arXiv:2508.11380v1 [cs.MA] 15 Aug 2025

Defending a City from Multi-Drone Attacks:
A Sequential Stackelberg Security Games Approach

Dolev Mutzari®*, Tonmoay DebP, Cristian Molinaro®, Andrea Pugliese®, V.
S. Subrahmanian®, Sarit Kraus®

@Department of Computer Science, Bar Ilan University, Israel
b Department of Computer Science, Northwestern University, IL, USA
¢DIMES Department, University of Calabria, Italy

Abstract

To counter an imminent multi-drone attack on a city, defenders have deployed
drones across the city. These drones must intercept /eliminate the threat, thus
reducing potential damage from the attack. We model this as a Sequential
Stackelberg Security Game, where the defender first commits to a mixed
sequential defense strategy, and the attacker then best responds. We develop
an efficient algorithm called S2D2, which outputs a defense strategy. We
demonstrate the efficacy of S2D2 in extensive experiments on data from
80 real cities, improving the performance of the defender in comparison to
greedy heuristics based on prior works. We prove that under some reasonable
assumptions about the city structure, S2D2 outputs an approximate Strong
Stackelberg Equilibrium (SSE) with a convenient structure.

Keywords: Multi-Drone Attacks, Security Games, Sequential Games

1. Introduction

There has been a lot of recent concern about multi-drone attacks |1, 2,
3,4, 5, 6, 7, 8], especially in highly populated urban areas where not all
countermeasures can be used [7]. Drones can target centers of government

*Corresponding author
Email addresses: dolevmu@gmail.com (Dolev Mutzari),
tonmoay . deb@northwestern.edu (Tonmoay Deb), cmolinaro@dimes.unical.it
(Cristian Molinaro), andrea.pugliese@unical.it (Andrea Pugliese),
vss@northwestern.edu (V. S. Subrahmanian), sarit@cs.biu.ac.il (Sarit Kraus)

Preprint submitted to Artificial Intelligence August 18, 2025

https://arxiv.org/abs/2508.11380v1

and severely damage critical infrastructure (e.g., utilities). It has been pro-
posed [1, 5, 4, 7] that the city can be defended with drones to counter the
attacks and reduce damage to life and property. As drones are cheap, ac-
cessible, and can maneuver above city buildings, effective defense should be
equally affordable, and free from ground-based constraints.

Therefore, in this work we focus on defending against multi-drone attacks
on large-scale cities, using defense drones. It is clear that certain locations in
the city are more attractive to attack for the attacker and hence more critical
for the defender to protect. The goal is therefore to minimize damage rather
than to catch the attacker drones as fast as possible. Finally, while aerial
drones can be relatively easy to purchase, they are subject to battery and
payload constraints.

Stackelberg security games (SSGs) offer a framework to optimize the al-
location of defense resources against strategic adversaries. |9, 10| provide an
extensive overview of SSG applications successfully deployed to date. An
SSG consists of a defender with some defense resources protecting multiple
targets against a strategic attacker. The defender commits to a mixed allo-
cation strategy, and the attacker best responds by attacking the target that
maximizes her utility.

Many extensions of the original SSG model [11] exist today, e.g. bounded
rationality attackers [12, 13, 14|, partial information [15], defense schedules
[16], heterogeneous resources [16], multiple defenders [17, 18] and attack-
ers [19], attackers with multiple resources [20], and repeated SSGs [21]|. Nev-
ertheless, most research is on Stackelberg equilibria in normal-form games:
the defender commits to a mixed strategy, the attacker best responds, and
the expected utilities are then directly determined. In particular, the attacker
has a single opportunity to attack.

To defend a city from multi-drone attacks!, we use sequential SSGs, in
which the targets are nodes in a graph, which both players’ drones traverse.
In particular, we model this as an extensive-form game. The attacker’s drones
are subject to payload and battery capacity constraints.

1.1. Related Work

Defending against swarm aerial drone attacks has been studied exten-
sively — [4, 7] provide a recent overview. In a drone swarm, each drone

LOur framework also applies to land-based attacks by a coordinated set of attackers,
targeting a city with simultaneous or sequential attacks by traversing its roads.

acts in real-time based on its local observation of the environment, includ-
ing neighboring drones. Modeling attacker drones as a swarm is limiting
since an attacker with sufficient computational and technological resources
can conduct coordinated attacks to increase its utility. For similar reasons,
while defense using a drone swarm is more scalable with the number of drones,
both computationally and from practical perspectives, it is less effective than
a coordinated multi-drone defense mechanism.

Past research on drone swarm attacks can be roughly split into three do-
mains: (i) detection mechanisms focusing on identifying an incoming attack,
tracking and classifying air-drones [3, 22|, (ii) quickly assessing whether a
tracked drone is threatening or not [23|, and (iii) defense mechanisms that
seek to counter and protect against threatening drone attacks [1, 2, 4, 6].
The growing body of work on detection mechanisms is complementary to
this work, justifying the assumption that attack drones can be monitored.?

Next, we briefly cover the gaps and limitations of defensive mechanisms
other than using defense drones. GPS jamming / spoofing (used e.g. in [2])
cannot tackle drones that use other navigation methods (visual, radar, etc.),
and RF jamming is not effective against autonomous malicious drones. Fur-
thermore, anti-jamming/spoofing techniques may undermine their effective-
ness. In addition, these methods may jam civilian applications (e.g., mobile
phone communications). We refer to |7] for further discussion and focus on
the defensive drone swarm literature.

[1, 5] and [24] study defense using a drone swarm. These works mostly
focus on coordinating defensive drones, and the attacker model is limited.
First, only a single attacker drone is considered. Second, it is assumed that
the attacker drone is nearby, and was detected before causing any damage.
This might work for protecting a facility of interest, but spreading them
would enable covering much more ground. Third, once it is detected, the
defensive drone swarm assumes the attacker drone follows a straight pro-
jectile® to predict its future location and catch it rapidly. Obstacles might
hinder such movement of the attacker, and more importantly, the attacker
is interested not only in evading the defensive swarm but also in striking
targets, otherwise it would not take off to begin with. [25, 26] alleviated

2In fact, we make the weak assumption that the location of a drone is known only after
its first strike takes place.
3|24] adds a brief discussion on other strategies the attacker might choose.

the assumption of straight-line movement by learning from simulations using
Deep Reinforcement Learning.

The above works fall under multi-pursuer multi-evader differential games
[27], where each player decides on a continuous function over time, called
control that must admit certain constraints. [28| pairs the pursuers and
evaders thereby reducing the problem into a single pursuer single evader
game, and we follow a similar approach. Differential games (DGs) can be
roughly divided into two forms: open-loop DGs where the controls depend
only on time and initial game state and there is no dependence on the current
game state, and closed-loop DGs where controls may be a function of the
continuously evolving state.

In our setting, we want the defender to be closed-loop and utilize recent
work on detecting and monitoring attack drones, whereas the attacker should
be open-loop as it does not know the defense drone locations. Another well-
studied family of evasion games are cops and robbers [29|, traversing a graph.
The locations of each cop and robber are typically visible. There are works on
invisible robbers [30, 31, 32|, but not on invisible cops. [30] also considers a
drunk robber, which effectively does not take the cops’ locations into account,
but instead takes a random walk, and we are interested in a rational attacker.
Moreover, the goal in evasion games (both on graphs and differential games)
is to catch the evaders as fast as possible. In particular, they do not take
into account rewards and penalties from successful attacks.

Finally, there has been some work on sequential security games (which is
the approach taken in this paper) to model the problem at hand. This should
not be confused with repeated SSGs, which are one-shot games, played mul-
tiple times to enable players to gain information. For instance, [33] studies
repeated SSGs with unknown attacker type to handle deception, and [21]
studies repeated SSGs where the attacker does not know the defense mixed
strategy initially.

In sequential SSGs [34], the defender and attacker simultaneously traverse
a graph. The attacker can attack multiple targets on her path. As in clas-
sical SSGs, the defender commits to a mixed strategy, and the attacker best
responds. Unlike traditional SSGs, the strategy space is huge. [34] assumes:
(i) the attacker has one drone, (ii) drones carry unbounded payload, (iii) a
solution is offered only against two sequential strikes, (iv) solutions assume
that either defense movement is unrestricted or is prohibited completely. [35]
extended [34] by alleviating (iii), but assumes a zero-sum finite game, where
SSE and NE are equivalent [36].

General sequential SGs were first considered in [37]. Exact methods [38,
39] do not scale to our setting as they are at best linear in the game tree.
Heuristic algorithms (e.g., [40]), being generic, perform poorly in our setting.
They do not exploit the graph structure of the problem and lack basic tools
(e.g., shortest path and TSP solvers). [41] considers sequential SGs and de-
velops an MCT'S-based heuristic algorithm. Nevertheless, this method is not
suitable for finding a Strong Stackelberg Equilibrium (SSE). [42] considered
a discrete-time stochastic Stackelberg game where the attacker has a private
type that evolves as a controlled Markov process. They compute a Stackel-
berg equilibrium by solving lower dimensional fixed-point equations for each
time t. Their technique assumes the state to be small.

1.2. Contributions

The main contributions we make are summarized below.

1. We extend sequential SSGs to handle multiple attack/defense drones
with payload/battery constraints.

2. We propose Sequential Stackelberg Drone Defense (S2D2), an efficient
algorithm to output a defense strategy.

3. We identify conditions for the underlying graph, under which S2D2
outputs an approximate Strong Stackelberg Equilibrium (SSE), along
with an upper bound on the error. We also develop an algorithm to
check if a given graph admits such a structure.

4. Though our theoretical results make assumptions to guarantee the ex-
istence of approximate SSEs, not all real-world situations satisfy these
conditions. Thus:

e We ran extensive experiments on a dataset of 80 famous world
cities (1000s to ~250K nodes) using two distributions (Zipf and
log-normal) to assign utilities to neighborhoods of the city.

e We conducted a detailed case study of 6 cities (one small and
two big US cities, a large and a small city in the Middle East,
a megacity in Asia) using utilities provided by experts, rather
than random assignment. Our experiments compare S2D2 to a
heuristic algorithm based on prior works that trades off runtime
and defender utility.

e We studied the robustness of the computed approximate SSEs
by perturbing the utilities and looking at performance variations.

Our results showed that slightly perturbing game parameters (e.g.,
penalties and rewards) led to proportional changes in defender
utility.

We conclude that even when theoretical assumptions do not hold, S2D2
still yields good results.

Section 7 contains a deeper discussion of the rationale behind our model
design, including justifications for key choices, alternative approaches with
their trade-offs, and other relevant questions. This section also presents non-
trivial arguments that further support our modeling decisions.

1.3. Organization

Section 2 provides a high-level, birdseye view of the overall S2D2 archi-
tecture and decision. In particular, it explains how the different parts of this
paper fit together. Section 3 presents the problem of interest, modeled as a
sequential SSG. A deeper discussion of the rationale behind our model de-
sign, and comparison with alternative approaches is presented in Section 7.
Section 4 then describes our S2D2 algorithm, which has three steps. First,
a “coarsening” algorithm (cf. Section 4.1) partitions an input city graph into
clusters (“neighborhoods” — clusters of vertices). Then, an approximate so-
lution is computed (cf. Section 4.2), assuming both the attacker and the
defender have one drone and play in one neighborhood. This algorithm is
an extension of [16]’s method to sequential games, where the attacker strat-
egy space becomes overwhelmingly large. We then discuss how to use the
solution for the single drone game to find an approximate solution for the
multi-drone game (cf. Section 4.3). This is achieved by generalizing [20]’s
work on multi-resource attacker SSGs to support non-linear utilities. S2D2
uses this method to decide the allocation of defense drones into neighbor-
hoods. Section 5 proves that under a set of conditions on a coarsened graph,
S2D2 is sure to output an approximate SSE, and Section 6 presents experi-
mental results. Finally, Section 8 outlines our conclusions.

2. Birdseye View of S2D2

In this section, we present a birdseye view of the S2D2 system and describe
its architecture (cf. Figure 1). S2D2 contains the following components.

e Cities represented as graphs. We represent cities being protected
as a graph. Each node in the graph represents a region on the ground.

re

=B -
3 Solve
—Output
e ey Meta-Game utpu
Hi7 R zL
Graph rep of a city g Find mixed strategy on
v :—EE where defender drones
:;_r;:g_ - should be placed.
1+t a.
LI
R b
all i ot
Split city into multiple Solve Single Attacker
neighborhoods single-Defender Subgame
via §-coarsening For each nbhd.

Figure 1: S2D2 Architecture.

Adjacent nodes in the graph represent adjacent regions on the ground,
i.e., regions that share a common border.

e Coarsening a graph for scalability. Because cities can be huge
(the number of vertices in our dataset vary from 2.2K to 277K and
the number of edges vary from 3.4K to 405K), game-theoretic models
will not scale. Because of this, we coarsen a graph into neighborhoods.
A neighborhood consists of a connected set of nodes in the city graph.
We will require coarsenings to satisfy some desired properties (discussed
further below). An algorithm to find a good coarsening is described in
Algorithm 2 in Section 4.1.

e Single-Defender, Single-Attacker Game Per Neighborhood. Next,
we look and ask the question: if a single defender and a single attacker
drone are in a given neighborhood, what strategy would maximize their
respective utilities? We solve this problem by building on top of the
results of [16]. However, fixing the coarsening first and then solving a
single attacker single defender problem could lead to suboptimal solu-

tions. The attacker is not formally restricted to place each drone in a
single neighborhood throughout the game, and it may also be subop-
timal for the defender to do so. The coarsening algorithm is therefore
responsible to correctly capture the attacker and defender incentives,
and provide a corresponding coarsening of the graph. We propose the
concept of a d-coarsening that ensures several desirable properties of
the coarsening. We then design an algorithm to find a d-coarsening
(Algorithm 2).

e Solving the Meta Game. Once we understand the utilities of the sin-
gle attacker, single-defender game, one in each neighborhood, we need
to determine where the defender must place his/her defender drones.
The third part of the S2D2 algorithm addresses this problem (Algo-
rithm 6) using a mixed strategy. This will be discussed further in
Section 4.4.

