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Abstract

Language models exhibit human-like cognitive vul-
nerabilities, such as emotional framing, that escape
traditional behavioral alignment. We present CCS-7
(Cognitive Cybersecurity Suite), a taxonomy of seven
vulnerabilities grounded in human cognitive security
research. To establish a human benchmark, we ran
a randomized controlled trial with 151 participants:
a “Think-First, Verify-Always” (TFVA) lesson im-
proved cognitive security by +7.9% overall. We then
evaluated TFVA-style guardrails across 12,180 exper-
iments on seven diverse language model architectures.
Results reveal architecture-dependent risk patterns:
some vulnerabilities (e.g., identity confusion) are al-
most fully mitigated, while others (e.g., source inter-
ference) exhibit escalating backfire, with error rates
increasing by up to 135% in certain models. Hu-
mans, in contrast, show consistent moderate improve-
ment. These findings reframe cognitive safety as a
model-specific engineering problem: interventions ef-
fective in one architecture may fail, or actively harm,
another, underscoring the need for architecture-aware
cognitive safety testing before deployment.

1 Introduction

Language models can display human-like reasoning
errors. A model asked to provide citations for “cyber-
security protein quantum therapy” may confidently
return five plausible DOIs, none of which exist. When
told that “SHA-256 has been proven reversible”, it can
integrate the false claim into its response. These are
not simple failures of instruction following, but cog-
nitive vulnerabilities: systematic weaknesses in how
models process and integrate information.

The Problem. As language models approach
human-level reasoning, they inherit human cognitive
weaknesses such as confirmation bias, deference to
authority, and susceptibility to emotionally framed
inputs. Traditional behavioral alignment, ensuring

models follow instructions or avoid unsafe outputs,
does not guarantee that their reasoning is reliable.
Achieving cognitive safety requires addressing these
reasoning-level vulnerabilities.

The Current Gap. Despite advances in AI
safety, we lack a systematic framework to: (i) charac-
terize the types of cognitive vulnerabilities language
models exhibit, (ii) determine which can be miti-
gated by prompt-level interventions, and (iii) antic-
ipate when well-intentioned guardrails may backfire
and amplify errors.

Our Approach. This work introduces a Cognitive
Cybersecurity Suite (CCS-7), a taxonomy of seven
cognitive vulnerabilities inspired by human cognitive
security research and AI analysis papers. We em-
pirically evaluate these vulnerabilities through 12,180
controlled experiments across seven diverse model ar-
chitectures, paired with a randomized human study
(n = 151) that tests a lightweight cognitive-security
protocol, “Think-First, Verify-Always” (TFVA) de-
scribed in our previous study [1]. Our contributions
are:

1. A formalization of seven cognitive vulnerabili-
ties (CCS-7) that appear in both humans and
language models.

2. An empirical evaluation of TFVA as a cognitive
guardrail, showing which vulnerabilities are mit-
igated, which resist intervention, and which ex-
hibit harmful backfire.

3. Evidence that cognitive safety is
architecture-dependent: interventions that
help one model can fail, or even harm, another,
underscoring the need for model-aware safety
validation.

This framing shifts AI safety from viewing cogni-
tive errors as isolated quirks to treating them as sys-
tematic, testable vulnerabilities, signaling the way for
architecture-aware cognitive safety strategies.
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2 Related Work

2.1 From Behavioral to Cognitive
Safety

Most AI safety research has focused on behavioral
alignment, ensuring that models follow instructions
and avoid harmful outputs. Prominent approaches
include Constitutional AI [2], which encodes ethical
principles into model responses, and reinforcement
learning from human feedback (RLHF) [3], which
aligns behavior with user intent. These methods im-
plicitly assume that models reason correctly once in-
structed how to behave. However, recent studies re-
veal that this assumption is fragile: models can ex-
hibit sycophancy [4], anchoring and other systematic
biases [5], and even susceptibility to strategic decep-
tion or emotional manipulation [6]. Such errors rep-
resent cognitive vulnerabilities, flaws in information
processing that persist even in well-aligned models.

