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Abstract

Insider threat detection aims to identify malicious user behavior by analyzing
logs that record user interactions. Due to the lack of fine-grained behavior-level
annotations, detecting specific behavior-level anomalies within user behavior se-
quences is challenging. Unsupervised methods face high false positive rates and
miss rates due to the inherent ambiguity between normal and anomalous behav-
iors. In this work, we instead introduce weak labels of behavior sequences, which
have lower annotation costs, i.e., the training labels (anomalous or normal) are
at sequence-level instead of behavior-level, to enhance the detection capability
for behavior-level anomalies by learning discriminative features. To achieve this,
we propose a novel framework called Robust Multi-sphere Learning (RMSL).
RMSL uses multiple hyper-spheres to represent the normal patterns of behaviors.
Initially, a one-class classifier is constructed as a good anomaly-supervision-free
starting point. Building on this, using multiple instance learning and adaptive
behavior-level self-training debiasing based on model prediction confidence, the
framework further refines hyper-spheres and feature representations using weak
sequence-level labels. This approach enhances the model’s ability to distinguish
between normal and anomalous behaviors. Extensive experiments demonstrate
that RMSL significantly improves the performance of behavior-level insider threat
detection.

1 Introduction

Nowadays, modern information systems have become indispensable core components in the oper-
ation of enterprises and organizations, with various monitoring data such as user behavior records
continuously generated by these systems. Insider threat detection (ITD) [32|[7] typically aggregates
these regards into behavioral sequences for analysis, aiming to automatically identify anomalies. By
detecting such anomalies, organizations can promptly recognize potential threats and take proactive
measures to prevent losses.

However, current studies [42, 143} 38| 119,211 144} 35| 39] primarily focus on sequence-level detection,
and there is insufficient research on fine-grained behavior-level detection. Given that a behavior
sequence might consist of hundreds or thousands of behaviors, identifying specific anomalous
behaviors can significantly help reduce the cost of manual screening and localization, making it
highly significant. This paper primarily investigates behavior-level ITD.

Dealing with the behavior-level ITD task presents several unique challenges. The first challenge is
the scarcity of behavior-level annotations. Due to the extreme rarity and stealthiness of anomalous
behaviors, it is impractical to provide anomaly annotations for such a large number of behaviors.
Almost all ITD studies [9, 131} 39] train unsupervised or single-class models to learn normal patterns
and identify behaviors that deviate from these patterns as anomalies. However, there still are some
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problems in real-world scenarios where it’s impossible to enumerate all normal patterns during
training, and the boundaries between normal and abnormal are blurred, leading to high false positives
and miss detection rates. Introducing supervised signals regarding anomalies can help the model
effectively distinguish between normal and abnormal. To address the first challenge and strike
a trade-off between annotation costs and improving detection performance, this work explores a
weakly-supervised setting for behavior-level detection by introducing only some sequence-level
annotations as inexact supervision, named Weakly-supervised ITD (WITD), as shown in Figure/I]

The cost of obtaining sequence-
level annotations is relatively
lower, as it only requires labeling
whether a rough interval contains
anomalies. Moreover, as more
and more systems begin to inte-
grate AIOps [13], the avenues for
obtaining sequence-level annota-
tions have become more diversi- * )
fied. Once an anomaly in moni-
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Figure 1: Illustration of Weakly-Supervised Insider Threat Detec-
tion.

The second challenge is how to

efficiently utilize easily accessible normal data to appropriately model the normal patterns of data.
DeepLog[9]] and TIRESIAS[9] learn to predict the next behavior given the historical behavior
sequence and detect behaviors that deviate from the model’s prediction as anomalies. OC4Seq[39]]
learns to compress all normal data into single minimal volume hyper-sphere and detects anomalies by
predicting the distance of the input from the center of the hyper-sphere. In this paper, we argue that
assuming normal data follow a unimodal distribution (i.e., all normal data can be contained within a
hyper-sphere) is inappropriate for the ITD task. In the real world, using a single hyper-sphere may not
adequately describe all normal patterns. To provide different descriptions for different normal patterns,
we propose Robust Multi-sphere Learning (RMSL). In RMSL, we use multiple hyper-spheres to
represent different normal patterns of behaviors and determine anomalies by combining classification
separability with the degree of deviation from the hyper-spheres.

We designed a three-stage progressive training strategy to optimize the model for obtaining robust
representations: the multiple hyper-spheres based zero positive warm-up stage, the multiple instance
learning stage, and the adaptive behavior-level self-training debiasing stage. In the first stage, we
optimize the model using only normal behavior sequences without any anomalous positive examples,
i.e., the zero positive scenario. This provides a good unsupervised starting point for anomaly detection,
enabling the model to have some predictive anomaly scoring ability. Subsequently, to enhance the
anomaly detector’s ability to explicitly distinguish between normal and anomalous behaviors, we
refine multiple hyper-spheres and feature representations by using sequence-level annotations as
weak supervision in the second stage. This naturally transitions to WITD, making the detector more
robust, which is highly beneficial for tasks such as detecting subtle disguised anomalous behaviors
in the field like insider threat detection. Some studies|/11} 28] have shown that multiple instance
learning (MIL) exhibits a certain degree of selection bias. After the second stage, we further divide
behaviors based on the model’s confidence in the third stage, and propose a progressive adaptive
behavior-level self-training method to learn more robust representations.