3. Sequential SSGs

We start by briefly overviewing sequential SSGs in the context of our prob-
lem. In sequential SSGs, the defender may re-distribute its defense drones
after a successful attack. While doing so, the defender knows the attacker
drones’ location and which targets were destroyed. Meanwhile, the attacker
may select and start moving toward other potential targets. The game con-
tinues until all attacker drones are either caught, out of battery, or out of
payload. The attacker may only attack targets close to her current position.
Formally, the game consists of:

1. An undirected graph G = (V,), where:
o V={1,...,m} is a set of m target nodes.
e [is a set of undirected edges between targets.

2. R*:V — Nand P?:V — Z_y map each target to the attacker reward
and defender penalty, respectively?, from an attack on a given node
velV.

4Unlike traditional SSGs, we set attacker penalties and defender rewards to zero (P?% =
R? = 0) since the attacker is already penalized when caught, as it cannot attack any more
targets. Similarly, the defenders are rewarded when they catch the attacker as doing so
prevents future strikes.

3. A, D € N are the number of attacker and defender drones, respectively.

4. The payload P € N each attacker drone is able to carry. This equals
the maximal number of attacks each drone can pull-off (if not caught
or run out of battery).

5. The battery capacity B € N each attacker drone has. This equals the
maximal total distance it can travel (if not caught). We assume travers-
ing an edge e € E takes one unit of battery (adding 0-rewarded /penalized
nodes along a long edge if necessary), as well as staying (or loitering)
over a node.

Assumptions. We assume the defender knows (A, P, B) and the current lo-
cation of each attacker drone at all times after the first strike by that drone.
Defense drones also have a battery capacity B. Hence, without loss of gen-
erality, the game ends after B steps. The attacker only knows the number of
defense drones D at the beginning of the game. Attacker drones do not know
the locations of defense drones unless they meet at a node — this is reason-
able as a defender can deploy sensor and other assets in her city. When this
occurs, the attacker drone is destroyed. Attacker drones are not informed
when other attacker drones are eliminated.

3.1. Defender and Attacker Strategies

The defender knows the location of some attacker drones and can leverage
this information. Formally, a pure defender strategy s; € S is a B-tuple
of functions (s¢,...,s%), specifying its strategy at each time-step. The first
strategy s¢ € VP specifies the start position of each defense drone. At any
step 1 < t < B, the function s¢ determines the next step of each drone given
the current state of the game, which includes:

e Last location of each defense drone (v{,...,v%) € VP.

e Last location of each observed attack drone (v{, ..., v4) € (VU{L, 1}
We use the special symbol L for unknown location (no strike yet), and
T for eliminated.

e Subset of destroyed targets I, ; CV (where Iy = ().

In a single step, a drone at location v € V' can only reach neighboring
locations in graph G, i.e. N[v] := {v/ € V : {v,v'} € E} U {v}. The
function s¢ outputs the new location of each defense drone (o, ..., %) where

¢ € N[vd] for each 1 <i < D.> Figure 2(a) provides a visualization (from
our S2D2 system) of the defender’s strategy overlaid over a map of a city.
The locations of defender drones (blue) and attacker drones (red) as well as
the destroyed parts of the city are shown as icons. The defender’s strategy
specifies a function that answers the following question: given a picture like
the one depicted, where should the blue drones move to next?

Figure 2: (a) Visualization of Defender Strategy. (b) Visualization of Attacker Strategy.

Figure 2(b) shows the attacker strategy. For each attacker drone (shown
in red), a flight path is specified (shown for one red drone in Figure 2(b) as a
red arrow). In addition, the strategy specifies where each attacker drone will
actually target with one unit of payload. In Figure 2(b), we see two locations
where payload is used by this attacker, marked by an explosion icon. To keep
the figure simple, we do not show these flight paths and payload utilization
for the other attacker drones depicted. The pure strategies for the attacker
are related to B-length paths in the graph. We use Pp := {(v1,...,vp) €
VB IVl <t < B:{v,v} €FE V vy=u,,} to denote the set of all
paths of length B in G, and let Py = {0}. Recall that traversing each
edge requires one battery unit, as well as hovering over a node (v = v;).5

5Note that the game is Markovian: the history of how drones ended up in their last
observed location, or the order in which targets have been destroyed, cannot be utilized
against a rational attacker.

5The sequential SSG has a few natural extensions which we may consider in future
work. These include: (i) Heterogeneous drones: The attacker may have drones of different
types, (B1,P1),...,(Ba, P4). (ii) Distances: The edges may be weighted as well, by the
distance between its endpoints. Adding d — 1 vertices along an edge with distance d will
not yield a reduction. Indeed, one has to define a reward over these new vertices, say 0.

10

Furthermore, each attacker drone must decide which targets to attack. Let
Tre = {I C {1,...,B} | |I| < P} denote the set containing sets of at
most P indices along the path of length B to be attacked. The set of pure
strategies of the attacker is therefore S* = (7Tpp X PB)A.

Utility. Given an attacker (resp. defender) strategy s, € S* (resp. sq €
S9), we can recursively compute utilities at time ¢. Initially, ud = ud = 0.
At time t > 0, we compute the position of all surviving drones from the
specified strategies and the previous drone locations. We update the utilities
uf =ul | +rfand ul = ud | +pf where r¢ (pf) is the sum of rewards (resp.
penalties) from successful attacks at step ¢ for the attacker (defender). We
then nullify the rewards for targets that were successfully attacked at time
step ¢, and eliminate any attacker that is either caught or out of payload.

Finally, we set u®(sq, 84) = u%, u*(sq, 84) = u%.

3.2. Mixed Strategies

The defender may use a mized strategy. In other words, it may sample
its strategy from a distribution x4 € A(S?), where A(S9) is the set of all
probability distributions over S¢. For the special case where B = 1 (the non-
sequential SSG), we can use a compact representation Cp := {x € [0, 1]™ :
Y vev T < D} of the set of defender mixed strategies. A vector x € Cp
is called a coverage vector, and it denotes the probability that each node
v € V is covered by some defense drone. Coverage vectors can provably be
implemented by a distribution over deterministic allocation strategies, each
using at most D resources. This distribution can also be found efficiently,
see [16], Theorem 1.

In Stackelberg games, the attacker can conduct surveillance on the de-
fender’s (mixed) strategy x, beforehand and best respond to it. Assume now
the defender and the attacker play mixed strategies over S, 8¢, respectively.
Given mixed strategies x4, x,, the utility of the attacker (and similarly the

Still, the defender will know the attacker’s position in the first step along the split edge.
(iii) Velocities: Different drones may fly with different velocities. The velocity may also
depend on the percentage of loaded payload. (iv) Defense schedules: Allocating a defense
drone to some target v may also protect its neighbors N (v).

11

defender) is given by

ua(xdaxa) = E(desa)NdeXa[ua<Sd’Sa)] (1)
= Z Xgq(84)Xa(Sa) - u*(Sa, Sa)

(Sd,Sa)ESdXSH‘

Example 1 (Sequential SSG: Toy Example). Consider a toy graph G =
(V, E) with m = 41 wvertices and edges depicted in Figure 3. Suppose we set

Figure 3: A graph and its coarsening into neighborhoods.

P% = —R® in our example, and the attacker rewards are set to one for targets
Vs, Uz, V23, Vg, Usa, U7, and zero for all the rest. Suppose the defender and the
attacker both have A = D = 2 drones, and that B = 4, P = 2 for attacker
drones.

A defender pure strategy may first place the defense drones on vz, vy Te-
spectively. Then, given the attacker position, the strateqy would let each de-
fense drone follow the closest path towards the closest attacker drone. Denote
this strategy by sb. Suppose the attacker plays strateqy s, where her drones
are at vs7, vog. The first drone follows path vs; — wv3g — Vg — Uza, and
attacks vy and v3a. The second drone follows vog — Vo7 — V1 — Vg — Uog
and attacks vag, vo3. In this case, the defense drone starting at vs will not do
much, but the defense drone starting at vy will catch the drone that started
at veg before vy3 1s attacked. We can verify that when facing pure strategies,
the attacker may always successfully attack two meaningful targets using one

12

of her drones. Instead, the defender may use a mizrture x4 of 3 strategies,
each for instance with probability 1/3. Suppose x4(sk) = 1/3, x4(s2) = 1/3
and x4(s3) = 1/3. In s%, the defense drones start from vy, v3, and in s3, they
start from vy, ve. By doing so, there is always a probability (2/3 in this case)
that a defense drone is “in the hood”.

In SSGs, the attacker knows the defender’s mixed strategy x; € A(S?),
and then best responds to it with s, € BR%(x4). Since the utility of the
attacker from a mixed strategy is the weighted average of the utilities from
each pure strategy, she may always choose a pure strategy that yields the
maximal utility. Therefore, w.l.o.g., the attacker’s best response set consists
of pure strategies only:

BR"(x4) := arg maxg,cse u*(Xq, Sq)

When there are multiple targets in BR*(x), we take the standard ap-
proach [43] and assume that the attacker breaks ties in favor of the defender.
The reason is that by reducing the coverage of the desired target by an ar-
bitrarily small amount, the attacker will attack the desired target and the
defender will suffer an arbitrarily small utility loss. We therefore define

BRd(Xd) = arg max,, cBR% (x,) ut (x4, 54)-
The set of strategies in BR”(x) are the ones that are best for the defender. We
may then define u®(x,) 1= ut(xq, s4), u(xXq) = u®(Xq, 54) for s, € BR¥(xy).
This is well-defined as the value is independent of the choice of s,.

The typical solution concept for SSGs is Strong Stackelberg Equilibrium
(SSE).

Definition 1 (Strong Stackelberg Equilibrium). A strategy profile (x4, s,) €
A(8%) x 8% is a Strong Stackelberg Equilibrium iff

x4 € argmaxu®(x}) and s, € BR%(xy).
x/,€A(S9)

Approximate SSE’s are defined analogously.

Definition 2 (e-approximate SSE). A strategy profile (x4, 5.) € A(S?) x 8¢
is an e-approximate SSE (e-SSE) iff

u(Xg, 8q) +€ > max u*(xq,5,) and (2)
st esa
d d(! d(/!
u’(x4,8,) +€ > max u’(xy,BRI(xy)),
() e > e (), BRIK)

13

where BRY(x)) consists of all strategies s, satisfying (2), and BRY(x!) C
BRY(x)) consists of all strategies in BRY(x)) that mazimize defender utility
(breaking ties optimistically).

Finding SSE Efficiently by Solving Linear Programs. Equation (1) suggests
that the defender’s utility is linear with respect to the coverage vector xg.
Furthermore, the defender’s strategy space A(S?) is a polytope. This sug-
gests using linear programming. We extend the approach in [16] for B = 1
to general sequential games as detailed below. We want to compute:

x4 € arg max u®(x/;) = arg max u(x/;, BRY(x))).
x,€A(S9) x,,€A(S9)

The only problem is that the BR%(x,) is not linear. Our idea is to solve, for
each potential s* candidate for BR%(x4), the LP (linear program):

*
a

e Maximize u?(xy, %), subject to:

1. x4 € Cp.
2. Vs, € 8% u™(Xg, Sa) < u®(Xq, %).

That is, we add |S%| linear constraints to ensure that si € BR“(x4), and
enumerate over s:. At the end, we pick the solution that gives the defender
the greatest utility.

Multiple Attack Resources. In the sequential SSG, we consider multiple at-
tacker drones, that is, multiple attacker resources. In this case [20] showed
that finding SSE is NP-hard. This also implies that the problem of finding
sequential SSGs is NP-hard via a reduction from finding SSE in SSGs with
multiple attacker resources. Simply let each attacker drone have a single
unit of battery, to make the game effectively a non-sequential SSG. Never-
theless, NP-hard problems like MILPs (Mixed Integer Linear Programs) are
well-studied and practical solutions have been developed previously. Indeed,
S2D2 involves a reduction to a MILP.

Table 1 summarizes the symbols used in this paper. A comprehensive
discussion regarding our proposed model is provided in Section 7.

4. The S2D2 Algorithm

The S2D2 algorithm generates a mixed defense strategy through three
steps:

14

Symbol

Meaning

G=(V,E)
(R*,P%):V - N x Z<o
A,DeN

P,BeN

(g,...,vE)evP
(vf,...,v4) € (VU{Lth?
sq=(s¢,...,s%)es?

Sq € S5°

X4 € A(Sd)
ua(sdﬂsa)vud(sdvsa)
u“(xd,sa),ud(xd,sa)

BR"(x4) C S°

SSSG Model:

City graph, where V = {1,...,m} is the set of nodes

and F is the set of undirected edges

Attacker reward and defender penalty functions

Number of attacker and defender drones

Payload and battery capacity of attacker drones

Locations of defender drones

Locations of attacker drones

(L means unknown location, T means eliminated)

Pure defender strategy, where sf is the policy at time ¢

Pure attacker strategy

Mixed defender strategy

Attacker and defender utilities under sg and sq

Attacker and defender utility under x4 € A(S%) and s, € S®
Set of best attacker responses to defender’s mixed strategy xq € A(S9)

Coarsening:
6 | Scale parameter, rewards smaller than § are neglected
V = {01,...,0,} | Coarsening of G, a set of disjoint neighborhoods 9; C V'
S“f/, Sé Set of pure attacker and defender strategies that
respect the coarsening 1%
Single Drone Parameterized Sub-game:
A | A parameter, fixing the probability that a defender is present in a neighborhood

“d(xdy Say A), u(Xd; Sas)

Attacker and defender utilities in a single drone game at a given neighborhood,
under single drone strategies x4, sq, and defender presence probability A

fo:{l,..., A} >V
X Pa(0)
(fa, §a)7(15d7£d)

Multi-Drone Meta Game:

Mapping from attacker drones to attacked neighborhoods
Probability that a defender is present in ©

Attacker and defender multi-drone strategies

Table 1: Symbols used in the paper.

1. Coarsening the graph, which involves partitioning it into artificial
neighborhoods. The goal is to output a partition such that both the
attacker and the defender are incentivized to spread their drones across
different neighborhoods and stay there throughout the game. The de-
fense (and attack) strategies can then be decomposed into the following

two components.

2. Single-Attacker Single-Defender Game per Neighborhood. For
each neighborhood, we solve a Single-Attacker Single-Defender sub-
game and compute an approximate SSE. In reality, there is a proba-
bility pq(0) € [0, 1] that a defender is present in a neighborhood. Since
this probability is unknown a-priori, it is treated as an unknown vari-
able A\, provided as an additional input parameter. S2D2 discretizes
the interval [0, 1] into evenly spaced intervals and solves the problem

15

for each \; € [0, 1].

