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ABSTRACT When combining Large Language Models (LLMs) with autonomous agents, used in network
monitoring and decision-making systems, this will create serious security issues. In this research, the
MAESTRO framework consisting of the seven layers threat modeling architecture in the system was used
to expose, evaluate, and eliminate vulnerabilities of agentic AI. The prototype agent system was constructed
and implemented, using Python, LangChain, and telemetry in WebSockets, and deployed with inference,
memory, parameter tuning, and anomaly detection modules. Two practical threat cases were confirmed
as follows: (i) resource denial of service by traffic replay denial-of-service, and (ii) memory poisoning
by tampering with the historical log file maintained by the agent. These situations resulted in measurable
levels of performance degradation, i.e. telemetry updates were delayed, and computational loads were
increased, as a result of poor system adaptations. It was suggested to use a multilayered defense-in-depth
approach with memory isolation, validation of planners and anomaly response systems in real-time. These
findings verify that MAESTRO is viable in operational threat mapping, prospective risk scoring, and the
basis of the resilient system design. The authors bring attention to the importance of the enforcement
of memory integrity, paying attention to the adaptation logic monitoring, and cross-layer communication
protection that guarantee the agentic AI reliability in adversarial settings.

INDEX TERMS Autonomous Agents, MAESTRO Framework, Threat Modeling, Network Monitoring,
LLM Security, Risk Assessment.

I. INTRODUCTION
A. OVERVIEW OF AGENTIC AI AND NEED OF
AUTONOMOUS AGENTS IN NETWORK MONITORING
An agentic AI can be described as autonomous memory-based
systems that engage in planning, relying, and communication with
external tools in a behaviorally self-directed way. Compared to the
reactive patterns of AI models that work on the basis of a single
prediction, the agentic systems follow the perception-reasoning-
acting loop. This allows them to make choices and aim at achieving
objectives and changing with time. They are powered either by large
language models (LLMs) or multimodal foundation models with the
ability to reason in context, operate with long-term horizons, and co-
ordinate multimodal actions that are not merely short-term respon-
sive [1], [2]. Agents agentic architectures liberate agents stateful and
compositional behaviors and actions, and planning beyond stimulus-
response behavior, so are more suitable to dynamic environments
where rule-based behavior cannot be adapted dynamically. An

example is in network monitoring, where the conventional tools and
systems such as static intrusion detection system (IDS) today as well
as the threshold monitors are inadequate toward identifying new
threats or zero-day threats [3]. The gap is closed in agentic AI by
the ability to conduct on-the-fly telemetry analysis, context sensitive
alerts, and auto-tunable parameters. A machine trained on an LLM
could also make the difference between benign and malicious traffic
influxes and respond, with hardly any guidance on the human side.
Such agents can change constantly through feedback loops, and
thus provide quick, adaptive solutions in cybersecurity situations.
They improve resiliency through proactive mitigation of threats,
cross-correlation of trends and detection gaps, thus the need to use
agentic AI in the current dynamic threat environment [4].
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B. GROWING DEPLOYMENT OF LLM-AUGMENTED
AGENTS IN CYBERSECURITY
Large language models (LLMs) have allowed large scale deploy-
ments in cybersecurity to replace traditional, human-manned coor-
dinating effort with semi-autonomous entities that perform threat,
anomaly analysis, and response generation in real time. Based
on the generative and contextual reasoning capabilities of LLMs,
these agents can execute sophisticated work that typically needs
a human background to conduct, including log parsing, incident
summarization, and policy refinement. They are particularly suit-
able in the dynamic environment of such applications as network
defense since they can be adapted to unstructured information and
can learn through feedback. Some of the areas which LLMs are
applicable include intrusion detection, phishing classification, alert
triage, and vulnerability management. As an example, our model
applied to a SIEM system using a transformer-based prediction
correctly classified a substantial number of false positives with
the help of correlating alert history with metadata context in the
past [5]. Threat hunting as well as incident response also relies

FIGURE 1. A generalized architecture of a single-agent Agentic AI system

heavily on LLM-powered agents to help them extract indicators of
compromise (IOCs) posted in live telemetry and execute automated
responses in situations like firewalls updates [6]. These agents sup-
port workflow orchestration without scalable servers and distributed
threat mitigation, and visibility and overall effectiveness in cloud-
native infrastructures [7]. On the other hand, trust and control
issues have been offered by such challenges as hallucinations, goal
disparities, adversarial manipulation (e.g., memory poisoning), and
partial observability. Their increase in decision making autonomy
leads to an appetite among LLM agents to require more advanced
threat modeling systems and architectural defenses in order to be
deployed safely and in an auditable way.

C. CHALLENGES: AUTONOMY, EXTERNAL TOOL USE,
REASONING LOGIC — NEW THREAT CLASSES.
EXISTING FRAMEWORKS (E.G., STRIDE, PASTA) ARE
INADEQUATE.
New security risks are presented by agentic AI systems, particularly
large language models (LLMs) driven systems, predicated on an
expansiveness that traditional rule-based or supervised AI could not
support. Such agents have advanced features including autonomous
reasoning, persistent memory, adaptive planning, and external tools
invocation, enlarging their scale of functionality considerably, and,
respectively, the surface of attack. The threats arising include

goal misalignment, memory poisoning, and multi-stage reasoning
hijacks because of the changing behavior of agents in the dynamic
environment. Such frameworks as STRIDE and PASTA do not
have the ability to deal with such complex interactions, as all
of the architectures are modeled as static, and are not deep in
modeling semantic or emergent behavior. Overcoming these limita-
tions, this work implements the MAESTRO framework that divides
the architecture of an agent into 7 interrelated layers so that the
threat localization at different layers and the risk scoring based
on a specific AI are possible. The questions the research produces
respond to are the following:

1) How do threats emerge in autonomous agents?
2) How can they be mapped and evaluated efficiently using

MAESTRO ?
3) What mitigation strategies are the best?

