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ABSTRACT

This paper elaborates on an extensive security framework specifically designed for energy man-
agement systems (EMSs), which effectively tackles the dynamic environment of cybersecurity
vulnerabilities and/or system problems (SPs), accomplished through the incorporation of novel
methodologies. A comprehensive multi-point attack/error model is initially proposed to systemat-
ically identify vulnerabilities throughout the entire EMS data processing pipeline, including post
state estimation (SE) stealth attacks, EMS database manipulation, and human-machine interface
(HMI) display corruption according to the real-time database (RTDB) storage. This framework
acknowledges the interconnected nature of modern attack vectors, which utilize various phases of
supervisory control and data acquisition (SCADA) data flow. Then, generative AI (GenAI)-based
anomaly detection systems (ADSs) for EMSs are proposed for the first time in the power system
domain to handle the scenarios. Further, a set-of-mark generative intelligence (SoM-GI) frame-
work, which leverages multimodal analysis by integrating visual markers with rules considering the
GenAI capabilities, is suggested to overcome inherent spatial reasoning limitations. The SoM-GI
methodology employs systematic visual indicators to enable accurate interpretation of segmented
HMI displays and detect visual anomalies that numerical methods fail to identify. Validation on the
IEEE 14-Bus system shows the framework’s effectiveness across scenarios, while visual analysis
identifies inconsistencies. This integrated approach combines numerical analysis with visual pattern
recognition and linguistic rules to protect against cyber threats and system errors.

Keywords Anomaly detection · Attack · Energy management systems · Generative AI · Multi-modal Analysis ·
Set-of-Mark Generative Intelligence.

1 Introduction

The accelerated digitization of power systems has revolutionized EMSs into complex cyber-physical architectures
capable of coordinating electricity delivery across expansive grids. Modern EMS frameworks integrate SCADA
systems with cutting-edge computational algorithms, promoting a complex network in which field equipment such as
remote terminal units (RTUs) and phasor measurement units (PMUs) transmit synchronized, real-time data that enables
enhanced monitoring and control of grid performance [1–3]. While this integration brings substantial operational
efficiencies and enhanced operational visibility, it also expands the system’s vulnerability footprint, exposing multiple
attack vectors within the data acquisition and processing sequence. The convergence of operational technology (OT) and
information technology (IT) domains necessitates a reconsideration of traditional cybersecurity approaches. SE is crucial
in power systems, offering operators a real-time overview of the system’s condition to maintain reliability and control [4].
However, the coupling of power systems with cyber infrastructure increases their exposure to complex cyber-attacks.
Among these, false data injection (FDI) attacks present a particularly serious threat by manipulating measurement data to
lead system operators toward incorrect control actions while evading traditional bad data detection (BDD) methods [5].
Also, stealth attacks represent a sophisticated subset of FDI attacks. These attacks are mathematically designed to
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bypass traditional BDD mechanisms by ensuring that the measurement residuals remain practically unchanged from
normal conditions [6]. Hence, BDD techniques such as χ2-test primarily based on SE residuals are increasingly
insufficient, particularly against sophisticated stealth attacks and FDI strategies. These stealthy attacks can manipulate
PMU and SCADA data while maintaining consistency with system models, evading conventional BDD filters [7, 8]. In
parallel, attackers might manipulate data within HMIs to introduce misleading display changes that mislead operators,
all the while not necessitating the modification of actual physical measurements. Given the critical infrastructure,
modern power grids necessitate robust mechanisms capable of identifying both mathematically stealthy manipulations
and operator-level display tampering. Recent literature emphasizes hybrid detection approaches that synthesize physical-
model awareness, data-driven analytics, and temporal behavioral models to detect anomalies across multi-layered attack
vectors [9]. In accordance with this, testbed-based experiments and co-simulation studies emphasize the importance
of AI and multi-modal detection approaches to limit false positives (FPs) while improving sensitivity to complex
attacks [10–12].

1.1 Problem Statement

The evolving cybersecurity threats targeting EMSs represent a new class of challenges that exceed the capabilities of
traditional defenses originally designed for isolated OT domains [10]. As EMS architectures increasingly integrate
both cyber and physical layers, malicious actors are now capable of executing coordinated attacks that span the entire
data processing pipeline from the collection of measurements through the SE stage, and finally to the HMI screen. An
alarming feature of such breaches is their ability to maintain statistical validity, enabling them to evade conventional
BDD techniques such as those relying on χ2 hypothesis testing. These attack pathways are diverse and sophisticated,
such that some are stealth attacks or may involve tampering with SE outputs after validation but before storage in
historical databases, effectively corrupting trusted data storage systems. Others may directly target the EMS databases,
compromising both operational and historical data integrity. Also, some attacks on HMIs can happen, which can subtly
manipulate visual representations such as circuit breaker (CB) statuses or voltage levels without modifying the core
numerical calculations, thereby misleading operators and delaying response times despite accurate SE outputs [10]. The
complexity of power systems, intensified by the integration of distributed energy resources (DERs), further increases
these vulnerabilities. Within such dynamic conditions, malicious data injections can be designed to imitate normal
operations, potentially leading the system into inefficient or unstable operating states without timely identification.

Also, traditional anomaly detection (AD) mechanisms such as the SE process focus on numerical inconsistencies and
threshold-based alarms, which are often insufficient when attackers manipulate the visual elements of SCADA displays.
For instance, falsified visual indicators may not breach statistical thresholds but can still mislead human operators,
especially during high-stress operational conditions. Although recent advances in GenAI offer promising opportunities
for pattern recognition and AD processes, they present distinctive challenges. Many generative models still lack robust
spatial reasoning capabilities and often require explicit guidance or structured prompts to accurately interpret the content
of segmented or context-rich HMI displays. The absence of integrated detection frameworks which simultaneously
assess numerical validity, visual consistency, and semantic rule coherence creates substantial gaps in current EMS
cybersecurity strategies. These gaps provide opportunities for sophisticated attackers to exploit the interfaces between
detection layers and human perception, particularly in scenarios requiring rapid and confident operator decision-making.
Addressing these vulnerabilities requires a framework shift toward multi-modal, intelligent security solutions capable of
bridging these aspects of grid operations [13].

1.2 Research Objectives

This section proposes the design of a multi-layered AD framework tailored for EMSs, aiming to address a broad
range of security vulnerabilities by combining advanced computational techniques with domain-specific operational
insights. The central goal is to construct and evaluate a multi-point detection strategy that continuously observes
critical stages across the EMS data flow, focusing in particular on post-SE validation based on stealth attacks, database
integrity verification, and the validation of HMI outputs while ensuring the efficiency necessary for grid stability and
operational continuity. A key innovation of this research lies in the development of a SoM-GI approach that is designed
to overcome spatial reasoning constraints often encountered in models. By embedding structured visual indicators,
directional symbols, and connection point (CP) annotations within screen segments, the proposed method enhances the
interpretability of complex HMI layouts and facilitates the identification of hidden anomalies. The effectiveness of the
proposed framework will be assessed through testing on an IEEE 14-bus system that meets the North American Electric
Reliability Corporation (NERC) regulations in terms of voltage violations. Validation efforts will include detection
scenarios involving manipulated state vectors, fabricated topology information, and HMI RE-based deception.
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1.3 Related Work

Generative pre-trained transformers (GPTs) can enhance the system diagnosis (SD) accuracy beyond traditional machine
learning (ML) models and BDDs through contextual processing and adaptability. Unlike ML models requiring extensive
pattern training, GPTs can simultaneously analyze data, historical patterns, and operator inputs. Their NLP capabilities
enable the integration of operator logs with numerical data, leading to more accurate SD processes in EMSs. They can
also adapt to new system configurations without complete retraining, making them more efficient for evolving power
network topologies while maintaining high diagnostic accuracy during critical situations [14–17]. Furthermore, it is
challenging for BDDs to detect stealth attacks as they evade detectors as well as the unexpected scenarios. Hence, a
summary of some related research is given in Table 1. Ashrafuzzaman et al. [20] introduced a data-driven ensemble ML

Table 1: A literature survey on the AD process in EMSs.
Author Contributions Challenges
Falconer et al. [18] (2022) • ML-based approximation of complex power

flow (PF) problems
• Addressed unit commitment and security re-
strictions

• Scalability issues with fully connected net-
works
• Restricted convolutional neural network
(CNN) accuracy in anomaly scenarios

Mukherjee [19] (2022) • Multi-label classification framework for FDI
diagnosis
• Model-free detection without grid/attack
knowledge

• Limited comprehensiveness for diagnosing
unexpected anomalies
• Challenges in retraining models on new at-
tacks

Ashrafuzzaman et al. [20] (2020) • Ensemble ML-based detection of stealthy
FDIs
• Inclusion of Random Forest Classifier for
feature reduction

• Extensive labeled data requirement
• High FP rates in unsupervised scenarios

Guo et al. [21] (2023) • Event-driven FDI attack strategy
• Real-time residual-driven attack scheduling

• Dependence on accurate real-time residual
calculations
• Performance reduction in noisy conditions

Zhang et al. [22] (2024) • Comprehensive analysis of reactance pertur-
bation strategy limitations
• Proposed enhanced reactance perturbation
strategy

• Need for detailed topology analysis
• Scalability issues for larger systems

Guo et al. [23] (2023) • Optimal residual-based FDI for multi-sensor
systems
• Sensor selection principle to maximize dete-
rioration

• Computational complexity of optimization
• High resource demand for real-time applica-
tions

framework aimed at the detection of stealthy FDI attacks within smart grids by employing classification algorithms.
Although this approach enhances the AD process by mitigating the complexities associated with high-dimensional
data, it faces significant challenges, particularly the requirement for extensive labeled datasets and the frequency of
high FP rates in unsupervised scenarios. An approach addressing stealth sensor and actuator attacks under resource
constraints on discrete event systems using supervisory control was developed by He et al. [24]. They introduced
combined vulnerability and established efficient algorithmic techniques. However, their approach is constrained by
the computational complexity of modeling extensive discrete event system scenarios. Guo et al. [21] introduced an
event-driven stealthy FDI attack strategy against remote SE systems. Their method dynamically initiates attacks based
on real-time residuals to deteriorate system performance optimally. Despite its effectiveness in resource-limited contexts,
it depends on accurate real-time residual computations, which could be challenging in noisy environments.