3. Solving the Meta-Game. Once we know the defender utilities for
each neighborhood, we can solve the problem of assigning a defender
drone to each neighborhood. Basically, each neighborhood is considered
as one “meta’-target. In this step, S2D2 determines a mixed strat-
egy for allocating defense drones to neighborhoods via a reduc-
tion to a non-sequential SSG between a multi-resource defender and
a multi-resource attacker. The utility functions for both the attacker
and defender are approximated by piece-wise linear functions, derived
from solving the single-defender single-attacker sub-game within each
neighborhood, as a function of the defender presence probability .

The high-level pseudocode of the S2D2 algorithm is provided in Algorithm 1.

In reality, the attacker may opt to ignore the coarsening found by S2D2.
This may happen either since the attacker is not rational, or because a “good
coarsening” does not exist. In such a case, S2D2 randomly picks, for each
defense drone, an attacker drone in its neighborhood, and ignores the rest.
In addition, whenever an attacker drone leaves a neighborhood, the defender
drone in that neighborhood halts. When the coarsening admits certain prop-
erties, we show in Section 5 that this does not result in a major utility loss
for the defender.

Approzimations. S2D2 tries to find an e-approximate SSE, balancing the de-
fender’s computational resources with the approximation error ¢. To achieve
this, S2D2 introduces a scale parameter 0 < § < max, R%, effectively dis-
regarding rewards smaller than §. As § increases, fewer nodes are deemed
valuable, allowing S2D2 to focus on smaller subset of nodes to protect. Con-
sequently, while this simplification reduces computational complexity, it also
decreases the accuracy of S2D2’s view of the game, leading to an expected in-
crease in the approximation error €(¢). However, under certain conditions for
the underlying graph, €(d) can be bounded, which provides theoretical guar-
antees for our algorithm. Even when these conditions are not met, empirical
results demonstrate that S2D2 performs effectively in practice.
The next 3 subsections describe the three components listed above.

4.1. Coarsening the Graph
A coarsening of G = (V, E) is a set V= {01,..., 0} such that &; C V
for each 1 < i < k and 0; N 0; = 0 for any ¢ # j. Each subset in V is

16

Algorithm 1 S2D2
Require: An undirected graph G = (V| E);
numbers of attacker and defender drones A, D € N;
attacker drone’s payload P € N;
drone’s battery capacity B € N;
attacker rewards R* € NIVI;
defender penalties P € Z%‘.
Discretization parameters #X\, A, for the piece-wise linear approximation of
the single-drone utility sub-games within each neighborhood.
Ensure: An e-SSE defense strategy x? = (V,ﬁd, #g,¢) and ¢, or x? and L, where:
V is a coarsening of G and (pg, &4) € A(Sg);

Dq € Cg is the allocation strategy of D drones into neighborhoods of V;
24 is the single-drone defense strategy within each neighborhood of V;

1: Compute a coarsening (4, V) < Coarsening(G, .. .);

2: for each neighborhood ¢ € V do

3: Compute piece-wise linear approximations of u$(\), ug()\), the attacker and
defender utilities for the single-drone game in neighborhood ¢, where the
defender is present with probability A:

4: for)\:%,%,...,)\cdo

5: Set S% = ScanAttackStrategies(9, A, ...) (reduced attack strategy space).

6: Set S% = ScanDefenseStrategies(9, 5%, ...) (reduced def. strategy space).

7 Compute ud(\), ud(\) as in [16] and corresponding mixed strategy #¢(9),

when restricting the attacker and defender strategy space to S¢, S¢.
8: end for
9: end for

10: Invoke (p%, f*) < SolveMetaGame(V, A, D, {ud(N), ug(A)} e to get the mixed
allocation strategy p® of D drones into the neighborhoods of v, by solving the

static, multi-resource SSG with respect to the approximate utility functions
ud(N), ud(N).

] » o
11: In case § # 1, compute € as in Theorem 2, otherwise set ¢ = L.

12: return xd, &

a neighborhood. A good coarsening is akin to “zooming-out”, where nearby
nodes are merged into a single neighborhood.

Ideally, a “good” coarsening (Step 1 of the S2D2 algorithm) cannot be
found without simultaneously computing the utilities of the defender for that
coarsening which is only considered in Step 2 of the S2D2 algorithm. One
way to do this is to generate all possible coarsenings, then find the best

17

defender strategy for each coarsening, and then pick the coarsening and de-
fender strategy that yields the best utility for the defender. Unfortunately,
this is not practical to compute. We therefore introduce the concept of a
0-coarsening to ensure that a coarsening is “good” and has some desirable
properties.

The scale parameter 6 controls the granularity of the coarsening. Since
S2D2 neglects rewards smaller than ¢, increasing ¢ reduces the number of
nodes the coarsening algorithm considers. A node v is deemed ¢§-valuable if
R%(v) > 6. The coarsening algorithm then clusters these §-valuable nodes.
In each cluster, all the d-valuable nodes are relatively close, while the clusters
themselves remain relatively separated. The resulting coarsening then con-
sists of a set of neighborhoods, each centered around a cluster of d-valuable
nodes (see Figure 3).

S2D2 coarsens via two steps, as depicted in Algorithm 2. First, it at-
tempts to detect a “high-quality” coarsening, referred to as J-coarsening.
When a J-coarsening exists, we prove in Section 5 that S2D2 approximates
SSE. A {-coarsening must satisfy four conditions: (i) getting from outside
a neighborhood to a J-valuable node within it takes too much battery; (ii)
there are sufficiently many valuable neighborhoods; (iii) a single attacker can
collect most d-valuable rewards in its neighborhood; (iv) the presence of a
defender significantly impacts both attacker and defender expected utility.
When a d-coarsening exists, the first step aims to minimize 9§, and does so
efficiently by applying a binary search. Indeed, if any of conditions (i)-(iv)
are not met for some 9;,,, they cannot be met for any 0 < d,,,.

If 010y > Oup, a O-coarsening may not exist at all. To this end, if S2D2
fails to detect a d-coarsening in the first step, it proceeds to the second step,
where it coarsens the graph using a greedy heuristic. It is important to note
that S2D2 works even when no d-coarsening exists — but in this case, the
theoretical guarantees do not hold. In the following Example 2 we provide an
illustrative example of a coarsening.

Example 2 (Coarsening). Consider the graph in Ezample 1, Figure 3. The
gray neighborhood has no valuable nodes and so is removed. Next, getting
from one neighborhood to a valuable node of another requires going through
the grey neighborhood, which takes a prohibitive amount of battery (i). Note
that we only consider nodes circled in red when evaluating this condition
as other nodes have no reward. Next, note that a single drone can tackle
both red nodes within each neighborhood (iii). Unfortunately, the other two

18

conditions (i) and (iv) are not met with the desired constants required for
the theoretical proof to hold. As for (ii), since we present a toy graph as
an illustrative example, it only has 3 neighborhoods (and 4 are required).
Splitting some neighborhoods into two may potentially violate (i). Similarly,
for (iv), a defender can always stay put on one red node and block the attacker
from successfully attacking both valuable nodes within every neighborhood,
yet in this case, it yields a factor of 2 between the utility from a protected
neighborhood and an unprotected one. In more complex games with larger
B, P values and larger neighborhoods, the gap could be significantly larger.

Consider an SSG (G, R*, P4, A, D, P, B) and let § € N. Given v,v' € V,
we write v ~5 v iff R*(v') > § and d(v,v") < B. Intuitively, v ~5 v/ means
that v and v must belong to the same neighborhood of a coarsening of G
in order to satisfy Condition 1. Let ~; denote the reflexive, symmetric,
and transitive closure of ~;. Since & is an equivalence relation, V/ =~ is
a partition of V' (into equivalence classes). Hence, it is a coarsening that
maximizes |V| (for Condition 2a) while satisfying Condition 1. To meet
Condition 2b, we sort the neighborhoods in V/~ by uﬁ’g , and remove poor
neighborhoods until Condition 2b holds.

As ull’g requires solving an NP-hard problem [44]|, we use TSP (Travel-
ing Salesman Problem)-solvers to get lower bounds, and use best-path(v,)
to refer to the procedure which looks for a shortest path going through all
0-valuable nodes in v. Hence, the algorithm may fail to find a d-coarsening
although one exists, and instead return a 5—coarsening for some greater 5. In
turn, the resulting coarsening will only be e(é)-tight. On the other hand, the
algorithm is efficient, optimizing on § with a simple binary search. Moreover,
it returns an upper bound on §, which translates (by Theorem 1) to a con-
crete bound on the loss from respecting the coarsening, instead of playing an
SSE defense strategy. Lastly, the algorithm solves the single-attacker single-
defender game in each neighborhood, as described in Section 4.2, to ensure
that defending a neighborhood results with a significant utility change for
both players.

Lines 4-9 of Algorithm 2 return a partition of V' that satisfies (i), i.e.
incentivizing drones to stay in their starting neighborhoods throughout the
game. Line 9 removes “poor” neighborhoods that the attacker doesn’t care
about. Lines 11, 13, 15, and 17 check if a J-coarsening exists by checking the
other three conditions (ii), (iii), (iv), respectively. The algorithm performs
binary search on 9, to find the smallest one for which a d-coarsening exists,

19

Algorithm 2 Coarsening
Require: An undirected graph G = (V| E);
numbers of attacker and defender drones A, D € N;
attacker drone’s payload P € N;
drone’s battery capacity B € N;
attacker rewards R* € NIVI;
defender penalties P € Z%‘.
Ensure: (§)-Coarsening V and 4, or failure.
L: 0o 1, dyp < 1+ max,cy R(v);
2: while 94, < 64y do
3 6 [(tow + Oup) /2]:

4: V V/ XS,

5. init table T

6: for each o € V do

7: T[0] > R%(v); {sum of top-P rewards}
veD.top(P,by=R)

8: end for

9 Ve {oeV| 37T[6] > T.max()}; {Remove poor neighborhoods}
10: if |V| < 4max{A, D} then

11: diow < 0 + 1; {Not enough neighborhoods}

12: elseif 30 €V :|{ve o |R*v) >4} > P then
13: diow < 0 + 1; {Insufficient attacker payload}
14: else if 30 € V : best-path(#,) > B then

15: diow < 0 + 1; {Insufficient attacker battery}

16: elseif 3oV : ﬁu%g < ui”f or ﬁhﬁffﬂ < \uﬁl! 4+ 6P then
17: diow < 0 + 1; {Defender presence is ineffective}
18: else

19: sol « (V,9);

20: (5up «— 0

21: end if

22: end while

23: if § =1 + max,ecy R*(v) then

24: V + K-Means(V,num_ clusters oc D, weights o< | P%));
25 sol < (V,L);

26: end if

27: return sol;

as the SSE approximation error is linear in ¢ (as shown in Section 5). A
formal definition of a J-coarsening is given in Section 5.

20

If the condition in Line 23 holds, it means that no d-coarsening exists. In
this case, S2D2 uses weighted K-Means [45], which has three advantages: (i)
it is efficient and simple; (ii) it leverages the planar structure of the graph,
and the coordinate-based location of each vertex in the graph; (iii) it takes
the penalties into account, by setting them as the weights. The parameter §
can be viewed as a cut-off, where any node with a smaller reward is considered
negligible. Hence, S2D2 heuristically assigns 0 as the \V\P most rewarding
target, so that each neighborhood has P rewards > § on average. The number
of neighborhoods |V| is set to be proportional to the number of available
defense drones D. We test the performance of this algorithm by conducting
experiments on real-world cities in Section 6. Therefore, in what follows, we
will seek defense strategies that respect a given coarsening, whether it admits
the strict theoretical requirements or not, as defined below.

Definition 3 (Strategy Respecting a Coarsening). A defense (attack) strat-
eqy respects the coarsening V. when the following conditions are met:

1. Every defense (attack) drone stays within its starting neighborhood through-
out the game.

2. Every neighborhood contains up to a single defense (attack) drone.

S“é,S“; denote the sets of pure strategies that respect the coarsening V, for
the defender and the attacker, respectively.

4.2. Single-Attacker Single-Defender Solution

S2D2 approximates SSE for a single-attacker single-defender game within
each neighborhood. Crucially, in the broader multi-drone, multi-neighborhood
setting, the defender’s presence in a given neighborhood is probabilistic. In
large cities with limited defense resources, it is generally expected that neigh-
borhoods are not protected indefinitely. This probability must be taken into
account when considering the single drone game within a given neighbor-
hood, and is therefore introduced as an additional input parameter, denoted
by A.

21

Brute Force Solution. Since the problem is NP-hard”, we use smart enumer-
ation as P, B are small.® We begin with a naive approach which linearizes
the problem. We compute the matrices U¢, U{ of the attacker and defender
utility for each pair of pure strategies. Note that those values depend on
A, the defender’s presence probability. We then omit any dominated pure
strategies, and find SSE (x}, s}) in a similar manner to the single-attacker
single-defender SSG (cf. [16]), i.e., we enumerate the set of attacker pure
strategies, and for each pure strategy s/, we then solve the following LP
that maximizes the defender utility, under the constraint that s/, is the best
response:

e Maximize u(xg, s/, \), subject to:

1. x4 € Cp — Now it is the set of combinations over all non-dominated
defense strategies.
2. For each s, € 8% u®(Xg, Sa, A) < u*(Xq, S,y A).

Note that u?(x4, 4, A) is a linear combination of values from U{, according
to x4, and the same holds for u® and UY.

Finally, we pick xJ;, s7 that maximizes the defender utility. The complex-
ity is |S?| x LP(|S?],18% +|S?|). Namely, for each attacker strategy, we solve
a linear program with |S¢| variables and |S?| + |S¢| constraints. Next, we
improve by reducing the relevant strategy space for both the attacker and
the defender.

Reducing the Attacker Strategy Space. By narrowing down the strategy space,
we expect to move away from the optimal solution and trade-off run time vs.
solution quality.

When A is small, we know that s is more greedy, as the (1 — \) term
dominates. Hence, s} largely ignores the defender. This may eliminate most
of the attacker’s possible strategies. A should anyway be small when there are
sufficiently many neighborhoods that are attractive to the attacker. When

"The problem is NP-hard even for A = 0, i.e., when solving the optimization problem
for the attacker facing no defender. For example, if P = B = |9|, deciding whether the
attacker has a strategy with utility u =),y R(?) is equivalent to deciding whether a
Hamiltonian path exists in graph (0, E|3).