It gives the contextual MAESTRO mapping, threat taxonomy, a
risk scoring model based on severity, and a real-world validation
in the scenario of a deployed LLM-based agent in a live telemetry
monitoring attitude.

II. Background and Related Work
A. Existing Security Frameworks
The established models of security, such as STRIDE, PASTA,
OWASP Top 10 have long been utilized in secure software de-
velopment and insufficiently accommodate the agentic AI systems
that feature autonomy and dynamic reasoning. To show how to
apply STRIDE to structured systems such as infotainment, Das
et al. [8] found 34 threats. Tete et al. [9] and Gulen et al.
[10] have also generalized STRIDE to LLM-based applications
and have typified concerns such as injection and privilege abuse.
Nevertheless, STRIDE does not model emergent behavior, cognitive
reasoning of AI agents very well. Juuso [11] pointed out that the
threats associated with invoking a tool and the cognitive subsystems
require the scope of STRIDE to be extended or supplemented.

PASTA is an attacker-oriented, process-focused approach tar-
geted at modeling the behavior of threat through the cycle of a
system. Even though theoretically inclusive, its boundaries of the
system are relatively fixed, which is why it might not be fully
applicable to those environments that pursue agentic AI. Juuso
[11]observes that though PASTA provides detailed threat flow, it is
not flexible to systems that have a learning and adaptive behavior
during runtime. It assumes attacker goals are pre-determined and
data flows are fixed, which disrupts its applications in black-box
systems that commonly cause new vulnerabilities due to unpre-
dictable modifications of their state. The OWASP Top 10 on LLM
Applications captures the widening gap between the conventional
application security and the LLM-related threats. Vulnerabilities it
points are over-agency, hallucination, prompt injection, and insecure
memory. Tete et al. [9] depicts these weaknesses of chatbot agents,
and Dev et al. [12] use the OWASP recommendations to construct
live-time security checklists within the Guard Rail system. Such
OWASP categories as unsafe functions calls and overreliance, which
are of particular interest to agents that work with APIs or external
code, are highlighted by Khan et al. [13].

Although OWASP is related to emergent LLM behaviors, it does
not have structural modeling of reasoning and planning levels.
Classical theories such as STRIDE and PASTA are unable to deal
with agentic modularity- memory systems, perception layers and
planning engines. To address this gap, Huang et al. [14] with
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an introduction to model threats at multiple levels (e.g., at layers
of Input, Memory, Reasoning, Planning, and Action Execution),
providing a new framework referred to as MAESTRO. Dev et
al. [12] promote the conversational and systematic controls like
hallucination filters and safe delegation. Alwaheidi [15] emphasizes
the necessity of threat monitoring that should be performed contin-
uously, and Mollaeefar et al. [16] describe such dangers as memory
poisoning, failures in recursive planning, which are not considered
by conventional models.

B. RELATED WORK
The articles conducted recently highlighted the problem of security
risks posed by systems that use LLM in operational settings.
Krishnamurthy [17] explored the application of generative AI in
cyber defense and realized that hallucinations and coincidental
overreliance might lead to false detections of threats in operational
networks. Coletta et al. [18] considered LLMs finding computable
code and alerted to vulnerability through recursive generation and
not-quite-secure chain of APIs. The above problems led Clement et
al. [19] to suggest an end-to-end threat modeling approach to LLMs
that combines STRIDE-DREAD with injection simulations that
expose the programming to complex attack surfaces in autonomous
pipelines. These findings were later confirmed by Gulen et al. [10]
regarding AI as a service systems with the relevant risk being the
possibility of unauthorized access and manipulation of conclusions
since it is modular, service-based deployments.

Structural vulnerabilities in agentic systems have been dealt too.
Messaad [20] proposed a modular model founded on feedbacks,
interface indeterminacy, and poisoning of memory. Selin [11]
emphasized that the older models of threat and present-day agent
frameworks are incompatible. Chen et al. [21] stressed that tools
summoned by LLMs such as shell commands or APIs are very
vulnerable to indirect prompt injection, especially in unsupervised
execution chains. Another research done showed that the MAE-
STRO framework was highly effective to identify memory abuse,
planning misalignment, and unsafe formations of tools in agentic
deployments (Talla et al. [22]).

Self-delegation and hallucinated planning are emergent behaviors
that also came to the attention. Huang [23] outlined the risks of
coordination in the collective of agent systems that share memory
or APIs whose trust boundaries are not defined. GitHub and Github
Classroom [10] were also compromised at inference times by
adversarial orchestrated API calls in AIaaS contexts. Sere et al.
[24] reported the abuse of the tools when they were taken out
of policy as a consequence of low validation. Fuchs et al. [25]
provided information about fails to do blind delegation in multi-
agent planning. Zhang et al. [26] suggested a policy engine in run
time that interrupts a mismatch between planning and actions to
avoid any damage that can be caused by a hallucinated behavior.

C. LITERATURE SUMMARY AND GAP
Although these frameworks, namely STRIDE, PASTA and OWASP,
are very helpful, they do not cover the reasoning stratum and
autonomous operations of agentic AI systems, bounding up on
defined attack surfaces. Their incapacity to follow the path of
threats in terms of memory, planning, and execution of tools has
been already acknowledged in the literature. In spite of dealing
with secluded vulnerabilities, OWASP LLM Top 10 lacks structural
granularity and cannot model emergent behaviors, which take place
in multi-agent systems. Conversely, this paper implements and

applies the MAESTRO framework in order to overcome such
drawbacks within a threat modeling framework characterized by a
layered and, agent-centric perspective. This work is also practically
more solid than the other literature that is driven by the paradigm
or still remains theoretical. It plays a part in generating the domain-
specific threat list, establishing a quantitative risk-ranking program,
and authenticating the mitigation strategies within an as-soon-
as-you-see-it (as-soon-as-you-collaborate-on-it) telemetry capability
processing environment. In this way, the work shifts into a practical
presentation after performing the conceptual discussion and under-
lies the practicability of MAESTRO as a future real cybersecurity
defense against agentic systems.

