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Abstract—Recent work presented at USENIX Security 2025
claims that occupancy-based attacks can recover AES keys from
the MIRAGE randomized cache. In this paper, we examine
these claims and find that they arise from fundamental modeling
flaws. Most critically, the authors’ simulation of MIRAGE uses a
constant seed to initialize the random number generator used for
global evictions in MIRAGE, causing every AES encryption they
trace to evict the same deterministic sequence of cache lines. This
artificially creates a highly repeatable timing pattern that is not
representative of a realistic implementation of MIRAGE, where
eviction sequences vary randomly between encryptions. When
we instead randomize the eviction seed for each run, reflecting
realistic operation, the correlation between AES T-table accesses
and attacker runtimes disappears, and the attack fails. These
findings show that the reported leakage is an artifact of incorrect
modeling, and not an actual vulnerability in MIRAGE.

I. INTRODUCTION

MIRAGE [1] is a randomized cache design, proposed in
2021, that emulates a fully associative cache with globally
random evictions, eliminating set-conflict cache side channels.
It builds on theoretical foundations such as multiple random-
ized set indexing functions using block ciphers, and power-of-
two-choices [2] based load-balancing, guaranteeing that set-
associative evictions are practically impossible in a system’s
lifetime. Given these strong guarantees, several works have
examined whether MIRAGE’s security holds in practice.

In 2023, “Are Randomized Caches Truly Random”
(ARCTR) [3] claimed to induce set-conflicts in MI-
RAGE, breaking its security guarantees. However, subsequent
work [4] showed that these were the result of incorrect mod-
eling by ARCTR, caused by a buggy cipher implementation,
and that MIRAGE’s security guarantees remained intact.

More recently, the SEC 2025 paper, “Systematic Evaluation
of Randomized Cache Designs against Cache Occupancy”
(RCO) [5], claims that MIRAGE is vulnerable to cache-
occupancy-based side-channel attacks that can leak secret AES
keys. Specifically, RCO (in Section 7), claims that the AES
T-Table implementation can leak the AES key on MIRAGE
via the cache occupancy side-channel, and that MIRAGE’s
fully associative eviction policy makes it more susceptible than
other randomized caches. A subsequent paper at SEC 2025,
“SoK: So, You Think You Know All About Secure Randomized
Caches?” [6] reiterates these claims in its Figure 17. This
paper examines whether these claims hold up or whether they
are artifacts of modeling flaws like the ARCTR paper.

First, we tried to reproduce the results of the RCO paper.
Using the unmodified artifact released with the RCO paper1,
we attempted to reproduce their AES key recovery results,
specifically the guessing entropy for an unknown victim AES
key reported in Figure 10 of the RCO paper. [5]. Surprisingly,
we were unable to reproduce the entropy degradation for
MIRAGE as reported by them. Figure 1 shows the guessing
entropy of an unknown AES key (higher is better), as reported
by RCO for MIRAGE and other randomized cache designs,
and our own reproduction using RCO’s artifact.

As shown in Figure 1, the RCO paper reports the guessing
entropy to decrease for MIRAGE as the number of AES
encryptions increases. However, our reproduction of MIRAGE
maintains high entropy (above 90%) even after thousand AES
encryptions, similar to other randomized cache designs such
as CEASER-S, SassCache, and ScatterCache,
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Fig. 1: Guessing Entropy (GE) for an unknown AES key, as
the number of AES encryptions increases, for our reproduction
of MIRAGE from RCO’s artifact compared to results from
the RCO paper for MIRAGE, CEASER-S, SassCache, Scat-
terCache. In our reproduction, MIRAGE has GE of more than
90%, showing no leakage, departing from the RCO paper.

Next, given that the entropy results in RCO could not be
reproduced, we examine whether the stated root cause of the
reported leakage is valid. RCO attributes the leakage to the
accesses to the AES S-Box in the last round of AES encryption
and its impact on cache occupancy, and its correlation with an
attacker’s access time for its own cached array. By creating
access time templates for each possible key-byte value of a

1We use the version of the code artifact referenced in RCO’s [5] USENIX
Security 2025 pre-print - https://zenodo.org/records/14737392.
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profiled key, the attacker matches the observed timings for an
unknown victim key against the templates to recover the key.
However, this explanation raises a key question:
Effect of Random Global Evictions. MIRAGE randomly
evicts an existing LLC line upon every new insertion. This
means that even repeated AES encryptions of the same plain-
text and key produce timing variations unrelated to the key,
due to the different eviction patterns. Since AES T-table im-
plementations generate the same number of memory accesses
for all keys, how could different keys produce sufficiently
distinguishable timing? In investigating this, we uncover a
modeling pitfall in RCO’s evaluation,

Modeling Flaw in RCO. RCO’s simulations initialize
MIRAGE’s global eviction RNG with a static seed be-
fore each AES encryption, causing a fixed sequence of
evictions on each AES encryption, unlike real hardware.