The contributions of this paper are as follows:

* We propose a novel weakly supervised learning framework, Robust Multi-sphere Learning
(RMSL), to address the challenge of label scarcity in behavior-level anomaly detection. To
the best of our knowledge, we are the first to formulate the insider Threat Detection problem
in the context of MIL.

* We develop a multiple hyper-spheres based anomaly detector with three-stage progressive
training: starting from a zero-positive initialization and gradually incorporating sequence-
level supervision to enhance the model’s ability to distinguish between normal and anoma-
lous behaviors.



» Extensive experiments on CERT r4.2 and r5.2 datasets demonstrate state-of-the-art per-
formance, achieving 9.78% and 3.98% AUC improvements over 16 baselines on the two
datasets, respectively.

2 problem definition

Given a set of weakly labeled behavior sequences Dy, = {S(i), Y(i)}gﬁ‘ as the training set Dyyqin,

where each behavior sequence S(*) = {el(i)};iél) contains NV, g') behaviors, eli) denotes the [-th
behavior in the sequence S, and Y(*) € {0, 1} is a sequence-level label. An anomalous behavior
is denoted as ¢;", while a normal behavior is denoted as ¢; . If a sequence contains at least one
anomalous behavior, it is considered an anomalous sequence, denoted as S*. Otherwise, the sequence
is considered a normal sequence, denoted as S™—. The goal of WITD is to learn a mapping function
f(+]-; 0) using the weakly labeled behavior sequences in the training set Dy;.qin, Which generates an
anomaly score f (el(l) |S(; ) € R for each behavior elz). If the anomaly score of a behavior exceeds
a detection threshold 7, it is classified as an anomalous behavior, where 6 represents the parameters

of the model. The model performance is evaluated using a test set D;eqr = {5 (i), Y(i)}ﬁ‘f“l with
) . (4) .
behavior-level labels, where Y () = {yl(z)};isl and yl(z) € {0,1} is a behavior-level label.
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Figure 2: Overall architecture of RMSL.
3 Methodology

To address WITD, we propose Robust Multi-sphere Learning (RMSL) to detect whether a certain
behavior e; in the given behavior sequence S is anomalous. The overview of RMSL is depicted in
Figure 2] The model architecture of RMSL consists of three components: a sequence encoder, multi-
ple hyper-spheres based normal prototypes, and an anomaly classifier. The optimization of RMSL
employs a progressive training strategy divided into three stages to obtain robust representations: the
multiple hyper-spheres based zero positive warm-up stage, the multiple instance learning stage, and
the adaptive behavior-level self-training debiasing stage.

3.1 Model Architecture

In this subsection, we provide a detailed description of the architecture of RMSL. It consists of three
components and ultimately produces behavior-level anomaly scores.

Sequence encoder. We first utilize a sequence encoder to generate the representation x; of the
behavior, which includes the behavior embedding and the sequence context encoding process.
Specifically, we project the behavior code e; into an embedding space using an embedding layer,
obtaining the embedding vector e;:

e; = Embedding(e;) . e



Subsequently, we need to encode the contextual information in the behavior sequence to obtain the
representation of the entire behavior sequence. GRUJ6] is a widely used architecture that effectively
captures temporal dependencies between elements in the sequence through the gating mechanisms.
For the behavior sequence encoder, our bidirectional GRU employs two layers:

X:(xl,xz,...,st):GRU(el,eQ,...,eNS), (2)
where x; represents the contextual representation of behavior e;.

Multiple hyper-spheres based normal prototypes. To address the challenge of appropriately
modeling the normal patterns of data, some previous works such as Deep SVDD[30] and OC4Seq[39]
utilized a minimal-volume hyper-sphere to encapsulate these normal patterns by compressing all
normal data into it. However, in real-world scenarios, considering normal behaviors as originating
from a multi-modal distribution is more appropriate. In this work, we do not use a single hyper-sphere
to store the normal, which is insufficient to uniformly describe all normal patterns. Instead, we
employ M learnable hyper-spheres as prototypes to store and memorize different normal patterns, and
optimize these hyper-spheres to create compact representations of diverse underlying distributions
in the data, naming it multiple hyper-spheres based normal prototypes. The centers of these hyper-
spheres are denoted as p,,, € R? (m = 1,..., M), where d is the feature dimension. For each
behavior e;, given its contextual representation vector x;, we can compute the distance d; ,,, from this
behavior to each hyper-sphere center. A larger distance from the behavior to the center of its nearest
hyper-sphere implies that the behavior is dissimilar to all historical normal patterns and is more likely
to be an anomaly. This process can be formulated as follows:

M
dim = X1 = Pmllz, 1st=arg mindym, Scoregn(ei]S) = [xi = Piall2 ©)

where d; ,, € RNs*M 15t € {m})s | denotes the index of the nearest hyper-sphere to behavior x;,
and Scoregn(ei|S) € R represents the deviation score of the behavior relative to the hyper-spheres,
named as hyper-spheres based deviation score.