III. AGENT ARCHITECTURE AND THREAT LANDSCAPE
A. ARCHITECTURE OVERVIEW
The suggested system is an autonomous agent based on the Large
Language Model (LLM) and used to monitor the network in real
time, having the potential to reason, detect, and react to unusual
activities. This agent is released in a framework of a company
or cloud-platform where it can monitor the telemetry based on
the packets-level, evaluate the performance indicators, identify a
threat in terms of security and provide an actionable representation,
which can be created autonomously with integrated memory and
reasoning logic. The Figure 2 below shows the architecture of the
network monitoring agent which is based on the LLM, representing
the data flow and interaction between the main components. This

FIGURE 2. Architecture of the LLM-based network monitoring agent,
depicting the data flow and interaction among core modules.

architecture is divided into seven modular components which each
perform one specific action to achieve the situational awareness and
measure of responsiveness of the entire agent:
Packet Capture Module:It is a module that captures the real
time network traffic through the various network interfaces, by
utilizing the libpcap or similar network sniffing applications. It
allows extensive examination of the packets as they are being sent
in or sent out, this would provide raw material as security as well
as performance analysis.
Performance Analysis Module: This layer keeps track of latency,
jitter, bandwidth usage and other QoS values. It is time-series based
and gives a picture of system health and points out regressions in
performance that can signal configuration anomalies or resource
bottlenecks.
Security Detection Module: Based on the use of pattern recogni-
tion, behavior analysis, and learned signature database, this module
will detect any potential threats of a type of DoS attack, port
scanning, or credential brute-forcing. It is used along with LLM-
based reasoning to do context-sensitive correlation.
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Reporting and Logging Module:This module compiles processed
data in structured logs and reports. It also helps in periodical archiv-
ing, anomaly logging, in order to carry out a forensic investigation.
LLM Reasoning Engine: The heart of the agent is a sharply
optimized transformer-based model with the abilities to perform
contextual examination, inference shops by use of memories, and
independent response creation. The engine wires the system to read
logs, correlate statistics and summarize events, plan remediation
actions with reference to historical events and real-time indicigators.
WebSocket and Control Layer:Enables bidirectional interactions
between the system and remote dashboards as well as control
clients. This layer makes certain that the agent is able to take
upgrades, send up alerts, and to synchronize courses of action within
the monitoring ecosystem.
Interactive Dashboard: It is an interface which sits at the user
level, displaying the latest trends of traffic, summary of alerts,
system health status and an audit trail of actions taken by the agent.
This module helps administrators to read, and override or accept
automatically made decisions by the agent.
Combined, these modules will form a closed-loop monitoring
system where the agent does not only identify and report about
a threat but also models over telemetry to provide proactive actions
or issue high-confidence alerts. The system architecture has the
capability of being both reactive and predictive thereby having a
robust nature to the dynamic nature of threat landscapes.

B. EXPANDED ATTACK SURFACE
The agentic AI is more complex architecture-wise creating a wider
and deeper threat surface. In sharp contrast to conventional systems,
autonomous agents are vulnerable to dynamic goals, memory loss,
tool invocations and long-temporal-horizon reasoning. Such systems
are vulnerable to both overt attacks of input or output, as well as of
internal logic, memory of the historical past, planning capabilities,
and interface to external tools. Here we classify ten imperative
classes of threats that occur in the LLM-based network surveillance
agents. Every threat is also defined by a given point of exploitation-
e.g. instruction manipulation, multi agent poisoning- and matched
to corresponding system layers by the means of the MAESTRO
framework. The aim is to explain how the behaviour driven by the
reasoning, memory-reliance, and unreliant to an outside source of
autonomy expands the possible market of attack, and necessitates
a more sophisticated modeling method than the common AI mech-
anisms with regard to security. As this Table 1 shows, the above
threats have brief definitions, real-life application, and associations
with MAESTRO layers.

IV. THREAT MODELING USING MAESTRO
A. OVERVIEW OF MAESTRO FRAMEWORK
The MAESTRO framework introduces a multilayered threat mod-
eling framework targeted to deal with security challenges in the
context of the emergent agentic AI systems. In contrast to the
traditional monolithic models, the operational stack of an agent is
broken down in MAESTRO into seven connected layers, enabling
a specific localization of the vulnerabilities and the possibility to
employ quick mitigation strategies that involves only one layer.
L1, Foundation Models, contains pre-trained and fine tuned LLM
which do basic reasoning. Data Operations in Layer 2 provides
data pipelines, labeling and storage. The orchestration and decision-
making between agents is in the Layer 3, Agent Frameworks. Layer
4, Deployment and Infrastructure, includes topics on containerized

hostings and cloud-based hosting. Layer 5, Evaluation and Observ-
ability, performs monitoring and integrity of the systems and Layer
6, Security and Compliance, tackles privacy, access control and
regulatory assurance. The highest layer, Layer 7 Agent Ecosystem,
facilitates the collaboration and interaction of multi-agent with
external items. This model fits properly to the network agent which
is suggested by the research in the context of LLM. The reasoning
logic is in Layer 1, real time telemetry handling in Layer 2 and
distributed alerting in Layer 7. This stratified breakdown allows
complex (and emergent) and threats to be detected and also enables
contextualized mapping of the behavior, autonomy, memory access
and tool invocation of agents, a set of capabilities that could not be
canvased by linear threat models of past. Classification of threats