A perturbation strategy for defending against FDI attacks in IoT-based smart grids was presented by Zhang et al. [22].
They demonstrated theoretically and numerically that inappropriate selection of branches for reactance perturbation
could compromise defense effectiveness. However, their enhanced strategy requires detailed prior topology analysis,
potentially limiting its scalability to larger systems. Guo et al. [23] introduced a residual-based stealthy FDI attack for
multi-sensor estimation systems, highlighting the critical selection of sensors under resource constraints to optimize
degradation. Their approach leverages historical and current residuals to enhance attack impact but demands significant
computational resources to solve optimization problems at each step. Zhou et al. [25] investigated optimal FDI attacks
against partially secured remote SE systems by formulating optimization problems to maximize SE errors. They
developed robust detection and resilient estimation strategies; yet the practicality of their methods could be affected
by the complexity of real-world implementation and the necessity of secured communication channels. A framework
utilizing ML algorithms to approximate the PF analysis was developed by Falconer et al. [18]. This approach supported
the resolution of complex PF problems that incorporated unit commitment and security restrictions. However, their
model faces challenges stemming from scalability issues associated with fully connected networks as the system
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size increases. Additionally, CNN models demonstrate restricted predictive accuracy due to their dependence on
convolutions if there are anomalies. Hu et al. [26] introduced the state deviation index for the diagnosis of FDI attacks
and sudden load changes, demonstrating its effectiveness in IEEE 14-bus and 30-bus systems. However, the algorithm
exhibited limited adaptability when faced with different errors. This suggests the need for an approach in which
indicators are carefully designed to reflect unique properties of specific anomalies. The absence of such tailoring
risks compromising the accuracy of evaluation metrics, presenting significant FP and false negative (FN) results. A
multi-variable long short-term memory autoencoder (LSTM-AE) had been formulated for an SD process by Sarker et
al. [27]. Their model successfully diagnosed SPs associated with errors, validated through a 123-bus unbalanced
distribution network. However, according to sophisticated mathematical modeling of the PF analysis considering the SD
process, developing the model with different abnormal scenarios in ML algorithms is challenging. Since they jeopardize
the accuracy of the proposed algorithm, which can be time-consuming, they need more effort. Furthermore, a graphical
user interface (GUI) of an EMS could show abnormal information due to system errors or bugs. These errors are not
easy for SCADA control room engineers to diagnose due to the huge volume of information. These issues cannot be
managed by the SE process and need adaptive solutions. A novel FDI diagnostic method using LSTM-AE and CNN-AE
with an unsupervised learning approach was introduced in [28], avoiding the need for anomalous data during training.
It also proposed an LSTM variational AE-based reconstruction method to maintain stability by closely replicating the
original data from anomalous data. Despite this, the reliance on unsupervised learning presents challenges in certain
scenarios. Hence, zero-day attacks need retraining of ML algorithms, which is time-intensive. Also, collecting all
unknown errors can take much effort [29, 30]. Mukherjee [19] introduced an approach to identify FDI attacks using a
multi-label classification framework. This method leveraged conventional bad-data detectors to enhance measurement
accuracy and diagnose unstructured attacks. Accordingly, this model-free strategy required no prior knowledge of grid
or attack vectors, making it a highly effective solution for the FDI diagnosis. Nevertheless, a consideration of an FDI
attack cannot merely show the comprehensiveness of this algorithm. Also, there are some malfunctions that cannot be
properly diagnosed by ML models. A retraining on new attacks and the diagnosis of other malfunctions (e.g., a CB can
be opened during a fault in the normal operation; however, this could be because of inaccurate communication that
sends the status of the CB to the SCADA room) are challenging for ML techniques [31–33].

1.4 Contributions

The integration of GenAI tools with AD techniques holds significant promise for revolutionizing the SE process and PF
analysis. By leveraging the capabilities of GPT tools (e.g. Anthropic Claude Pro [34]) to understand and interpret the
natural language processing (NLP) of snapshots and network displays in addition to data analysis and understanding of
the mathematical modeling, this approach enables a more robust diagnosis of anomalies/errors within the SE process
and PF information. The combination of NLP and visual analytic techniques leads to advancements in the SD process,
the development of user-friendly interfaces for power system monitoring, and a simplification of diagnostic processes
within the energy sector, particularly in cases of unknown errors/attacks in the visual information. To tackle these gaps,
two significant contributions are presented, advancing the state-of-the-art in the AD process for EMSs, according to the
literature surveys presented in the previous section as follows:

• Multi-Point Attack Detection Framework along with GenAI-based AD Processes: A GenAI-based ADS
model developed that revolutionizes how vulnerabilities are identified and addressed within the EMS data
processing pipeline based on the multi-point attacks/errors. In contrast to conventional approaches that focus
on isolated detection points, this framework recognizes that sophisticated cyber-attacks exploit multiple stages
of the SCADA data flow. The model specifically targets three critical vulnerability points including stealth
attacks which can evade the BDDs, EMS database manipulation incidents (particularly FDI attacks following
the SE process), and the HMI display corruption by manipulating the RTDB. Through implementation on
the IEEE 14-bus system, the framework’s capability demonstrates to detect attack patterns including state
vector manipulations, topology corruption schemes, and display RE attacks, all while preserving mathematical
consistency to bypass conventional BDD algorithms (e.g., χ2 method). This integrated approach represents a
transformative approach in the EMS security, acknowledging that modern cyber threats require comprehensive
monitoring across the entire data processing flow rather than relying on merely the mathematical consistency.

• Generative Intelligence-Enhanced Multimodal Analysis Framework: Addressing the integration challenges
and anomaly identification requirements, an innovative SoM-GI framework is proposed. This contribution
bridges the gap between traditional numerical SE techniques and optimal PF results and emerging visual AD
capabilities. The framework leverages the power of GenAI, specifically enhanced with engineered visual
markers and indicators in additions to the rules, to enable simultaneous analysis of both image and textual data
within the EMS environment. The SoM-GI methodology overcomes inherent spatial reasoning limitations in
current GenAI systems by implementing systematic visual indicators, including CB status markers, directional
transmission line indicators, and CP identifiers. These markers guide the AI’s interpretation of segmented HMI
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displays, enabling accurate detection of visual anomalies inconsistencies and falsifications that often bypass
numerical detection methods. Validation results confirm the framework’s ability to identify sophisticated
attacks that manipulate display segments while maintaining consistency in core data structures. This novel
approach establishes a new paradigm for comprehensive security monitoring in power systems, integrating
visual pattern recognition with linguistic rule processing. By standardizing the fusion of multimodal analysis
techniques, the framework ensures that visual-based ADSs can be incorporated into existing EMS architectures
without disrupting critical operational processes, thereby providing a practical solution.

1.5 Paper Structure

The rest of this paper is organized as follows: Section 2 presents a multi-point attack model considering the EMS
workflow, before and after the SE process. Section 3 demonstrates the comprehensive description of different attack
points, their modeling, miscellaneous scenarios, and the GPT implementation with some direct responses using the
trained GPT model within the power system domain. Finally, conclusions and directions for future work are outlined in
Section 4.

2 A Proposed Multi-point Attack Model in EMSs

Different attack points based on stealth attacks (i.e., attack point #1) and intentional/unintentional attacks (i.e., attack
points #2 and #3) including cyberattacks, system errors, and FDI attacks are represented in Fig. 1. It is evident that a

Figure 1: A general proposed framework for different attack points in EMSs.

variety of attacks/errors can appear at different points ranging from field devices to the HMI Display section within an
EMS. The field devices represent the sensory layer of the SCADA architecture, functioning as the principal interface
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between the physical infrastructure and the digital control system. RTUs serve as industrial computer systems interfacing
directly with physical equipment, conducting the critical role of converting analog signals from field devices into digital
data while concurrently executing control commands transmitted from the SCADA system. These units are deployed in
industrial settings and are required to maintain dependable operation under extreme conditions [35, 36]. PMUs are
advanced field devices that provide precise electrical waveform measurements. They deliver synchronized, real-time
voltage and current phasor data for extensive regional monitoring and dynamic grid system analysis. The sensor network
comprises a wide range of sensors that constantly monitor essential parameters such as flow rates and voltage levels,
alongside the operational status of components. Additionally, intelligent electronic devices (IEDs), microprocessor-
driven controllers, execute complex functions for protection, control, and monitoring of power equipment, often making
autonomous decisions to improve system resilience [37]. The SCADA system serves as the central hub for data
coordination and initial processing in industrial operations. It continuously collects real-time operational data from field
devices using protocols such as DNP3, IEC61850, and Modbus, with sampling frequencies varying by data criticality.
Key functions include alarm processing, which generates alerts based on predefined limits, and initial validation through
range checks, rate-of-change assessments, and communication error detection to ensure data accuracy and integrity [38].

The following step involves the application of weighted least-squares (WLS) SE, which constitutes the mathematical
foundation of EMSs. This technique converts raw measurements into a coherent and dependable depiction of system
voltage magnitudes and angles. To maintain data quality, the BDD is conducted employing a statistical χ2 test.
The objective function of the WLS, presumed to adhere to the χ2 distribution, is evaluated against a predefined
threshold. Exceeding the threshold indicates significant errors. An identification of faulty measurements is then
carried out through normalized residual analysis, typically involving the exclusion of the data point with the highest
residual value and recalculating the state until the function remains below the threshold. Such a methodology is
imperative due to the presence of noise or malicious data corruption. Concurrently, the topology processing module
examines the statuses of CBs and switches to develop an accurate representation of the network model. It verifies
the actual configuration of energized components, which is crucial for large-scale systems where switching is a
frequent occurrence. Finally, measurement filtering enhances the quality of the incoming data by reducing noise while
maintaining system responsiveness, ensuring that only validated measurements contribute to subsequent monitoring
or control algorithms [35]. Then, this data is stored in the EMS Database that serves as a repository for validated
electrical network information, including bus voltages, flows of power, and generator outputs. It reflects the best
estimate of actual system conditions, using the SE and BDD. Then, the results from analytical applications such as
contingency analysis for system security, optimal PF solutions for economic efficiency, and historical trending for
long-term analysis and regulatory compliance are stored in the RTDB that acts as the high-performance data hub
for all operational applications, maintaining the current state of the system with minimal latency [10, 39]. It stores
application results that provide the validated system state, optimal PF calculations that determine electrical quantities
throughout the network, and contingency analysis results that assess system security [40]. Each data point comprises
quality flags, timestamps, and source information, thereby facilitating the appropriate use by subsequent processes.
The RTDB is required to handle rapid updates from various sources while delivering consistent data views to a variety
of client applications, necessitating advanced synchronization control and data consistency mechanisms. Finally, the
HMI display portion provides the critical link between the automated systems and human operators who fundamentally
remain responsible for system operation. Operator screens present graphical representations of the power system
through various visualization modes including single line diagrams (SLDs) that show the electrical connectivity and
current state, geographic displays that map the physical location of equipment and current conditions, and trending
charts that reveal temporal patterns and help operators forecast future conditions. The alarm presentation system must
help operators quickly identify the root cause among possibly hundreds of cascading alerts. Control action interfaces
enable operators to issue commands such as opening or closing CBs, adjusting generator setpoints to modify power
output, or changing control parameters to influence automatic control behavior. These interfaces include protective
mechanisms and confirmation dialogues to prevent accidental actions that could jeopardize system stability.

The modern EMS faces sophisticated cyber threats that exploit vulnerabilities at different stages of the data processing
pipeline. Understanding these attack vectors is crucial for developing comprehensive defense mechanisms that protect
the integrity of power system operations [39]. To recap, Table 2 demonstrates these attack vectors with their proposed
AD solutions. The next section shows these attack models as well as the proposed AD solutions on the GenAI concept

Table 2: Different attack points and their proposed ADSs.
Attack Point # Description Proposed Solution

1 Stealth attacks GenAI-based AD
2 FDI attacks GenAI-based AD
3 HMI screen corruption attacks/errors SoM-GI-based AD

6



Zaboli et al., “Generative AI for Cybersecurity of Energy Management Systems”

and their results and discussion based on the implementations in GenAI tools in detail. Further, the test system is an
IEEE 14-bus system which is considered for all attack points and scenarios included in different steps.

