑠mx of the weights of queries covering 𝑣mx;

3 for every value 𝑣𝑖 in V do

4 Find the sum of weights 𝑠𝑖 of queries covering 𝑣𝑖 ;

5 𝑄𝐷 [ [𝑣𝑖 , 𝑣𝑖 ] ] = 𝑄𝐷 [ [𝑣𝑖 , 𝑣𝑖 ] ] + (𝑠mx − 𝑠𝑖 ) ; // Pr[𝑒𝑣𝑖 ] = 𝑝∗
1

6 end

7 return𝑄𝐷

As a warm-up, we show in Algorithm 1 how this can be done for

1-tuples of records by only adjusting the probabilities of 1-tuples

of values in any input distribution 𝑄𝐷 . Our approach will impose

a “minimal” change in the input 𝑄𝐷 by increasing the probabilities

of just the smallest queries (those that cover only a single value).
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For simplicity of the exposition, we assume that every query 𝑞 is

associated with a weight𝑤𝑞 (which is a natural number) and that

the probability of this query 𝑞 is given by normalizing its weight

divided by the sum of all query weights.

Intuitively, the proposed algorithm works by first finding a value

𝑣 ∈ V with the highest probability Pr[𝑒𝑣] denoted as 𝑝∗
1
. Then, for

each other value 𝑣 ′, we increase the weight of the query [𝑣 ′, 𝑣 ′]
so that Pr[𝑒𝑣′ ] = 𝑝∗

1
. When the process ends, Pr[𝑒𝑣] = Pr[𝑒𝑣′ ] will

hold for all 𝑣, 𝑣 ′ ∈ V .

Theorem 5.1. Let 𝑄𝐷 be a query distribution over Q. Let 𝑄𝐷′ be
the output of Algorithm 1 with input 𝑄𝐷 , then we have:

Pr

𝑄𝐷 ′
[𝑒𝑣] = Pr

𝑄𝐷 ′
[𝑒𝑣′ ] for all 𝑣 ∈ V .

Proof. First, Algorithm 1 identifies a value 𝑣mx with highest

probability, and computes the total weight 𝑠mx of queries covering

it. In lines 2 through 5 it increases, for each value 𝑣𝑖 , the weight

of query [𝑣𝑖 , 𝑣𝑖 ], until the total weight of queries covering 𝑣𝑖 is

equal to 𝑠mx. Since the weight𝑤𝑞𝑖 of query 𝑞 = [𝑣𝑖 , 𝑣𝑖 ] contributes
only to the probability of 𝑣𝑖 , increasing 𝑤𝑞𝑖 does not affect the

probabilities of other values. At the end of the process, although

the total sum of query weights has increased, the total weights of

queries covering any value 𝑣 is 𝑠mx. Thus, after normalizing, we

have that Pr𝑄𝐷 [𝑒𝑣] = Pr𝑄𝐷 [𝑒𝑣′ ] for all 𝑣, 𝑣 ′ ∈ V . □

The effect of the “frequency-flattening” from Algorithm 1 is that

an adversary who performs only matching tests of size one will be

unable to refine their reconstruction beyond the set of all databases

over I,V . If one applies the KKNO attack [26] for the case where

the queries are issued by the output distribution of Algorithm 1,

the attack is neutralized since size-1 matching tests cannot find an

ordering and, thus, can not identify an “anchor-point”.

Unfortunately, our findings show that there is no way to do the

same frequency-flattening for all intersections of sets of size greater

than 1, which means that there is no hope of constructing the ideal

(for the defender) 𝑄𝐷∗ that was discussed in this section. In fact,

as we show in the following theorem, there is no expressive query
distribution in which every pair of values of distance 𝑑 have the

same probability as every pair of distance 𝑑′ if 𝑑 ≠ 𝑑′.