FIGURE 3. Complete seven-layer MAESTRO architecture

through holistic threat analysis and implant detection systems In
our system of network monitoring agents, which combine telemetry
ingestion, performance diagnostics, and LLM-based reasoning to
achieve real-time detection of anomalies, MAESTRO can offer
a convenient basis of comprehensive threat analysis and implant
detection. Our architecture(Figure 3) is described as follows by the
seven layers :
L1: Foundation Models:The LLM that carries out fundamental
inference on pattern of traffic and anomalies in performance.
L2: Data Operations:Data pipelines that aggregate, filter, and
model network performance statistics.
L3 Agent Frameworks:Agent Level 3: Pre-planning and execution
logic that calls out modules of detection and analysis on basis of
system states.
L4: Deployment & Infrastructure: FastAPI back-end, WebSocket
APIs and containerized microservices that constitute the run-time
environment.
L5: Evaluation & Observability:The performance logs, anomaly
detection metrics, and dashboards that assist the operator to situa-
tional awareness.
L6: Security and compliance: Authentications protocols, API level
security controls and auditing mechanisms to reason and make
decisions.
L7: Sensor Ecosystem: Agent ecosystem Interfaces to human
operators and other external agents that might coordinate with, or
communicate with, the monitoring system.
Such mapping serves to help MAESTRO, not only as a theoretical
framework, but also as a method of operation, based on the
design of our autonomous monitoring agent in the real world. The
classification of threats based on it, the scoring of the magnitude of
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TABLE 1. Threat Summary

Threat Name Definition (Brief) Example Use Case MAESTRO Layer(s)

Instruction Manipulation Alters input prompts to redirect agent
behavior

Injected log entry modifies anomaly
thresholding

Perception + Action

Goal Manipulation Shifts agent’s objectives via ambigu-
ous feedback

Agent favors performance over secu-
rity after drift

Planning + Reasoning

Chain-of-Thought Manip-
ulation

Corrupts stepwise inference of the
LLM

Agent interprets attack as normal
backup

Reasoning + Planning

Memory & Context Ma-
nipulation

Poisons historical memory/context
for decisions

Altered alert history causes missed
repeat attack

Memory + Reasoning

Critical System Interac-
tion

Misuses tool invocation to harm sys-
tem

Malicious firewall update via
spoofed trigger

Action

Planning & Reasoning
Exploit

Degrades long-term decisions
through input shaping

Attacker simulates load balancing to
hide DDoS

Planning + Memory

Resource Exhaustion Overloads agent with data to reduce
functionality

Flooding logs exhaust token capacity Infrastructure

Knowledge Base Poison-
ing

Corrupts learned information or ref-
erences

False threat Intel causes misclassifi-
cation

Knowledge + Reasoning

Supply Chain Compro-
mise

Inserts vulnerability via plugins or
models

Tainted plugin leaks sensitive data Infrastructure

Multi-Agent Exploitation One agent sabotages others via
shared memory

Poisoned memory misguides down-
stream classification

Memory + Coordination

their impact and the design of mitigation strategies in the following
sections are based on this structure.

B. THREAT-TO-LAYER MAPPING
Our system of network monitoring represents an agentic behavior
which adds a magnifying window of vulnerability towards an
increased threat surface especially through incorporation of LLMs,
dynamic planning, tool invocation, and contextual memory. In
contrast to traditional AI systems, such threats most commonly arise
because of a reasoning path, modify the memory state or because
of some form of interaction with the external system, occasionally
spreading to more than one operational level. MAESTRO frame-
work allows making systemic mapping of these threats to respective
system layers, so that the security assessment would be localized
and would be cross-referenced. Each threat is initially paired with
the primary layer in which it is present or most serious and then
paired with essentially all other layers it could propagate to or
interact with in downstream process.Table 2 below shows the threat
to layer mapping.

C. RISK SCORING METHODOLOGY
The autonomous and dynamic API technology design poses a
multidimensional threat Dominion, with risk vectors varying drasti-
cally with respect to severity, frequency, and overall exploitability.
Such assessment and prioritization of threats should therefore be
conducted in a systematic way. Prioritising risks is a way of making

the security stakeholders focus their mitigation strategies on the
threats with maximum potential of causing harm to system stability
and integrity. To ease this, the current research will use qualitative
threat scoring model where critical risk score (R) of each threat is
calculated as:

R = P × I × E (1)

Where:

• P (Likelihood) represents the approximation of the proba-
bility of the threat occurring under operational or adversarial
conditions;

• I (Impact) refers to the level of consequences that are likely
to occur in case of the accomplishment of the threat;

• E (Exploitability) is a measurement of the susceptibility
of the threat being executed or guided by an adversary,
considering system exposure, access requirements, and attack
complexity.

All these three dimensions are checked with the help of an ordinal
scale on the basis of qualitative evaluations:

TABLE 3. Qualitative Assessment to Ordinal Value Mapping

Qualitative Assessment Ordinal Value

Low 1
Medium 2
High 3

VOLUME , 5
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TABLE 2. Threat to Layer Mapping

Threat Primary Layer Cross-Layer Impact Brief Description

1. Instruction Manipulation L7 – Agent Ecosystem L1, L3 Alteration of operator commands or prompts to
guide agent behavior maliciously.

2. Goal Manipulation (Agent
Drift)

L3 – Agent Frameworks L1, L6 Subtle alteration of long-term goals due to poi-
soned reasoning chains or telemetry drift.

3. Chain-of-Thought Manipu-
lation

L1 – Foundation Models L3 Prompt injection or bias influencing internal
stepwise reasoning of the agent.

4. Memory and Context Ma-
nipulation

L1 – Foundation Models L2, L3, L5 Injection or corruption of episodic memory in-
fluencing future responses or analysis.

5. Critical System Interaction L4 – Deployment & Infras-
tructure

L6, L7 Unauthorized or misaligned tool use leading to
destructive API actions.

6. Planning and Reasoning Ex-
ploitation

L3 – Agent Frameworks L1, L5 Triggering incorrect logic flows or plan execu-
tion via crafted observations.

7. Resource Exhaustion L4 – Deployment & Infras-
tructure

L2, L5 Overloading agent resources (CPU, memory,
tokens) to cause denial-of-service or degraded
performance.

8. Knowledge Base Poisoning L2 – Data Operations L1, L3 Injection of malicious or misleading data into
retrieval-augmented pipelines or local KBs.

9. Supply Chain Compromise L6 – Security & Compli-
ance

L1–L4 Backdoored models, libraries, or components
compromising the agent before deployment.