Anomaly classifier. We use a discriminative anomaly classifier M, to predict whether a behavior
belongs to the anomaly class. This classifier consists of a self-attention layer[37]] and a fully connected
layer. The self-attention layer further enhances the representation ability of behavior features, yielding
the representation xj"", and introduces additional parameters to better adapt to the classification task.
The fully connected layer is used for the final classification decision. The entire anomaly classifier

can be formulated as:
Scoreqs(er|S) = sigmoid (W;CX?IIH +bpc) 4)

where wre € R? is the weight matrix, bpc € R is the bias, sigmoid(-) is the sigmoid activation
function, and Scoregs(e;]S) reflects the score of behavior e; being classified into the anomalous
class from the perspective of classification separability.

Anomaly scores. In this work, we do not use a single classifier to generate anomaly scores but
instead contribute anomaly scores from complementary perspectives. The anomaly classifier provides
discriminative scores based on class separability, while the hyper-spheres based deviation score
quantifies the degree of deviation of behaviors from normal patterns. This dual-scoring mechanism
enables a more comprehensive assessment of anomalies. For the behavior e; in sequence S, we define
the total anomaly score as:

f(€e1]S;0) = a x Scoreqs(er|S) + (1 — a) x Scoregn(er]S) , Q)

where « € [0, 1] is a hyperparameter, which we refer to as the dual scoring balance factor.

3.2 Stage 1: Multiple Hyper-spheres based Zero Positive Warm-up

In this stage, we constructed a one-class classifier based on multiple hyper-spheres in the zero
positive scenario (i.e., optimizing the model using only normal behavior sequences without any
anomalous positive examples) as a good anomaly supervision-free starting point to warm up for the
second stage multiple instance learning. This is based on the consideration that, at the beginning
of training, the model is not well-trained yet, and the anomaly score prediction function does not
have a clear mapping relationship. Directly selecting the behaviors with the highest anomaly scores
from the anomaly sequence might not be truly anomalous, causing errors during the early phases of



multiple instance learning optimization. These errors will accumulate as the model trains, leading
to suboptimal performance. Using the one-class model as a starting point can improve the model’s
ability to select anomalous samples in the early phases of multiple instance learning. Specifically, we
use two losses to constrain the optimization of hyper-spheres.

Multi-Center loss. We extend the standard center loss [40] from multi-class to multi-spheres. For
a normal sequence S~, we minimize the distance of each behavior in the sequence to its nearest
hyper-sphere, such that behaviors of the same normal pattern cluster into corresponding compact
hyper-spheres in the feature space:

; Ne-
Ecen = xr - s 27 6
N ; %~ pral3 (©)

where Ng- denotes the length of the normal sequence S~

Hyper-sphere separability loss. Using only the multi-center loss may lead to learning meaningless
results, such as hyper-sphere collapse, where all centers of hyper-spheres are optimized to converge
to a single point, losing the significance of storing normal patterns in multiple hyper-spheres. To
encourage different hyper-spheres to reflect different normal patterns, we propose a soft hyper-sphere
separability loss that enforces the distance between a behavior and the second nearest hyper-sphere
center to be greater than the distance to the nearest hyper-sphere center, thereby increasing the
distance between different hyper-spheres to ensure separation between hyper-spheres representing
different patterns:

Ng-

1 exp(||x; — Pandl|2) )
['se Il — BCE 71 9 (7)
P Ng- ; <exp(||xl — Pistl|2) + exp(]|x; — Panall2)

where Ist and 2nd are respectively the indices of the nearest and second nearest hyper-spheres to xy,
2nd = arg rninf,»f:lﬁm;ﬂsl dj.m. and BCE(-, -) is used to calculate binary cross-entropy losses.

The total training loss at this stage can be calculated as £; = Leen + AgepLsep. After training,
the model tends to have a smaller deviation score Scoreg for normal behaviors, while anomalous
behaviors, which the model has not seen, are likely to be further from the hyper-spheres storing the
normal behavior patterns. Consequently, their Scorespy are also more likely to be larger than that of
normal behaviors. We use this property to help warm up MIL in the next stage.