Theorem 5.2. Let 𝑄𝐷 be a query distribution over the universe
of queries Q and domainV = [𝑁 ]𝑘 , 𝑁 > 2, such that every query
𝑞 ∈ Q has non-zero probability. For every pair of values 𝑣, 𝑣 ′ in V
with 𝐿1-distance𝑑𝑖𝑠𝑡 (𝑣, 𝑣 ′) = 𝑑 , there exists a pair of values 𝑣, 𝑣 ′′ with
𝐿1-distance 𝑑𝑖𝑠𝑡 (𝑣, 𝑣 ′′) ≠ 𝑑 such that Pr[𝑒𝑣 ∩ 𝑒𝑣′ ] ≠ Pr[𝑒𝑣 ∩ 𝑒𝑣′′ ].

Proof. Let V = [𝑁 ]𝑘 be the domain of values, where 𝑁 > 2.

Let 𝑡1 be a pair of values inV such that 𝑑𝑖𝑠𝑡 (𝑡1) = 𝑑 . We will show

that there is always another pair 𝑡2 of values inV with distance

𝑑𝑖𝑠𝑡 (𝑡2) ≠ 𝑑 such that either: (𝑖) every query covering 𝑡1 covers 𝑡2
or (𝑖𝑖) every query covering 𝑡2 covers 𝑡1.

For any pair 𝑡1 =

(
𝑣 = (𝑣1, . . . , 𝑣𝑘 ), 𝑣 ′ = (𝑣 ′1, . . . , 𝑣

′
𝑘
)
)
, we con-

struct another pair 𝑡2 = (𝑣, 𝑣 ′′), where 𝑣 ′′ is equal to 𝑣 ′ in all but

one dimension; let the differing dimension be 𝑗 , then the value of 𝑣 ′′
𝑗

is (𝑖) 𝑣 𝑗 +1 in case 𝑣 𝑗 < 𝑁 , or (𝑖𝑖) 𝑣 𝑗 −1 in case 𝑣 𝑗 = 𝑁 . Notice that we

can always apply the above transformation from 𝑣 to 𝑣 ′′ regardless

of the number of dimensions and the choice of 𝑣 . Since 𝑣 ′ is altered
by 1 on a single dimension, and 𝑣 stays the same, the distances of 𝑡1
and 𝑡2 must be different. Furthermore, if 𝑑𝑖𝑠𝑡 (𝑡2) > 𝑑𝑖𝑠𝑡 (𝑡1), then
every query covering 𝑡2 covers 𝑡1, and if 𝑑𝑖𝑠𝑡 (𝑡2) < 𝑑𝑖𝑠𝑡 (𝑡1), then
every query covering 𝑡1 covers 𝑡2. Since all queries have non-zero

probability, and one of the two pairs is covered by a strict subset

of the queries covering the other, the pairs must have a different

probability, i.e., Pr[𝑒𝑣 ∩ 𝑒𝑣′ ] ≠ Pr[𝑒𝑣 ∩ 𝑒𝑣′′ ]. □

This result effectively dashes any hopes of constructing an ideal

distribution 𝑄𝐷∗ that is both expressive and database-agnostic. It
shows that we cannot flatten the frequency of retrieval of pairs of

records in a data-agnostic way, let alone larger tuples of records.

This throws us back on the question of how to effectively alter

𝐼𝑅𝐷𝑄𝐷 (DB) in a way that is consistent across databases.

5.2 Flattening Retrieval Frequency Across Pairs

of Records with Equidistant Values

Fortunately, Theorem 5.2 does not preclude the possibility of an

expressive query distribution under which all value pairs with the

same distance are plausible plaintext value assignments. Such a

distribution can in fact be constructed using an iterative version of

Algorithm 1. The following algorithm outputs, for any expressive

query distribution 𝑄𝐷 , a new distribution 𝑄𝐷 , under which all

value pairs of distance 𝑑 have the same probability of being queried,

for 𝑑 = 0, 1, . . . , 𝑘 (𝑁 − 1) (i.e. the maximum 𝐿1 distance in the

domainV = [𝑁 ]𝑘 ). Note that a “pair” of values with distance 0 is

just the same value twice, e.g., (𝑣, 𝑣).