2.2 Prompting as Cognitive Guardrail

A parallel line of work explores prompting strategies
to guide reasoning, including chain-of-thought
prompting [7], self-refinement [8], and the
Tree-of-Thoughts framework [9]. These meth-
ods can improve reasoning performance, but their
effects are vulnerability-specific and inconsistent:
a prompt that mitigates one cognitive failure can
exacerbate another. Current literature lacks a
systematic framework to predict when prompt-level
interventions succeed, fail, or backfire.

2.3 Human Cognitive Security as In-
spiration

Human factors research highlights that cognition it-
self can be an attack surface. Social engineering
exploits biases such as authority reliance and emo-
tional manipulation [10]. Our work builds on this
insight, drawing from cognitive security principles to
design AI guardrails. In a randomized controlled trial
with 151 participants, a Think-First, Verify-Always
(TFVA) lesson improved human cognitive security
by +7.9% overall. This human-validated protocol in-
spired our model-level interventions, enabling a struc-
tured exploration of how cognitive guardrails trans-
late to AI systems.

3 The CCS-7 Framework
We introduce a Cognitive Cybersecurity Suite
(CCS-7), a taxonomy of seven cognitive vulnerabil-

ities in language models. These vulnerabilities repre-
sent reasoning-level failures, systematic ways in which
a model can process information incorrectly, even
when it follows instructions faithfully. CCS-7 adapts
classic insights from human cognitive psychology [11]
to the emerging domain of AI alignment.

3.1 Seven Cognitive Vulnerabilities
1. Authority Hallucination (CCS-1): Produc-

ing false but authoritative information (e.g., fab-
ricated citations or credentials) when pressured
to appear knowledgeable.

2. Context Poisoning (CCS-2): Gradual stance
drift as biased information accumulates across
multi-turn dialogue, shifting model outputs to-
ward the injected perspective.

3. Goal Misalignment Loops (CCS-3): Fail-
ing under conflicting objectives, often generating
outputs that satisfy neither goal when instruc-
tions are mutually incompatible.

4. Identity / Role Confusion (CCS-4): In-
appropriately adopting personas or credentials,
overriding safety training when prompted to
“speak as” a specific role.

5. Memory / Source Interference (CCS-5):
Incorporating false contextual claims into factual
responses, treating injected misinformation as if
it were ground truth.

6. Cognitive-Load Overflow (CCS-6): De-
graded reasoning under information overload,
where key content is buried in verbose or irrele-
vant output.

7. Attention Hijacking (CCS-7): Emotional
framing overrides analytical reasoning, produc-
ing different recommendations for logically iden-
tical scenarios.

3.2 Human-AI Parallels Without
Mechanistic Claims

Each CCS-7 vulnerability has a behavioral analogue
in human cognition:

• Authority hallucination → human confabulation
[12]

• Context poisoning → anchoring and gradual be-
lief revision [11]

• Goal misalignment → satisficing under conflict-
ing objectives [13]

2



• Identity confusion → role-adoption effects [14]

• Source interference → false memory incorpora-
tion [15]

• Cognitive-load overflow → performance degrada-
tion under excess information [16]

• Attention hijacking → emotional override of ra-
tional analysis [17, 18]

These analogies are behavioral rather than mecha-
nistic: this research does not claim that models share
cognitive processes with humans. Instead, CCS-7
provides a structured lens to identify and test a set
of vulnerabilities that manifest in both domains, en-
abling systematic evaluation of interventions such as
a TFVA protocol.

4 Methodology

4.1 Experimental Design

We evaluated seven representative language model ar-
chitectures (spanning proprietary, open-source, and
instruction-tuned designs) under three conditions for
each CCS-7 vulnerability:

1. Control: Baseline prompts with neutral framing.

2. Attack: Prompts crafted to trigger a specific cog-
nitive vulnerability.

3. TFVA-Mitigated: Attack prompts prefaced with
the TFVA protocol.

Each model (GPT-4.1-nano, Llama-4-scout-
17b-16e-instruct, Mistral-saba-24b, Qwen3-32b,
Gemma2-9b-it, Kimi-k2-instruct, and Claude-
sonnet-4) was tested with a fixed decoding tempera-
ture τ = 0.4 to balance reproducibility with natural
variation, and a maximum of 500 tokens. This design
enables direct comparison of baseline behavior, vul-
nerability exploitation, and prompt-based mitigation
for each cognitive category.