3 Attack Vectors and Experimental Validation

3.1 Attack Point #1: Stealth Attacks (Gray Dashed Line)

Stealth attacks represent a particularly malicious threat to the security of EMSs, as they are meticulously engineered
to bypass conventional BDD mechanisms on which operators depend to preserve the integrity of the system. These
attacks are characterized by their ability to remain undetected by standard monitoring protocols, thus presenting a
significant challenge to the protective measures employed within EMS frameworks. By leveraging vulnerabilities in
AD methodologies, they weaken the robustness of systems to preserve operational stability and security [41]. These
attacks utilize the mathematical foundations of SE algorithms by injecting carefully crafted false measurements that
maintain consistency with the power system’s physical laws and network topology. When executed successfully, a
stealth attack manipulates the estimated system state while satisfying all residual tests and WLS criteria, making the
corrupted data appear legitimate to conventional BDD systems. The complexity of these attacks lies in their ability to
manipulate critical operational parameters (e.g., bus voltages and PFs), without triggering alarms, potentially leading
operators to make incorrect decisions based on falsified system conditions. This misleading essence makes stealth
attacks particularly dangerous, as they can persist undetected for extended periods while progressively degrading
system reliability or creating opportunities for more severe disruptions. Also, these stealth attacks can make major
gradual impacts on power systems including economic dispatch inefficiencies, deterioration of operator confidence,
compromised grid resilience, degraded system reliability over time, cascading failure and blackouts, and compromised
system simulations and estimates [20, 23, 25].

A Mathematical Construction of SE and Stealth Attacks Following the collection of PF measurements, power
input data, and voltage magnitude information gathered from the system’s buses by SCADA units, the initiation of the
static SE process takes place. The SE algorithm aims to determine the state vector x ∈ Rn, which includes both phase
angles and voltage magnitudes across different buses, where n = 2k − 1 with k representing the total number of buses.
In the context of AC static SE, the relationship between the state vector x and measurements follows the nonlinear
model as Eq. (1) [20]:

z = Hx+ e (1)

Here, the measurement vector z ∈ Rm comprises readings gathered by SCADA units, with m denoting the quantity of
measurements. The nonlinear mapping function H(·) is derived from the grid’s topological structure and characteristics
of transmission lines, transformers, and related grid components. The error term e ∈ Rm follows a Gaussian distribution
characterized by the covariance matrix R. To estimate the state vector x, an iterative WLS algorithm is employed as
Eq. (2):

x̂k = x̂k−1 +H†
k(zk −H(xk−1)) (2)

where H†
k = (HT

kR
−1Hk)

−1HT
kR

−1 and Hk represent the Jacobian matrix of H evaluated at iteration k. Under
Gaussian noise assumptions, this WLS approach yields optimal results. Upon convergence, achieved when ∥x̂k −
x̂k−1∥ < δ for a predefined small threshold δ > 0—the resulting residuals experience analysis to identify potential
measurement anomalies through verification of Gaussian properties. Such anomalies in data might stem from natural
failures (e.g., sensor malfunctions or communication disruptions, or potentially from deliberate FDI attacks). Standard
detection methods typically employ χ2 testing for identifying anomalous data. Additionally, a DC SE variant exists
where only phase angles require estimation, with voltages assumed to be at unity (1 p.u.). This simplified model neglects
line resistances and assumes small phase angle differences between buses, resulting in a linear regression framework as
Eq. (3) [22]:

z = Hx+ e (3)

where z ∈ Rm represents the measurement vector, H ∈ Rm×n is the measurement Jacobian matrix, x ∈ Rn is the state
vector, and e ∼ N (0,R) is the measurement error vector with covariance matrix R. The SE, x̂, is typically obtained
through the WLS through Eq. (4):
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x̂ = (HTR−1H)−1HTR−1z (4)

After SE, the measurement residual vector r is calculated as Eq. (5):

r = z−Hx̂ (5)

Traditional BDD mechanisms typically use the χ2-test on the residual as shown in Eq. (6):

J(x) = rTR−1r ≤ τ (6)

where τ is a threshold value derived from the χ2 distribution with appropriate degrees of freedom. A stealth attack
involves the addition of an attack vector a to the measurement vector which is given in Eq. (7):

za = z+ a (7)

The essential concept for stealth attacks is to construct a in the column space of H (Eq. (8)):

a = Hc (8)

where c is an arbitrary vector in the state space. When such an attack is applied, the new state estimate becomes as
follows:

x̂a = x̂+ c (9)

Which the residual crucially remains unchanged as shown in Eq. (10):

ra = za −Hx̂a = z+Hc−H(x̂+ c) = z−Hx̂ = r (10)

This characteristic of the mathematical model enables the attack approach to evade conventional mechanisms designed
for detecting erroneous data, as J(xa) = J(x) ≤ τ [20]. According to a case study for an IEEE 14-bus system, 300
attack points are applied to the system at each bus to find the range of stealth attacks for different buses, forced by the
NERC regulation in terms of bus voltage magnitude violation, which states that the bus voltages should fall within
the range of 0.95–1.05 p.u. to meet the requirements [42]. According to this process, a sample of the stealth attack
range for Bus 2 is illustrated in Table 3. All these attack points are also injected to all other buses to find the range of
stealth attack as illustrated in Fig. 2. The presented visualization reveals the feasible ranges across the IEEE 14-bus
system that successfully evade the χ2 as a BDD system while maintaining system observability. Further, a numerical
representation of stealth attack ranges including the start point, end point, width of the range, and original bus voltages
based on the numerical representation is given in Table 4. According to these findings, Bus 3 exhibits the most extensive
stealth range, spanning approximately 0.004 to 0.012 p.u. around its nominal value, indicating its elevated vulnerability
to stealth attacks due to its network position and measurement redundancy characteristics. Buses 2 and 14 demonstrate
similarly broad attack boundaries, with voltage deviations permissible within ± 0.025 p.u. from their baseline values
while remaining undetected. In contrast, bus 5 displays notably constrained attack ranges, suggesting its measurements
are more tightly coupled to the system’s observable state through the measurement Jacobian matrix. Buses 6, 7, and 8
show no stealth attack ranges within the defined voltage magnitude as well as no range for the slack bus (i.e., Bus 1).
While satisfying the stealth constraint χ2 < 89.5, these diverse exploitable boundaries across the network topology
demonstrate that successful stealth attacks must account for bus-specific constraints, measurement configurations, and
their contributions to the overall WLS residual, finally exposing the diverse susceptibility profile of the power system
to sophisticated network breaches. Now, according to the given information, two scenarios are presented to make a
comparison of the traditional BDDs and the GenAI-based ADS according to the stealth attacks. The definition of these
attacks is described , then the implementation of GenAI is explained to show the results of the detection process.

3.1.1 Scenario #1A: 5-Point Distributed Stealth Attack

This scenario represents a 5-point distributed stealth attack designed to evade the χ2 test based on the BDD while
maintaining all PF constraints. The attack strategically targets five measurement points across the IEEE 14-bus system
with coordinated changes as given in the attack vector (11).
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Table 3: A part of attack points applied to Bus 2 to find the stealth attack range.
Bus Attack Vm Original Vm Detected Anomaly Detection

2 1.033277592 1.044446943 TRUE Bad data detected
2 1.033779264 1.044446943 TRUE Bad data detected
2 1.034280936 1.044446943 TRUE Bad data detected
2 1.034782609 1.044446943 FALSE Stealth attack
2 1.035284281 1.044446943 FALSE Stealth attack
2 1.035785953 1.044446943 FALSE Stealth attack
2 1.036287625 1.044446943 FALSE Stealth attack
2 1.036789298 1.044446943 FALSE Stealth attack
2 1.03729097 1.044446943 FALSE Stealth attack
2 1.037792642 1.044446943 FALSE Stealth attack
2 1.038294314 1.044446943 FALSE Stealth attack
2 1.038795987 1.044446943 FALSE Stealth attack
2 1.039297659 1.044446943 FALSE Stealth attack
2 1.039799331 1.044446943 FALSE Stealth attack
2 1.040301003 1.044446943 FALSE Stealth attack
2 1.040802676 1.044446943 FALSE Stealth attack
2 1.041304348 1.044446943 FALSE Stealth attack
2 1.04180602 1.044446943 FALSE Stealth attack
2 1.042307692 1.044446943 FALSE Stealth attack
2 1.042809365 1.044446943 FALSE Stealth attack
2 1.043311037 1.044446943 FALSE Stealth attack
2 1.043812709 1.044446943 FALSE Stealth attack
2 1.044314381 1.044446943 FALSE Stealth attack
2 1.044816054 1.044446943 TRUE Bad data detected
2 1.045317726 1.044446943 TRUE Bad data detected
2 1.045819398 1.044446943 TRUE Bad data detected

Figure 2: The ranges of stealth attacks for different buses according to the bus voltage magnitudes for an IEEE 14-bus
system.

a =


∆V3

∆P3

∆V6

∆P9

∆V11

 =


+0.08
+0.15
−0.06
+0.10
+0.05

 p.u. (11)
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Table 4: Stealth attack ranges results for an IEEE 14-bus system based on start/end points of attacks along with the
original voltage before applying the NERC regulation.

Bus No. Bus type Stealth attack
start point

Stealth attack
end point

Stealth attack
width

Original
voltage

1 Slack N/A N/A N/A 1.061987
2 Generator 1.034569138 1.044388778 0.009819639 1.044446943
3 Generator 1.002705411 1.01252505 0.009819639 1.012590754
4 Load 1.013927856 1.023747495 0.009819639 1.023762973
5 Load 1.008717435 1.018537074 0.009819639 1.018577246
6 Generator N/A N/A N/A 1.069063452
7 Load N/A N/A N/A 1.067836384
8 Generator N/A N/A N/A 1.093069739
9 Load 1.044188377 1.05 0.005811623 1.054053823

10 Load 1.043186373 1.05 0.006813627 1.053154865
11 Load 1.045190381 1.05 0.004809619 1.055052848
12 Load 1.043386774 1.05 0.006613226 1.053325644
13 Load 1.041382766 1.05 0.008617234 1.051349563
14 Load 1.017935872 1.027955912 0.01002004 1.027876825

Further, a visual representation of the attack vector for voltage and active power changes is demonstrated in Fig. 3. As

(a) (b)

Figure 3: A visualization of the attack vector in Scenario #1A, (a) system voltage profile under attack (b) attack
magnitude distribution (%).

shown, the voltage at bus 3 increases by 7.9% (from 1.0100 to 1.0900 p.u.), active power at bus 3 increases by 16.0%
(from 0.9399 to 1.0899 p.u.), voltage at bus 6 decreases by 5.6% (from 1.0711 to 1.0111 p.u.), active power at bus 9
increases by 34.0% (from 0.2937 to 0.3936 p.u.), and voltage at bus 11 increases by 4.7% (from 1.0552 to 1.1052 p.u.)
with a base active power of 100 MW. To maintain the stealth property and satisfy power balance constraints, the total
power injection increase of 0.25 p.u. (from P3 and P9 changes) is strategically distributed as compensation across seven
non-attacked buses (buses 2, 4, 5, 10, 12, 13, and 14), with each receiving a reduction of 0.0357 p.u. This distributed
compensation mechanism, combined with the opposing voltage changes (V6 decreasing while V3 and V11 increase),
ensures the attack’s χ2 statistic remains below the detection threshold of 89.5.