3.3 Stage 2: Multiple Instance Learning

To address the behavior-level ITD task, our ultimate goal is to ensure that the anomaly scores for
anomalous behaviors are higher than those for normal behaviors, effectively separating out the
anomalies. Typically, achieving this goal requires relying on detailed behavior-level annotations
for model optimization. However, with the Multiple Instance Learning (MIL) technique, we can
adopt a more efficient approach: consider the sum of the anomaly scores of the highest-scoring
behaviors within a sequence as the anomaly score for the entire sequence. Based on this, ensure
that the anomaly score of an anomalous sequence is higher than that of a normal sequence, thereby
enabling the optimization of the model using sequence-level labels. This method indirectly achieves
the goal of scoring anomaly behaviors higher than normal behaviors, which can be formalized as:

> felstio) > D flals o), ®)

leQgy leQg—

where Qg+ and {25 represent the indices of behaviors with the highest anomaly scores in the anoma-
lous sequence ST and the normal sequence S—, respectively. Therefore, in the second stage of the pro-
gressive training strategy, we introduce sequence-level weak supervision signals. By applying the MIL
technique, based on the one-class model obtained in the first stage, we further enhance the model’s abil-
ity to distinguish whether a behavior is abnormal or not. By selecting the behaviors with the highest

anomaly scores f(e;|S; ) within a sequence (i.e., Qgo) = max,, cgo (f(e[S;0))), and mini-
mizing the binary cross-entropy loss L.,;; = |DlL| ng' BCE(Y ™, Y (@) using the sequence-level

labels, the entire model M is optimized to further refine feature representations and hyper-spheres,
(i) — 1 i).
where Y (*) = o Zleﬂsm fle]S9;0).



3.4 Stage 3: Adaptive Behavior-level Self-training Debiasing

After obtaining an anomaly score prediction model M through MIL in the second stage, M acquires
an initial capability to distinguish anomalies. However, due to the mechanism of MIL that optimizes
the model by selecting only a few representative behaviors, there exists a prediction bias. In the
third stage, we use adaptive behavior-level self-training debiasing technology to fully utilize the
information of all behaviors in the sequence. By generating efficient pseudo labels to optimize
the model while introducing minimal noise, we eliminate the prediction bias and improve anomaly
detection performance. The debiased model is named as M, and the corresponding parameters are
denoted as 6'.

Specifically, based on the model trained in the second stage, we calculate the confidence of the
model’s prediction for each behavior in the sequence S. Monte Carlo (MC) Dropout[12] provides
a good way to estimate it. It treats the network parameters 6 as random variables following some
distribution ¢(6). By using the dropout operation[15] during each forward pass, we can approximate
sampling from the distribution of the model parameters. Through multiple forward passes, we
can approximate the distribution of the model’s predictions. The expectation and variance of the
distribution of the anomaly score of a behavior e; can be estimated from the mean and variance of the
outputs generated by multiple forward passes:

T
1
S;0)) — S;0:)
QNIE(G)( (ed] thz:lf e]S; 04)
. ©)
o 21 0 2
Var (f(eilS:6) ~ o fT_lt:fo(eAS’ot) w2,

where 6; denotes the model parameters for the ¢-th dropout sampling, and 7" is the number of forward
passes. A smaller variance indicates higher prediction confidence.

Afterward, we transform the inexact weakly-supervised learning task into a semi-supervised learning
task, where high-confidence samples are treated as labeled samples, while the remaining samples
are treated as unlabeled samples. For the abnormal sequence S, the top rp,; X Ng+ behaviors with
the smallest variance are selected as high-confidence samples, the next r,,;q X Ng+ behaviors are
considered as medium-confidence samples, and the rest are treated as low-confidence samples:

QF = minTopK,, ¢ g+ (Vargyo)(f(er|ST30)), mni x N+,

con

Qi = minTopK,, c g+ ygani (Varg.qee) (f(e1]S1:6)), rmia X Ns+), (10

con

Qlow _ {l}l Ngt \Q('(m \szd

con con ?

where minTopK(-, k) returns the indices corresponding to the %k smallest elements. For high-
confidence samples, we utilize the expectation of their anomaly scores to generate hard pseudo labels
for optimizing model parameters:

1
Eni = epi 1 Y BCE(f(erlS™:0), L(Egngio) (f(e]ST:0)) > 7)) (D

conl jcqhi

con

where 7, is the anomaly detection threshold, behaviors with anomaly scores greater than 7, are
considered as anomalies, behaviors with scores less than 7, are considered normal, and 1(-) is an
indicator function.