8This assumption is reasonable as most drone attacks take small amounts of time. For
instance, [23] tracked all drone flights over The Hague over 8 months and found the average
duration to be 298 seconds and the max duration to be 720 seconds.

22

this is not true, the problem is smaller, and S2D2 takes a random sample
of the strategy space, trading-off runtime and quality of the solution. So we
may only enumerate a smaller space of possible attacker strategies. To some
extent, this can be done without damaging performance. Suppose s,, s, € S°
so that u®(L,s.) < (1 —A)-u®(L,s,). Then for any strategy x4 € ASY,
u(xa, s, A) < ut(L,sh) < (1 —=X)-u*(L,s,) < u*(Xg,Sa, A). Therefore, if
the attacker’s utility from s, when facing a defender with probability A is at
least the utility from playing s/ against no defender, we can strike out the
strategy s, as s, strictly dominates it.

When there is a small subset of crucial nodes in each neighborhood which
are far apart so that an attacker drone must follow an almost optimal path
in order to pass through a couple of them, the number of candidate attacker
strategies drops significantly. When this is not the case though, S2D2 ran-
domly samples from the large space of possible strategies. This is depicted
in Alrogithm 3.

Algorithm 3 ScanAttackStrategies

Require: A weighted, undirected graph (0, E|s, R|s);
Defender presence probability A;
attacker drone battery capacity and payload B, P € N;
Threshold th on the number of output attack strategies;

Ensure: attacker drone possible strategies S¢ C S°.

1: Compute ul, = maxXs,cse us(Sq, L), the maximal attacker utility at 0 when

facing no defender;

Set §¢ := {s, € S%ul(sq, L) > (1 = Nulon};

if |S®| > th then

return A random sample of size th from S¢;
end if

return 5S¢

Narrowing Down Defender Strateqy Space. As the attacker’s set of best re-
sponse pure strategies is now small, the dominating set of defense strategies
is also expected to be small. Algorithm 5’s goal is to output a small subset
of dominating defense strategies, as explained below.”

9Narrowing down the defender strategy space is complex: as there are multiple possible
attack strategies, the defender might want to cover many of them with a single strategy,
rather than considering the optimal strategy against every potential attack strategy.

23

Suppose the defender and attacker drones’ starting positions are vg, vg,
respectively, and S® is the (narrowed) set of possible attack strategies start-
ing from v,. For each strategy s, € S% up to P nodes are attacked,
v1(84), -+, vp(Sa), at times ¢1(Sq),...,tp(sq). To further reduce runtime,
we may only consider targets with a significant (i.e. less than —d) defender
penalty.

Algorithm 4 catch
Require: An undirected graph (0, E|;);
Attacker pure strategy sg;
Defender start position vg € 0;
Ensure: 1 <i < P+1, the index of the first target the defender is able to protect;
(1 = P + 1 indicates the defender is not in time to protect any target)
Define (v1(sq),-..,vpr(Sq)) as the ordered list of targeted nodes in sg;
Remove nodes with an absolute penalty less than d;
Re-index the remaining nodes, and update P’;
Define (t1(Sa),---,tp/(sq)) as the planned time steps for each node to be at-
tacked;
for i from 1 to P’ do
Find shortest path m; from vy to v;(sg);
Denote its length by t?;
if t¢ < t;(s,) then
return i;
10: end if
11: end for
12: return P + 1;

We can then compute for the defender, the minimal time to get to each
such node (t4,...,t%), and let 1 < i < P be the first target the defender can
protect. This is the output of catch(vy, s,) (Algorithm 4) which corresponds
to the best strategy when the attacker’s pure strategy is known.!°

It should be observed that, at each time point in Algorithm 5, it suffices
to decide the set of possible next steps for the defender. We can then explore
these using DFS, and eventually return all non-dominated pure strategies.

1ONote that we only find the first node targeted by the attacker that is feasible to protect,
not the first node we can catch the attacker at. This is because following a longer path
may cover other potential paths the attacker may take, without losing utility from not
following the shortest path, when considering the given attacker path.

24

Algorithm 5 ScanDefenseStrategies
Require: A weighted, undirected graph (v, F|s, R|s);
attacker drone battery capacity and payload B, P € N;
attacker drone start position v,;
defense drone start position vg;
attacker drone possible strategies S* C S°.
Ensure: Defense drone possible strategies S¢ C S¢.
1: if |S? =1 then
2: return catch(vg, S*); {Compute first strike feasible to prevent (and respec-
tive path).}

3: end if

4: init T

5: for each v/, € N(vg) U {vg} and s, € S® do

6: T[vy,s,] < catch(v), s),);

7: end for

8: next_step < prune(7T); {Omit dominated neighbors}
9: 8%« ();

10: for each v/, € next_step do

11: init Tg;

12: for each v, € N(v,) U{v,} do

13: (DFS visit}

14: update(S®); {Consider only strategies in S® that goes from v, to v}, }
15: S? < ScanDefenseStrategies(v/}, vl,, B — 1);

16: Tslvl] Sd

17 end for

18: S% <« SeUlift_strategies(v,, Ts); {Combine strategies from recursion}
19: end for
20: return S<.

The more steps the attacker takes (recursion depth), the narrower its strategy
space gets, so the search should converge relatively quickly.
The ScanDefenseStrategies algorithm has 3 steps:

1. For each possible next step v, € N(vq) U {vq}, compute catch(vg, s,)
for each s, € S*. Then prune any dominated strategy (where for any
strategy of the attacker, it catches the attacker later or at the same
targeted node).

2. For each v/, that survived, and for each possible next attacker step

vl recursively call ScanDefenseStrategies and retrieve the set Ts[v)] of

25

non-dominated pure strategies (with B — 1, and updated S%).

3. Lastly, lift pure strategies from (v}, -) to a strategy from (vg,v,) of the
form: “go to v}, and for each possible attacker next step v/, pick a pure
strategy from Ts[v]]”.

The recursion ends either either when B = 0 or when the attacker strategy
space is a singleton — we then use catch. To save space, we leverage dynamic
programming, and start by solving the problem for B = 0 and increment the
battery capacity by 1 at every step, solving each instance problem once.
After this, we get a reduced matrix Uy, which only considers a smaller subset
of defense and attack strategies.

4.8. The Meta Game: Multi-Drone Solution

The third step in the S2D2 algorithm is to solve the Meta Game, once we
know the optimal defender strategy for each neighborhood. The MetaGame
looks at the question of which neighborhoods to deploy a defense drone to.
This is done via a mixed strategy. The pseudo-code of the MetaGame is in
Algorithm 6 and can be described at a high level as follows.

1. We translate the meta-game of allocating defense drones to neighbor-
hoods into a multi-resource attacker defender SSG with nonlinear util-
ities.

2. An approximation of utilities is given as an input. This is a piece-wise
linear approximation derived from solving the single-drone neighbor-
hood game for different A values.

3. Next, we translate the SSG problem into a MIP.

4. We then build on past work [46] to translate the MIP into a MILP. Their
technique allows to replace piecewise linear functions with a linear one
by adding a linear number of continuous variables and a logarithmic
number of binary variables.

5. Finally, we solve the above MILP and extract the attacker and defender
solutions.

Next, we delve into the technical details of the high-level structure of the
MetaGame algorithm described above.

Recall that we only consider strategies that respect V, ie., drones stay
within their starting neighborhood, and there is up to one attacker and one
defender per neighborhood. Therefore, an attacker pure strategy naturally
decomposes into an injection f, : {1,...,A} — V mapping each attacker

26

Algorithm 6 SolveMetaGame

Require: A set of neighborhoods V;

numbers of attacker and defender drones A, D € N;

(Approximate) attacker and defender utility functions {ug(\),ud(\)}
Ensure: An SSE (pg, fa>, where:

Pa € Cg, a coverage vector of D drones over the neighborhoods of v,

eV

fa maps each attacker drone to a neighborhood of V;
1: Compute piece-wise linear approximations of the attacker and defender utility
functions a2(A), ad(N);
2: Initialize a MIP with the objective of maximizing Y, 74 (?) - 1d(x4(9));
3: Add constraints on attacker and defender resources: >, 24(0) = A, Y, x4(0) =
D;
4: Require variables z,(0) € {0,1} to be binary and limit continuous variables
0 < Xd() < 1
Add a continuous variable 8, for attacker threshold;
Add the following inequality constraints, forcing attacker best response:
for each neighborhood ¢ € V do
(i) @xa(0) = 2a(0) - 0
(i) @2%4(0) < (1 — 24(0)) - 0o + 2a(2)78(0);
10: end for
11: Linearize the above MIP (using [46]).
12: Let (pg, fa> be MILP solution.
13: return (pgy, fa>;

drone to a neighborhood which it will attack, and for each drone 1 <i < A,
a pure strategy 8¢ = Tpp X P]];“(i), where Pé"(i) considers only paths within
the neighborhood f, (7).

Similarly, each defender strategy decomposes into a mapping of each de-
fense drone to a neighborhood, and a strategy within this neighborhood.
Since all defense drones are identical, when considering mixed defense strate-
gies, it suffices to specify (i) within each neighborhood & € V a mixed
single-drone defense strategy 9(d) € A(SY); (ii) for each neighborhood
the probability of it being protected, as a coverage vector py € CD, where

cy = {xe[0,1)V: Y sev To < D}. Therefore, the defender mixed strategy
space decomposes to A(S%) = CY x [Tocv A(SY).

When solving the single-attacker single-defender instance for a neighbor—
hood 0, pg(0) denotes the probability A; that “a defender is in the hood”. py is

27

a coverage vector, representing the probability of presence of a defense drone
in each neighborhood. Recall that any vector with entries in [0, 1] that sums
up to < D is feasible to implement with some mixed strategy of assigning
defense drones to neighborhoods.

Given defender (resp. attacker) strategy (g, #q) (resp. (fa,84)), where
8a(fuli)) = (TH, 7)€ Tp,p X Pp, the expected utility is the sum of expected
utilities from each neighborhood fa(@) attacked, for 1 <7 < A. The expected
utility from neighborhood © is the average of the sum of the rewards over
the attacker drone set of chosen targets, and the utility when facing a single
defender with strategy 4(0), weighted by pg(0). That is, for u € {u®, u}:

a(0:))+(1 = Pa(0:)) u(L, 34(04))

>

w(niah i) = 3 [aul0u aatin,
1<i<A
0i=fa i)

Thus, as the probability a defender is “in the hood” p,(0) decreases, the
attacker drone is better off taking a greedy action. This implies that it
is not sufficient to compute SSE for single defender attacker game within
each neighborhood to solve the overall multi-drone game. Focusing on a
neighborhood, we can extend the utility definition u(xg, Sa, A) := Au(Xq, Sa)+
(1 — Mu(L,s,), to consider the probability A, denoting the probability a
defender is in the hood. This may remind the reader of the SSG model with
penalties where, even when the attacker is caught, it gets a penalty P > 0.
We may effectively tune the parameters of the game so that rewards are
scaled by A, and the penalties are the rewards scaled by (1 — A). Section 4.2
discusses how to approximate SSE in a single-attacker single-defender game
with parameter \. We next focus on allocation to neighborhoods and assume
an oracle returns (an approximation of) optimal &%, ¥ strategies within each
neighborhood given py, fa. This is possible as Section 4.2 shows how to
implement the oracle, and Lemma 3 below shows that an approximation
suffices. Therefore we get for u € {u?, u?}:

ulpa, fa) = w (90 53), (Fur 52)) = S (&30a(0)). 5200, PalFul0)))

1=

We next pick a distribution p; which minimizes the utility above when
fa is the best response to pg. Hence, we get a typical SSG, with an attacker

28

with multiple (A) resources, with one important detail: the utility of each
neighborhood @ is not necessarily linear with the coverage p(¢), although it
is monotonic decreasing.

4.4. Generalization of Multi-Resource SSGs

In this section, we show how to generalise the work of [20] to handle a
non-linear dependency of the attacker and utility functions on x,4, the defense
probability on each target.

When both utilities are linear with x, and x4, there is a complete charac-
terization of the Nash equilibrium of the game. Indeed, best-responding
simply means attacking (defending) the D (A) targets with the highest
(marginal) utility for the defender (attacker). Therefore:

Lemma 1. If u® u? are linear with x4 and x,, let v3(t,z,(t)) = a;(R(t) —

P(t)) be the defender marginal utility from attacking target t. Then (Xq,Xq,)
1s a Nash equilibrium iff there exist thresholds 0,04 such that:

o x, € BR(xy4). Equivalently:
— u®(t,xq(t
— u®(t,xq(t
— 2 Tl(t) = A

e x,; € BR(x,). Equivalently:

— vt 24(t)) < g = x4(t) = 0.
— vt 2, (1) > g = x4(t) = 1.

- >uxa(t)=D

When ¢ is linear with x4, the defender’s marginal utlhty L is a con-
stant, and in particular, is independent of x;. Therefore, the utlhty the
defender gets from protecting target ¢t with probability “budget” x,4(t) is
x4(t) - v4(t, 4(t)). Therefore, best responding means first covering the top D
targets, and when there are ties for the D™ place, any randomization over
the corresponding targets will result in a valid best response.

However, when a% is a function of x4, this is not the case any longer.
Indeed, the above condition would be necessary, suggesting x; to be a local

maximum of u¢, as otherwise (assuming u¢ is continuously differentiable) one

29

could make small changes and increase the defender’s utility. Nevertheless,
it will not ensure a global maximum of u¢, meaning a best response. If u?
was concave with x4, any local maximum would also be global and there-
fore [20]’s algorithm would still work. Unfortunately, we cannot make such
an assumption in our game.