10. Multi-Agent Exploitation L7 – Agent Ecosystem L1–L6 Exploiting coordination protocols among agents
to induce misalignment or cascading failures.

This model reflects the layered and interconnected nature of
agentic systems, where minor vulnerabilities—when combined with
autonomous planning, long-term memory, or tool invocation—can
lead to significant systemic disruptions. By quantifying risks along
these dimensions, the framework supports rigorous threat com-
parison, grounded in both technical feasibility and operational
consequence.

1) Illustrative Risk Score Examples
In order to illustrate the interpretability of the model, one can look
at the following scenarios:

• The probability of occurrence, impact, and exploitability are
low and high respectively (P = 1, I = 1, E = 3), which
makes the risk score R = 1× 1× 3 = 3 with low backward
effect.

• A balanced threat in all dimensions (P = 2, I = 2, E = 2)
has a risk value of R = 2 × 2 × 2 = 8, implying moderate
consideration.

• A hard-to-exploit, high-impact, and high-likelihood threat
(P = 3, I = 3, E = 1) yields a risk rating of R = 3×3×1 =
9, which indicates a high priority area.

2) application to Identified Threats
With the help of this model, Section 3.2 identified ten threats,
which were considered separately. The probability, effect, and
exploitability indicators were rated depending on the ability of
each threat to interfere with the critical agentic capabilities of the
action, either by manipulating memory, interrupting reasoning, or

gaining unauthorized access to tools. Further contextualization of
these assessments was based on analysis of the primary propagation
and cross-layer propagation of each threat in the MAESTRO
framework in such a way that threats with overall high architectural
impact would be correctly placed high in priority. The findings are
aggregated in form of a threat-risk matrix, which includes:

• Qualitative evaluation of likeliness, effect, and usability,
• The Threat Risk score (TRS) computed to prioritize
• Association with particular MAESTRO layers that were

mapped.

The aggregated threat landscape can help to prioritize the threats
in a well-organized and evidence-based manner to mitigate risks,
which is the purpose of this matrix as shown in Table 4 below.
Table 4 below shows the MAESTRO-Based Threat Risk Matrix for
Network Monitoring Agent.

V. MITIGATION STRATEGIES AND DESIGN
RECOMMENDATIONS
A. PREVENTION
The issue of reducing the security risks in agentic AI systems
depends on a multilayered approach through the use of effective pre-
vention measures. An initial mitigation step is input validation and
clean-up which means that missing or malicious instructions cannot
affect the goal planning in the agent or memory contexts. Multiple
works underline how it is possible to prevent timely injection and
manipulation of chain-of-thought arguments with help of restricting
untrusted user inputs via pre-processing and content sanitization
[27]. LLM guard-rails content filter, quick limit, as well as safety-
alignment modules, can serve as first-line protections in the masking
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TABLE 4. MAESTRO-Based Threat Risk Matrix for Network Monitoring Agent

Threat Primary Layer (MAE-
STRO)

Cross-layer Impact Likelihood (P) Impact (I) Exploitability
(E)

Risk Score

1. Input-Induced Behavior
Manipulation

Agent Frameworks (L3) Data Operations (L2), Eval-
uation & Observability (L5)

High (3) Medium (2) Medium (2) 12

2. Goal Manipulation Agent Frameworks (L3) Foundation Models (L1),
Data Operations (L2)

High (3) High (3) Low (1) 9

3. Chain-of-Thought Ma-
nipulation

Foundation Models (L1) Data Operations (L2), Eval-
uation & Observability (L5)

High (3) High (3) Medium (2) 18

4. Memory & Context Ma-
nipulation

Agent Frameworks (L3) Data Operations (L2), Eval-
uation & Observability (L5)

Medium (2) High (3) Medium (2) 12

5. Critical System Interac-
tion

Deployment & Infrastruc-
ture (L4)

Agent Ecosystem (L7),
Agent Frameworks (L3)

Medium (2) High (3) Medium (2) 12

6. Planning & Reasoning
Exploitation

Agent Frameworks (L3) Evaluation & Observability
(L5), Security (L6)

High (3) High (3) Medium (2) 18

7. Resource Exhaustion Deployment & Infrastruc-
ture (L4)

Agent Ecosystem (L7), Eval-
uation & Observability (L5)

High (3) High (3) High (3) 27

8. Knowledge Base Poison-
ing

Data Operations (L2) Foundation Models (L1),
Agent Frameworks (L3)

High (3) High (3) Low (1) 9

9. Supply Chain Compro-
mise

Data Operations (L2) Deployment & Infrastruc-
ture (L4), Foundation Mod-
els (L1)

Medium (2) High (3) Medium (2) 12

10. Multi-Agent Exploita-
tion

Agent Frameworks (L3) Agent Ecosystem (L7), De-
ployment & Infrastructure
(L4)

Medium (2) High (3) High (3) 18

noxious productions or actions. Such alarms are especially essential
in situations where LLMs work with open-ended and multi-turn
settings [28]. Also, by sandboxing agents and restricting them to
access a certain set of tools by employing wrapper based interface
sandboxing agents can not access any of the sub system which is
not within the control of said agents [29]. One such commonly
recommended approach is to have capability-based access control,
limiting what an agent may do, instead of limiting it based on who it
is. This is also enforced in multi-agent contexts, in which otherwise,
delegation and sharing of memory context can result in privilege
escalation [30]. In addition, the paper suggests adding layer-based
controls like L2 memory isolation and L3 planner verification which
are noted as the best practices of reducing lateral vulnerabilities
in the context of layered deployments [31]. The other important
prevention measure is the reward shaping and constraint learning
that can provide training in avoiding unsafe or sub-optimal decision
trajectories [32]. This is necessary in safe autonomy when agents are
functional with minimal input of the human agent. Lastly, a zero-
trust architecture approach in which each action is authenticated,
each resource secured, and each interaction tracked are proposed to
be applied in agentic systems [33]. This goes very much in line with
the multi-layers perspective of security incorporated in the design of
MAESTRO framework that supports the importance of embedded
verification mechanisms across the agent lifecycle [34].