RCO runs each AES encryption in a separate simulation
starting from a clean cache state. In this setup, the final cache
occupancy is determined by both the victim’s accesses and the
global eviction pattern. However, with a fixed RNG seed, the
eviction pattern never changes, making occupancy entirely a
function of the victim’s access pattern and spuriously creating
correlations with the key. When we randomize the seed for
each run (e.g., using time() to seed the RNG), the eviction
pattern changes each time, and the correlation between the
key and attacker timings disappears, as expected in MIRAGE.
This models a realistic setting, where the attacker cannot reset
or guess the state of the RNG deciding the evictions.

Results after Fix. In evaluations of an unknown victim
key’s guessing entropy (GE), after randomizing the RNG
seed for global evictions in MIRAGE, the GE remains
high (above 90%), highlighting that AES key leakage on
MIRAGE via occupancy attacks is infeasible.

To summarize, we make the following contributions:
1) We show that the AES key guessing entropy remains

high in MIRAGE, in a reproduction of RCO’s artifact,
contradicting the paper’s claims.

2) We identify that RCO’s fixed RNG seeds for global
evictions in MIRAGE create artificial correlations, and
randomizing the seed, as in real hardware, eliminates
any observed correlation and leakage.

II. BACKGROUND

A. The MIRAGE Cache

MIRAGE [1] is a randomized cache that prevents conflict-
based side channels by emulating a fully-associative random-
ized cache, i.e., every eviction is global and selected uniformly
at random from the entire cache rather than from a specific
set. To support this, MIRAGE over-provisions invalid tags in
each set and uses load-balancing via the Power-of-2-Choices
to maintain available space, avoiding set-associative evictions.
On a miss, the data-store victim is chosen randomly from all
cache lines, its tag is located via a Reverse Pointer (RPTR)

and removed, and the new tag is inserted via a Forward
Pointer (FPTR). With an 8-way cache augmented with 6 extra
ways (75% extra) in the tag-store, MIRAGE guarantees the
probability of a set-associative eviction is only once in 1034

cache installs, an event that would take almost 1017 years to
occur, making set-conflicts practically impossible in a system’s
lifetime and eliminating conflict-based attacks.

B. Cache Occupancy Attacks on Mirage

Cache occupancy attacks measure changes in the overall
occupancy of a shared cache, rather than targeting specific
sets as in set-conflict attacks like Prime+Probe. Because they
exploit aggregate cache usage, all randomized caches without
explicit cache partitioning, such as CEASER, ScatterCache,
and Mirage in principle, leak some information via cache
occupancy. In fact, MIRAGE’s threat model explicitly claims
to not protect against such occupancy-based channels. While
covert channels between two colluding processes can be
naively constructed by modulating the cache occupancy, the
RCO [5] paper claims a stronger side-channel: recovering AES
keys through modulation of cache occupancy.

The RCO paper claims that a victim using an AES T-Table
implementation, can be forced to leak the key in MIRAGE,
by a spy first priming the LLC to a chosen occupancy, letting
the victim run one encryption, then timing accesses to the
attacker’s own cache lines. By correlating these timings with
simulated last-round T-table accesses for guessed keys, they
report low guessing entropy for AES keys (lower than 30%),
and claim full 128-bit AES key recovery on MIRAGE within
a few hours. This paper examines these claims of RCO.

III. ANALYZING CLAIMS OF OCCUPANCY-BASED
SIDE-CHANNEL ATTACKS ON MIRAGE

Using the authors’ publicly released artifact, we attempted
to reproduce the results in Figure 10 of the RCO paper.
However, contrary to their claims, we found that the guessing
entropy for an unknown AES key remained high and did not
drop even after thousands of encryptions in our reproduction,
as shown in Figure 1. Therefore, we analyze the claimed root
cause of the attack, which is that the execution time for an
attacker accessing its own array is influenced by the cache
occupancy of the AES encryption, which is in turn a function
of the AES key.