Nevertheless, we are not interested in computing a Nash equilibrium, but
a SSE. Therefore, we first show that the criterion for the attacker to best
respond remains intact:

Lemma 2. Assume u® is linear with X,, and that |V| > A, and that P*(t) <

R(t) for every target t. Let x4 be a defense mized strategy. Then X, €
BR(xq4) iff there exist a threshold 0, such that:

o u(t,x4(t)) < 0, = x4(t) =0.
o u(t,xq(t)) >0, = z,(t) = 1.

o 3, z.(t) = A

Proof. (<) Suppose x, admits the above conditions. Then, the marginal
attacker utility from attacking target t is u®(¢,x4(t)), therefore, independent
of x,. Hence, best responding would first protect the targets with the highest
attacker utility given x4, and any randomization over the A™ target will result
with the same overall attacker utility. (=) Assume by way of contradiction
that one of the above conditions doesn’t hold. If there are two targets i, t,
such that u®(t1,xq(t1)) < u®(te,x4(t2)), and 0 < z,(t1),x4(t2) < 1, the
attacker’s utility will increase by shifting attacker probability mass from t;
to ty until either z,(t1) gets to 0 or x,(t2) gets to 1. Last, if not all of the
attacker resources are utilized, we can increase the attack probability on all
targets, and increase the attacker’s overall utility as well. Note that this is
why we need to assume |V| > A and P%(t) < R*(t) on every target t. O

Next, we opt to transform the SSE computation into a mixed integer
program, which is a well-studied problem. We start from the following opti-
mization problem:

30

maximize: Z Ta(t) - ul(t, x4(t)) (3)

t

subject to: Zxa(t) =A, Zxd(t) =D,
t t

zq(t) € {0,1},0 < x4(t) <1,
u(t,xq4(t)) > xo(t) - O,
u(t,xq(t)) < (1 —x4(t)) - Oy + 2o (t) R ().

Evidently, a solution to the above MIP is SSE. Indeed, the objective is
to maximize the defender’s utility, over all possible coverage vectors x4 of
the defender. Demanding), x4(t) = D is okay because the utilities are
monotonically increasing. Finally, in the SSE framework, we can assume
that the attacker’s strategy is pure, that is, x,(t) € {0,1} which enables us
to write the condition for the attacker to best respond (described in Lemma 2)
with linear inequalities over the variables x,(t).

The only problem is that u?(t,x4(t)) and u®(t,x,4(t)) are non-linear w.r.t.
x4(t) in general. However, this can be handled using standard techniques
to approximate the utility functions with piece-wise linear approximations
u¢, 4. This is inevitable as we don’t have closed form formulas for the utilities
— rather, they are derived from the algorithm for the single attacker /single
defender drone problem in Step 2 of the S2D2 algorithm). We refer to [46] for
an overview of the technique. In principle, we can add a logarithmic number
of integer variables, and linear number of continuous variables, and replace
the utilities with linear expressions using the new variables.

We can bound the error from approximating the utilities by the following
lemma:

Lemma 3. Let G = (V,A,D,ua,ud) be a (non-sequential) attacker SSG.
Let € > 0 and let u®, a? be different attacker and defender utility functions,
such that ||(u®,u?) — (0% a%)||. < €. That is, on every pair of strategies
(X4, Sa), the attacker and defender utility outputs differ by up to €, using
the other utility functions. Then if (Xq4,5q.) is an €-SSE of G, it is also a
2e-approzimate SSE of G where the utilities are replaced with a®, %

Proof. Indeed, assume that for any pair of strategies, (x4,%,), we have that
[u®(Xd, Xa) — U (Xg, Xa)| < € and |ud(xg,%,) — @%(x4,%a)| < €.

31

Let (x4, 54) be an e-SSE with respect to (u®,u?). Then s, € BRg’ua’ud(Xd)j
and therefore, s, € BRY, ;4(x4). Thus:

ad(xd7 BRge,&‘l,ﬂd (Xd>> > 7ld(xdv Sa)'

Next, let s/ € BRgE’ﬂayﬂd (x4). Then, the above inequality says @¢(xg, s,,) >
u%(x4, 54). Analogously, let (X4, 3,) be an e-SSE with respect to (4%, a?), and
let & € Bnga’ud (%x4). Then u?(Xgq, 8,) > u?(X4, 3,). Thus:

i (Xq, 8y) — 0'(Xa, 8a) > 0'(Xa, $a) — 0 (Xa, 5a) >
U

u(Xq, 54) — ut(Xq, 54) — 2 > u(xq, 54) — u¥(Xq, 5,) — 2¢ > 0 — 2e.

iuavud (X4), sa € BRS, 4a(x4), as desired. Therefore,
(X4, 84) is a 2e-approximate SSE with respect to (a%, a¢). O

Finally, since s, € BR

Finally, we can use standard techniques, such as the one described in [47],
to linearize the resulted MIP, and solve a MILP.

5. Theoretical Analysis: SSE Approximation

In this section, we prove that if Algorithm 2 outputs a d-coarsening, then
it is an €(d)-approximate SSE.

First, a formal definition of a d-coarsening is provided in Definition 4.
While this definition provides a precise framework, it is somewhat restric-
tive, and the choice of constants may impose limitations. We stress that this
definition is only needed for the rigorous correctness proof of S2D2 (Theo-
rem 1). Nevertheless, it is important to note that S2D2 yields good results in
practice on real-world large-scale cities, even if such a d-coarsening does not
exist, as demonstrated via erhaustive experimentation described in Section 6.

Definition 4 (§-Coarsening). Let Gy = (0, E|;) be some neighborhood. We
denote by ui’% (ui’le), the (mazximal) utility of a defender (an attacker) at
SSE in Gy given A attacker drones and D defense drones. Let 6 > 0. A
d-coarsening Visa coarsening that satisfies the following conditions:

1. For each v € V, v/ € v, and v € v with R*(v) > ¢, it is the case that
d(v,v") > B, where d is shortest path length.
2. (a) Number of neighborhoods |V| > 4max{A, D}.

32

(b) For each 0,9 € V: %ui’jg > ui’:(’)a —0P.

3. For each v € V: ulh < uis + 6AP.

4. For each v € V: ﬁui’g > ull“f and ﬁ/lhﬂfﬁ > |u11’f| +6P.

Conditions 1-4 formalize conditions (i)-(iv) in Section 4.1 respectively.
Condition 1 suggests that it takes a prohibitive amount of time to move
from any node outside a neighborhood into a valuable node within that
neighborhood. ' This condition incentivizes drones to stay within their
starting neighborhoods throughout the game. It is also a practical political
reality — city security officials need to be seen to be distributing defensive
assets in a fair way across the city rather than appearing to give “preference”
to certain places, even if they are high utility locations.

Condition 2a suggests that there are not enough defense/attack drones
to protect/attack each neighborhood with probability > 1/4, as security re-
sources are limited. If not, one may consider partitioning the neighborhoods
further, though this may violate Condition 1. This condition incentivizes the
attacker to be more greedy, as neighborhoods with no defender with prob-
ability > 3/4 are sure to exist, and Condition 1 ensures defender drones
will not reach an unprotected neighborhood in time. In turn, Condition 2b
says that since there are many neighborhoods, the attacker will not go to
a low value neighborhood regardless of the defense strategy, and therefore
there is no reason for defending it either. As a result, we may ignore this
neighborhood altogether, and simplify the graph.!?

As for Condition 3, note that uﬁA”% < A- u}’g always holds. However,
when there is variability in the rewards and valuable rewards are sparse, we
expect a smaller gap between the two, since one cannot exploit the same tar-
get twice. In particular, Condition 3 holds if a single attacker can collect all
rewards in 0 with R*(-) > . This should be the case when valuable targets
are sparse and lie in the interior of neighborhoods rather than near the pe-
riphery. This condition incentivizes the attacker to spread her drones across

H'We don’t require R%(v') > § because the goal of defense drones is to catch the attacker
before it causes more damage. Therefore, if there is a node v € ¥ with R*(v) = 0, that
is close to valuable nodes of multiple different neighborhoods, placing a defense drone at
v could be a good strategy. After the attacker places her drones, the defensive drone will
decide which neighborhood to go to in order to catch the attacker.

12For this reason, we do not require the coarsening V to be a partition of V (..,

Uie[l,k] 0j # V)

33

different neighborhoods to increase the chance of attacking an unprotected
neighborhood, as by Condition 2a the chance of a neighborhood being un-
protected is not negligible. At the same time, it incentivizes the defender to
spread her drones across different neighborhoods to decrease the chance of a
successful attack on an unprotected neighborhood. However, this argument
holds only if neighborhoods are comparably valuable, which is captured by
the following condition.

Condition 4 suggests that the presence of a defense drone in a neigh-
borhood makes a significant impact on defender and attacker drone utility.
The constraints ensure that the damage done by the attacker facing an un-
defended neighborhood is significantly larger than the damage done when
facing a single defender, where ui{le is defined analogously to UZQD (cf. Con-
dition 3) for the defender. The intuition is that a defender can always start
at the center of a neighborhood, and thus be able to catch the attacker rela-
tively quickly, whereas by Condition 3, the attacker has enough battery and
payload to destroy all crucial spots of a neighborhood when no defender is
present.

Sufficiency. When a d-coarsening exists, we will show that an e-SSE can
be computed efficiently. The reason is that both the attacker and defender
are incentivized to spread their drones out across different neighborhoods,
which results in a decomposition of the multi-drone game into multiple single-
attacker single-defender drone sub-games. To show this, we start with a
definition:

Definition 5 (e-tight coarsening of a Graph). We say that V is an e-tight
coarsening if there exist x; € A(Sé) and s, € S“; such that (Xq4,Sq) is €-
approximate SSE.

We emphasize again that the S2D2 algorithm works even when a tight
coarsening does not exist. The above definition is only needed for the formal
proof that yields theoretical results on the quality of the output strategy.
Specifically, we prove a theoretical bound on the loss of the defender and the
attacker caused by restricting their strategies to respect a given coarsening
V, which is € for an e-tight coarsening. Therefore, we will need to compute
€(9) for a d-coarsening.

Our restrictions on d-coarsening enable us to prove some nice properties,
e.g. that a d-coarsening is always e-tight. To show this, we first analyze the
loss of the attacker from respecting a coarsening V.

34

Lemma 4. Let x4 € A(S%), s, € 8%, 6 >0, and V be a §-coarsening. Then,
there exists a strategy s, € S7, such that u®(xq, 85) > u*(Xg, Sa) — €, and
ud(xq, s) > ul(xq, 54), for € = 20AP.

Proof. Strategy s, is constructed in two steps. First, in s! each drone stays
within its starting neighborhoods. Then, in s/, := s, in addition there is
a single attacker drone in each neighborhood. The attacker loss is then
bounded by the sum of the losses from the two steps.

First, consider the following strategy s!. All attacker drones are placed as
in s,, and follow the same paths. Whenever an attacker drone in s, crosses a
neighborhood, the corresponding drone in s. halts. Note that since attacker
drones are not coordinated after initial allocation, s} is well defined. Specif-
ically, the strategy of other attacker drones is not affected. By Condition 1,
when an attacker drone moves across neighborhoods, it can only get negli-
gible rewards. Therefore, following s may have a utility loss of up to AP
for the attacker drone compared to s,. Indeed, for every attack drone and
attack payload unit, it could be that in s, it picked a reward smaller than ¢,
and in s} it doesn’t collect this reward.

Next, assume A" > 1 attacker drones were assigned the same neighbor-
hood ' in sl. For each neighborhood o € V, let A\; be the probability that
at least one defense drone is allocated to neighborhood o at time ¢t = 0, with
respect to x4. Among all neighborhoods that are not occupied with any at-
tacker drone, let Vu be the A’ least protected neighborhoods with respect to
X4. Then at t = 0, each neighborhood v, € Vi is protected with probability
at most A , < \VID— e Indeed, assume for purposes of contradiction that they
are protected with probability > IV?— =
tected, all unoccupied neighborhoods are protected with probability >

Then since those are the least pro-
D
[Vi-A’
and there are at least |V] — A such neighborhoods. However, even protecting
V| — A neighborhoods with probability IV\D* — already requires D defense
resources, hence such a defense coverage vector is not feasible x; ¢ Cp, a
contradiction.

Now, by Condition 2a,

\VF— <3 D+’?4_ - = % Consider spreading the at-

tacker drones from o to VA/, and play greedily, that is, maximize the attacker
utility when facing no defender. Denote this strategy by s2.

At worst, the utility of the attacker drones from Vy is %Zﬁa/ v, u —
0PA’". Indeed, with probability > %, there are no defenders in v, at t = 0.

35

Assume by way of contradiction that a defender catches an attacker drone in
Vg at v, before it reaches some valuable node v € 0, with reward R*(v) > 4.
Then, let v, be the start node for the attacker and vy be the start node for
the defender. Since they both begin at ¢ = 0 and meet at v, we know
that d(vg, v) = d(ve, vy). By triangular inequality, d(vg,v) < d(vg, vm) +
AV, v) = d(Vg, V) + d(vy,v) < B, as the attacker moves from v, to vy,
and then to v in less then B units of battery. However, d(vq,v) < B and
R%(v) > 6 contradicts Condition 1. Therefore, the defenders can cause a
utility loss for each attacker of up to PJ.

On the other hand, at best, the utility of the A’ drones in s! is ufi{,}o.

a

Therefore, the utility loss of the attacker is at most: §PA’ +ufi{,70—§ > b€V .
By Condition 3, this is less than 26PA’ + uj¢’ — 2 - 2min, uy%. Then,
by Condition 2b, the overall utility loss is bounded by 20 PA’. Repeating the
above for all neighborhoods in s! that were initially assigned with multiple
attacker drones will result with a total attacker utility loss of up to e = 20 PA.
Thus, a greedy strategy s, = s2 € Sg of spreading the attacker drones un-
occupied neighborhoods and playing greedily, ignoring the defender, results
with a negligible loss in utility, regardless of the defense strategy. O]

It follows that the attacker respects the coarsening.

Corollary 1. Let V be a 0-coarsening. Then:

max u(xg4, BRY(x4)) > max u®(xy, BRdV(Xd))
xa€A(SE) xdEA(SY) ©
d d d d
max u“(xg, BRY~(x4)) > max u(xgz, BR(x
e (xa, BRCp(xa)) = max u"(xa, BRY(x4))

where BR‘:’V(Xd) = argmax u%(xg, s,) considers only strategies from BR®(x,)
’ $5a€BRe(xa)NSY

that respect the coarsening, and only then takes the strategy that favors the
defender.

Proof. Let x4 € A(S%) be any strategy. Then by definition, BR? ; (x4) =
BR?(x4) NS¢ € BR{(xq). Therefore, BR%(x4) can only increase defender
utility:

u(x4,BRY(x4)) = max ud(xg,s,) >
sa€BR%(x4)

BB Ot 5] = s, BRG ()

36

Note that BRZV(Xd) # () by Lemma 4. Since the inequality above holds for
every Xy € 8¢, it also holds when maximizing over x4 € A(Sé). Conversely,
let s, € BR¥(x4). Then by Lemma 4, there exist s, € BR? ;/(x4) such that
u(xq, 8,) > u(xq, 84). Therefore:

d d _ d /
u(xq, BR (x4)) = s;eé%?‘}f(xd)u (X4, 5,) >
d d d
= BR .
SaEIélF?g((Xd) Y (Xd7 Sa) xdrenxa()éd) “ <Xd, (Xd))

Again, since the above holds for every x4, it also holds when maximizing over

X4 € A(Sd)]

We now derive bounds on the utility loss (gain) of the attacker (defender)
from increasing the protection of a neighborhood.