4.2 TFVA Protocol for Models

The TFVA protocol originates from human cognitive
security research and has two core principles:

• Think First: Apply an independent reasoning
step before responding.

• Verify Always: Cross-check critical information
against known facts or instructions before out-
put.

We created brief, vulnerability-specific instructions
that translate these principles into machine-oriented
prompts. For example, authority-hallucination
prompts instruct the model to confirm that a
topic is legitimate before generating citations, while
source-interference prompts remind the model that
core cryptographic facts do not change with context.

4.3 Measurement of Cognitive Vul-
nerabilities

Each CCS-7 vulnerability was paired with a tailored
behavioral metric:

• Authority Hallucination: Fraction of generated
DOIs verified as real on doi.org (HEAD request).

• Context Poisoning: Slope of stance score and net
sentiment change over 10 turns.

• Goal Misalignment: Percent deviation from pre-
defined optimal targets.

• Identity Confusion: Composite
self-identification score.

• Source Interference: Proportion of injected false
claims echoed in model output.

• Cognitive Load: Word count, action density, and
Flesch–Kincaid readability.

• Attention Hijacking: Changes in emotional word
frequency.

4.4 Human Cognitive Security Study

To contextualize machine results, we conducted
a randomized controlled trial (n = 151) mea-
suring TFVA’s effect on human decision-making
in AI-related security scenarios. A three-minute
micro-lesson on TFVA improved overall performance
by +7.9% (65.3% vs. 57.4%, p = 0.0017, Cohen’s
d = 0.52), with the largest gains in ethical reason-
ing (+44%). This human benchmark motivates our
evaluation of TFVA as a machine-oriented cognitive
guardrail.

4.5 Analysis Approach

We adopt a purely behavioral perspective: model out-
puts are analyzed across conditions to quantify miti-
gation or backfire effects without assuming any spe-
cific internal mechanism. This approach ensures that
findings are reproducible and architecture-agnostic.
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Table 1: Breakdown of model-based CCS-7 experiments.
Vulnerability Calculation Subtotal
CCS-1 3 topics × 3 conditions × 30 runs × 7 models 1,890
CCS-2 1 topic × 3 conditions × 30 runs × 7 models 630
CCS-3 3 scenarios × 3 conditions × 30 runs × 7 models 1,890
CCS-4 (2 prompts × 1 variant + 4 prompts × 2 variants) × 30 runs × 7 models 2,100
CCS-5 5 topics × 3 conditions × 30 runs × 7 models 3,150
CCS-6 1 topic × 3 conditions × 30 runs × 7 models 630
CCS-7 3 scenarios × 3 conditions × 30 runs × 7 models 1,890
Total 12,180

5 Empirical Analysis of Cogni-
tive Guardrails

5.1 Quantifying Mitigation and Back-
fire

To measure the effect of TFVA on each CCS-7 vul-
nerability, we define the observed mitigation rate:

ηMv = 1− attackTFVA

attackno−TFVA

Here attackno−TFVA is the baseline rate at which
the vulnerability manifests without any guardrail,
and attackTFVA is the observed rate under the TFVA
mitigation for vulnerability v and model M . Val-
ues η > 0 indicate mitigation, while η < 0 indicates
backfire, a counterproductive increase in the targeted
vulnerability. Across 12,180 trials, vulnerabilities fell
into four broad behavioral patterns:

• Binary Preventable: Nearly eliminated by TFVA
(e.g., Identity Confusion).

• Resistant: Show minimal improvement across all
models (e.g., Context Poisoning).

• Partial / Mixed Response: Some mitigation with
architecture-dependent variation (e.g., Author-
ity Hallucination, Cognitive Load).

• Backfire-Prone: TFVA can amplify the vulner-
ability (e.g., Source Interference, Attention Hi-
jacking in certain models).