Algorithm 2: Flatten Frequency of Equidistant Pairs

Data: Input𝑄𝐷 is a dictionary that maps queries to natural

number weights𝑄𝐷 [𝑞 ] = 𝑤𝑞

1 . for 𝑑 = 𝑘 (𝑁 − 1), 𝑘 (𝑁 − 1) − 1, . . . , 0 do

2 Find the pair of distance 𝑑 values 𝑡mx = (𝑣, 𝑣′ ) with the highest

probability Pr[𝑒𝑣 ∩ 𝑒𝑣′ ] among distance 𝑑 pairs;

3 Find the sum 𝑠mx of weights of queries covering 𝑡mx;

4 for every pair of values 𝑡 = (𝑣, 𝑣′ ) with distance 𝑑 do

5 Find the sum of weights 𝑠𝑡 of all queries covering 𝑡 ;

6 Find the query 𝑞 = [𝑎,𝑏 ] that covers 𝑡 and 𝑎 is as large as

possible while 𝑏 is as small as possible, i.e., the minimum

bounding query;

7 𝑄𝐷 [𝑞 ] = 𝑄𝐷 [𝑞 ] + (𝑠mx − 𝑠𝑡 ) ;
8 end

9 end

10 return QD

Theorem 5.3. Let 𝑄𝐷 be an expressive query distribution over Q.
For the query distribution 𝑄𝐷 output by Algorithm 2 on input 𝑄𝐷 ,
the following holds for all pairs (𝑣, 𝑣 ′), (𝑣 ′′, 𝑣 ′′′) where 𝑑𝑖𝑠𝑡 (𝑣, 𝑣 ′) =
𝑑𝑖𝑠𝑡 (𝑣 ′′, 𝑣 ′′′):

Pr

𝑄𝐷

[𝑒𝑣 ∩ 𝑒′𝑣] = Pr

𝑄𝐷

[𝑒𝑣′′ ∩ 𝑒𝑣′′′ ]

Proof. We first establish a few facts about the geometry of

queries overV = [𝑁 ]𝑘 . Recall that we define the size of a query
𝑞 = [𝑎, 𝑏] as the 𝐿1 distance between 𝑎 and 𝑏, 𝑑𝑖𝑠𝑡 (𝑎, 𝑏).
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(1) For every pair of values 𝑣, 𝑣 ′, there is a smallest query 𝑞

covering 𝑣, 𝑣 ′, called the minimum bounding query, and the

size of 𝑞 is equal to 𝑑𝑖𝑠𝑡 (𝑣, 𝑣 ′).
(2) A query 𝑞 = [𝑎, 𝑏] such that 𝑑𝑖𝑠𝑡 (𝑎, 𝑏) = 𝑑 does not cover

any pairs of values of distance greater than 𝑑 .

Algorithm 2 iterates over all pairs of values in order of decreasing

distance 𝑑 . For each 𝑑 , it finds the pair 𝑡mx of distance 𝑑 with the

greatest probability. It then increases, for each pair of distance 𝑑 ,

the weight of its minimum bounding query. At the end of each

iteration 𝑑 , the pairs of distance 𝑑 are guaranteed to have the same

probability. Furthermore, in each iteration 𝑑 , Algorithm 2 only

alters the weights of queries with endpoints with distance 𝑑 . Thus,

it only alters the probabilities of pairs of values with distance 𝑑 or

less. Since every iteration 𝑑 ends with 𝑑-distance pairs having the

same probability, and future iterations 𝑑 − 1, . . . will not affect the
probability of 𝑑-distant pairs, it holds that Algorithm 2 terminates

by outputting a distribution 𝑄𝐷 in which all distance-𝑑 pairs have

the same probability, for 𝑑 ∈ {0, 1, . . . , 𝑘 (𝑁 − 1)}. □

An illustration of the effect of𝑄𝐷 on the intersection of retrievals

is presented in Figure 4. This toy example is in the two-dimensional

domainV = [4] × [4]. The 𝑌 -axes of the plots indicate the possible
underlying plaintext values of the first record of the intersection,

while the 𝑋 -axes indicate the possible underlying plaintext values

of the second record. For example, the pair of values 𝑣 = (1, 3)
and 𝑣 ′ = (1, 1) has the same probability of simultaneous retrieval