Lemma 5. Consider any neighborhood v, protected with some probability X.
Then, increasing the probability a defender is in the hood v by n > 0, will
result in the following lower bounds on the attacker utility loss and defender
utility gain:

Aa A+n,a ul . — s
1. u u > ufg— Uy
An,d \d Cd d
2. uMn u™t > —n-ufy +uf;.

Recall that uf 1, is the mazimal attacker utility from attacking a neighborhood
with A attack drones, facing D defense drones. Analogously, uiD 18 the
maximal defender utility when protecting a neighborhood against A attack
drones using D defense drones.

Proof. The attacker utility is bounded as follows:
(1= Nufy <uM < (1= Auf o+ Mg ;.
The defender utility is bounded as follows:
Acuf (1= Nuf g < oM < (1= M.

Subtracting the lower and upper bounds appropriately yields the above lower
bounds.]

Theorem 1. A §-coarsening is e-tight, for e = 20AP.

37

Proof. First, by Corollary 1, we know that:

max u?(xg, BRY(xq)) > max u(xy, BRdV(xd)).
xa€A(SE) xa€A(SE) &
_ Therefore, we will assume w.l.o.g that the attacker respects the coarsening
V', and compare the RHS with:

deenf()éd) Ud(Xda BRZV(Xd)) > xdgl&a()éd) ud(xd, BRd(Xd))
where the last inequality is again by Corollary 1.

That is, it is enough to bound the loss of the defender from respecting
the coarsening V, when assuming that the attacker respects the coarsening.
Let x4 € AS?.

Similarly to the attacker, consider strategy x} where defense drones stop
before crossing a neighborhood. Suppose that with probability > 0, playing
X4, defense drone 1 < ip < D catches an attacker drone 1 <iy < A. Let vp
be the start position of defense drone ip, vy, be the meeting point, at time
1 <t < B, and consider any path w4 of length B —1 starting from v,; within
the attacker’s starting neighborhood, ending at some node v,, for attacker
drone i4. Then the path from vp to v, is of length B, and therefore, by
Condition 1, all of the nodes along 74 yield a reward < §. Hence, playing
x} results in an attacker utility gain of up to dAP. Therefore, to this end,
drones stay within their neighborhoods. Again, we stress that x} is only
defined in case the defense drones’ movement is not coordinated after initial
allocation.

Next, we claim that the defender should not allocate two defense drones to
the same neighborhood. Let p < 1 be the probability that each neighborhood
is protected with a single drone, in x}. We can consider a strategy x2 that
coincides with x} when the coarsening is respected (which happens with
probability p), and then the utility loss will be bounded by a factor of 1 —p <
1. Thus, w.l.o.g, assume p = 0.

Denote by ¢ € Cp_; the coverage of the neighborhoods, with respect to
x4, That is, ¢, is the probability that neighborhood © is protected with at

least a single defender. Denote by BARd the set of A targets the attacker is
attacking when facing x} (this is well defined since we may now safely assume
the attacker respects the coarsening).

Next, we want to introduce a strategy x2 that respects the coarsening and
has comparable defender utility. Denote by ¢’ € Cp the coverage vector for

38

x%. We are interested in increasing the coverage of BARd, while maintaining
the condition that these targets are in BR?. We have an extra defense unit
to allocate, since in x3, only D — 1 neighborhoods are covered in each pure
strategy.

Let 0 < r < 1. By Lemma 5, using 5r defense resources on each target

~ d - N
outside of BR", we can decrease the attacker’s utility by at-least 5r-uyg —uj .
- d
We will do the same for targets in BR', increasing their coverage by 3r.
By Lemma 5, the attacker’s utility will decrease by at most 3r - u + u}’l
- d A
By Condition 2b, the set BR" remains the attacker’s best response, if ruj 5 >

2 max; u1 1. Meanwhile, again by Lemma 5, the defender’s utility on every

UEV
o € BR increases by at least —3r-ub 0 ot uqfil
We therefore take r = W’ and require the following:
13
1. IV\ 1 maxvev U1 0 > 2max; u1 1.
2. 8|V\ |u 1:1| +0P.

The first condition ensures that the attacker’s best response set is main-
tained, and the second condition ensures the defender utility is decreased
by up to dAP in total. Both of these hold by Condition 4, which states
that (and quantifies how) the presence of a defense drone in a neighborhood
significantly affects the attacker and defender utilities.

Therefore, strategy x3 results with up to an additional AP utility loss
for the defender. This completes the proof, as:

max u?(xq, BRY(x4)) > max u(xd,BR o (Xa)) >
xa€A(SY) xa€A(SY)

d
max u X,BR x4)) —€e> max u(xg, BRY(x €
xg€A(S) (x4 v(xa)) x4€EA(SY) (xd (xa)) =

]

We now explain how to bound the error of S2D2 algorithm, assuming a
d-coarsening exists.

Theorem 2. Let § > 0 and assume V is a d-coarsening. Then S2D2 outputs
an €-SSE for e = 2APS + 2€', where € is an upper bound on the error of the
single-attacker single-defender oracle.

39

Recall that our proposed S2D2 algorithm consists of 3 steps. In the coars-
ening step, the algorithm outputs, along with the coarsening V, a parameter
0. By Theorem 1, the optimal strategy that respects the coarsening is an
€1-SSE, for € = 2APS6.

In the second step, we solve the single-attacker single-defender game on
each neighborhood. We can bound the utility of the attacker by (1—)\)u% <

ui’a < ull’g . The lower bound is reached by setting the attacker strategy as
S, € argmaxy u®(L,s)) a greedy strategy, regardless of the defense strat-
egy. The upper bound is reached by setting the defense strategy to be 1.
Similarly, the utility of the defender can be bounded by

o,d o,d ,d
Uy Suyt < (1=2X) “Upo-

Indeed, the lower bound is when x; = L, and the upper bound is reached if we
assume that a defender in the neighborhood protects all targets completely
(and X is small, so that a greedy strategy is approximately BR).

As a consequence, the error of the utility estimation from step 2 can be
bounded by €3 = A\yax P max,ey R*(v).

In the third step, the algorithm solves the multi-drone meta-game, using
the approximated utility function from step 2 as an input. By Lemma 3,
given the error for the second step, the third step outputs a 2e,-SSE. The
final solution is thus ensured to be an (e; + €3)-SSE. Nevertheless, to make
sure the error is small, the error d, must be small as well.

Whenever Ay > A. for some cutoff ., in order to get a meaningful bound
for the error, we must approximate the utility more accurately. As suggested
in Section 4.2, we should consider all strategies s, for the attacker in 0, such
that u®(L,s,) > (1 —)\U)uqu , which may consist of more than all greedy
strategies. In particular, let 1 > ro > ... > rp > J be the top P reward-
ing nodes. Then the attacker strategy space consists of all paths that pass
through enough of these nodes so that the overall utility when there is no de-
fender is more than (1 —)\@)ufzg . Doing so will result with an exact solution,
and will allow us to replace A\, with \., as desired.

6. Experiments

Our experiments were aimed at assessing the efficacy of S2D2 by com-
paring runtime and defender utilities with a baseline. We first synthetically
generated utilities for nodes in 80 world cities from all continents (except

40

Africa and Antarctica), including several capitals. Then, we used manual
annotations for different facilities through a survey of 7 security and defense
experts. Finally, we did a detailed case study that qualitatively assessed the
defenses recommended for a single city.

All the experiments were run on an Intel(R) Core(TM) i9-10980XE CPU
with 256 GB RAM.

Implementation of S2D2, baseline defense strategy, and the code for the
experiments presented below, are all publicly available on Github https:
//github.com/tonmoay/S2D2-Experiments.

6.1. Setting

Dataset and Parameters. We created a dataset of 80 cities, ranging from a
few thousands nodes up to a few hundreds of thousands of nodes. For each
city, the street networks were sourced from the OpenStreetMap platform via
the OSMnx library [48].

The number of neighborhoods was fixed to |V| = 8D, that is, proportional
to the number of defense drones. Taking a large constant will result in a graph
that is mostly unprotected, and neighborhoods that are too small. Taking a
small constant would mean that there are enough defense drones to cover all
neighborhoods with probability 1, yet those neighborhoods will be too big to
protect.

As the dataset lacked rewards/penalties for nodes, we assigned those pa-
rameters in two ways: (i) sampling them independently from a distribution
(log-normal/Zipf); (ii) using security experts to manually annotate 6 cities.
Defender penalties were then assigned by randomly perturbing the rewards.
This maintains some degree of correlation while circumventing a zero-sum
game scenario.

For the synthetic data, we assigned rewards to city nodes by sampling
independently from a distribution over the [0,00) interval. The reason is
that (i) rewards should be non-negative and (ii) we expect the set of nodes
with high rewards to be sparse. Otherwise, the game essentially becomes
an evasion game where the goal is to catch the attacker as soon as possible.
Specifically, we sampled from the log-normal distribution with y = 0,0 =4,
as well as a Zipf distribution with s = 2.

For the manually annotated data, we asked 7 senior defense and security
officials from the US, EU, Asia, and the Middle East to rate the importance
of different facilities in city neighborhoods. The 6 cities included three major
U.S. cities, an Asian megacity with a population of over 20M people, and two

41

smaller cities in the Middle East. In all, the cities included 3 world capitals.
We asked the experts to imagine a city that they knew well when filling out
the survey without telling them which city to look at. We asked questions
related to the following types of facilities: Local/Municipality Buildings (e.g.,
the office of the mayor or city administration), National Government Lead-
ership Buildings (e.g., the White House in Washington DC or 10 Downing
Street in London), National Government Operational Buildings (e.g., the of-
fice of a Ministry), Security Installation Buildings (e.g., Ministry of Defense
or Europol Headquarters), Hospitals, Electricity/Natural Gas Plants, Sani-
tation and Water Plants, Industrial and Hazardous Materials Areas, Trans-
portation Hubs (e.g., airports, train stations, etc.), Tourist Sites, Financial
Districts, Shopping and Entertainment Areas, Sports Arenas, and High Den-
sity Areas. Fach type of facility was to be ranked on a 1 to 5 scale with 1
meaning it was of very low importance and 5 meaning it was of critical im-
portance. The median values obtained are summarized in Table 2. All the

Median

Facility Utility

ot

National Government Leadership Buildings
Security Installation Buildings
Electricity /Natural Gas Plants

National Government Operational Buildings

Hospitals
Sanitation and Water Plants
Industrial and Hazardous Materials Areas
Transportation Hubs
High Density Areas
Local /Municipality Buildings
Tourist Sites
Financial Districts
Shopping and Entertainment Areas
Sports Arenas

o o Lo QO WO R R R R R R Ot O

Table 2: Median utilities assigned to various types of facilities by security experts.

experts agreed that security installations and major national government
buildings would have top priority followed by utilities (e.g., power, water).
The vast majority of the cities (e.g., residential areas) would have much lower

42

rewards. A specifically designed annotation interface (Figure 4) was used by
the experts to draw rectangles and/or polygons and provide a utility value
for each polygon, i.e., value of the region. To avoid risks to real cities, the
figure has been intentionally blurred to show the overall use of the interface
without making it possible to identify the specific city.

HOME ANNOTATION

.o:::o-:o : . (LR B B ﬁ"..of
....E .:o » .000‘0:,.:.::-
RN e o BB a8 s g
.....:s » Q_E'.ﬁ- f O-OQ AEE A w
oooooo#oooo '000030...0.0
R L 0.00:0007:‘

Insert value of the region:

4
Figure 4: Annotation interface (intentionally blurred).

We fixed the number of defender and attacker drones to be D = A = 4,
the battery capacity B = 6 and the payload P = 4. However, in some
experiments, we also varied A, D, B, and P. The outcomes presented pertain
to 100 iterations in all reported results.

Baseline. We compared S2D2’s runtime and expected utility with a greedy
baseline (Algorithm 7) that employs a drone-swarm defense mechanism. The
baseline allocates protection to each neighborhood with a drone, doing so
proportionally to the cumulative absolute penalties of the top P attacker re-
warding nodes. This is done by letting each defense drone sample its starting
neighborhood independently from the distribution p, (Line 6).

Within each neighborhood, the baseline drone starts at a random node.
The output of move towards closest node(v) is a function that assigns a
random start node from v in each execution. It then follows a greedy next-
step function, defined for each time step 1 <t < B as follows. The defender
looks for the target v € V that is closest to the attacker drone position, is
of interest to the attacker (amongst the top P), is valuable to the defender
(penalty < —¢), and the defender can reach there before the attacker, and

43

Algorithm 7 Greedy Baseline
Require: Undirected graph G = (V, E);
coarsening V of G, and &;
numbers of attacker and defender drones A, D € N;
attacker drone’s payload P € N;
drone’s battery capacity B € N;
attacker rewards R* € NIVI;
defender penalties P? € Z‘<VO‘.
Ensure: Defense mixed strategy (pg,Xq) € A(S“?/).
: weights d <« [;
. for each ¢ € V do
0, < O.get top attack rewards(P,R% P?); {Breaks ties in favor of de-
fender}
4: weights d[0] < ©4.sum_abs_penalties(P?);
5: end for
6: pg <— D * weights d / weights d.sum();
7: for each v € fa do
8.
9

W N =

s¢ < goto_random__node(%);

for each 2 <t < B do

10: sé < move_towards_closest node(?, d);
11: end for

12: 2q[0] + (s¢,...,s8); {a pure strategy}

13: end for

14: return (pga?);

moves one step along the shortest respective path. If there are multiple
attackers in sight (in 0), it picks the closest one to hunt down, breaking
ties randomly. Importantly, the algorithm returns a strategy, so the output
of move towards closest node is actually a function, that determines the
next step for the defender given the defense current position, attacker last
observed position, updated penalties and rewards, and the neighborhood
graph structure. This procedure is reiterated based on the attacker’s updated
position. The above baseline is an adaptation of [28] to our setting. Asin [28§],
each defender is paired with the closest observed attacker drone. In addition,
chasing a drone is done by predicting its projectile. While [28] assumes a
straight-line projectile, our heuristic takes into account the attacker rewards,
and also rather than straight-line the defender takes the shortest path along
the graph.