B. DETECTION AND RESPONSE
Although preventive measures are becoming more significant in
terms of preventing malicious work in advance, another very crucial
shield in the autonomous systems would be a non-negligible ability
to detect and respond to malicious activities. Since the agentic
AI behavior is unpredictable, adaptive and non-static, it is not
realistic to expect that all the attack vectors can be eliminated in
advance. Hence, runtime monitoring and reactive security layer is

FIGURE 4. Prevention Strategies for securement of an autonomous agent
using MAESTRO Layer

important to sustain integrity and traceability of operations. Real-
time anomaly detection is one of the elements of this layer. Due
to the ongoing telemetry data collection process that incorporates
traffic patterns, agent decision latencies, resource consumption,
and deviations to expected operating parameters, these agents can
indicate signs of compromise or drift against anticipated operating
parameters. Such process usually makes use of threshold checks,
statistical modeling of agents that may shift due to a malicious
agent or a more elaborate ML-based anomaly detection based on
the outputs of the reasoning of the agent or on the execution path.

During identification of trouble, rollbock mechanisms are very
essential in maintaining stability of systems. This can comprise
going back to already understood safe policy checkpoints, returning
LLM contexts, or turning off modules to stop the spread of the
anomaly. Such mechanisms prevent that temporary corruption, or
unintended or possibly malicious steps in the reasoning process can
persist or propagate. Also, there is the factor of forensic logging,
which is essential both during post-incident analysis and compli-
ance. All interactions be it inputs, intermediate reasoning chains,
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API calls, and final output should be stored in tamper-proof so as to
achieve traceability. With these logs it is possible to recreate attack
chains, identify vulnerabilities being exploited, and produce threat
intelligence that is fed back to lead to more effective heuristics. A
combination of these abilities such as anomaly detection, rollback,
and forensic logging becomes the main construction of the response
approach in agentic AI landscapes. They allow the system to not
just respond to threats quickly but also to learn after being attacked
thereby bringing iterative hardening of agent behavior in long term.

C. DEFENSE-IN-DEPTH
A powerful agentic AI system should not use one layer of security.
Since the architecture of such products is multi-component, layered,
the strategy should be defense-in-depth which should aim at having
security not undermined even when individual layers are breached.
It is a method that shares security throughout the stack, which cor-
relates well with the MAESTRO frameworks and run-time actions
of the system. All the layers of the MAESTRO architecture(Figure
4)play a role in the security:
L1 Foundation models: Foundation models have guardrails and
fine-tuning constraints to avoid undesirable outputs in inference.
Prompt and response filters create filtered bad queries so that
malicious queries are filtered out before creating unsafe chains of
reasoning.
L2 Data Operations:Important telemetry and contextual data
are secured through memory isolation, with policies set on data
sanitation, and access. This blocks usage sensitive training data,
embeddings, or real time logs that might tamper with the agent
thoughts.
L3 Agent Frameworks:The agent planner is qualified prior to
running. These are decision path limits, planner validation checks
and output limits. These make sure that modules of planning would
not swerve into harm or unwanted sequences of tasks.
L4 Deployment/Infrastructure:: At the level of deployment and
infrastructure, containerization, API rate limits, and zero-trust net-
work policies decrease the attack surface. Both the services are
isolated, audited, and bound to the least-privilege permissions.
L5 Evaluation and observability:Outlier metrics, behavioral drift
and feedback inconsistencies are routinely monitored. These tools
provide precursors of insidious exploitation, e.g. slow data poison-
ing or inferential errors.
L6 Security & Compliance:Regulatory compliance is guaranteed
by logging, audit trails, and policy enforcement; root cause analysis
is possible. AI explainable modules aid in confirmation of risk-
taking decisions.
L7 Agent Ecosystem:Trust models are applied to user interfaces,
multi-agent gateways and collaborative channels to keep the positive
influence during decision-making limited to verified agents or
operators.
Mapping of specific defense mechanisms to each of MAESTRO
layers makes the system tolerant to both horizontal (cross-layer)
and vertical (layer-specific) attacks. Suppose one of those layers is
compromised, the other layers that are close to each other seal the
breach and stop the fix, so that it is a fail-safe dovetailed agent or
platform environment.

VI. IMPLEMENTATION AND EVALUATION
A. SYSTEM SETUP
The suggested agentic network monitoring system is implemented
with the help of the modular-based, event-driven structure that

facilitates a real-time analysis and autonomous decision-making.
Back end stack is written in Python and uses FastAPI framework
to manage asynchronous telemetry ingestion, API routing, and
secure communication. This is the infrastructure base on which
scalable orchestration services and containerized deployment can
be made. The system is used to make sense of traffic intelligently
and make informed decisions by combining Pydantic-AI and a large
language model (LLM). This architecture allows the agent not only
to analyze the traffic characteristics but also to reason the possible
anomalies, and make explanations and mitigation suggestions or run
them. The LLM works hand in hand with domain-specific prompts
and contextual telemetry input to increase the accuracy of agentic
actions. To capture network data and parse these, Scapy is used and

FIGURE 5. Complete System Architecture

PCAP files to do traffic simulations during live as well as replay
scenarios. At the agent, packet-level features are processed and
converted to the structured and consumed telemetry records by the
downstream modules. The WebSocket channels are used in a real-
time fashion to exchange the telemetry between the backend agent
and the frontend interface, their interactions are bi-directional and
newly updated messages can be reported and sent on an anomaly
and an LLM generated message. The frontend dashboard shows
the performance of the system in visual form, active telemetry
streams, and interactive reasoning logs of threat flags and processes.
It is containerized across the whole system using docker so as to
achieve platform independence and maintain reproducibility and
also as every component is built within an isolated module so
as to accommodate a fault-tolerant system and defense-in-depth
approach. The completed architecture is in Figure 5 which presents
the layered structure of sensing, analysis, reasoning and human
feedback loops.