3.1.2 Scenario #1B: 8-Point Massive Coordinated Attack

This scenario demonstrates an even more complex 8-point massive coordinated attack that exploits the fundamental
limitations of statistical BDD through measurement manipulation. This attack simultaneously modifies eight critical
measurements across the IEEE 14-bus system as represented in the attack vector (12).
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a =



∆V2

∆P2

∆V4

∆P4

∆V6

∆P9

∆V11

∆P13


=



+0.09
+0.15
−0.07
−0.13
+0.08
+0.12
−0.06
−0.10


p.u. (12)

Also, Fig. 4 illustrates a visual representation of the attack vector for this scenario according to these concurrent attacks
at 8 points with changes in voltage magnitudes and active power values. As demonstrated based on the similar attack

(a) (b)

Figure 4: A visualization of the attack vector in Scenario #1B, (a) system voltage profile under attack (b) attack
magnitude distribution (%).

description with Scenario #1A, the voltage at bus 2 increases by 8.6% (from 1.0466 to 1.1366 p.u.) with its active
power increasing by 69.3% (from 0.2163 to 0.3663 p.u.); voltage at bus 4 decreases by 6.9% (from 1.0176 to 0.9476
p.u.) with power decreasing by 27.0% (from 0.4809 to 0.3509 p.u.); voltage at bus 6 increases by 7.5% (from 1.0719 to
1.1519 p.u.); active power at bus 9 increases by 40.5% (from 0.2960 to 0.4160 p.u.); voltage at bus 11 decreases by
5.7% (from 1.0594 to 0.9994 p.u.); and active power at bus 13 experiences a dramatic 76.0% decrease (from 0.1316 to
0.0316 p.u.). The attack’s sophistication lies in its perfect coordination of opposing changes—positive power changes
(+0.15 at P2, +0.12 at P9) are nearly balanced by negative changes (−0.13 at P4, −0.10 at P13), resulting in a minimal
net power change of only 0.04 p.u. Additionally, random noise is injected at non-attacked buses (1, 5, 7, 8, 10, 12, and
14) to further conceal the attack pattern, achieving a χ2 test statistic of 67.3, still comfortably below the 89.5 detection
threshold while creating a highly abnormal but mathematically valid system state.

Implementation in GenAI Tool

Response

The state estimation problem determines the system state vector x = [V1, θ1, . . . , V14, θ14]
T from measurements

z using Weighted Least Squares (WLS):

Minimize: J(x) = [z− h(x)]TR−1[z− h(x)]

Where:

• z ∈ Rm: Measurement vector
• h(x): Non-linear measurement functions from power flow equations
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• R: Measurement error covariance matrix

The bad data detection test evaluates:
χ2 = rTR−1r

where r = z− h(x̂) is the measurement residual vector. The χ2 threshold is calculated based on the statistical
test framework for bad data detection. The threshold can be derived as follows:

The detection system operates on an enhanced feature space consisting of:

F = [zdirect, zderived] ∈ R71

where the 71-dimensional feature vector comprises:

• Direct measurements: 42 dimensions
– Voltage measurements: V1, V2, . . . , V14 (14 dimensions)
– Active power measurements: P1, P2, . . . , P14 (14 dimensions)
– Reactive power measurements: Q1, Q2, . . . , Q14 (14 dimensions)

• Statistical features: 8 dimensions
– [µV , σV ,min(V ),max(V ), µP , σP ,min(P ),max(P )]

• Correlation features: 3 dimensions
– [ρV,P , ρV,Q, ρP,Q]

• Physics-based features: 5 dimensions
– [Ptotal, Qtotal, PF, Vstability, Pimbalance]

• Gradient features: 13 dimensions
– ∇V = [V2 − V1, V3 − V2, . . . , V14 − V13]

• Second-order features: Additional dimensions

Total: 42 + 8 + 3 + 5 + 13 = 71 dimensions

For the enhanced feature space, the test statistic follows a chi-square distribution:

χ2 = (F− µF )
TΣ−1

F (F− µF ) ∼ χ2
71

where:

• µF ∈ R71: Mean of the feature vector under normal operation
• ΣF ∈ R71×71: Covariance matrix of features
• Degrees of freedom: df = 71

For a significance level α = 0.05 (95% confidence level), the threshold is:

χ2
threshold = χ2

1−α,df = χ2
0.95,71

Using the inverse chi-square cumulative distribution function:

χ2
0.95,71 = F−1

χ2
71
(0.95) = 89.5

This means:
P (χ2 < 89.5|H0) = 0.95

where H0 represents the null hypothesis of no bad data (normal operation). Under normal operating conditions:

• 95% of measurements will have χ2 < 89.5

• Only 5% will exceed this threshold (false alarm rate)
• If χ2 > 89.5, bad data is detected with 95% confidence
• If χ2 < 89.5, measurements are considered statistically consistent → Normal operation (no bad data)
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Scenario #1A: 5-Point Measurement Changes The system experiences the following measurement changes
from baseline:

Bus Measurement Change

3 V3 +0.0800 p.u. (+7.9%)
3 P3 +0.1500 p.u. (+16.0%)
6 V6 -0.0600 p.u. (-5.6%)
9 P9 +0.1000 p.u. (+34.0%)
11 V11 +0.0500 p.u. (+4.7%)

Additionally, power measurements at buses {2, 4, 5, 10, 12, 13, 14} show small decreases of 0.0357 p.u. each.

State Estimation Analysis Based on the Power Flow Solution:

• The state estimator successfully converges
• All power flow equations are satisfied:

Pi = Vi

∑
j

Vj(Gij cos(θi − θj) +Bij sin(θi − θj)) ✓

Qi = Vi

∑
j

Vj(Gij sin(θi − θj)−Bij cos(θi − θj)) ✓

• Power balance maintained:
∑

∆P ≈ 0

Chi-Square Test Result Statistical Analysis:

χ2 = (z− h(x̂))TR−1(z− h(x̂)) = 42.8

Threshold: χ2
0.05,71 = 89.5

Chi-Square Conclusion: NORMAL OPERATION ✓

Since 42.8 < 89.5, the chi-square test indicates:

• No bad data detected
• Measurements are statistically consistent
• Scenario represents valid system operation

GenAI Analysis and Detection The correlation analysis reveals:

Expected V-P correlation at bus 3: ρ = 0.3± 0.1

Observed correlation: ρ = 0.8

Deviation: 5 standard deviations

This dramatic correlation shift has never occurred in training samples of normal operation.

GenAI computes power-voltage sensitivities [43]:

∂P3

∂V3
=

∆P3

∆V3
=

0.15

0.08
= 1.875 p.u.

Which the historical range is [0.77, 1.07] p.u. This sensitivity exceeds physical limits for the network topology
and loading conditions.

According to the entropy analysis, the uniform distribution across 7 buses indicates artificial coordination rather
than natural load variation. In terms of the voltage gradient analysis, ∇V between buses 2-3 is 0.045 p.u. while
the maximum historical gradient is 0.020 p.u. This violates learned spatial coherence patterns.

13



Zaboli et al., “Generative AI for Cybersecurity of Energy Management Systems”

GenAI Classification: ATTACK DETECTED

Reasoning: Despite satisfying all power flow equations and passing the chi-square test, the measurement pattern
exhibits:

1. Fabricated correlation changes
2. Physically implausible sensitivities
3. Artificial load distribution
4. Coordinated changes at electrically distant buses

Scenario #1B: 8-Point Measurement Changes The system shows the following measurement changes:

Bus Measurement Change

2 V2 +0.0900 p.u. (+8.6%)
2 P2 +0.1500 p.u. (+69.3%)
4 V4 -0.0700 p.u. (-6.9%)
4 P4 -0.1300 p.u. (-27.0%)
6 V6 +0.0800 p.u. (+7.5%)
9 P9 +0.1200 p.u. (+40.5%)
11 V11 -0.0600 p.u. (-5.7%)
13 P13 -0.1000 p.u. (-76.0%)

State Estimation Analysis based on the Power Flow Solution:

• State estimation converges after 8 iterations
• All power flow constraints satisfied
• Net power change:

∑
∆P = 0.04 p.u. (minimal)

Chi-Square Test Result Statistical Analysis:

χ2 = 67.3

Threshold: χ2
0.05,71 = 89.5

Chi-Square Conclusion: NORMAL OPERATION ✓

Since 67.3 < 89.5, chi-square indicates:

• No bad data detected
• Measurements pass statistical consistency check
• Scenario classified as legitimate system state

GenAI Analysis and Detection GenAI’s comprehensive analysis reveals severe anomalies:

The generator Ramp Rate Analysis (Bus 2):

Power change: + 69.3% instantaneous

It is recognized that this is physically impossible for any generator.

According to the Load Behavior Analysis (Bus 13), the following completely violates ZIP (i.e., impedance, current,
power) load model physics. If voltage remains nearly constant, power should also remain relatively constant.

Power reduction: 76%

Voltage change: minimal
Expected from load model: P ∝ V α where α ∈ [0.5, 2.0]
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According to the attention mechanism results, the attention weights reveal:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

Where:

• Q (Query), K (Key), V (Value) are linear projections of the input features
• d k = 32 (dimension of key vectors)

Correlation V2-P2 : w = 0.73 (abnormal)
Correlation P4-P13 : w = 0.81 (coordinated opposites)
Correlation V4-V11 : w = 0.68 (opposing pattern)

For instance, w(V2, P2) = 0.73 which the normal operation is between 0.2− 0.3. Bus 2 shows V increased by
8.6% and P increased by 69.3% simultaneously. So, the network learned this synchronized large change is highly
suspicious. Hence, these weights indicate coordinated changes rather than natural system responses.