For those medium-confidence samples, directly using hard pseudo labels may introduce noise. To
mitigate the impact of noise, we introduce more reliable soft pseudo labels to avoid high-confidence
erroneous predictions by the model. We optimize the model by simultaneously considering less
reliable hard pseudo labels ypqrq and more reliable soft pseudo labels y;, ¢; as follows:

Lomid = 7— Z Apse BCE(f(el‘S 0) yhard) +(1 - )‘Pé‘e) BCE(f(el|S+; 9)7y50ft)) ) (12)

mid
|Qcon lEQm“i

where when Eg.q0)(f(€ni|ST:0)) > Tc, Ynara is set to 1, and when Eg 00y (f(ens|ST;0)) <
1 — 7¢, Ypara 1s set to 0. 7. is an adaptive threshold that increases with confidence and can be
computed at the ¢-th iteration as 7! = B.7.7! + (1 — 8.) maxNorm (Varg.,)(f(ex|S;60))71),



with 70 = 7,, where maxNorm(-) is the maximum normalization operation. The soft pseudo label
Ysoft = f(€1lST;0cma) is generated by the model’s exponential moving average (EMA) model
acting as a teacher to guide the learning of the current model. The parameters ¢, . of the EMA
model at iteration ¢ can be computed as 0%, = Bema0,L + (1 — Bema)6?. The total training loss

ema ema

at this stage can be calculated as L3 = Lp; + Linid.

Table 1: Performance comparison of RMSL with 16 baselines for behavior-level ITD. The best and
second-best results are boldfaced and underlined, respectively. An upward arrow indicates the higher
the better, and a downward arrow indicates the lower the better.

Model CERT r4.2 \ CERT 5.2
AUCT DRT FPR, DR@5%! DR@10% DR@I5%! | AUCT DR{ FPR| DR@5%! DR@10% DR@I15%?"

DeepLogf0] 07469 07152 03767  0.2310 0.3842 04620 | 0.8549 07767 02336  0.4970 0.5954 0.6648
TIRESIAS[3I]  0.8377 0.7820 02338  0.3761 0.5277 0.6484 | 0.8804 08129 02073  0.5463 0.6373 0.7297
RNN{IO 07521  0.6934 03622  0.2299 0.3821 04625 | 0.8641 0.8286 02361  0.4548 0.5928 0.6910
GRU[6 07486 07119 03804  0.2391 0.3815 04614 | 0.8504 07911 02395  0.4637 0.5704 0.6499
Transformer37]  0.7981 07195 02799  0.2918 0.4201 05321 | 0.8628 07621 0.1985  0.4858 0.5745 0.6694
RWKV[29 08165 07923 02576  0.2630 0.4348 0.5886 | 0.8727 0.8020 02345  0.5380 0.6224 0.6887
DIEN[45 07894 07461 03072 04147 0.4875 05342 | 0.8268 07724 02690 03811 0.5455 0.6175
BST[4] 0.6777 06554 03451  0.1625 0.2614 03647 | 08162 07417 02301 04772 0.5650 0.6548
FMLPf46 08526  0.7983 02027 04783 0.5647 0.6837 | 0.8435 0.8757 02889 04278 0.5171 0.5659
m-RNN 0.8652 0.8032 0.1996 04375 0.6707 07549 | 09108 08131 01359  0.6881 0.7699 0.8230
m-GRU 08514 08103 02378 03364 0.5962 07001 | 0.9040 07879 0.1367  0.6780 0.7458 0.7957
m-LSTM 08531 07891 02259 03310 0.5908 0.6897 | 0.8985 07730 0.1385  0.6729 0.7329 0.7779
m-Transformer ~ 0.8533  0.8005 02112  0.3109 0.5451 06951 | 0.8929 0.8358 0.1586  0.5684 0.7357 0.8247
m-FMLP 08837 08190 01671  0.4266 0.6772 07957 | 0.8920 08169 01614  0.4878 0.7412 0.8066
ITDBERT(I7] 07413 06911 03153  0.2005 0.3272 04383 | 0.8139 0.6853 01996  0.5724 0.6243 0.6518
0C4Seq(39]  0.8113  0.8080 02940  0.1466 0.3019 04712 | 09202 08503 01727  0.6414 0.7383 0.8245
RMSL (Ours)  0.9701 09142  0.0924  0.7030 0.9245 09585 | 0.9568 0.8908 0.0950  0.7945 0.8645 0.9073
Abs. Improv.  0.0864 0.0952 00747  0.2247 0.2473 0.1628 | 0.0366 00151 00409  0.1064 0.0946 0.0826
Rel. Improv.(%) 9.78% 11.62% 44.70%  46.98%  36.52% 2046% | 398% 1.72% 30.10%  15.46% 12.29% 10.02%

4 [Experiments

Experimental Settings. appendices [A]to[D]describes detailed experimental information, including
datasets, baseline methods, implementation details, and evaluation metrics.