44

Notably, the defense strategy above can be implemented by using a de-
fense drone swarm. As the experiments will demonstrate, such a defense
strategy is more scalable in terms of run-time, but the expected defender

utility is going to be smaller.

Attacker. Both S2D2 and baseline defenders were paired with the S2D2 at-
tacker, as we are interested in handling a strong attacker approximating the
best response.

6.2. Results
Figure 5 reports the results regarding runtime and defender utility (ex-
pressed as ratios between the baseline and S2D2).

350

300

Runtime Ratio
. -) N}
1) a S 13
S =) S =)

5
=)

o

x
xxxxx

x Lognormal
« Zipf

80

ratio=15
ratio=1

o
=]

Defender Utility Ratio
IS
S

N
S

XX

* x x % X xx
- XK X x

x Lognormal
x Zipf
ratio=1

Xk % x

x g

x %
¥ X XX

50000

150000
Number of Nodes

100000 200000

(a) Runtime ratio

250000

0

50000 100000 150000 200000 250000

Number of Nodes

(b) Defender utility ratio
(synthesized utilities)

Defender Utility Ratio
w IS

S

x #A=3
x #A=10
ratio=1

0

20000

40000

6000

Number of Nodes

0 80000

(c) Defender utility ratio (manual annotation)

Figure 5: Comparison of S2D2 with the baseline.

Figure 5(a) shows that the runtime ratio between S2D2 and the baseline
approaches a constant factor of about 15. Indeed, for small cities S2D2 run-

45

time is dominated by the multi-drone stage, but this cost becomes negligible
as neighborhood size grows. Accordingly, S2D2 can be run within times that
are reasonable even for the largest cities (3.5 hours with one CPU for the
largest one). The more expensive runtime is amply rewarded by the fact that
S2D2 decreases the expected defender loss and the attacker’s expected utility
by an average of 2.84 times that of the baseline, as shown in Figure 5(b).
Interestingly, the utility is less dependent on graph size and more on the
structure of the graph and distribution of rewards.

As for manually annotated cities, Figure 5(c) shows that the baseline is
better for one city. This could be due to the piece-wise linear approximation
of single-drone neighborhood utility function, where we only used #\ =
3 points A; € {0,0.5,1} (which performed good enough for the synthetic
data). We therefore repeated the experiment with S2D2 using #A = 10
points. Indeed, S2D2 convincingly outperforms the baseline in all manually
annotated cities.

Figure 6 reports results regarding the dependency of runtime and de-
fender utility on the ratio between the number of attacker to defender drones
(synthetic utilities, log-normal distribution). The number of attacker drones
is A = | D x ADR] where ADR is the attacker-defender ratio. S2D2 yields

x ADR=0.5 x ADR=0.5

x ADR=1 10 x ADR=1

x ADR=2 x ADR=2
————— ratio=1 ----- ratio=1

250001

20000

15000

Runtime Ratio

10000

Defender Utility Ratio
o

5000

k3

5000 10000 15000 20000 25000 30000 35000 40000 45000
Num. Nodes

(a) Runtime ratio

¥
% X

5000 10000 15000 20000 25000 30000 35000 40000 45000
Num. Nodes

(b) Defender utility ratio

Figure 6: Comparison of S2D2 with the baseline, with ADR € {0.5,1,2}.

a higher defender utility at the expense of increased run-time compared to
the baseline. The runtime ratio is relatively big since the cities are relatively
small (up to 45,000 nodes), and so the multi-drone phase of the solution takes
a significant portion of time. However, we do not observe a strong correla-
tion between ADR and runtime, so handling more attackers does not incur
a higher computational cost. We also do not observe a correlation between

46

ADR and defender utility ratio. This is probably because both the base-
line and the S2D2 defender utilities are similarly affected from the change of
ADR.

Figure 7 shows how defender utility varied when we perturbed manually
annotated utilities. The latter were perturbed by +10%, i.e. they were fixed
to £10% of the true value. In the case of one city, the defender utility ratio

x Manual 2.2 x x Manual

~

°
sy
=4
?.
—
4
&

[

,_.

®
N
o

,_.

o
-
©

S

Defender Utility Ratio
ey)

Defender Utility Ratio

-
i

-

o
-
N

-
o

x
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Number of Nodes Number of Nodes

(a) Defender utility ratio (b) Defender utility ratio
(No perturbation) (10% perturbation)

Figure 7: Defender utility ratios when the defender’s estimate of the attacker’s utility is
off by 0 (a) or by £10% (b).

is less than 1, so the baseline outperforms S2D2. This is explained by the
coarse approximation of the single-drone utility function as a piece-wise linear
function, which can be improved if necessary at the expense of runtime. In
all the other 5 cases, the utility ratio ranges from around 1.05 to 2.15. In two
cases, 52D2 yields almost double the utility of the baseline, and in 3 other
cases, it outperforms the baseline by a smaller margin. It should be noted
that, if we average the defender’s utility ratio across the 6 cities, the average
is 1.34. Thus, on average, S2D2 provides 34% improvement over the baseline
algorithm in terms of the utility to the defender. Even though that comes
at the cost of an increased runtime, most cities would be happy to make
this tradeoff: saving 34% more of the utility of the city (lives and property
damage).

Figure 7(b) shows that in every single case, the defender utility ratio is
over 1, so the S2D2 algorithm outperforms the baseline. Even when the
defender’s assumption about the attacker’s utility is slightly incorrect, the
average improvement over the baseline is 41%. Most cities would prefer to
save an additional 41% of the utility of the city compared to saving some

47

runtime.

Finally, Figure 8 reports the results we obtained when we fixed A = 5
attacker drones and selected 5 cities based on a balanced size distribution,
from 2,283 nodes to 125,013 nodes (synthetic utilities, Zipf distribution).
Battery capacity and payloads were fixed to B =6 and P = 4.

Figure 8(a) reports the impact on defender utility of varying the number
of defender drones from 2 to 10 against 5 attacker drones.

0 0

—2500 —2000

—5000 —4000

—7500 ~6000

~10000 —8000

Defender Utility

—10000

Defender Utility

—-12500

S —— City 1
~15000 -~ T gg: ~12000
~17500 / T gg‘; ~14000
2 3 4 5 6 7 8 9 10 0 20 40 60 80 100
Num. Defenders Perturbation Percentage
(a) Defender utility (b) Defender utility
vs. number of defender drones vs. perturbation percentage

Figure 8: Defender utilities with 5 attacker drones.

As expected, increasing the number of defenders consistently enhances de-
fender utility. Figure 8(b) shows the impact of perturbing utilities from 0% to
100% in 1% increments, with penalties unchanged, when we fixed D = 5 de-
fender drones. We sampled a defender strategy from the mixed strategy set,
perturbed the rewards, and then evaluated the attacker’s response and the
utilities of both sides across all perturbation levels. The results show that,
despite the perturbations, the defender strategy remains effective, demon-
strating robustness against the attacker’s adaptations. Although some noise
was observed, the overall utility trends were stable.

Case Study of One Major City. We now describe a detailed case study of
one major city from the Americas with a population of over 2M. The city
had 28,671 nodes and was manually annotated. Unless stated otherwise, the
experimental parameters described previously were used in this case study.
Figure 9 shows the runtimes and utility ratios we obtained when varying
the number of defender drones, the payload, and the battery capacity. Not
surprisingly, our very simple baseline is significantly faster than the S2D2

48

3501 x S2D2 1400 x S2D2 X
Baseline Baseline
300 1200
250 1000
x * x
2200 x x 2 800 x
k=] 3
2 g
& 150 & 600
100 400 I %
50 200
!
0 o]«
4 5 6 7 8 9 10 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Num. Defenders Payload
Runtime (s) Runtime (s)
vs. number of defender drones vs. payload
4000 x S2D2 s X x T ratio=1
Baseline 35
]
3000 23.0 *
: .
S 2
2 25
b =}
g2000 p
E o0l * *
2 g
1000 x s
1.5
|
0f ¥ % 1.0
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 4 5 6 7 8 9 10
Battery Num. Defenders
Runtime (s) Defender utility ratio
vs. battery capacity vs. number of defender drones
4.0 3.5
X ratio=1 x e ratio=1
3.5 3.0
g 2 T
§3.0 éz
z 220
=l i =
E2.5 g M
!
ko i 20
o x 1
£2.0 &
E E I
)
15 1.5
1.0 1.0
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Payload Battery

Defender utility ratio
vs. payload

Defender utility ratio
vs. battery capacity

Figure 9: Results of a case study for one major city.

49

algorithm. Nevertheless, Figure 9(a) shows that S2D2 takes a reasonable
amount of runtime (about 3-4 minutes) when the number of defensive drones
is varied from 4 to 12 — moreover, the time seems more or less constant.
When the payload is varied (see Figure 9(b)), we see that S2D2’s runtime
increases linearly — but still stays in a matter of minutes (13 minutes when
payload is 7). When the battery capacity is varied (see Figure 9(c)), S2D2’s
runtime increases exponentially — when battery capacity is 7 or less, it
takes about 16-17 minutes, but once it goes up to 8, the runtime increases
significantly to about 66 minutes. This is not surprisingly because the number
of possible paths grows exponentially with the battery capacity — as battery
capacity increases, the attacker can travel further.

Figure 9(d) shows that when the number of defensive drones is varied
from 4 to 12, S2D2 delivers 2 to 4 times the utility provided by the baseline.
However, there is no consistent increase in this ratio. While both S2D2
and baseline defender utilities are expected to increase when the number
of defenders goes up, we do not see a reason for the ratio to increase nor
decrease. Figure 9(e) shows that when the payload is varied from 3 to 7,
S2D2 delivers 1.7 to 2.7 times the utility provided by the baseline. Again,
there is some fluctuation in the ratio. Finally, Figure 9(f) shows that when
the battery capacity of the drones is varied from 4 to 8, S2D2 delivers 1.7
to 4 times the utility provided by the baseline. All of these numbers suggest
that S2D2 is a definitive improvement over the baseline as far as defender
utility is concerned — this comes at the cost of runtime, even though the
latter is still reasonable.

Figure 10 shows what percentage of the nodes were destroyed for each of
the 5 utility values, with B = 6, P = 4, ADR =1, and D = 4. Specifically,

i

H [1 z 3
le Reward Iogy Scale Reward

3 3
logo Scale Reward

(a) Varying battery (b) Varying payload (¢) Varying number
capacity of defender drones

Figure 10: Percentage of destroyed nodes for each utility value.

Figure 10(a) looks at what happens when varying battery capacity. We

50

observe that as battery capacity increases, the percentage of destroyed nodes
having utility 5 nodes increases — this is probably because the attacker
has enough battery to attack multiple 5-ranked nodes with a single drone.
Figure 10(b) shows what happens when we vary the drones’ payload. Again,
we see that as payload increases, the percentage of destroyed nodes with
utility 5 increases — as the attacker has more payload, it may prefer to
attack more of those nodes. The saturation at payload of 5 is probably
because there are no more 5-ranked nodes that a single drone can reach
with its battery capacity. Figure 10(c) shows the situation when we vary
the number of defender drones. As expected, we see that as the number
increases, the percentage of nodes with utility 5 being destroyed decreases.
This demonstrates that S2D2 utilizes each added defender drone to cover
more of the high ranked nodes. We see a similar correlation for utility 4 nodes,
but it is weaker. This can be explained as a side effect where the attacker,
taking into consideration that the utility 5 nodes are more protected, now
prefers to strike against utility 4 nodes where it is less likely to get caught.

7. Discussion

Coarsening. The first step of S2D2 is to coarsen the input graph. Specifically,
the neighborhoods should be densely connected inside and relatively isolated
from one another. However, in urban environments, target locations may
not exhibit this kind of clean structure. First, we emphasize that the output
coarsening is not restricted to respect jurisdictional divisions or any type of
man-made partition of the city. Second, our intuition was that important
areas of interest typically come in clusters, e.g., a dense neighborhood, an
industrial area, or a group of government buildings, and so, we expect a good
coarsening to exist. For instance, Wall Street in New York City is densely
clustered. Likewise, the major government buildings in Washington DC are
also densely clustered. We then tested our intuition via two approaches.
First, we analyzed real-world large-scale cities, annotated according to the
knowledge of security experts. Second, we synthetically annotated nodes
with respect to two distributions. In both cases, we observed that the out-
put coarsening was not always ideal. Nevertheless, it did effectively separate
the city into neighborhoods and in most of the cities, our experimental results
where reasonable even when the coarsening was not ideal. From both theo-
retical and experimental perspectives, we identify the coarsening approach to
be promising, and believe that improvements in coarsening have the potential

o1

to significantly improve defense strategies.

Graph Structure. Aerial drones need not be subject to any ground-based
constraints of the underlying city, and can seamlessly reach any location
through direct aerial traversal. However, we note that this does not suggest
that all targets are fully connected. Cities can be quite large, and it takes
time to go from one point to another. Also, the defender is also using drones
and is therefore moving at a comparable speed as the attacker.!®> We also
emphasize that our choice of modeling a city as a general graph, enables
applicability beyond drone swarm defense. Land-based vehicles are more
subject to the topographical structure of the city, and so our approach can
be even more effective in this setting. Also, not using a perfect grid allows
our model to capture various obstacles, e.g., a skyscraper cluster, or an area
that is protected with GPS jamming devices.

Attacker adaptivity. While our model allows the defender to apply an adap-
tive strategy that changes as a function of the state, the attacker is modeled
to be static. This simplification seems to contrast with some pursuit-evasion
games of similar type, where both players are adaptive. In real-world sce-
narios, attackers are likely to observe the state, at least partially, and adapt
their strategies in accordance. This may raise concerns about whether the
model’s validity is compromised by this simplification. To this end, we em-
phasize that while acquiring aerial drones is relatively easy, tracking drones
is still imperfect, and as we cover in the related work, is an independent area
of interest. For instance, [23] analyzes 8 months of drone flights over The
Hague, but it is clear that some drone flights may have been missed due to
imperfections in tracking. Therefore, we assume that both the attacker and
the defender are not aware of the locations of the opposing drones at the
beginning. The asymmetry stems from the assumption that after significant
damage is caused by an attacker drone, it can be tracked. We believe this
assumption to be more realistic compared to prior works, at least in the
context of drones that can be small, silent, fast, and may not communicate.