A. Pitfall-1: Fixed Sequence of Evictions Modeled by RCO

RCO Attack Root Cause. The RCO [5] paper claims that
the T-Table implementation of AES running on MIRAGE [1]
can leak the secret key through a cache occupancy attack.
The root cause they mention is that the sequence of T-
Table accesses in the last round of AES encryption, which
depends on the secret key, can impact the cache occupancy
in MIRAGE. Therefore, the execution time for an attacker to
access a large cached array, parts of which may have been
evicted by the AES encryption, can leak the cache occupancy,
and therefore the secret key.

RCO Attack Mechanism. To perform this attack, the
RCO [5] work creates a template for the execution times
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(a) Fixed Seed for Global Evictions (RCO [5])
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(b) Random Seed for Global Evictions (our fix)

Fig. 2: Heatmap of access times for the attacker to iterate through its array. We bin the access times, based on the 256 possible
T-table entries accessed in the last round. The 256 bins are represented in the 16 x 16 matrix. (a) With Fixed Seed for Global
Eviction, as used in RCO [5], there is strong correlation between the heatmaps for the profiled key and the victim key. (b)
After our fix, with Random Seeds for Global Eviction, the correlations disappear, showing it is infeasible to use this to guess
victim AES keys.
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Fig. 3: Access Times for the attacker with (a) original RCO implementation and (b) our bug fix for four sample plaintext-
ciphertext pairs with the same key. (a) The original implementation uses a Fixed Seed (42) for Global Evictions in each AES
encryption. (b) Our bug fix initializes the RNG used for Global Evictions, with a random seed (using time()), for each AES
encryption, mimicking a real system where the seed cannot be reset to a static value each time. With Random Seed for Global
Evictions, encryptions with different plaintexts (accessing different T-table entries) in each

with all possible T-table entries accessed in the last round
(T1 to T255), by using a known key (profiled key). The
attacker measures the execution time to access its own cached
array that occupies 50% of the MIRAGE cache, using ran-
domly generated plaintext-ciphertext pairs, and creates the
template (T1 to T255) by averaging the access times for Tn=
SBOX-Inv(K ⊕ CT ), where K and CT are bytes of the last-
round key and ciphertext. Such templates can be created for
each of the bytes of the round-key (0 to 15). Later, for an
unknown victim key, by creating a similar template using a
guessed key and random plaintext-ciphertext pairs, the attacker
identifies likely key values having the highest correlation with
the profiled template.

Our Reproduction of RCO’s Root Cause. Since we are
unable to reproduce the exact Guessing Entropy results from
RCO (see Figure 1) , we try to reproduce their root cause,
the template with correlation between profiled and victim
keys. Figure 2a shows a heatmap visualizing the template
built by the attacker, where each entry represents one of the
256 possible T-table entries (arranged as a 16×16 matrix)
and the cell color encodes the attacker’s average access time,

when that entry is accessed in the last round of AES by
the victim. If the profiled-key heatmap (attacker’s template)
closely matches the heatmap with the guessed victim-key, the
guess is likely to be the correct key. For simplicity, instead of
Tn = SBOX-INV(K ⊕ CT ), we use Tn = K ⊕ CT for our
bins, since SBOX-INV is just a lookup table, and visualize a
single heatmap, averaging the heatmaps of key bytes 0 to 15.

As shown in Figure 2(a), when we generate the heatmaps by
using the RCO artifact [5] there is a clear correlation between
the templates of the profiled key and the guessed victim key.
This correlation can allow the attacker to leak the victim key
since the templates will be correlated only when the guessed
key is actually the correct victim key.

RCO’s Bug: Fixed Sequence of Global Evictions. To un-
derstand why this correlation exists, we measured the attacker
access times, after victim AES encryptions, for four sample
plaintext-ciphertexts pairs chosen at random and repeated 100
times. Each of these encryptions has a distinct AES T-Table
access sequence in the last round. Figure 3(a) shows the
histogram of the access-times measured for these four encryp-
tions: each of these (CT 1, 2, 3) has a different access time,
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although CT 3 and 4 overlap with the same access time. This
explains the correlations of access-times with AES T-table
access sequences. Surprisingly, all 100 repetitions yield the
exact same measurement for the attacker access time, although
global evictions during the attacker accesses are supposed to
be random. This allowed us to identify the bug in the RCO
implementation, that the Global Evictions used a random-
number generator (RNG) seeded with a static seed (42).
Hence, in each AES execution, the same sequence of cache
indices is selected for global eviction, making the operation of
MIRAGE quite deterministic in each AES encryption, which
is quite unrealistic in real implementations, where the attacker
has no way to reset the RNG to a fixed state each time.