GenAI Classification: ATTACK DETECTED

Reasoning: Despite passing the chi-square test, this scenario exhibits:

1. Impossible generator dynamics
2. Violation of load models
3. Non-clustered distribution pattern
4. Extreme magnitude changes (up to 76%)

Summary

Chi-Square Test Perspective For both scenarios, chi-square concludes NORMAL OPERATION because:

1. Statistical Consistency: Both scenarios produce residuals within expected bounds
2. Power Flow Validity: All measurements correspond to valid power flow solutions
3. Mathematical Feasibility: State estimation converges successfully

From chi-square’s perspective:

• Scenario 1: χ2 = 42.8 < 89.5 ✓

• Scenario 2: χ2 = 67.3 < 89.5 ✓

Semantic Understanding GenAI identifies both scenarios as attacks through:

1. Physical Feasibility Analysis:
• Recognizes impossible ramp rates
• Identifies violations of equipment constraints
• Detects implausible load behaviors

2. Pattern Recognition:
• Learned from normal operation samples
• Identifies coordination patterns never seen naturally
• Detects artificial balance in opposing changes

3. Multi-Dimensional Analysis: Chi-square: operates on 42-dimensional measurement space; however,
GenAI operates on 71-dimensional feature space including Correlations, Gradients, Physics metrics, and
Statistical invariants.
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4. Semantic Rules: GenAI understands that
• Loads don’t change uniformly across 7 buses
• Generators can’t ramp 69% instantly
• Voltage-power relationships follow physical laws
• Natural events create clustered effects

As can be seen, the GenAI can detect these scenarios as stealth attacks based on their semantic understanding features
in addition to rules and power system domain recommendations that were provided in the GPT model to train it.

3.2 Attack Point 2: Post-State Estimation Attack in EMS Database (Red Dashed Line)

Following the SE process, the EMS database becomes a critical vulnerability point where attackers can execute FDI
attacks or directly manipulate stored operational data. At this stage, even if the SE process correctly identifies and
filters bad data, attackers/intruders can corrupt the validated information before it reaches operators or automated
control systems. Database manipulation attacks target the intermediate storage layer where processed measurements,
estimated states, and calculated parameters reside, allowing malicious actors to modify historical trends or inject
false operational constraints. These attacks are particularly concerning because they can affect multiple downstream
applications that rely on the database for decision-making, including economic dispatch, unit commitment, and security
assessment modules. The temporal persistence of database attacks amplifies their impact, as corrupted data may
influence operational decisions over extended periods and corrupt backup systems or data repositories used for system
recovery and cybersecurity analysis. According to this information, the following scenarios are proposed to show the
applicability of the proposed GenAI-based AD in detecting those types of attacks. The case study system is an IEEE
14-bus system based on the PF analysis that results are extracted from the PowerWorld Simulator [44].

3.2.1 Scenario #2A: State Vector Manipulation Attack

Attack Description: After the SE process validates the system state, attackers intercept and modify the validated state
vector in the EMS Database.

Post-SE Output: x̂ = [V1, θ1, P1, Q1, V2, θ2, P2, Q2, . . . , Vn, θn, Pn, Qn]
T (13)

Residual test passed: r = z− h(x̂), ||r|| < threshold ✓ (14)

x̂corrupted = x̂+∆x Where ∆x = [∆V1,∆θ1,∆P1,∆Q1,∆V2 . . .]
T (15)

Sample Result in EMS Database: P ′
ij = |Vi +∆Vi||Vj +∆Vj ||Yij | sin(θi − θj +∆θi −∆θj) (16)

Implementation on GPT Please note that this response box is a result of GPT based on an AD report of the post-SE
PF results and data with manipulated attacks on different parameters based on Eqs. (13)–(16). Two Excel files were
generated, including the post-SE PF and manipulated PF results, and uploaded as inputs in the GPT; then, a user asked
a prompt from the GPT if it could detect any anomalies based on these inputs.

Response

Scenario #2A (GenAI-based AD)

Scenario #2A vs. Baseline (i.e., Post-SE Data)

The analysis reveals significant operational changes in Scenario #2A:

• Three buses (4, 9, and 13) switched from loads (i.e., consuming) with positive signs to generators
(i.e., supplying) with negative signs

• Total generation increased by 90.8 MW (252.1 MW → 342.9 MW)
• Total load decreased by 90.8 MW (237.3 MW → 146.5 MW)

16



Zaboli et al., “Generative AI for Cybersecurity of Energy Management Systems”

• Four buses show notable voltage magnitude and angle deviations

1. Generation/Load Status Reversals

Bus Scenario 1 Scenario 2 Change

Bus 4 Load: 47.8 MW Generator: -47.8 MW ∆ = -95.6 MW
Bus 9 Load: 29.5 MW Generator: -29.5 MW ∆ = -59.0 MW
Bus 13 Load: 13.5 MW Generator: -13.5 MW ∆ = -27.0 MW

Total Impact: 181.6 MW operational mode change

2. Bus Voltage and Reactive Power Anomalies

Bus 4: V: 0.9906→0.9979 pu, θ: -10.93→-9.04, P: 47.8→-47.8 MW, Q: -3.9→3.9 Mvar

Bus 7: V: 1.0116→1.0218 pu, θ: -14.22→-12.34

Bus 9: V: 1.0071→1.0178 pu, θ: -15.96→-17.66, P: 29.5→-29.5 MW, Q: -2.7→-16.6 Mvar

Bus 13: V: 0.9996→1.0153 pu, θ: -16.18→-13.99, P: 13.5→-13.5 MW, Q: 5.8→-5.8 Mvar

3. System-Wide Impact

Parameter Baseline Scenario 2 Change

Total Generation 252.1 MW 342.9 MW +90.8 MW (+36%)
Total Load 237.3 MW 146.5 MW -90.8 MW (-38%)

The GenAI-powered AD framework in Scenario #2A effectively identified fundamental operational discrepancies,
particularly the transformation of three buses (buses 4, 9, and 13) from consumption points to generation sources,
creating a substantial 90.8 MW systemic imbalance. This methodology excels through its capacity to concurrently
evaluate interconnected system variables including active power transfers, voltage levels, phase angles, and reactive
power components, exposing attack signatures that conventional limit-checking algorithms might miss. The system’s
detection of a 36% surge in aggregate generation alongside a 38% reduction in total demand, combined with notable
voltage variations at four distinct buses, validates the GenAI framework’s efficacy in recognizing manipulations.

3.2.2 Scenario #2B: Topology Corruption Attack

Attack Description: Modify the validated topology information after the SE process but before EMS Database storage.
The SE output is a validated topology matrix T, Eq. (17), and state x̂.

T = [tij ] where tij =

{
1 if transmission element (i, j) is in service
0 if transmission element (i, j) is disconnected

(17)

Attack Mechanism: The attacker implements a topology corruption through the transformation as Eq. (18):

T′ = T⊕∆T (18)

where ∆T represents a malicious modification matrix that inverts the operational status of strategically selected CBs,
effectively misrepresenting the actual network configuration.

System Impact: The corrupted topology transmits through the EMS, resulting in Eq. (19):

B′ = f(T′) ̸= B = f(T) (19)

where B′ denotes the erroneous bus admittance matrix derived from the falsified topology, while B represents the
actual system admittance matrix.

Operational Consequences: The OPF module subsequently operates on this corrupted network model as Eq. (20):
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min
P

C(P) subject to: B′θ = P−D (20)

where the power balance equations employ the incorrect admittance matrix B′, considering the generation (P) and
demand (D) vectors as well as the bus voltage phase angle (θ) leading to inefficient or destabilizing dispatch decisions
based on a misrepresented network topology.

Implementation on GPT Please note that this response box is a result of GPT based on an AD report of the post-SE
PF results and data with manipulated topology attacks, based on Eqs. (17)–(19). Two Excel files were generated
including the post-SE PF and manipulated topology and uploaded as inputs in the GPT.

Response

Scenario #2B (GenAI-based AD)

Scenario #2B vs. Baseline (i.e., Post-SE Data)

Scenario #2B exhibits characteristics of a stressed power system:

• Generation increased by 13.9 MW while load remained constant
• System losses nearly doubled (14.84 → 28.78 MW)
• Voltage profile degradation with two buses dropping below 0.98 pu
• Significant reactive power deficit at multiple buses
• No generation/load role reversals

1. System-Wide Changes

Parameter Scenario 1 Scenario 3 Change

Total Generation 252.1 MW 266.1 MW +13.9 MW (+5.5%)
Total Load 237.3 MW 237.3 MW No change
System Losses 14.84 MW 28.78 MW +13.94 MW (+94%)

Key: Entire generation increase consumed by losses → stressed transmission.

2. Critical Bus Anomalies

Voltage Drops (Stability Concern): Bus 4: 0.9906→0.9765 pu (-1.42%), Bus 5: 0.9898→0.9792 pu (-1.07%)

Voltage Angle Increases: Bus 3: -14.00°→-27.20° (∆=-13.20°) [Most severe], Bus 14: -17.16°→-21.90° (∆=-
4.74°)

Reactive Power Deficit: Bus 2: -27.4→-38.7 Mvar (∆=-11.3), Bus 3: -46.9→-75.5 Mvar (∆=-28.6)

3. Stress Indicators

Indicator Evidence Implication

Loss Increase +94% (13.94 MW) Lines at higher loadings
Angle Spread Up to 13.2° increase Near stability limits
Voltage Drop Two buses < 0.98 pu Voltage collapse risk
Q Deficit -39.9 Mvar total Inadequate VAR support

3.2.3 Complex Scenarios for Attack Point 2

In order to show the better capability of the GenAI-based AD in detecting and distinguishing normal and abnormal
scenarios, a contingency analysis was performed in PowerWorld Simulator for an IEEE 14-Bus system to generate
normal scenarios. These generated normal scenarios show the different statuses of normal PF datasets that help the
GenAI to learn about the contingency analysis as well as training the GenAI with SE and PF rules. Hence, a series of 30
scenarios according to the contingency analysis were generated as shown in Table 5. These scenarios are defined based
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on a combination of CB statuses, transformer tap changes, load changes, and power limits to include different types of
cases. Please note that the GPT can be trained with these 30 generated normal datasets based on different scenarios,

Table 5: Power system test scenarios implemented in PowerWorld Simulator for the GenAI tool training.
Scenario Description
Scenario 1 All CBs closed (base case - fully connected system)
Scenario 2 Open CB between Bus 1 and Bus 2
Scenario 3 Open CB between Bus 2 and Bus 4
Scenario 4 Open CB between Bus 4 and Bus 5
Scenario 5 Open CB between Bus 4 and Bus 7
Scenario 6 Open CB between Bus 5 and Bus 6
Scenario 7 Open CB between Bus 6 and Bus 13
Scenario 8 Transformer tap at Bus 4–Bus 9 increased by +10%
Scenario 9 Transformer tap at Bus 4–Bus 9 decreased by -10%
Scenario 10 Transformer tap at Bus 7–Bus 9 increased by +5%
Scenario 11 Transformer tap at Bus 7–Bus 9 decreased by -5%
Scenario 12 Load at Bus 4 increased by 20%
Scenario 13 Load at Bus 4 decreased by 20%
Scenario 14 Load at Bus 9 increased by 10%
Scenario 15 Load at Bus 10 decreased by 15%
Scenario 16 Load at Bus 11 increased by 25%
Scenario 17 Open CB between Bus 9 and Bus 13
Scenario 18 Open CB between Bus 3 and Bus 2
Scenario 19 Reactive power limit at Bus 3 generator decreased
Scenario 20 Reactive power limit at Bus 8 generator increased
Scenario 21 Swing bus shifted from Bus 1 to Bus 2
Scenario 22 Open CB between Bus 6 and Bus 12
Scenario 23 Open CB between Bus 6 and Bus 11
Scenario 24 Open CB between Bus 10 and Bus 7
Scenario 25 Open CB between Bus 9 and Bus 14
Scenario 26 Open CB between Bus 2–Bus 4 and +10% in tap between Bus 4–Bus 9
Scenario 27 Open CBs between Bus 4–Bus 7 and Bus 7–Bus 9
Scenario 28 Open CBs between Bus 13–Bus 14 and Bus 1–Bus 5
Scenario 29 Open CBs between Bus 7–Bus 8 and Bus 11–Bus 10
Scenario 30 Open CBs between Bus 3–Bus 4 and Bus 9–Bus 10

SE and PF rules, in addition to the semantic understanding feature of this tool. Hence, two additional test cases are
considered in this part to check the capability of the trained GenAI tool as follows:

• Scenario #2C: Normal operation – Open CB between Bus 9 and Bus 10.
• Scenario #2D: Abnormal operation (FDI) – change of CB status between Bus 2 and Bus 4 from “Closed” to

“Opened”.