(indicated with a unique color filling) as any other pair of distance

2, i.e., pair (1, 3) and (3, 3), pair (2, 4) and (2, 2) etc. Thus, by ob-

serving a frequency of simultaneous retrieval of a pair, the attacker

can discover the distance of the underlying plaintext values but

has no advantage over discovering the true values (since all place-

ments of 𝑣 and 𝑣 ′ with a fixed distance have the same frequency).

More generally, the effect of the “frequency-flattening” mechanism

from Algorithm 2 is the following: for any database DB, the set
𝐼𝑅𝐷𝑄𝐷 (DB) consists of databases DB′ over I,V such that every

pair of records in DB′ has the same 𝐿1 distance as the same pair of

records in DB. Informally, we can say that an attacker, faced with

any database under query distribution 𝑄𝐷 can infer, at most, the

distance between each pair of records.

6 EMPIRICAL EVALUATION OF LAMa

Evaluation Setting. We evaluate the LAMa framework using the

HCUP [1] data set. We sample subsets of HCUP records to create

databases of various domain sizes, discretizing and scaling the data

as needed to accommodate the domain. Specifically, we use the

GAPICC, APICC, WIX and GAF attributes, which represent, respec-

tively, the hospital-specific all-payer inpatient cost-to-charge ratio,

the group average cost-to-charge ratio, the geographical wage in-

dex, and the geographic adjustment factor, across hospitals in the

2009 dataset. In order to better observe the effects of dimensionality

on reconstruction, we consider three domain sizes with roughly

equivalent total numbers of values: a one-dimensional domain with

𝑁 = 1000, a two-dimensional domain with 𝑁 = 32, a three dimen-

sional domain with 𝑁 = 10, and a four dimensional domain with

𝑁 = 6. Because we wish to have the solver find all reconstructions

Figure 4: An illustration of how the query distribution by

Algorithm 2 affects the frequency of retrieval of pairs (in

V=[4] × [4]). All pairs (𝑣, 𝑣 ′) that have a fixed 𝐿1-distance,

have the same probability of retrieval Pr
𝑄𝐷
[𝑒𝑣 ∩ 𝑒′𝑣].

for a given set of constraints, we deliberately keep the number of

records capped at 10.

All experiments are written in Python using the CP-SAT solver

from Google’s OR-TOOLS library [38], on a 32 core cluster with

16 GB of RAM per core, with parallelization enabled. We run ex-

periments on three distinct query distributions. In the Uniform

distribution, every query is issued with equal probability. In the

Random distribution, every query is given a random weight from

[1, 2, . . . 10], and then normalized. Finally, the Flattened distribu-

tion comes from applying Algorithm 2 to the uniform distribution,

as described in Section 5, such that equidistant pairs of values

always have the same probability of being queried.

We implement LAMa using the 𝑇∩ parameterization described

in Section 4, in which every possible intersection-based matching

test of 𝑡-tuples is performed for 𝑡 = 1 to 𝑡 = 2𝑘 . For each 𝑡 value, we

identify the successful frequency-value matches across all 𝑡-tuples
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(a) The number of possible reconstruc-

tions decreases as 𝑡 increases.

(b) The number of possible recon-

structions after each 𝑡-Constraint.