Overall Comparison. Table[I]shows the performance of our RMSL and all the baseline methods
on the behavior-level ITD task. The results indicate that our RMSL significantly outperforms
existing baselines across all datasets on the behavior-level detection tasks. Specifically, in terms
of the AUC metric, RMSL outperforms the best-performing baseline by 9.78% and 3.98% on the
CERT r4.2 and r5.2 datasets, respectively; on the DR metric, it also outperforms by 11.62% and
1.72%, respectively; and on the FPR metric, it outperforms by 44.70% and 30.10%, respectively.
Previous baseline methods all considered how to better model normal behavior patterns, whether
by designing better structures to describe behavior features, or designing different tasks to learn
normal behavior patterns such as next behavior prediction (Deeplog [9]], TIRESIAS [31], RNN [10],
GRU [6], Transformer [37], RWKYV [29]], DIEN [45]], BST [4], FMLP [46]), masked behavior
prediction (m-RNN, m-GRU, m-LSTM, m-Transformer, m-FMLP), or one-class classification based
on minimizing hyper-spheres (OC4Seq[39]]). Without any prior information about anomalies, the
performance of these approaches has reached a bottleneck. Analyzing the possible reasons, the
paradigm of simply treating deviations from normal as anomalies is inappropriate, as these models
cannot truly distinguish between normal and abnormal. Since training sets cannot encompass all
normal behavior patterns in the real world, these methods might misclassify unseen but normal
behavior patterns as anomalies, leading to a high false positive rate. Reflecting on the field of
cybersecurity, there may be another issue where some malicious users often disguise themselves as
normal users to perform subtle malicious behaviors, making them very difficult to distinguish and
leading to a low detection rate. ITDBERT([17] is a sequence-level supervised method, but it can also
indirectly provide behavior-level scores by interpreting the model’s predictions using attention scores.
However, its performance lags significantly behind our method. In this work, we conducted a more
practical weakly supervised setting, and experiments proved that this led to significant performance
gains. Furthermore, our method starts with a one-class classification model and gradually enhances
its behavior-level classification capabilities by introducing sequence-level labels, making it more
flexible.

Ablation Study. The final RMSL is primarily trained in three training stages: multiple
hyper-spheres based zero positive warm-up, multiple instance learning, and adaptive behavior-
level self-training debiasing. To better understand how different training stages contribute to
the final performance, we conducted ablation studies. Specifically, we introduced four vari-
ants of RMSL, each corresponding to models trained with different combinations of stages.
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model, which can provide initial anomaly score predictions, can help MIL optimize better.

Figure 3: Results of the ablation study.

Hyper-parameter Analysis. In this subsection, we analyze the impact of two key hyper-parameters
on the performance of RMSL across the CERT r4.2 and r5.2 datasets. Firstly, as depicted in
Figure we varied the number of hyper-spheres based normal prototypes M from 1 to 100
(step size 10). Observations indicate that with the increase of M, the AUC initially increases and
then slightly decreases on both datasets, achieving the optimal performance when M is set to 40.
The initial increase suggests that 1.00 1.00

using multiple hyper-spheres as 0.95 098
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quent decline may be due to re- (a) M (b) &

dundancy when the number of
hyper-spheres exceeds the num-
ber of normal patterns, increas-
ing the likelihood that individual anomaly behaviors are incorrectly assigned to one of the hyper-
spheres. In Figure we tuned the dual scoring balance factor o € [0, 1] (step size 0.1), which
balances the contributions of the discriminative score and the hyper-sphere-based deviation score.
Setting o = 0 relies solely on the deviation score, whereas o = 1 uses only the discriminative score.
Optimal performance is achieved at o = 0.1 (r4.2) and o = 0.6 (15.2), highlighting dataset-specific
trade-offs between the two scoring mechanisms.

Figure 4: The influence of number of hyper-spheres based normal
prototypes M and dual scoring balance factor «.

Visualization. We also conducted visualization experiments to compare the embedding vectors
between the zero-positive setting
( Figure[5a]) and the weak super-
vision setting ( Figure [5b]). Vi-
sualizations show red/black dots
for anomalous/normal behaviors
and blue hypersphere centers.
The zero-positive setting ex-
hibits significant embedding vec-
tor overlap, whereas the weak su-
pervision setting achieves clear
separation. For more detailed
information, please refer to ap-

pendix

-15
—10
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(a) zero-positive setting (b) weak-supervision setting
Figure 5: Embedding vectors visualization



5 Related Works

5.1 Insider Threat Detection

In recent years, numerous studies have explored the application of deep learning techniques in Insider
Threat Detection (ITD). These works treat user activities as behaviors and aggregate them into
sequences, then leverage sequence models from the field of Natural Language Processing (NLP)
to capture the temporal dependencies between user activities for anomaly detection [35} 142} 38, [17,
43 127]. Yuan et al. [42] proposed a model that combines temporal point processes and recurrent
neural networks to capture temporal information and activity types within sessions for sequence-level
ITD. Furthermore, their subsequent work[43]] proposed a framework that combines metric-based
few-shot learning and self-supervised pre-training methods to discover new malicious sessions and
detect insiders through similarity scores. Huang et al.[[17] pre-trained a language model BERTS]] on
historical activity data to capture fused semantic representations and proposed an attention-based
architecture to detect malicious activities of compromised internal nodes within a network. Tuor et
al.[35] use daily features for each user as historical feature vectors to predict the feature vectors of
the next day, thereby enabling the detection of day-level insider threats. However, these methods can
only determine whether a sequence is anomalous but fail to detect specific anomalous behaviors.