These scenarios (i.e., Scenarios #2C & #2D) are different and unique from trained datasets in the GenAI tool to show
the applicability of the GenAI-based AD not only based on numerical changes on datasets, but also a consideration of
SE and PF rules and pattern recognition and correlation between different parameters for each part of datasets according
to the bus and branch data.

The following “Response” boxes show the capability of the GenAI tool considering the trained datasets and other
rules.

Response

Scenario #2C (GenAI-based AD)

This case represents a state estimation solution showing complete system islanding:

1. All Zero Flows Interpretation:
• Not a cyber attack or measurement failure.
• Indicates complete electrical separation into multiple balanced islands.
• Each island has perfect Pgen = Pload balance.
• No inter-island power transfer, hence zero losses.

2. State Estimation Perspective:
• SE successfully converged to a valid solution.
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• All power flow equations satisfied.
• Measurement residuals minimized (all measurements match calculated values).
• Represents extreme N − k contingency scenario.

3. Physical Validity:
• Kirchhoff’s laws satisfied at each bus.
• Power balance maintained in each island.
• Mathematically and physically valid, though operationally extreme.

4. Operational State:
• System is stable but extremely vulnerable.
• Each island operating independently.
• Requires careful restoration strategy to reconnect.

The key learning here is that state estimation can identify extreme but valid operating conditions. The progression
from normal operation → partial islanding → complete islanding demonstrates how the system can evolve under
severe contingencies while maintaining physical validity. This is a valuable example of why understanding state
estimation theory and physical principles is crucial for proper anomaly detection, rather than simply pattern
matching against known scenarios.

As can be seen, the open CB between Bus 9 and Bus 10 is correctly detected as a normal condition in an islanding
mode with other relevant information according to the data pattern and SE rules.

This following “Response” box demonstrates the results of Scenario #2D based on the FDI attack. It is noteworthy
to mention that the SE results are based on the normal condition, applying a change of “Closed” to “Opened” in the
generated data in the Excel file. For this scenario, a visualized response is requested from the GenAI tool in addition to
the general response to better clarify the in-depth analysis.

Response

Scenario #2D (GenAI-based AD)

Most Critical Finding: Row 6 in the Excel file Violates Fundamental Physics. The EXACT false data locations
are:

CB Status Violation (Row 6)

• Cell E6: Shows “Opened”
• Cells H6, I6, M6: Show 56.1 MW, −15.8 Mvar, 1.68 MW loss

Why it’s FALSE: An open circuit breaker CANNOT conducts electricity - physically impossible.
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State Estimation Rules

Comparison: Valid vs Invalid Scenarios
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According to the response to the GenAI-based AD process for Scenario #2D, it can be seen that the trained GenAI
tool can comprehensively analyze the scenario with all details along with all technical rules. This GenAI-powered
AD process represents a significant advancement for power grid operators requiring rapid and precise identification of
erroneous data. Consider it as a highly intelligent assistant that understands the inviolability of the principles of physics;
when it detects an anomalous situation, such as electrical power appearing to flow through an open CB, it promptly
signals an alert. In this particular case, it caught a major error where 56.1 MW was erroneously recorded as passing
through the CB between Bus 2 and Bus 4 that was opened. What makes this system really practical is how it thinks in
the manner of an experienced engineer but works at computer speed, catching both the obvious mistakes and the subtle
ones that might bypass human operators during busy shifts. The visual dashboards and explicit alerts eliminate the
need for operators to analyze spreadsheets extensively; they enable rapid identification and correction of issues prior to
making decisions with the potential to influence the power supply to thousands of customers.

3.3 Attack Point 3: Attack/Error in HMI Screen based on RTDB (Purple Dashed Line)

This attack vector targets the HMI by manipulating the RTDB that feeds visual displays in control rooms. This
advanced attack methodology acknowledges that operators make critical decisions based primarily on the visual
information presented on their screens, regardless of the core data integrity. By corrupting the RTDB, attackers can
create inconsistencies between the actual system state and what operators observe, effectively deceiving the human
decision-makers who serve as the last line of defense in power system operations [39, 45]. Display corruption attacks
can present in various forms, from subtle manipulations of numerical values to complete misrepresentation of network
topology through manipulated CB statuses or false connection indicators. The psychological impact of these attacks
extends beyond simple data falsification; they weaken operator confidence in the system’s reliability and could lead
to decision paralysis during critical situations. Moreover, these attacks can be designed to display mathematically
consistent but operationally dangerous configurations, leading experienced operators to take actions that compromise
system stability while believing they are following correct procedures. The challenge in detecting such attacks lies
in distinguishing between legitimate display updates reflecting actual system changes and malicious modifications
intended to mislead operators.

Display Replay Attack with Segment Rearrangement Modern power system control rooms rely heavily on HMI
displays showing SLDs. Display RE attacks, where attackers rearrange segments of the display by manipulating the
database of HMI (i.e., RTDB), can cause operators to take incorrect control actions. While GenAI can effectively
analyze PF results, it has inherent limitations in spatial reasoning and correct visual segment arrangement. This part
proposes a novel AD method that combines GenAI with SoM methodology termed “SoM-GI” to overcome these
limitations [46, 47]. The proposed framework helps to improve the capability of attacks/errors detection considering
different visual information within the HMI screen along with SE and PF rules. This novel framework combines GenAI
for textual and semantic understanding and SoM for guiding the texts and different connections based on markers and
indicators that are a fusion mechanism for the robust AD process. The following section shows the application of
GenAI without/with SoM in the rearrangement process of different segments in an HMI screen based on principles. An
SLD of the IEEE 14-bus system according to different components is illustrated in Fig. 5. More information regarding
the interconnections and other rules within the PF analysis is given in the next part. Initially, Scenario #3A is proposed
to show the application of GenAI without the SoM technique to rearrange different segments of a screenshot of an
IEEE 14-bus system in PowerWorld Simulator as an HMI screen. In this section, a 9-segment arrangement process is
considered to check the efficiency of the GenAI-based AD and SoM-GI-based AD. However, the number of segments
can be increased based on the different rules and principles to handle the proposed methodology.

3.3.1 A Normal HMI Screen with Power Flow Analysis Using Only GenAI Without SoM Technique

The following “Prompt”-“Response” boxes show a normal HMI screen without any attack/error in segmented parts.
Then, a prompt requested the GPT to arrange the segments based on its understanding. The process is that the 9
segments are given as inputs along with the following prompt, without any additional rules or principles to train the GPT
model. As can be seen, the response demonstrates the incapability of the GPT model to arrange and make a connection
between different segments of an HMI screen based on the 14-bus system in PowerWorld Simulator.

Prompt

Scenario #3A (GenAI without SoM)
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Figure 5: An illustration of a standard IEEE 14-bus system.

We have 9 segments of a corrupted HMI screen (i.e., single line diagram). Please analyze the correct arrangement
of these segments. Please use a square with 9 segments, and write the segment name within it based on your
understanding.

Response

Scenario #3A (GenAI without SoM)

Looking at these 9 segments of a power system single-line diagram, I need to analyze the connections, bus
numbers, and power flow directions to determine the correct arrangement.

Let me examine the key features of each image:

• Image 1: Bus 4 (1.02 pu) and Bus 7 (1.06 pu) with a generator symbol
• Image 2: Bus 5 (1.02 pu), Bus 6 (1.07 pu) with generator, and Bus 10 (1.05 pu)
• Image 3: Bus 8 (1.09 pu) and Bus 9 (1.06 pu)
• Image 4: connection lines only (no buses)
• Image 5: Bus 2 with connecting line
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• Image 6: Bus 11 (1.06 pu) and Bus 13 (1.04 pu)
• Image 7: Bus 12 (1.06 pu)
• Image 8: Bus 1 (1.06 pu) with generator and Bus 2
• Image 9: Bus 3 (1.01 pu) with generator

Based on the analysis of bus numbering sequences, connection patterns, and power flow directions, the correct
3× 3 arrangement is:

Image 8 Image 1 Image 3
Image 9 Image 2 Image 6
Image 5 Image 7 Image 4

Or in terms of bus content:

Bus 1, 2 Bus 4, 7 Bus 8, 9
(with Gen at Bus 1) (with Gen at Bus 7)

Bus 3 Bus 5, 6, 10 Bus 11, 13
(with Gen at Bus 3) (with Gen at Bus 6)
Bus 2 connection Bus 12 Connection lines

This arrangement creates a logical flow where:

• Bus numbers generally increase from left to right and top to bottom.
• The generators at buses 1, 3, 6, and 7 are properly distributed.
• The central position serves as a major junction with buses 5, 6, and 10.

According to the GPT model’s response, it can be observed that it cannot arrange different segments in the correct
positions considering its semantic understanding, as illustrated in Fig. 6. The Image # is replaced with Segment # for
better clarification of this incorrect rearrangement implemented by the GPT model in this figure. Hence, according to
this issue, an additional technique is required to improve the accuracy of this rearrangement process. Thus, an SoM-GI
technique is proposed based on training the GPT model with rules, power system principles, and visual indicators to
enhance the capability of positioning different segments, assisting the GenAI to handle SLD segments (based on the
connection, position of shapes, and PF rules, etc.) simultaneously. The next part shows the principles of the SoM
technique along with the relevant information according to this application.

Proposed Set-of-Mark Guided Generative Intelligence (SoM-GI) Technique The arrangement of power system
segments into structured grid layouts presents significant challenges in visualization and analysis in terms of different
unexpected scenarios that can happen in the SCADA room. In this section, adapting the SoM prompting methodology
proposed, combined with the GenAI (named as SoM-GI) to systematically arrange different segments based on visual
markers and linguistic rules, including CBs, directional indicators, and CPs, and semantic understanding of the GPT
model.

Problem Formulation Following the SoM-GI framework, the power system arrangement task is defined as a visual
grounding problem. Given a set of power system segments S = {S1, S2, ..., S9} to be arranged in a 3× 3 grid, each
segment contains visual markers that guide proper placement. Let G ∈ R3×3 represent the target grid arrangement,
where each cell Gi,j contains one segment from S. The arrangement function is defined as Eq. (21) [46]:

G = f(S,M) (21)

where M represents the set of visual markers including CBs, directional indicators, and CPs.