QD

Number of Reconstructions After 𝑡-Constraints

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

P
l
a
i
n
t
e
x
t
D
i
m
e
n
s
i
o
n
s 𝑘
=
1

𝑈 512 2 - - - -

𝑅 12 1 - - - -

𝐹 ∼ 2
23

38 - - - -

𝑘
=
2

𝑈 1,064 32 32 32 - -

𝑅 188 96 88 88 - -

𝐹 ∼ 2
23

156 156 156 - -

𝑘
=
3

𝑈 86,456 2,016 2,016 2,016 2,016 2,016

𝑅 12,202 434 284 244 244 244

𝐹 ∼ 2
23

4,320 4,320 4,320 4,320 4,320

𝑘
=
4

𝑈 756,224 6,436 6,346 6,346 6,346 6,346

𝑅 86,312 1,048 682 362 362 362

𝐹 ∼ 2
23

12,044 12,044 12,044 12,044 12,044

(c) Number of reconstructions by distribution, 𝑈 =

Uniform, 𝑅 = Random, 𝐹 = Flattened. We omit 𝑡 = 7 and

𝑡 = 8 as reconstruction counts do not change.

Figure 5: Evaluation of the LAMa frequency analysis framework on hospital data from HCUP across different query distributions

and plaintext dimensions, using the 𝑇∩ parameterization.

of records and add these matches as constraints to the Solver. E.g.,
in the two dimensional space, if record id1 has the same frequency

as values (1, 1) and (2, 2), we add the constraint id1 = (1, 1) ∨
id1 = (2, 2) to the Solver. For brevity, we refer to this process for a

particular 𝑡 value as a 𝑡-constraint.

Optimizations. To avoid overloading the constraint-solver (and

scaling our codebase), we use the results of prior matching tests at

each 𝑡-constraint. That is, rather than naively adding a constraint

for every value 𝑡-tuple whose frequency matches a record 𝑡-tuple,

we first check whether the value 𝑡-tuple has been ruled out by the

round of 𝑡 − 1-tuple tests. For example, assume that the 𝑡-constraint

for 𝑡 = 1 finds that (3, 3) is not a candidate value for record id1 or
id2. When considering the 𝑡-constraint for 𝑡 = 2 and considering

the pair id1, id2, we can ignore any pairs of values that contain

(3, 3) since, even if they match frequencies, they cannot lead to a

valid reconstruction. To accomplish this for 𝑡 values beyond 1 and

2, we run a small instance of the constraint-solver whenever we

are processing a 𝑡-tuple of records and give it, as constraints, all

the results of the 𝑡 − 1 tests. We then have the solver compute all

satisfying assignments for the record tuple. This allows us to avoid

adding as constraints values that have already been ruled out by

past 𝑡-constraints.

6.1 Experimental Results

Number of Reconstructions. First, we consider the number of

possible reconstructions after each 𝑡-constraint, i.e., the total num-

ber of valid solutions output by the solver when given the results

of a 𝑡-constraint. Figures 5a and 5b concern the 3-dimensional fre-

quency analysis attack scenario for ten encrypted records. Figure 5a

confirms that the number of reconstructions decreases as 𝑡 increases

across all query distributions. Note that, for visual clarity, we omit

the reconstructions for 𝑡 = 1 since the Flattened distribution has

∼ 2
23

reconstructions.

We observe in Figure 5a that for both the Flattened andUniform

distributions, the smallest set of possible reconstructions is reached

after just the 𝑡 = 2 constraint (see also Table 5c), while in the

Random distribution, the reconstruction space continues to shrink

until 𝑡 = 4, at which point it also reaches 𝐼𝑅𝐷Uniform (DB). As our
analysis in the previous section showed, the size of the reconstruc-

tion space for Flattened remains much larger than either of the

other query distributions.

Number of Matches Generated by 𝑡-Constraints. Next, we

evaluate the number of value/record matches after 𝑡-constraints.

The number of matches increases the computational burden on the

solver, since every match is added to a logical constraint, which the

solver must satisfy in its solution. Figure 5b depicts the increase

in matches as higher 𝑡-constraints are performed. Note that each

𝑡-constraint requires finding matches for

(𝑛
𝑡

)
𝑡-tuples of records,

where 𝑛 is the number of records. The increase in matches owes

to this fast-growing expression. As evidence of this, note that the

number of matches goes down after 𝑡 = 5, since

(
10

6

)
<

(
10

5

)
. While

this blowup is an unavoidable consequence of using an exhaustive

parameterization like 𝑇∩, it is mitigated by the fact that we discard

matches that do not agree with already considered (𝑡−1)-constraint
results.