Our Fix: Accurate Modeling with Random Seed. The
cache occupancy (O) is a function of both the Victim ac-
cesses (V ) and the Global Eviction decisions (GE), i.e.,
O ≈ f(V,GE). RCO incorrectly assumes a fixed sequence of
GE for each encryption, making the fingerprinting of V using
O measurements possible. Fixing the bug in RCO, by changing
the fixed seed for global evictions to a randomly chosen
seed for each AES encryption, representative of real systems,
where the Global Eviction decisions would be performed
by a RNG whose state cannot be reset by the attacker, we
see that the CO is now strongly impacted by the GE in
addition to the V . As shown in Figure 3(b), with a random
seed for each encryption, the attacker’s access times show
random variations of the order of 100,000 cycles, due to
the global evictions unpredictably evicting the attacker’s own
lines during its measurement phase, that overwhelm minor
occupancy differences causing by the victim which varied
timings by a few 1000 cycles in Figure 3(a). As shown in
Figure 3(b), with a random seed for each encryption, the
attacker’s access times show random variations of the order
of 100,000 cycles, due to the global evictions unpredictably
evicting the attacker’s own lines during its measurement phase,
that overwhelm minor occupancy differences causing timing
variations of a few 1000 cycles in Figure 3(a).

After our fix, when we replace the fixed seed with a random
seed for each AES encryption in Figure 2(b), the correlation
between profiled and victim keys disappears, making the
heatmaps virtually unrelated and eliminating the signal re-
quired for key recovery. This realistic modeling of MIRAGE’s
global evictions removes the attack’s timing signal, preventing
AES key leakage on MIRAGE via occupancy attacks.

B. Pitfall-2: Unrealistic L1 Cache Configuration

The RCO paper also claims to use a 512 kilobyte L1 cache,
as per Section 7.1 of their paper [5]. However, their code
artifact2 uses a 512 byte L1 cache by default which is not
representative of real systems which use at least a 64KB L1
Cache. Modeling a smaller L1 cache, such as 512 byte L1
cache, can inflate the L1 cache misses and LLC accesses,
compared to a 64KB L1 Cache which can have hits for all
T-table accesses after the first round. Thus, modeling a 512
byte L1 cache can overestimate the attack. We confirmed that

2We refer to the version of the code artifact referenced in the USENIX
Security 2025 pre-print - https://zenodo.org/records/14737392

after updating the initialized seed to be random, regardless of
the L1 cache size being 512-byte like in the RCO artifact or a
more realistic 64KB, there is a lack of correlation between the
heatmaps of the profiled and victim key templates, similar to
Figure 2 (b), indicating that AES key leakage is impractical.

C. Guessing AES Key after Fixing RCO’s Modeling Issues

We evaluate the Guessing Entropy (GE) for a victim’s AES
key, using the template for a profiled AES key similar to
RCO, using the formula: GE =

∑15
i=0 log2(Ri), where Ri

is the rank of the correct guess for key byte i. Figure 4 shows
the guessing entropy (GE) for Mirage from the RCO paper,
our reproduction based on their artifact, and after our fixes
of RCO’s modeling issues (after using a random seed for
initializing the RNG for global evictions). In our reproductions
(both before and after our fixes), we continue to see Mirage
with high GE, demonstrating that it is resilient to brute-force
key guessing attacks on AES.
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Fig. 4: Guessing Entropy (GE) for an unknown AES key,
after our fixes, as the number of AES encryptions increases.
MIRAGE continues to have a high GE of more than 90%,
showing no leakage, with Random Seed used to initialize the
RNG for Global Evictions, with both an unrealistic 512B L1
Cache (like RCO’s artifact) and a realistic 64KB L1 Cache.

IV. CONCLUDING REMARKS

Our analysis demonstrates that, when modeled faithfully,
MIRAGE remains resilient to occupancy-based side-channel
attacks aiming to recover AES keys. The key recovery results
reported in the RCO paper [5] arise from unrealistic modeling
assumptions, most notably the use of a fixed and deterministic
sequence of global evictions, across multiple AES encryptions,
which do not reflect MIRAGE’s design or operation in practi-
cal systems. We encourage the authors of the RCO paper [5]
and the subsequent SoK paper on randomized caches [6] to
revisit their conclusions in light of these findings.
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