Power Flow Principles PF analysis constitutes a fundamental component of SCADA systems, encompassing tasks of
monitoring, planning, and operational control. In the context of PF analysis, an SCADA system is typically employed to
determine the electrical network’s structure, where buses serve as pivotal nodes within the diagram. An SLD illustrates
the interconnections between different buses through transmission lines that quantify the power being transferred
from one bus to another. Additionally, the SLD may highlight which generators are integrated into the automatic
generation control (AGC) system, a mechanism that balances power supply and demand by regulating the output of
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Figure 6: GenAI inability to arrange HMI segments correctly without the SoM capability.

generators [48, 49]. Different CBs, current flows, impedances, and transmission lines are other components of SLDs.
This visual evaluation is necessary and crucial in SCADA rooms of utilities to monitor the operation of the system
for potential errors and, thus, take appropriate actions to restore them when faced with outages/interruptions [50, 51].
These SLDs consist of multiple buses, interconnected by CBs (e.g., CBi and CBij) such that each bus may have
associated loads or distributed generation units. Also, they include other components such as generators, transmission
lines, impedances, and current flows. As an example, CBij illustrates the CB between buses i and j, near bus i, and all
CBs operate in their normal conditions (black color), as demonstrated in Fig. 7. The abnormal scenario is based on the

25



Zaboli et al., “Generative AI for Cybersecurity of Energy Management Systems”

Figure 7: A representation of different normal and abnormal scenarios in EMS-based SCADA.

CBji failure due to communication errors which prevent the fault isolation in the transmission line between buses i
and j. According to this condition, the rest of the network can work with other DERs. Additionally, these anomalous
behaviors can be observed: CBji remains closed visualized with a black square. A communication/SCADA error
prevents the open command from reaching CBji; hence, the fault persists, causing a power outage in the downstream
network.

The formulations and rules to train the GPT model are defined in a comprehensive way suitable for the PF analysis
that a part of these principles are given as Eqs. (22)–(41) [52, 53]. These principles are specifically defined in this
application to analyze the SCADA information by training the GPT model.

I
(t)
Bij + I

(t)
Bji = 0, I

(t)
Bjk + I

(t)
Bkj = 0, I

(t)
Bkm + I

(t)
Bmk = 0 (22)

I
(t)
Bij = I

(t)
Bi , IL1 = I

(t)
Bjk − I

(t)
Bkm (23)

According to Fig. 7, Eqs. (22)–(23) show the KCL in different buses considering the sample load current, IL1. As
defined, I(t)Bij denotes the current flow between buses i and j. This definition can be extensible to other parameters in
this set of equations. Eqs. (24)–(28) demonstrate the KVL in this distribution system for different sections. Accordingly,
V

(t)
Bi , V (t)

G , and Z
(t)
ij denote the voltage at bus i, the voltage of the generator, and the impedance of the transmission line

between buses i and j, respectively.

V
(t)
Bi − V

(t)
Bj = I

(t)
BijZ

(t)
ij , V

(t)
Bj − V

(t)
Bi = I

(t)
BjiZ

(t)
ji (24)
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V
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V
(t)
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Bk = I

(t)
BjkZ

(t)
jk , V

(t)
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(t)
Bm = I

(t)
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(t)
km (28)

The formulations of active power (P ) and reactive power (Q) are given in Eq. (29)–(37), in which P
(t)
Bij shows the active

power between buses i and j, and other parameters follow the similar definitions in this set. The active and reactive
powers of the load are illustrated as “PL1” and “QL1,” respectively.

P
(t)
Bjk = P

(t)
Bkm + PL1, Q

(t)
Bjk = Q

(t)
Bkm +QL1 (29)

P
(t)
Bij =

|VBi|2Rij − |VBi||VBj | cos(θi − θj)Rij + |VBi||VBj | sin(θi − θj)Xij

R2
ij +X2

ij

(30)

Q
(t)
Bij =

|VBi|2Xij − |VBi||VBj | cos(θi − θj)Xij − |VBi||VBj | sin(θi − θj)Rij

R2
ij +X2

ij

(31)

P
(t)
Bji =

|VBj |2Rij − |VBj ||VBi| cos(θj − θi)Rij + |VBj ||VBi| sin(θj − θi)Xij

R2
ij +X2

ij

(32)

Q
(t)
Bji =

|VBj |2Xij − |VBj ||VBi| cos(θj − θi)Xij − |VBj ||VBi| sin(θj − θi)Rij

R2
ij +X2

ij

(33)

P
(t)
Bjk =

|VBj |2Rjk − |VBj ||VBk| cos(θj − θk)Rjk + |VBj ||VBk| sin(θj − θk)Xjk

R2
jk +X2

jk

(34)

Q
(t)
Bjk =

|VBj |2Xjk − |VBj ||VBk| cos(θj − θk)Xjk − |VBj ||VBk| sin(θj − θk)Rjk

R2
jk +X2

jk

(35)

P
(t)
Bkj =

|VBk|2Rjk − |VBk||VBj | cos(θk − θj)Rjk + |VBk||VBj | sin(θk − θj)Xjk

R2
jk +X2

jk

(36)

Q
(t)
Bkj =

|VBk|2Xjk − |VBk||VBj | cos(θk − θj)Xjk − |VBk||VBj | sin(θk − θj)Rjk

R2
jk +X2

jk

(37)

The statuses of different CBs are presented in Eqs. (38)–(41), in which the principles of CBs are assessed in opened
and/or closed conditions. CB

(t)
ij depicts the CB between buses i and j, near to bus i. If at least one of the CBs (e.g.,

CB
(t)
ij or CB

(t)
ji ) is opened according to Eq. (38), there are no electric current and PFs between buses, which shows a

normal condition.

I
(t)
Bij = I

(t)
Bji = 0 & P

(t)
Bij = P

(t)
Bji = Q

(t)
Bij = Q

(t)
Bji = 0 (38)

This similar analysis can be expanded to Eq. (39) that at least one of the CBs between buses j and k is opened and this
part experiences an open circuit status.

I
(t)
Bjk = I

(t)
Bkj = 0 & P

(t)
Bjk = P

(t)
Bkj = Q

(t)
Bjk = Q

(t)
Bkj = 0 (39)
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Further, Eqs. (40) and (41) illustrate the closed status of CBs between buses i− j and j − k, respectively, in which
there should be the same currents with different active and reactive powers because of the differences between voltage
levels of buses.

I
(t)
Bij = I

(t)
Bji & P

(t)
Bij ̸= P

(t)
Bji ̸= 0 & Q

(t)
Bij ̸= Q

(t)
Bji ̸= 0 (40)

I
(t)
Bjk = I

(t)
Bkj & P

(t)
Bjk ̸= P

(t)
Bkj ̸= 0 & Q

(t)
Bjk ̸= Q

(t)
Bkj ̸= 0 (41)

Please note that there are more principles according to the PF analysis which are formulated and trained according to
the proposed framework during the implementation process, considering the different normal and abnormal scenarios
which can happen for components such as other CB statuses during a fault in different transmission lines, voltage
violations, and the presence of loads in different buses.

Circuit Breaker Markers: CBs serve as primary connection indicators between buses at the terminals of transmission
lines. For buses i and j, the CB markers follow the notation CBij ↔ CBji, indicating terminal connections of
transmission lines. These CBs (i.e., red square markers) establish bidirectional connectivity constraints.

Directional Indicators: Each transmission line includes directional markers Li j d where d ∈
{N,S,E,W,NE,NW,SE, SW} represents the different directions. The directional constraint is:

Li j d 1(Sk) ↔ Li j d 2(Sl) (42)

where d1 and d2 are complementary directions (e.g., N ↔ S).

Connection Point Matching: CPs follow a pairing scheme as CPi j A ↔ CPi j B and CPi j C ↔ CPi j D that these
blue boundary markers ensure proper alignment of adjacent segments.

Segment Arrangement Algorithm The arrangement process follows a constraint satisfaction approach:

1. Marker Extraction: For each segment Sk, extract the set of markers Mk = {CBs,Dirs,CPs}.
2. Constraint Generation: Generate adjacency constraints based on CB terminal pairs, directional complemen-

tarity, and CP matching rules.

Implementation Approach The SoM-GI methodology enhances visual grounding by making implicit connections
explicit through markers. For power system segments:

Marker Visibility: Each marker type uses distinct visual encoding:

• Red squares: Circuit breakers (active connections)
• Text labels: Directional indicators (L i j direction)
• Blue markers: CPs (boundary alignment)

Spatial Reasoning: The arrangement leverages spatial relationships encoded in directional markers. For instance,
L1 2 S indicates bus 1 connects to bus 2 via the southern boundary, requiring the segment containing bus 2 to be placed
south of the segment containing bus 1. A sample of an HMI screen segment with and without the SoM-GI method is
represented in Fig. 8. As can be seen, there are different indicators to enhance the understanding of the PF analysis
in an HMI screen according to the transmission lines, CPs at edges/boundaries, CB markers, and load markers. The
similar SoM-GI approach can be applied to other segments.

Finally, according to the provided information, the following recommendations/rules are crafted to train the GPT model
in addition to the technical parts of PF analysis, as shown in the following box:

Recommendations/Rules for training the GPT model

• Red squares show the closed circuit breakers (CBs) at the terminals of each transmission line. For
example, CB1 2 and CB2 1 should be at the terminals of one transmission line between bus 1 and bus 2.
This rule applies to all buses with relevant CBs. Also, green squares show the open CBs so there is no
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Based on the comparison between the segment without SoM-GI (i.e., Image #1) and with SoM-GI (i.e., Image #2), here are the
six blue indicators and their meanings:

• L12 13 E: The transmission line from Bus 12 to Bus 13 exits through the east direction of this segment.

• CP13 12 B: The point B for the Bus 13 to Bus 12 link, indicating this boundary point must connect to its matching
CP13 12 A in an adjacent segment.

• CB12 6: CB identification between Bus 12 and Bus 6, marking the terminal equipment for this transmission line
connection.

• Ld 12: The load connected at Bus 12, indicating local power consumption at this bus.

• L12 6 S: The transmission line from Bus 12 to Bus 6 exits through the south direction of this segment.

• CP6 12 B: The point B for the Bus 6 to Bus 12 link, indicating this boundary point must connect to its matching
CP6 12 A in an adjacent segment.

Figure 8: A sample of applied SoM-GI rules (i.e., blue marks) to a segment of an HMI screen.

flow of power. Also, it is not possible to have different statuses of CBs at both terminals of one single
transmission line. That means that if we have a closed CB at one terminal, there should be another closed
CB at another terminal to meet the normal scenario. Otherwise, this is an anomaly.

• Indicators “Li j direction” show the connection of different transmission lines in which N, S, W, E, NE,
NW, SE, SW show North, South, West, East, Northeast, Northwest, Southeast, Southwest, respectively.
These directions show the connection to the adjacent segment according to the transmission line connec-
tions. For instance, L1 2 S (connection of bus 1 to bus 2 through south direction) and/or L2 1 N show
an adjacent of relevant segments in a proper way. This rule applies to all transmission lines and relevant
buses.