Dimensionality & Number of Reconstructions. The number

of possible reconstructions across distributions and dimensions is

shown in Table 5c. We note that Random is relatively unaffected

by the change in dimensionality but that the number of possible

reconstructions in both Uniform and Flattened increases with

dimensionality for the same 𝑡 values. This is due to the fact that the

latter distributions have a high degree of symmetry, i.e., for every

subset of records in the true database, there are multiple reflected

tuples with the same frequency. Higher dimensionality leads to a

greater number of these reflections, causing a greater number of

possible reconstructions.

Intuitively, under Uniform, every unique combination of reflec-

tions constitutes a possible reconstruction. The Flattened distribu-

tion enjoys the same reconstructions-via-reflection, but also gains

additional reconstructions: any database that can be obtained by

shifting all records in the true database will also be a plausible recon-

struction. The Random distribution does not gain reconstructions

via reflection, and thus has many fewer plausible reconstructions.
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7 CONCLUSION

In conclusion, our work demonstrates that the frequency analysis

technique for encrypted range schemes can be captured formally

using the LAMa framework and can reconstruct databases in high

dimensions and for arbitrary query distributions using only access-

pattern leakage. We also prove that there exists a parameterization

of LAMa that is guaranteed to give the adversary maximal recon-

structive power in our setting (i.e. 𝑇∩). On the defensive side, by

leveraging our newly acquired formal understanding of this threat

model, we propose a query distribution that is data-agnostic such

that an adversary only learns the Manhattan distances between

pairs of records.

This work establishes a rigorous paradigm with which the com-

munity can assess the adversarial strength of various cryptanalytic

techniques in the area of leakage-abuse attacks. Moreover, we hope

that such a treatment will inspire defenses, like the one in Section 5,

that work independently of which database is deployed.
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8 APPENDIX

8.1 Prior Attacks via Frequency-Matching

The reconstruction attack of Kellaris et al. [26] can be re-framed as

an application of our frequency-matching framework. Their attack

assumes (𝑖) an adversary who observes access-pattern leakage, (𝑖𝑖)

a one-dimensional value domain [𝑁 ], and (𝑖𝑖𝑖) a uniform query

distribution.

As a first step of the attack, the adversary iterates over all 𝑣 ∈ [𝑁 ]
to identify candidate values for each record id ∈ I by performing

a matching test 𝑓 (𝑒id)
?

= Pr[𝑒𝑣]. Since the query distribution is

uniform, every record is guaranteed (in the limit) to have exactly
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QD

Number of Matches per 𝑡-test

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

P
l
a
i
n
t
e
x
t
D
i
m
e
n
s
i
o
n
s

𝑘
=
1

𝑈 20 90 - - - - - -

𝑅 14 68 - - - - - -

𝐹 10,000 51,108 - - - - - -

𝑘
=
2

𝑈 76 476 1,640 3,344 - - - -

𝑅 16 72 136 252 - - - -

𝐹 10,240 85,202 212,542 485,204 - - - -

𝑘
=
3

𝑈 336 6,264 26,496 54,600 66,864 54,600 - -

𝑅 22 84 144 208 256 208 - -

𝐹 10,000 74,924 212,458 305,564 448,238 305,564 - -

𝑘
=
4

𝑈 336 6,264 26,496 54,600 66,864 54,600 26,496 6,264

𝑅 122 844 2,080 4,040 9,026 4,040 2,080 844

𝐹 10,000 74,924 212,458 305,564 448,238 305,564 448,238 305,564

Table 1: Number of matches under different distributions

𝑈 = Uniform, 𝑅 = Random, 𝐹 = Flattened

two candidate values: its true value 𝑣 = DB(id) and its “reflection”

𝑣 ′ = 𝑁 − (𝑣 − 1), both of which have the same probability Pr[𝑒𝑣] =
Pr[𝑒𝑣′ ]. At this point, the attacker has two interpretations per value
and approximately 2

𝑛
candidate database-reconstructions (each of

which with𝑛 records) that satisfy the matching tests deployed so far.