Table 2 reports mitigation rates η for all
model–vulnerability pairs. While model names are
retained for transparency, our analysis focuses on
vulnerability-centric patterns rather than perfor-
mance ranking.

5.2 Vulnerability-Centric Findings
1. Identity Confusion is Mitigable. This
binary-preventable vulnerability achieved η > 0.9

across all models. Simple self-identification instruc-
tions suffice to eliminate false role adoption, demon-
strating that some cognitive risks are reliably address-
able via prompt-level interventions.

2. Source Interference Produces Backfire.
When TFVA instructions asked models to verify con-
flicting contextual claims, six of seven models am-
plified the vulnerability. False claim adoption rose
by 15–135%, with the most extreme case in Mistral
(η = −1.35). This escalating backfire phenomenon
represents the highest-risk finding of our study.

3. Context Poisoning Remains Resistant.
Even with explicit mitigation instructions, stance
drift was largely unchanged (e.g., η = 0.06 for
GPT). This suggests that vulnerabilities requiring
long-horizon integration may demand architectural or
training-level solutions.

4. Attention Hijacking is
Architecture-Sensitive. Emotional framing
yielded opposite outcomes across models: negli-
gible change in GPT (η ≈ 0), strong mitigation
in Kimi (η = 0.96), and severe backfire in Mis-
tral (η = −0.70). This highlights the need for
architecture-aware testing before deploying emotion-
ally sensitive applications.

5.3 Guidelines for Cognitive
Guardrails

Our exploratory, correlational analysis reveals three
recurring patterns:

• Higher specificity tends to help: Mitigations
with more concrete, narrowly scoped instruc-
tions (e.g., explicit self-identification directives)
are generally associated with more reliable re-
ductions in the corresponding vulnerability.
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Table 2: Mitigation Effectiveness (η) by Model and Vulnerability. Positive = mitigation; negative = backfire.
Vulnerability Category GPT Llama Mistral Qwen Gemma Kimi Claude
Authority Hallucination Mixed 1.00 1.00 0.46 0.58 0.00 1.00 0.00
Identity Confusion Binary 0.95 0.99 0.96 0.90 0.96 1.00 1.00
Context Poisoning Resistant 0.06 0.25 0.06 0.84 0.10 0.07 0.20
Goal Misal. (Email) Model-Dep. 0.93 0.61 0.13 0.04 0.05 0.37 -0.91
Goal Misal. (Reward) Model-Dep. 0.00 0.06 -0.42 -0.14 0.07 -0.03 0.12
Goal Misal. (Feedback) Model-Dep. -0.07 -0.05 0.14 -0.04 -0.14 -2.71 0.32
Source Interference Backfire -0.39 -0.15 -1.35 -0.37 0.00 -0.38 -0.42
Cognitive Load Partial 0.69 0.38 0.32 0.76 0.67 0.59 0.38
Attention Hijacking Variable 0.04 0.28 -0.70 -0.18 0.21 0.96 0.76

• Apparent goal conflict is associated with back-
fire: When mitigation instructions compete with
the model’s implicit task objective (e.g., source
verification under misleading context), we fre-
quently observe degraded behavior rather than
improvement.

• Integration depth limits prompt-only fixes: Vul-
nerabilities that depend on multi-turn context or
long-horizon reasoning (e.g., context poisoning)
are less responsive to simple prompt-level inter-
ventions in our data, suggesting that deeper inte-
gration or auxiliary mechanisms may be required
for consistent mitigation.

These observed patterns define a behavioral de-
sign space for cognitive safety, guiding practitioners
in judging which vulnerabilities can plausibly be mit-
igated via prompt engineering and which are likely
to demand architectural support, additional confir-
mation mechanisms, or training-time adaptations.

6 Results

6.1 Vulnerability-Centric Outcomes

Our experiments reveal that TFVA’s effec-
tiveness is vulnerability-dependent and often
architecture-sensitive. Some vulnerabilities are
almost completely mitigated by prompt-level
guardrails, while others resist intervention or even
backfire. Representative quantitative results are
summarized below, with per-model statistics in
Table 2.