In the case the attacker is aware of the defensive drone’s location, it could
utilize this additional information to evade the defender more effectively, and

13We believe that in cases when the drones move so fast that the targets are fully
connected, the problem should be modeled as a non-sequential SSG where the attacker
has A x P resources, and the defender has D resources. For that matter, one may use [20]
to get an efficient exact solution.

92

therefore is expected to cause more damage. This framework could be an
interesting future work. However, if there is concern that the defender utility
is significantly smaller, a conclusion could be that more research and effort
should be put into preventing the attacker from gaining this information to
begin with.

Knowledge of x4. In Stackelberg games, the attacker knows the defender’s
committed mixed strategy and best responds to it. This is often justified
by the claim that the attacker can survey the defender’s strategies before
launching an attack. In this paper, we follow this approach. However, this
assumption may seem less feasible in the context of state-dependent strate-
gies, as the defender’s strategy space is overwhelmingly large. Without suf-
ficient real attacks, many states may not even occur, making it harder for
an attacker to accurately observe and infer the defender’s strategies. While
we acknowledge that surveillance in our case is probably not sufficient for
the attacker to unravel the defender’s mixed strategy, assuming a stronger
attacker may result in a more robust system. The alternative approach, of
attempting to model the limitation of an attacker, come at a high risk. If
the defense relies on an attacker with certain capabilities which do not hold
in reality, it can lead to severe consequences. In contrast, overestimating
the attacker capabilities could result in a less effective defense overall, but
the caused damage will not exceed model expectations. Indeed, we point
out that at least the division of the defender into neighborhoods, and the
allocation strategy into neighborhoods, can be observed. The single-drone
defensive strategy within a neighborhood is then already more compact. If
S2D2 is the chosen implementation, the attacker may be able to compute it
by itself. Additionally, the attacker can gain information in other manners.
For instance, it may conduct a cyber attack or procure a captured defense
drone to get the defender’s code. It may also get human intelligence from
people who work at the companies that manufactures the drones, or from
an employee who developed the defense mechanism for the drones. With all
of these considerations in mind, we opted to assume full knowledge of the
adversary with regards to the mixed defender strategy.

Zero-sum games. Another alternative approach would be to assume the game
is zero sum. In this case, Nash equilibrium is sufficient, and one need not
assume knowledge of the defender’s mixed strategy. On the other hand,
this reduces the model’s generality compared to our proposed general-sum

53

setup. This is crucial, as in many cases, the objectives of the attacker and
defender may not be aligned. For instance, the attacker may care more about
damaging infrastructure, while the defender may care more about civilian
casualties, or vice versa. In such scenarios, either a zero-sum based model
will not be deployed at all, or alternatively, one would approximate it to
be such. Similarly to the previous point, this may result in an unrealistic
model of the adversary, and in turn could cause damage that exceeds model
expectations.

Scalability. Since the defender’s strategy space appears extremely large, ques-
tions about scalability may arise. While we claim the runtime to be poly-
nomial with |S¢|, the strategy space itself is exponential with respect to the
input problem size. In this paper, we took a three step approach to ad-
dress the problem at hand. (i) First, we provided theoretical analysis and
explored a theoretically proven algorithm which is inevitably impractical.
(ii) After identifying the bottlenecks, we introduced heuristics to make the
algorithm practical. These include narrowing down the strategy space |S9|
of the defender, as well as relaxing the conditions for our coarsening. (iii)
Finally, we extensively tested the performance of the heuristic algorithm.
We acknowledge that S2D2 can be improved both in scale and performance
in future works. However, we believe that following the blueprint outlined
above is a vital cornerstone. Therefore, down the line, our theoretical results
may turn out to be of greater importance than any of the three building
blocks of S2D2(coarsening, single drone sequential sub-games, multi-drone
meta-game) as instantiated in this work.

8. Conclusions

Multi-drone strikes are increasingly likely to be used to target cities. The
threat actors using such techniques will include both nation state actors and
terrorist groups.

In this paper, we have developed a realistic model to defend cities against
multi-drone attacks via 4 contributions: (i) We extend sequential SSGs in-
volving multiple attack/defense drones with payload and battery constraints.
(ii) We propose the Sequential Stackelberg Drone Defense (S2D2) paradigm
to solve the problem of minimizing damage to the city by the attacker and
show detailed theoretical results that show that under some conditions re-
lated to a novel concept called d-coarsening, S2D2 provides a strong approx-
imation algorithm for a computationally difficult problem. We prove that

o4

S2D2 outputs an approximate SSE and an upper bound on the error, under
such conditions. (iii) Experiments on a dataset of 80 famous cities compare
S2D2 with a heuristic swarm-defense algorithm, demonstrating a trade-off
between runtime and defender utility. Importantly, the experiments show
that even when the d-coarsening conditions do not hold, S2D2 still works
effectively. (iv) Our experiments were run with real data on 80 cities using
randomly assigned utilities. But in addition, we assigned utilities to locations
in 6 cities using general guidelines provided by security experts from the US,
EU, Asia, and Middle East. Our experiments also included these 6 cities.
Finally, we did a detailed case study of one large North American city with
expert input. To the best of our knowledge, past work on game-theoretic
defenses of cities against multi-drone attacks have not done that.

References

[1] M. R. Brust, G. Danoy, P. Bouvry, D. Gashi, H. Pathak, M. P.
Gongalves, Defending against intrusion of malicious UAVs with net-
worked uav defense swarms, in: 2017 IEEE 42nd conference on local
computer networks workshops (LCN workshops), IEEE, 2017, pp. 103—
111.

[2] D. He, G. Yang, H. Li, S. Chan, Y. Cheng, N. Guizani, An effective
countermeasure against uav swarm attack, IEEE Network 35 (1) (2020)
380-385.

[3] Y. N. Jurn, S. A. Mahmood, J. A. Aldhaibani, Anti-drone system based
different technologies: architecture, threats and challenges, in: 2021
11th IEEE International Conference on Control System, Computing and
Engineering (ICCSCE), IEEE, 2021, pp. 114-119.

[4] M. J. Guitton, Fighting the locusts: Implementing military counter-
measures against drones and drone swarms, Scandinavian Journal of
Military Studies 4 (1) (2021) 26-36.

[5] M. R. Brust, G. Danoy, D. H. Stolfi, P. Bouvry, Swarm-based counter
uav defense system, Discover Internet of Things 1 (2021) 1-19.

[6] W. Chen, X. Meng, J. Liu, H. Guo, B. Mao, Countering large-scale
drone swarm attack by efficient splitting, IEEE Transactions on Vehic-
ular Technology 71 (9) (2022) 9967-9979.

95

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

V. U. Castrillo, A. Manco, D. Pascarella, G. Gigante, A review of
counter-uas technologies for cooperative defensive teams of drones,
Drones 6 (3) (2022) 65.

N. Li, Z. Su, H. Ling, M. Karatas, Y. Zheng, Optimization of air de-
fense system deployment against reconnaissance drone swarms, Complex
System Modeling and Simulation 3 (2) (2023) 102-117.

D. Kar, T. H. Nguyen, F. Fang, M. Brown, A. Sinha, M. Tambe, A. X.
Jiang, Trends and applications in stackelberg security games, Handbook
of dynamic game theory (2017) 1-47.

A. Sinha, F. Fang, B. An, C. Kiekintveld, M. Tambe, Stackelberg secu-
rity games: Looking beyond a decade of success, in: IJCAI Conference,
2018.

P. Paruchuri, M. Tambe, F. Ordonez, S. Kraus, Security in multiagent
systems by policy randomization, in: AAMAS Conference, 2006.

J. Pita, R. John, R. Maheswaran, M. Tambe, S. Kraus, A robust ap-
proach to addressing human adversaries in security games, in: ECAI
Conference, I0S Press, 2012.

J. Pita, M. Jain, M. Tambe, F. Ordoénez, S. Kraus, Robust solutions to
stackelberg games: Addressing bounded rationality and limited obser-
vations in human cognition, Artif. Intell. 174 (15) (2010) 1142-1171.

D. Mutzari, Y. Aumann, S. Kraus, Robust solutions for multi-defender
Stackelberg security games, IJCAT (2022).

C. Kiekintveld, M. Tambe, J. Marecki, Robust bayesian methods for
stackelberg security games, in: AAMAS Conference, 2010.

D. Korzhyk, V. Conitzer, R. Parr, Complexity of computing optimal
stackelberg strategies in security resource allocation games, in: AAAI
Conference, 2010.

J. Gan, E. Elkind, M. J. Wooldridge, Stackelberg security games with
multiple uncoordinated defenders, in: AAMAS Conference, 2018.

D. Mutzari, J. Gan, S. Kraus, Coalition formation in multi-defender
security games, in: AAAI Conference, 2021.

56

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

27]

28]

C. U. Solis, A. S. Poznyak, J. B. Clempner, Solving stackelberg security
games for multiple defenders and multiple attackers, in: Stony Brook
International Conference on Game Theory, 2015.

D. Korzhyk, V. Conitzer, R. Parr, Security games with multiple attacker
resources, in: [JCAI Conference, 2011.

D. Kar, F. Fang, F. Delle Fave, N. Sintov, A. Sinha, A. Gal-
styan, B. An, M. Tambe, Learning bounded rationality models
of the adversary in repeated stackelberg security games, Retrieved
from Nanyang Technological University: http://www3. ntu. edu.

sg/home/boan/papers/ALA15 Debarun. pdf (2015).

F.-L. Chiper, A. Martian, C. Vladeanu, I. Marghescu, R. Craciunescu,
O. Fratu, Drone detection and defense systems: Survey and a software-
defined radio-based solution, Sensors 22 (4) (2022) 1453.

T. Deb, S. de Laaf, V. La Gatta, O. Lemmens, R. Lindelauf, M. van
Meerten, H. Meerveld, A. Neeleman, M. Postiglione, V. Subrahmanian,
A drone early warning system (dews) for predicting threatening trajec-
tories, IEEE Intelligent Systems (2025).

L. Han, W. Song, T. Yang, Z. Tian, X. Yu, X. An, Cooperative deci-
sions of a multi-agent system for the target-pursuit problem in manned—
unmanned environment, Electronics 12 (17) (2023) 3630.

C. De Souza, R. Newbury, A. Cosgun, P. Castillo, B. Vidolov, D. Kuli¢,
Decentralized multi-agent pursuit using deep reinforcement learning,
IEEE Robotics and Automation Letters 6 (3) (2021) 4552-45509.

A. Manoharan, P. Thakur, A. K. Singh, Multi-agent target defense game
with learned defender to attacker assignment, in: 2023 International
Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2023, pp.
297-304.

L. S. Pontryagin, On the theory of differential games, Russian Mathe-
matical Surveys 21 (4) (1966) 193.

M. Chen, Z. Zhou, C. J. Tomlin, Multiplayer reach-avoid games via
pairwise outcomes, IEEE Transactions on Automatic Control 62 (3)
(2016) 1451-1457.

o7

[29] A. Bonato, The game of cops and robbers on graphs, American Mathe-
matical Soc., 2011.

[30] A. Kehagias, D. Mitsche, P. Pralat, Cops and invisible robbers: The
cost of drunkenness, Theoretical Computer Science 481 (2013) 100-120.

[31] A. Kehagias, D. Mitsche, P. Pralat, The role of visibility in pur-
suit/evasion games, Robotics 3 (4) (2014) 371-399.

[32] D. Dereniowski, D. Dyer, R. M. Tifenbach, B. Yang, Zero-visibility cops
and robber and the pathwidth of a graph, Journal of Combinatorial
Optimization 29 (2015) 541-564.

[33] T. H. Nguyen, A. Butler, H. Xu, Tackling imitative attacker deception
in repeated bayesian stackelberg security games, in: ECAI Conference,
2020.

[34] T. H. Nguyen, A. Yadav, B. Bosansky, Y. Liang, Tackling sequential
attacks in security games, in: Decision and Game Theory for Security
Conference, 2019.

[35] T. Petr, B. Bosansky, T. H. Nguyen, Using one-sided partially observable
stochastic games for solving zero-sum security games with sequential
attacks, in: Decision and Game Theory for Security: 11th International
Conference, GameSec 2020, College Park, MD, USA, October 28-30,
2020, Proceedings 11, Springer, 2020, pp. 385-404.

[36] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, M. Tambe, Stackelberg
vs. Nash in security games: An extended investigation of interchange-

ability, equivalence, and uniqueness, Journal of Artificial Intelligence
Research 41 (2011) 297-327.

[37] M. Breton, A. Alj, A. Haurie, Sequential stackelberg equilibria in two-
person games, Journal of Optimization Theory and Applications 59
(1988) 71-97.

[38] B. Bosansky, J. Cermak, Sequence-form algorithm for computing stack-
elberg equilibria in extensive-form games, in: AAAI Conference, 2015.

[39] J. Cermak, B. Bosansky, K. Durkota, V. Lisy, C. Kiekintveld, Using
correlated strategies for computing stackelberg equilibria in extensive-
form games, in: AAAI Conference, 2016.

58

[40] J. Cerny, B. Bosansky, C. Kiekintveld, Incremental strategy generation
for stackelberg equilibria in extensive-form games, in: ACM Conference
on Economics and Computation, 2018.

[41] J. Karwowski, J. Mandziuk, A new approach to security games, in:
ICAISC Conference, 2015.

[42] D. Vasal, Sequential decomposition of stochastic Stackelberg games, in:
2022 American Control Conference (ACC), IEEE, 2022, pp. 1266-1271.

[43] G. Leitmann, On generalized stackelberg strategies, Journal of optimiza-
tion theory and applications 26 (4) (1978) 637-643.

[44] M. Jiinger, G. Reinelt, G. Rinaldi, The traveling salesman problem,
Handbooks in operations research and management science 7 (1995)
225-330.

[45] K. Kerdprasop, N. Kerdprasop, P. Sattayatham, Weighted k-means for
density-biased clustering, in: International conference on data warehous-
ing and knowledge discovery, Springer, 2005, pp. 488-497.

[46] V. D. Angelis, Minimization of a separable function subject to linear
constraints, Princeton University Press, 1971, pp. 503-510.

[47] M. Oral, O. Kettani, A linearization procedure for quadratic and cu-
bic mixed-integer problems, Operations Research 40 (1-supplement-1)
(1992) S109-S116.

[48] G. Boeing, Osmnx: New methods for acquiring, constructing, analyzing,
and visualizing complex street networks, Computers, Environment and

Urban Systems 65 (2017) 126-139.

59