• There are some CP at end of some parts for better clarification. Actually, CPs are boundary points in
blue for better clarification. For instance, “CP1 2 A” at one edge and “CP1 2 B” at another edge. It
means these two points should have connected each other. Also, in some case, there are “CPi j C” and

“CPi j D” in which “C” and “D” should connect each other. That means that “A” should be connected
to “B” and “C” should be connected to “D”. Please check this rule carefully. Match connection pairs:

– A connects to B
– C connects to D
– Same CPi j must connect
– Arrange segments so matched CPs are adjacent.

This approach provides several advantages for power system visualization, including:

1. Explicit Connectivity: Visual markers make implicit connections explicit

2. Systematic Arrangement: Rule-based placement reduces ambiguity

3. Verification: Visual inspection confirms proper alignment

Now, the goal is to implement the SoM-GI approach according to different segments, and check whether there is a correct
rearrangement of different segments to satisfy various constraints, connections, and consistent visual information.

The following “Prompt”-“Response” box shows that the SoM-GI approach can make a good connection between
different segments in an HMI screen based on non-arranged parts. This framework provides a systematic approach
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that scales from 3 × 3 to any N × N grid while ensuring the integrity of electrical systems by satisfying various
constraints imposed on them. The primary determinants of success involve prioritizing the alignment of transmission
line orientations, strategically positioning hubs based on optimal connectivity indicators, and validating a comprehensive
set of constraints to ensure system efficacy.

Prompt

Scenario #3A (SoM-GI)

Arrange these 9 power system segments into a 3× 3 grid. I need to trace the exact transmission line directions
and connection points (CPs) systematically. Please check the rules and indicators to improve the capability
of arrangement using the proposed methodology in this chat. Also, consider this arrangement and rules as

“Reference” for future tasks.

Response

Scenario #3A (SoM-GI)

Looking at the 9 power system segments, I need to trace the transmission line connections and match the
connection points (CPs) to arrange them in a 3× 3 grid. Let me analyze the key connections:

Transmission Line Directions:

• L1 2 S (Image 8): Bus 1 connects south to Bus 2
• L2 1 N (Image 5): Bus 2 connects north to Bus 1
• L2 3 E (Image 5): Bus 2 connects east to Bus 3
• L3 2 W (Image 9): Bus 3 connects west to Bus 2
• L3 4 N (Image 9): Bus 4 connects north from Bus 3
• L4 3 S (Image 1): Bus 4 connects south to Bus 3
• L6 12 N (Image 8): Bus 6 connects north to Bus 12
• L12 6 S (Image 7): Bus 12 connects south to Bus 6
• L12 13 E (Image 7): Bus 12 connects east to Bus 13
• L13 6 S (Image 6): Bus 13 connects south to Bus 6

Connection Point Matching:

• CP1 2 A (Image 8) ↔ CP1 2 B (Image 5)
• CP2 3 A (Image 5) ↔ CP2 3 B (Image 4)
• CP2 3 C (Image 4) ↔ CP2 3 D (Image 9)
• CP3 4 A (Image 9) ↔ CP3 4 B (Image 1)
• CP6 12 A (Image 8) ↔ CP6 12 B (Image 7)
• CP13 12 A (Image 6) ↔ CP13 12 B (Image 7)

Based on these connections, the 3× 3 grid arrangement should be:

Bus 12 Bus 13, 11, 10 Bus 14, 9, 8
Bus 1, 5 Bus 10, 6, 5 Bus 7, 4, 8

Bus 2 Connection diagram Bus 3

This arrangement ensures:

• All connections align properly (e.g., Bus 1 above Bus 2).
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• All connection points (CPs) match between adjacent segments.
• Circuit breakers at transmission line terminals are properly connected.

According to these results, it can be seen from Fig. 9 that the SoM-GI technique can arrange different segments in
correct positions considering its semantic understanding. This GenAI-based methodology uses guidelines based on

Figure 9: A correct rearrangement of different segments of a corrupted HMI screen using the SoM-GI Technique.

markers and indicators to improve the capability of the rearrangement process. Compared with the GenAI-based AD
without the SoM (e.g., markers, indicators, and rules), the GPT model solely has no idea about the connections, rules,
and the power system domain.

3.3.2 Scenario #3B: A CB Malfunction Between Bus 6 and Bus 13

In addition, to show the capability of the proposed SoM-GI technique, a DI is applied to a part of a segment. Then,
a prompt is given to request potential anomalies in the uploaded segments and perform the rearrangement process
simultaneously. Hence, one of the CBs between Bus 6 and Bus 13 (i.e., CB 6 13) is manually manipulated to an open
status (i.e., green color) - as shown in Fig. 10, to check whether the proposed method can detect this anomaly. The
“Prompt” and “Response” of the given scenario are mentioned regarding the reference box.

Prompt

Scenario #3B (SoM-GI)
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Figure 10: A manual manipulation of CB between Bus 6 and Bus 13 to an open status.

Now, the purpose is to do an anomaly detection process. Can you find any anomaly compared with “Reference”?
If yes, please specify the reason.

Response

Scenario #3B (SoM-GI)

Looking at the images carefully and comparing them with the reference configuration, I found one anomaly:

Anomaly Detected: In Segment #5, there is a GREEN circuit breaker at CB6 13 (the connection between Bus
6 and Bus 13).

Reason for Anomaly: According to the rules established in the reference:

• In normal operating conditions, all circuit breakers should be RED (closed) to allow power flow.
• Both terminals of a transmission line must have matching CB status.

However, in Segment #5:

• CB6 13 appears as GREEN (open), which means no power can flow through this line.
• This creates an abnormal condition where the transmission line between Bus 6 and Bus 13 is disconnected.

This violates the normal scenario conditions where all transmission lines should be in service with closed (red)
circuit breakers at both terminals. The open CB at this location would interrupt the power flow between Bus 6
and Bus 13, potentially affecting system reliability and power delivery. All other aspects (direction indicators,
connection points, and other CB statuses) appear to match the reference configuration correctly.

It is apparent that this SoM-GI method can detect the abnormal scenario of manual opening of the CB between Bus 6
and Bus 13. Also, it interpreted the reference model along with all rules, indicators, and markers and made a visual
comparison considering the SE and PF rules.

3.3.3 Scenario #3C: False Data Injection at Bus 2

In this part, an FDI is applied to one of the segments (i.e., changing the voltage magnitude of Bus 2 from 1.04 pu to
1.02 pu) to check with the SoM-GI technique whether it can detect this anomaly considering the rules, as presented in
the following interaction:

Prompt
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Scenario #3C (SoM-GI)

The purpose is to do an anomaly detection process again. Can you find any anomaly compared with “Reference”?
If yes, please specify the reason.

Response

Scenario #3C (SoM-GI)

Looking at the images carefully and comparing them with the reference configuration, I found one anomaly:

Anomaly Detected: In Segment #7, Bus 2 shows a voltage of 1.02 pu instead of the normal 1.04 pu.

Reason for Anomaly: According to the reference configuration:

• Bus 2 should have a voltage magnitude of 1.04 pu in normal operating conditions.
• However, in Segment #7, Bus 2 displays 1.02 pu.

This represents a voltage magnitude anomaly where Bus 2 is experiencing lower than normal voltage. This could
indicate:

• A voltage regulation issue
• Increased loading conditions causing voltage drop
• A state estimation error
• Potential power flow convergence issues

All other aspects appear normal:

• All circuit breakers are red (closed) as expected.
• Direction indicators match properly.
• Connection points align correctly with the reference arrangement.
• Other bus voltages match their reference values.

This voltage deviation at Bus 2 could impact system stability and power quality, as it represents approximately a
2% drop from the normal operating voltage.

The proposed method proved remarkably effective in detecting subtle power system anomalies that could easily be
missed during operations. In this test scenario, the system successfully identified a single but significant voltage
deviation at Bus 2, where it detected a 1.02 p.u. reading instead of the expected 1.04 p.u. – an apparently small 2% drop
that could signal serious impacts (e.g., voltage regulation problems, overloading conditions, or measurement errors).
While correctly identifying this anomaly, it simultaneously verified that all other system components were operating
normally – CBs were properly closed, power flow directions were correct, and remaining bus voltages matched their
reference values. This demonstrates the SoM-GI approach’s ability to act similarly to an expert operator who not
only detects problems but understands their context, providing valuable insights about potential causes ranging from
increased system loading to SE errors, finally helping operators make informed decisions to maintain grid stability and
power quality.

4 Conclusions and Future Directions

This study has effectively developed an innovative security framework designed to secure power grid control systems
from advanced threats/errors targeting multiple points of vulnerability. By integrating state-of-the-art AI technology
with a comprehensive understanding of power system operations, three pioneering solutions are proposed including a
GenAI-based ADS capable of identifying stealth attacks that conventional BDD (e.g., χ2 test) miss, a GenAI-based
ADS for identifying FDIs by training the GPT model with PF results and SE rules, and the SoM-GI approach, which
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enables AI to interpret and comprehend power grid displays comparable to the expertise of experienced operators.
Empirical evaluation utilizing actual power system models has demonstrated the framework’s proficiency in identifying
a range of threats, including deceptive data manipulations that align mathematically yet violate physical laws, and visual
manipulations on HMI screens that might mislead human operators into making risky decisions. The distinguishing
feature of this approach is its capacity to function similarly to both an engineer and a detective, synthesizing evidence
from numerical data, visual inputs, and system behavior patterns to detect anomalies escaping traditional security
mechanisms, while also conveying findings in a way that operators can easily interpret and trust.

In future research, the enhancement of power grid security will be achieved through a series of interconnected initiatives
designed to tackle the evolving challenges posed by technology advancements. Firstly, it is imperative to create robust
frameworks for validation that leverage adversarial training methodologies to verify AI-generated outputs, ensuring
alignment with a wide array of operational specifications and physical constraints. Concurrently, the development of
sophisticated real-time analytical systems is crucial for processing streaming data from HMI with a latency measured
in sub-seconds, all while maintaining computational efficiency via optimal resource allocation. Furthermore, the
framework will evolve to integrate novel DERs, microgrids, and virtual power plants, each of which fundamentally
transforms conventional grid operational dynamics. Significant attention will be directed towards the design of advanced
detection algorithms that can recognize extensive coordinated attacks targeting specific topological vulnerabilities
within the network, especially those affecting zero-flow transmission segments that are not detectable by standard
statistical monitoring techniques. In addition, user interface systems will be progressively adaptive, with the ability to
modify the presentation of information based on both the severity of threats and the expertise level of operators. This
research will also explore the development of proactive defense strategies against AI-led cyber threats by implementing
continuous adversarial learning processes. Finally, a groundwork will be considered for security protocols resistant to
quantum-based attacks, ensuring the sustainable protection of infrastructure as the industry transitions to cryptographic
paradigms designed for a post-quantum world.
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