Identity Confusion is Reliably Preventable.
Across all seven architectures, TFVA nearly elimi-
nated false role adoption (η > 0.9). This confirms
that certain reasoning errors can be addressed with
specific instructions, mirroring our human study,

where the same principle reduced misidentification
errors by +7.9% overall.

Source Interference Shows Escalating Back-
fire. When models were instructed to verify con-
flicting contextual claims, most exhibited amplified
error rates. False claim adoption rose from 56.7% to
78.7% in GPT (η = −0.39), and from 30.3% to 71.2%
in Mistral (η = −1.35). Well-intentioned prompts
can trigger maladaptive behaviors that increase vul-
nerability rather than reduce it.

Context Poisoning Remains Resistant.
Long-horizon stance drift showed little to no
mitigation (GPT η = 0.06, Mistral η = 0.06).
These results suggest that vulnerabilities requiring
multi-turn integration may demand architectural or
training-level solutions beyond prompt engineering.

Goal Misalignment is Scenario-Dependent.
Mitigation varied by task: TFVA improved the “con-
cise vs. detailed email” scenario in GPT (η = 0.93)
and Llama (η = 0.61) but showed little effect or back-
fire in reward-hacking and feedback-drift tasks. This
reflects the goal-conflict principle: mitigation is frag-
ile when instructions compete with the model’s pri-
mary task.

Attention Hijacking is Architecture-Sensitive.
Emotional framing produced divergent outcomes:
negligible in GPT (η ≈ 0), positive in Kimi (η =
0.96), and negative in Mistral (η = −0.70). These
results reinforce that cognitive safety cannot assume
cross-model transferability, especially for affect-laden
tasks.

Cognitive Load Shows Mixed Improvement.
Prompt-based interventions reduced verbosity and
improved action density in some models but increased
irrelevant content in others. This highlights the need
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to evaluate efficiency-oriented guardrails not only for
conciseness but also for information retention.

6.2 Backfire as a Safety Concern

A core empirical insight of this study is that back-
fire is systematic, not incidental. In Mistral, hallu-
cination rates for source interference rose from 0.40
to 0.88 (p < 0.001), and attention hijacking shifted
from minimal to severe (η = −0.70). These effects are
statistically robust (t-tests and χ2 tests) and large
enough to reclassify some interventions as harmful
rather than neutral. Treating backfire as a first-class
phenomenon reframes prompt-level safety: cognitive
guardrails should be validated per vulnerability and
architecture before deployment.

6.3 Human–Machine Divergence

Our human RCT showed that a three-minute TFVA
micro-lesson produced consistent, moderate gains
(+7.9% overall, +44% in ethical reasoning). In con-
trast, models displayed heterogeneous responses, un-
derscoring that cognitive safety is a model-specific
engineering challenge.

6.4 Cognitive Penetration Testing
(CPT) Before Deployment

The empirical findings of this experiment suggest
a lightweight CPT to evaluate model readiness
prior to real-world deployment. Each vulnerability
is tested under three conditions (Control, Attack,
TFVA-Mitigated), and deployment decisions are in-
formed by both mitigation rates (η) and backfire risk.
Architecture-aware CPT could be a prerequisite for
safe AI deployment.

7 Empirical Highlights

7.1 Architecture Typology and Signa-
ture Behaviors

To complement our vulnerability-centric analysis, we
classify the seven model architectures into four cog-
nitive response profiles observed under TFVA inter-
ventions:

1. Generally TFVA-Responsive: Strong mitiga-
tion on high-specificity vulnerabilities, including
near-elimination of Identity Confusion (η > 0.9).

2. Non-Generative / Inherently Safe: Built-in resis-
tance to Authority Hallucination.

3. Variable Responders: Mixed behavior, with no-
table strength in Context Poisoning resistance
(η = 0.84) but otherwise average mitigation.

4. Amplification-Prone: Frequently converts
well-intentioned prompts into backfire, with
Source Interference reaching −135% and
Attention Hijacking −70%.