5.2 Anomaly detection with inexact supervision

Anomaly detection with inexact supervision refers to effectively identifying anomalies using coarse-
grained labels. Current research mainly focuses on video anomaly detection tasks. Sultani et al.[33]]
is the first to formulate anomaly detection with weakly supervised video-level labels as a Multiple
Instance Learning (MIL) problem, treating each video as a bag of instances and using video-level
anomaly labels to learn the anomaly scores of individual video segments. Tian et al.[34] trained a
classifier using the top K instances with the highest anomaly scores to learn more robust temporal
features for identifying abnormal segments. Chen et al. [S]] proposed a feature magnitude contrastive
loss to address the issue where the magnitude of normal instances is greater than that of anomalous
instances due to changes in scene attributes, thereby enhancing the separability between normal and
anomalous features. Differently, Lv et al.[28]] identified the problem of biased sample selection in MIL
and proposed an unbiased MIL framework to enhance the detector’s ability to distinguish between
normal and anomalous behaviors, eliminating selection bias. To further improve the performance of
weakly supervised video anomaly detection models, other studies have focused on applying two-stage
training schemes. Specifically, Feng et al.[11]] introduced a self-training framework based on MIL,
using a pseudo-label generator and a self-guided attention encoder to improve anomaly detection
performance. Li et al.[22] enhanced the MIL framework by improving sample selection, proposing
multi-sequence learning to select consecutive segments with high anomaly scores. Although MIL
methods have been widely applied in video anomaly detection, research in insider threat detection
has not been fully explored.

6 Conclusions

In this paper, we propose a novel weakly supervised learning framework, Robust Multi-sphere
Learning (RMSL), to address the challenge of sparse behavior-level labels in fine-grained ITD. This
method models diverse normal behavior patterns through multiple hyper-spheres and determines
anomalies by combining classification separability with the degree of deviation from the hyper-spheres.
We adopt a three-stage progressive training strategy to obtain RMSL.: first, a multi-sphere-based one-
class model is trained in the zero positive scenario. Then, sequence-level weak labels are introduced
to further optimize the model and enhance its ability to distinguish between normal and anomalous
behaviors. Finally, a debiasing technique is applied to eliminate prediction bias. Experimental
results show that RMSL significantly outperforms existing methods in insider threat detection tasks.
However, our approach still has limitations. Although weak labels reduce the annotation cost, their
quality (e.g., whether the entire behavioral sequence is accurately labeled as normal or abnormal) may
also affect model performance. Future research will further focus on the evaluation and optimization
of weak label quality to further enhance the practicality of this method.
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A Datasets

To evaluate the performance of our approach on the behavior-level ITD task, following previous
studies [25} 1231431, 121, 41]], we selected two publicly available datasets, CERT r4.2 and CERT
r5.2 [24], which correspond to detection scenarios with different data scales and are widely used in
the field of insider threat detection. These datasets encompass a variety of user behavior categories
including logon/logoff, email communications, file accesses, device operations, and HTTP requests,
each associated with a timestamp. For both CERT r4.2 and CERT r5.2 datasets, we aggregated
user log data from multiple sources in chronological order and appended each user’s behaviors to
their historical behavior sequences. Sessions were defined using "login" and "logout” behaviors as
delimiters, thereby dividing the data into individual sessions, each treated as a behavior sequence.
Given that both datasets cover a period of one and a half years, we utilized the first year’s data
for model training and validation, while reserving the remaining six months’ data for performance
evaluation. For the training set, we only utilized sequence-level labels to optimize the model, whereas
for the test set, we used behavior-level labels to evaluate performance. Detailed information about
the datasets is summarized in Table

Table 2: Statistics of the datasets.

Dataset CERT 4.2 CERT15.2
# Normal Sequences 469,478 1,004,791
# Abnormal Sequences 1134 1843
Seq.-level Imb. Ratio 414 545
# Normal Behaviors 32,762,906 79,846,358
# Abnormal Behaviors 7,316 10,306
Beh.-level Imb. Ratio 4,478 7,748