To provide perspective, if no leakage is used for reconstruction, any

database among all the𝑁𝑛
possible ones is valid, so reducing it to 2

𝑛

is an improvement. However, the attacker can perform additional

matching tests to further reduce the number of candidate databases.

A naive next step would be to use the observed frequencies of

all the possible pairs of the form {𝑒id ∩ 𝑒id′ }, that would be

(𝑛
2

)
pairs in total, to form a quadratic number of matching tests. Instead,

the attack presented in [26] takes a more clever approach, which

reduces the number of matching tests to linear based on the unique

setting provided by the uniform query distribution. Specifically, the

attacker identifies the record, e.g., id∗, with the smallest frequency

id∗ = argminid 𝑓 (id), which, due to the uniform query distribution,

corresponds to one with an extreme value (either the smallest or

the largest). Then, the attacker commits to one of the two values

for id∗ that passed the matching test, e.g., 𝑣∗. The clever insight
is the following: even though relying solely on tests of the form

𝑓 (𝑒id)
?

= Pr[𝑒𝑣] one cannot break the tie between values 𝑣 and

𝑣 ′ = 𝑁 − (𝑣 − 1) for id; if we consider the tests

𝑡𝑣 =
(
{𝑒id∗ ∩ 𝑒id}, {𝑒𝑣∗ ∩ 𝑒𝑣}

)
and

𝑡𝑣′ =
(
{𝑒id∗ ∩ 𝑒id}, {𝑒𝑣∗ ∩ 𝑒𝑣′ }

)
,

(5)

the attacker can infer the value of id based on how frequently

id appears together with id∗ in a response. That is, only one of

the 𝑡𝑣 and 𝑡𝑣′ matching tests will pass, and its subscript would be

the assigned value for id. Thus, the extreme value of id∗ acts as
an “anchor point” to reduce the number of matching tests from

quadratic to linear. That is, for every id ∈ I \ id∗, their attack
forms two matching tests like (5) that use the anchor point and the

two tied values of id. The attacker then outputs the reconstructed

database and its reflection, with the guarantee that one of them is

correct.

Unfortunately, the above clever optimization for reducing match-

ing tests cannot be generalized to arbitrary query distributions

beyond uniform.

Additional Data

Effects of Dimensionality on Number of Matches. The number

of matching tests across distributions and dimensions is shown

in Table 1. We note that the Random distribution is relatively un-

affected by change in dimensionality, but that both Uniform and

Flattened distributions have higher numbers of matches as dimen-

sionality increases. This is due to the fact that the latter distributions

have a high degree of symmetry. Thus, for every tuple of records in

the true database, there are multiple reflected tuples with the same

frequency. Higher dimensionality leads to a greater number of these

reflections, causing a greater number of matches. This means that

two domains with the same number of values may require vastly

different amounts of computation when attempting to reconstruct

a database therein.

Comparison with Prior Results In [33], Markatou et al. give
an algorithm that takes a response multiset RM(DB) of the true
database DB and outputs a compact encoding of the set 𝐸DB, which

contains every database DB′ where RM(DB′) = RM(DB). They
note that the adversary can then sample uniformly from 𝐸DB, or use

knowledge of the data distribution to “prune” 𝐸DB before sampling.

By comparison, our algorithm outputs a database from the set

𝐼𝑅𝐷𝑄𝐷 (DB), which contains every database DB′ whose response
distribution 𝑅𝐷′ is the same as that of DB, i.e. 𝑅𝐷 , under the query

distribution 𝑄𝐷 . We show that 𝐸DB ⊆ 𝐼𝑅𝐷𝑄𝐷 (DB)

Theorem 8.1. 𝐸DB ⊆ 𝐼𝑅𝐷𝑄𝐷 (DB)

Proof. First we show that no database can be a member of 𝐸DB
without also being a member of 𝐼𝑅𝐷𝑄𝐷 (DB). □
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