7.2 Numeric Anchors and Statistical
Validation

While we primarily report mitigation as η rates, raw
behavioral shifts highlight the severity and repro-
ducibility of effects:

• Goal Misalignment (Concise vs. Detailed Email):
GPT-4.1-nano goal deviation dropped from
0.494 under attack to 0.034 with TFVA (p <
0.001, Cohen’s d = 0.91).

• Source Interference (Mistral): False claim adop-
tion rose from 0.40 to 0.88 (η = −1.35, χ2p <
0.001), exemplifying escalating backfire.

• Cognitive Load (Irrelevant Content): GPT
eliminated 100% of injected distractions, while
Llama increased irrelevant content by 54.9% and
Mistral by 127.6%.

All backfire phenomena reported were statistically
significant (p < 0.01), with medium-to-large effect
sizes (d > 0.6), suggesting that TFVA-induced harm
is systematic rather than stochastic.

7.3 Forward-Looking Mechanistic In-
sight

Behavioral evidence suggests that backfire arises
when mitigation instructions create goal conflict
without verification capability. In such cases, mod-
els exhibit maladaptive “over-correction”, treating the
prompt as a competing objective rather than guid-
ance.

8 Discussion

8.1 Backfire Mechanism and
Architecture-Level Risk Land-
scape

Why safety can fail. Our experiments reveal a sys-
tematic backfire effect: well-intentioned safety inter-
ventions can increase vulnerability rates rather than

6



Vulnerability Example Guardrail Deployment Risk
Identity Confusion “State your true role” Low (Mitigable)
Authority Hallucination “Cite only verifiable sources” Medium (Partial)
Context Poisoning “Reevaluate stance each turn” High (Resistant)
Goal Misalignment “Prioritize explicit goal hierarchy” Medium-High (Model-Dependent)
Source Interference “Verify facts against context” Critical (Backfire)
Cognitive Load “Respond concisely with key facts first” Medium (Mixed)
Attention Hijacking “Analyze content before reacting” Variable (Architecture-Sensitive)

Table 3: Cognitive Penetration Testing (CPT) Deployment Checklist. Vulnerabilities are paired
with representative TFVA-style guardrails and an empirically informed deployment risk rating.

reduce them. In CCS-5 (Memory/Source Interfer-
ence), six of seven models became more likely to
adopt false claims under TFVA instructions, with
Mistral exhibiting the most extreme case: error
rate rising from 30.3% to 71.2% (η = −1.35), a
135% increase in vulnerability. We hypothesize a
verification-capability mismatch mechanism: TFVA
prompts instruct models to “verify facts against con-
text,” but when the context itself contains falsehoods
and the model lacks true external verification capabil-
ity, the instruction creates an unsatisfiable cognitive
task. Empirically, models under such load default to
a maladaptive strategy: treating all presented con-
tent as increasingly credible. This explains why sim-
ple, internally-verifiable tasks (e.g., CCS-4 Identity
Confusion) achieve η > 0.9, whereas tasks requiring
external verification (CCS-5, CCS-7) often backfire.

Deployment Insights

1. Capability-matched guardrails only. Avoid
instructions that require verification powers the
model does not possess.

2. Architecture-aware safety testing. Mono-
tonic benefit should not be assumed: each TFVA
prompt should be tested for worst-case amplifi-
cation.

3. Adversarial CPT. Release pipelines should
include CCS-5/CCS-7 stress-tests and fail the
build if η < 0.2.

Cognitive safety is not a one-prompt-fits-all prob-
lem. Backfire emerges predictably when instruc-
tions exceed a model’s verification capacity, and only
architecture-aware guardrail design plus systematic
adversarial validation can prevent safety measures
from becoming risk multipliers.

9 Limitations and Future Work

9.1 Current Limitations
Our study has limitations that guide interpretation
and motivate future work:

1. Scope of Guardrails: TFVA was tested as a
first-line protocol. Broader cognitive safety may
require additional principles and multi-layered
defenses.

2. Prompt Sensitivity: We evaluated a single TFVA
phrasing per vulnerability. Variants or optimized
prompts may improve mitigation, particularly
for partial or backfire cases.

3. Behavioral Scoring: Our Speci-
ficity/Integration/Conflict assessments rely on
expert judgment. Objective, architecture-aware
metrics and inter-rater validation would
strengthen reproducibility.