B Baselines

To better demonstrate the performance of our RMSL model, we compared it with 16 state-of-the-art
baselines. Note that, since our evaluation granularity is at the behavior level, we only considered
methods capable of performing behavior-level anomaly detection. DeepLog[9]] and TIRESTAS|[31]]
are two classic methods that fit normal behavior sequences by learning to predict the next behavior
given the context of the behavior sequence. They can detect anomalies by determining if each input
behavior deviates from the model’s prediction. The backbone of DeepLog is a two-layer stacked
LSTM[16], whereas TIRESTAS maintains a single-layer LSTM but improves upon DeepLog by
constructing a more complex memory structure within the LSTM unit. In addition to LSTM, we also
tried three other widely popular sequence modeling architectures RNN[10], GRU[6]], Transformer([37],
and RWKV[29] to learn to predict the next behavior and detect anomalies. Furthermore, we compared
two classic user behavior modeling methods, DIEN[45]] and BST[4]], which can predict the probability
of user behaviors occurring, and a recent method, FMLP[46]], which filters noise from historical
user behavior data to predict future user behaviors. The aforementioned models only consider the
context before the occurrence of a behavior when predicting whether a behavior is abnormal. To
fully utilize the context information of the entire behavior sequence, we allowed the models to
access the entire behavior sequence and constructed a masked behavior prediction task, similar to
LogBERT([14]. In this task, a specific behavior in the behavior sequence is replaced with a mask
identifier. We used bidirectional RNN, GRU, and LSTM, as well as Transformer and FMLP, to
learn to predict the behavior at the masked position. Anomalies are detected by determining if each
masked behavior deviates from the model’s prediction, and these methods are referred to as m-RNN,
m-GRU, m-LSTM, m-Transformer, and m-FMLP, respectively. ITDBERT[17] is an attention-based
behavior-level detection method. The attention weights reflect the contribution of each behavior in the
behavior sequence to predicting whether the entire sequence is abnormal, allowing for the detection
of abnormal behaviors based on these attention weights. Lastly, we also compared a representative
method for treating ITD as a one-class classification problem, OC4Seq[39]. This method learns to
embed normal behaviors into a hyper-sphere, detecting anomalies by predicting how close behaviors
are to the center of the hyper-sphere.
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C Implementation

Our RMSL method is trained using the AdamW [26] optimizer with a weight decay of 0.0005. During
the first stage of model training, the initial learning rate is set to 2e-6, during the second stage, the
learning rate is set to le-5, and during the third stage, the learning rate is set to le-6. The batch size
is set to 128, with each mini-batch consisting of 64 randomly selected normal sequences and 64
abnormal sequences. For the dual scoring balance factor o, we set it to 0.1 for the CERT r4.2 dataset
and 0.7 for the CERT r5.2 dataset respectively. Regarding the number of hyper-spheres M, we set it
to 40 and randomly initialized each hyper-sphere center. The rationale for selecting these two key
parameters is reported in the hyper-parameter analysis part of Section 4 We adopt the grid search
strategy and leverage hyperparameter tuning toolg”|to achieve optimal performance, such as setting
the hyper-sphere separability loss Ase, = 0.5. For all experiments, for a fair comparison, our method
is set with the same embedding size of 128 as all baseline methods and is trained for 10 epochs using
an early stopping strategy. The experiments were conducted on a server with 2 Intel Xeon Gold
6226R CPUs running at 2.90GHz, 256GB of RAM, and one A6000 GPU with 48GB memory. The
toolkit used for the experiments included Python 3.8, PyTorch 1.13.

D Metrics

Similar to the previous works [2, 21,19 [1813] , we use the behavior-level area under the ROC curve
(AUQ), detection rate (DR), and false positive rate (FPR) as evaluation metrics for all datasets and
models. Here, DR = TP/(TP + FN) and FPR = FP/(FP + TN). TP, FN, FP, and TN represent the
number of true positives, false negatives, false positives, and true negatives, respectively. Furthermore,
following previous studies [[19} 20} |35} 3], we also report the detection rates DR@5%, DR@10%,
and DR @ 15% under investigation budgets of 5%, 10%, and 15% of the total number of behaviors,
respectively.

E Visualization Details

We visualized the learned embedding vectors using t-SNE [36] and compared between the zero
positive setting and the weak supervision setting, as shown in Figure[6] where red dots represent
anomalous behaviors, black dots represent normal behaviors, and blue markers indicate centers
of hyper-spheres. Each setting displays 3D projections from two different angles. Figure [6a]
demonstrates the embedding vectors produced by the one-class model trained with the first training
stage multiple hyper-spheres based zero positive warm-up, which only uses normal sequences for
training. It can be observed that in the latent space, dots representing normal behaviors and anomalous
behaviors cannot be well separated, indicating poor inter-class separability. Figure [6b] presents the
embedding visualization results after further introducing sequence-level weak supervision signals
based on the one-class model. From the figure, it can be seen that normal behaviors tightly cluster
around their respective hyper-sphere centers and maintain a clearer separation from anomalous
behaviors, reflecting the optimization of the decision boundary between normal and anomalous
patterns using weak supervision signals, which effectively enhances inter-class distinguishability.

*https://github.com/microsoft/nni
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(b) weak supervision setting

Figure 6: Visualization of the embedding vectors of RMSL in the zero positive setting and the weak
supervision setting.
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