B. FUNCTIONAL DEMONSTRATION
To test the behavior of the agent under malicious conditions such
as an adversarial load we did a specific stress test by simulating a
resource attack or resource exhaustion form of attack, which fits into
Threat 7 (Resource Exhaustion) in the MAESTRO framework. The
desired goal was to test the responsiveness, telemetry fidelity and
resilience of the system under high network traffic rates and volume
similar to the denial-of-service (DoS) condition. tcpreplay was used
to replay traffic in a prerecorded PCAP file and was playing on
an assigned network interface a traffic originated in a GoldenEye
DoS attack. At the same time, performance statistics of the system
(both CPU and memory) would be captured in the interval of one
second. To simulate a high-load situation, the test was set up to
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repeat the attack traffic at a rate of 10,000 packets per second in
five iterations. Throughout the test, the agent was supposed to keep
on checking on traffic in the network and updating its dashboard
in real-time. The telemetry updating occurs every 7-8 seconds on

FIGURE 6. Live Monitoring Dashboard showing metric spikes and
threshold violations

normal operating conditions by the agent. When conducting the
high-load test, however, this duration was increased on the scale
about 13 times; hence, there was a lag in reporting the metrics
and processing the inferences. The system logs and the dashboard
response time lag indicated this performance degradation implying
that the system was maximum on CPU and memory resources
during the simulated environment as shown in Figure 6.

As depicted in Figure 7, these outcomes indicate the suscep-
tibility of the agent to resource-based denial cases and underline
the strength of non-static resource monitoring with load cognizant
control interventions. The system in the future should include
dynamic prioritization of the processes requiring critical telemetry
as well as preemptive modules of anomaly mitigation to have
consistent velocity of operation under duress.

FIGURE 7. Agent Console Output demonstrating latency analysis, HTTP
request tracking, and LLM-based coordination

C. SECURITY RISK VALIDATION
In order to determine the level of robustness of the system against
the adversarial influence, two scenarios of high-impact threats were
verified against practical test cases related to the MAESTRO threat
taxonomy. This segment has the experimental verification of these
threats and its influence with respective interpretations.
Test Case 1 - System Performance when under Network Load
(Threat 7: Resource Exhaustion)
As explained in Section 6.2, a GoldenEye PCAP replay providing

a simulation of a DoS attack was applied to the agent. This test
provided an important insight that the updating of telemetry is

FIGURE 8. Pre-attack dashboard (before DoS attack)

heavily delayed (by 5-6 seconds up to 13 seconds), which indicates
the diminishing performance of the agent when used with high
resources. The slow reaction time meant that fundamental inductive
and making decisions processes were affected once the CPU and
memory probability points were reached. This confirms the ex-
ploitability of Threat 7 in which the attacker can create havoc to the
system in that by consuming excessive computing resources, they
can cripple the system without having tampered with the internal
system logic. The test aims at verifying the integrity of the systems
in operation under high-load conditions in the modeled way through
the replay of the denial-of-service (DoS) attack by the GoldenEye
PCAP file. The test was meant to reveal whether the agent was
able to retain normal responsiveness when it comes to telemetry
amid resource pressure. Under normal conditions, the telemetry
dashboard exhibited regular update intervals (approximately every
7–8 seconds), and the system reported stable CPU and memory
utilization as shown in Figure 8 .
In the case of PCAP replay, the maximum telemetry update then

FIGURE 9. After-attack dashboard (after DoS attack)

grew to more than 13 seconds, which shows that the resource was
overloaded, which resulted in the performance degradation. The
lag polluted the near real-time ability of the agent to analyze and
respond as explained in Figure 9.

Test Case 2 Memory Poisoning( Threat 8: Knowledge Base
Poisoning) This test indicates(Figures S10 and S11) how the system
performance and behavior is affected by compromised system
integrity of memory. The history.json file of the agent that controls
the parameter tuning module was manually poisoned and 20 false
high-severity attack entries were inserted. Such entries would make
the tuning module infer a wrong picture of the threat landscape and
would accordingly assign large high durations of packet captures in
response to simulated anomalies. The PCAP file created therefore
was quite huge compared to the one in the baseline case thus
taking higher data processing times by the detection modules
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and demanding high resources. The memory poisoning damaged
efficiency on the detection, but also indirectly led to an exhaustion
of the resources, spreading the impact of the Threat 8 to the Threat 7
sequentially. This was demonstrated by attacking a system without
changing the logic of the system, but only abusing the memory,
which confirms that a low-effort, high-impact attack is possible
on unsecured agent memory files. When using valid entries or no
recordings, the module chose a reasonable capture time (e.g. 34
seconds) which provided reasonable PCAP sizes and analysis times.
After the injection of 20 fake high-severity entries, the module
modeled high threat environment and correspondingly extended the
capture time proportionally to the threat level. The result was a huge
PCAP file that slowed down the detecting process and had memory
and CPU high use, which is a sign of poor functionality(Figures
S12 and S13).
Table 5 summarizes the test cases of security risk validation

D. LIMITATIONS AND OBSERVATIONS
Although the success in the ICMP flood and memory poisoning
test cases indicated the promising outcome, there are still a few re-
strictions in the current version of autonomous network monitoring
agent:
D.1 Single-node Deployment: The system is currently tested in
the single-node environment. This is good to tell the local threat
or verify that the inference is correct; and yet this does not help
the agent to generalize its multi-agent behavior across distributed
or federated environments.
D.2 Single-node Deployment: The system is currently tested in
the single-node environment. This is good to tell the local threat
or verify that the inference is correct; and yet this does not help
the agent to generalize its multi-agent behavior across distributed
or federated environments.
D.3 Rule-Based Fall-Backs: Some of the courses of decision-
making in the agent, especially in response time issue and alert
escalation remain rather simple sets of rules that are pre-defined
than truly autonomous reasoning. This level of automation can
limit adaptive behavior in not necessarily simpler or familiar threat
environments.
D.4 Treatment of Subtle Poisoning: The memory poisoning attack
was able to induce a reasoning failure but it can be seen that there
is little deeper form of introspection that can occur in LLM-based
agents to establish the provenance of input data or mitigate invalid
internal lineages of reasoning.
D.5 Scalability and Resource Load: Due to the ICMP flooding
test, it was identified that the resource handling may become a
bottleneck in an event of sudden demand. Subsequent variants will
be required to somehow provide dynamic resource scheduling or
rate-limiting.
D.6 Insufficient End-to-End Cryptographic Controls: Although
the telemetry parsing and decision-making modules use access
controls, the telecommunication channel in parts of the layers is
unencrypted, and it can be a source of risk in the unfriendly network
environment.
All these findings point out the necessity of more thorough secu-
rity position and imply distinct paths to follow to improve both
architecture and self-awareness potential of the agent.