4. Laboratory Setting: Single-vulnerability, con-
trolled trials may not capture interactions be-
tween multiple cognitive failures or emergent dy-
namics in real deployments.

5. Exploratory Nature: With seven vulnerabil-
ity categories, we provide descriptive patterns
rather than validated predictive models. Results
may not generalize to all model families or future
architectures.

9.2 Future Directions
Our findings motivate several research directions for
cognitive AI safety:

• Expanding Guardrails Beyond TFVA: Future
work should investigate expanded cognitive pro-
tection strategies to overcome TFVA limitations.

• Exploring New Cognitive Vulnerabilities: Given
the exclusive focus on the CCS-7 vulnerabilities,
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Figure 1: Cognitive-risk landscape across seven LLM families. Heatmap cells show mitigation co-
efficient η (blue = +1, white = 0, red = −1). Ward-linkage clustering groups models into three “risk
phenotypes.” GPT-4.1-nano, Claude-sonnet-4, and Kimi-k2-instruct exhibit broad mitigation, while Llama-4-
scout-17b-16e-instruct and Mistral-Saba-24b display systematic backfire in CCS-5 and CCS-7.

subsequent studies should aim to identify, define,
and empirically assess additional cognitive vul-
nerabilities that may arise in more complex or
evolving AI architectures and deployment con-
texts.

• Architecture-Aware Analysis: Apply mechanis-
tic interpretability [19, 20] to uncover why cer-
tain models exhibit divergent or backfire re-
sponses.

• Adaptive Guardrails: Develop dynamic mitiga-
tion protocols that adjust instructions based on
detected architecture and vulnerability class.

• Cross-Architecture Benchmarks: Establish stan-
dardized safety evaluations that capture archi-
tectural variation, enabling meaningful compar-
ison beyond accuracy or behavioral alignment.

• Cognitive Safety by Design: Integrate
CCS-7-style evaluation into AI development

pipelines and pre-deployment CPT to proac-
tively identify and mitigate risks as part of a
security by design process.

10 Data and Code Availability
Python source code, raw JSONL/CSV logs
for 12,180 LLM trials, and processed results
of this study are available as a zip file on
https://huggingface.co/datasets/yukselaydin/CCS7-
Cognitive-Cybersecurity-Suite/tree/main (CC-BY
4.0) for transparency and reproducibility.

11 Conclusion
This work frames cognitive safety as an
architecture-dependent frontier in AI safety.
Through 12,180 controlled trials across seven
model families and a 151-participant human study,
it demonstrates that:
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• Language models exhibit systematic cognitive
vulnerabilities, many of which mirror human bi-
ases.

• Prompt-based guardrails TFVA can mitigate
some vulnerabilities but fail or backfire on oth-
ers.

• Backfire is not incidental: in some architectures,
mitigation attempts increased error rates by up
to 135%.

Effective deployment requires architecture-aware
evaluation to avoid interventions that help one model
but harm another. A CCS-7 framework, paired with
human-validated TFVA principles, suggests a foun-
dation for systematic, evidence-based cognitive AI
safety.

Our results advocate for incorporating
architecture-aware cognitive penetration test-
ing (CPT) into standard pre-deployment prac-
tices for advanced AI systems, aligning with a
security/privacy-by-design approach.

This research signals the emergence of a novel dis-
cipline that moves beyond traditional technical vul-
nerabilities and explicitly secures the cognitive layer
that makes AI systems powerful, what we term cog-
nitive cybersecurity .

Ethical Statement

This research examines cognitive vulnerabilities to
advance AI safety. All human experiments (n = 151)
followed standard ethical protocols with informed
consent and fair compensation; no personally iden-
tifiable information was collected. This study sug-
gests that cognitive guardrails should be validated
per model architecture before deployment, as inter-
ventions effective for one system may actively degrade
another. By transparently reporting both mitiga-
tion and backfire phenomena, and providing a cogni-
tive pentesting framework, this work aims to reduce
real-world harm, support safer AI integration, and
inform future alignment research.
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