VII. FUTURE DIRECTIONS
Based on the results of the current research, a number
of the directions crucial to promoting agentic AI security

using MAESTRO-based modeling is suggested. Such future
directions should be used to improve the resilience, scalability
and accountability of autonomous systems that are operating
dynamically in high-threat environments.
Multi-Agent Coordination:Future research could be done in
regard to how to demonstrate the structures of safe, collaborative
practice of many agents. This involves the design of consensus
mechanism, federated reasoning procedure and trust modelling
among the agents to avoid intra-agent attacks or domino effect.
Confidence AI in Adversarial Environments:It should focus
more on adversarial robustness whereby they can develop trust-
preserving mechanisms, including the adversarial training process,
certifiable reasoning pipelines, and protection against data and
model poisoning attacks in all MAESTRO layers.
Simulated Threat Benchmarks of Agentic AI:It is necessary
to create standardized benchmark suites which would make
simulations of the attack situations aiming on definite MAESTRO
layers. Reproducibility of these evaluations and the ability to
compare these performance in the view of agentic-security
frameworks will be made possible as a result of these benchmarks.
Auditability Policy Compliance and Auditable logging:Future
developments should make sure to work with such frameworks
as GDPR, ISO/IEC 27001, and the EU AI Act as the AI systems
begin to operate in regulated areas. This also involves introduction
of explanable decision logging, real time policy enforcement and
secure audit trail.
Agent Policy Formal Verification:Vulnerabilities can be prevented
by the use of formal methods to prove agent policies and reasoning
workflows prior to their deployment. Security invariants can be
mathematically checked on all the layers by the aid of model
checking, symbolic execution, and SMT solvers.
Auto-Resilience and Self-Healing Architectures:Use of self-
healing in the agent-architecture will enable autonomous recovery
of the agent in the case of a failure or an undeterred attack.
Dynamic reconfiguration, hot-patching and anomaly-based
containment strategies are encouraging.
Lightweight and Power-Consuming Security Surveillance:Future
systems especially in edge-based implementations have to be able to
balance between energy limitation and real-time monitoring. Such
conditions could optimize lightweight cryptographic protocols and
adaptive monitoring frequencies and low-power anomaly detectors.
Cross Layer Security Orchestration:There must be a centralized
orchestration tool that dynamically mappings threat, response, and
remediation strategies throughout MAESTRO stack. This would
allow smart prioritization and response in accordance to the risk
scores and current threat intelligence.

These guidelines enterprise-wide provide a guide on how to
create stronger, more transparent, and scalable systems of agentic
AI that can withstand the pressure of adversaries and other such
security-related issues.

VIII. CONCLUSION
This study provide a search that ensures a holistic use of the
MAESTRO framework to assess and alleviate security threats
targeted at agentic AI systems. The layered architecture of the
framework allowed a well-organized overview of the threat vectors
along the foundational models, data operations, agent frameworks,
deployment infrastructure, evaluation modules, security enforce-
ment, and ecosystems. Namely, by putting threats into the context
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TABLE 5. Summary of Security Risk Validation

Test Case Threat MAESTRO Layer(s) Exploit Method Observed Impact Validated Risk
TC1: Network
Load

Threat #7: Resource Ex-
haustion

L4 – Deployment & Infrastruc-
ture, L5 – Evaluation & Observ-
ability

High-speed PCAP replay
(DoS)

Delayed telemetry
updates; increased
CPU/memory usage

Validated

TC2: Memory
Poisoning

Threat #8: Knowledge
Base Poisoning

L2 – Data Operations, L3 –
Agent Frameworks

Injected fake history in
history.json

Increased capture dura-
tions, large PCAP size,
detection lag

Validated

of these seven layers, the study closes the gaps between conceptual
taxonomies of threats and implementation vulnerabilities.

The agent system was subjected to the simulation of two critical
test scenarios that have been validated to calculate system resilience
concerning adversarial conditions. System Performance Under Net-
work Load This was the first scenario which was a denial-of-
service attack causing the system to run out of resources. It was
found that delayed updates in real-time telemetry occurred, the
latency of decisions significantly increased, which indicated the lack
of responsiveness during stressful situations. The second scenario,
Memory Poisoning, revealed the weaknesses of the parameter tun-
ing module, and the addition of spurious erroneous attack logs into
the agent memory (history.json), caused exaggerated capture time,
an unreasonably large PCAP file and the decline in performance of
the detection pipeline.

The outputs of the two test cases further support the demands
of creating agentic AI systems with the subsystems of adaptation,
security, and verified integrity. The problems that emerge on the first
layer can be carried to the next levels of reasoning, resulting in a
chain reaction on the infrastructure and decision results. The cross-
layer modeling framework implied by the MAESTRO framework is
confirmed by this layered dependency and justified as a framework
to realize cross-layer vulnerabilities interconnections.

Along with empirical validations, the study suggested mitigation
strategies that would be focused on the specific levels of the
MAESTRO levels, such as memory isolation at the data layer,
input validation of reasoning modules, sandboxing core APIs and
telemetry rollback in response to anomalies. These solutions were
graphically depicted and buttressed by a defense-in-depth archi-
tecture on how layered resilience may be used to mitigate cross-
component threats.
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