
Whisper Smarter, not Harder: Adversarial Attack on

Partial Suppression

Zheng Jie Wong1 and Bingquan Shen2

1School of Computing, National University of Singapore
2DSO National Laboratories, Singapore

Abstract

Currently, Automatic Speech Recognition (ASR) models are deployed in an extensive range of
applications. However, recent studies have demonstrated the possibility of adversarial attack on
these models which could potentially suppress or disrupt model output. We investigate and verify
the robustness of these attacks and explore if it is possible to increase their imperceptibility. We
additionally find that by relaxing the optimisation objective from complete suppression to partial
suppression, we can further decrease the imperceptibility of the attack. We also explore possible
defences against these attacks and show a low-pass filter defence could potentially serve as an
effective defence.

1 Introduction

The use of Automatic Speech Recognition (ASR) models have propagated across many platforms and
technologies. These ASR models are capable of transcribing audio into text. However, these models
have been shown to be susceptible to adversarial attack, which a malicious party can employ to hijack
the model and generate, suppress or distort outputs from the models.

One of these ASR models is Whisper (Radford et al., 2022), developed by OpenAI, which uses special
start and end tokens to control its autoregressive token generation process. In particular, we focus
on the end-of-sequence <endoftext> (EOS) token, which, when generated by Whisper, indicates that
token generation should be halted and the output to be finalised.

Current attack methods on Whisper have shown that it is possible to induce a premature generation
of the EOS token using a universal attack snippet trained adversarially (Raina, Ma, McGhee, Knill,
& Gales, 2024), but we confirm that, for smaller models, the recommended parameters can be further
improved to make the attack less audible to the human ear, and thus less noticeable as an attack,
without compromising majority of its attack power.

However, there are few papers to suggest that this is the only way to attack Whisper. We posit that
if the criteria for attack is less strict, the attack is counter-intuitively better at disrupting output.
Specifically, if we impose a generation leniency instead of a hard limit of one token, we can potentially
create a more robust attack.

2 Setup

2.1 Model

Whisper consists of a typical encoder-decoder transformer architecture. During transcription, Whisper
first converts input audio into its log Mel spectrogram form via Short Fast Fourier Transform performed
over windowed segments in 30-second chunks. Its encoder then accepts this log Mel spectrogram and

1

ar
X

iv
:2

50
8.

09
99

4v
1

 [
cs

.S
D

]
 3

0
Ju

l 2
02

5

https://arxiv.org/abs/2508.09994v1

outputs audio features, which the decoder uses to autoregressively generate tokens until the EOS token
is generated.

2.2 Data

The data used is extracted from the TED-LIUM corpus, release 1 (Rousseau, Deléglise, & Estève,
2012), consisting “train”, “validation” and “test” splits. Snippets are trained on the “train” split,
validated on the “validation” split, and evaluated on the “test” split.

2.3 Methodology

In the following experiments, we compare the results from the small.en (“small”) and tiny.en

(“tiny”) models of Whisper, as well as the baseline performance on the same sizes of models (“base
small” and “base tiny”) using random attack snippets. All training hyperparameters used can be
found in Appendix A.1 and details of the training setup and hardware in Appendix A.2.

3 Complete Suppression

3.1 Overview

Current attack methods recommend creating a universal attack snippet with gradient-based training,
where the snippet magnitude is clamped to 0.02, length set at 0.64s (corresponding to 10,240 frames
of audio for a 16 kHz sampling rate) and prepended to the audio to attack on. We verify this with
experiments varying the clamp limit ε, snippet length L and position of prepend T . Full experimental
data is given in Appendices B.1.1, B.1.2 and B.1.3 respectively.

3.2 Optimisation Objective

We borrow the optimisation objective from the current attack method for total suppression (Raina et
al., 2024):

a = argmax
a

{
D∏
i=1

P (y1 = eos|a⊕ x(i),y∗
0)

}

= argmax
a

{
D∑
i=1

logP (y1 = eos|a⊕ x(i),y∗
0)

}

where a is the attack snippet, x(i) is the audio from datasetD to be attacked, y∗
0 = <|startoftranscript|>

<lang tag><|task tag|> is the starting series of tokens that initiates the token generation, and y1
is the first token to be properly generated. This objective essentially seeks to maximise the log prob-
ability of generating the EOS token at the first token position.

3.3 Metrics

We measure the effectiveness of attacks for complete suppression in terms of the rate of empty tran-
scriptions ∅ and the average sequence length (ASL):

∅ =
1

D

D∑
i

1
{
ỹ
∗(i)
1 = eot

}
ASL =

1

D

D∑
i

len
(
ỹ∗(i)

)
where ỹ

∗(i)
1 is the first generated token and len(·) is the length of the transcription given. Consequently,

a higher ∅ or a lower ASL represents stronger suppressive attack power.

2

3.4 Varying Clamp Limits ε

We define the “clamp limit” ε as the magnitude in which the values in the attack tensor are clamped
to, i.e. ∥a∥∞ ≤ ε, where ∥·∥∞ is the l-infinity norm. The attack length and positions are kept constant
at L = 0.64s and T = 0s respectively.

Figure 1: The ∅ and ASL graphs over various clamp values on the logarithmic scale, with ε1 and ε2
notated as orange and blue dotted lines respectively.

The graphs given in Fig.1 verify that, for the smaller models, despite the recommended clamp limit
of 0.02 (ε1), clamp limits that are much smaller are still effective up until approximately 0.005 (ε2).

3.5 Varying Length L

We define the length L as the length of the snippet in seconds. In varying the length of the snippet,
we keep the clamp limit constant at ε = 0.005 and position at T = 0s.

Figure 2: The ∅ and ASL graphs over various lengths, with L1 and L2 notated as orange and blue
dotted lines respectively.

Again, the graphs in Fig.2 show potential improvement for both smaller models. Current recommended
attack lengths of L1 = 0.64s in orange can still be decreased to around L2 = 0.4s.

3

3.6 Varying Position T

We define this as the time position (in seconds) at which to insert the snippet. Due to the various
audio lengths in the train dataset D, we have decided to impose a constraint 0 ≤ T ≤ 1 to minimise
silences occur after the audio and before the snippet. In varying the position of the snippet, we keep
the clamp limit constant at ε = 0.005 and length at L = 0.4s.

Figure 3: The ∅ and ASL graphs over various positions of prepend.

Contrary to earlier findings, Fig.3 shows that despite a potential improvement to around T = 0.2s,
prepend at T = 0s is still the most effective way to attack.

4 Partial Suppression

4.1 Overview

Instead of focusing on complete suppression of output, we try to relax the optimisation objective to
allow some, but not complete, token generation. In doing so, we determine if the attack can be made
even more imperceptible in terms of clamp limits ε and length L. Because position has been shown
to be best at T = 0s, we will not explore varying positions for partial suppression. Full experimental
data is given in Appendices B.2.1 and B.2.2 respectively.

4.2 Optimisation Objective

Since the goal is similar to that of fine-tuning in Large Language Models, we can use a similar
optimisation objective. The objective in fine-tuning is given (Qi et al., 2024):

min
θ

 E
(x,y)∼D

−
|y|∑
t=1

log πθ(yt|x,y<t)


where πθ is defined as the language model π with parameters θ. The objective seeks to minimise the
“per-token cross-entropy loss at each token position t” (Qi et al., 2024).

4

We can produce a modified objective for partial suppression:

a = argmin
a

 E
(x,t)∼D

−
min(δ,|y|)∑

t=1

logP (yt = eos|a⊕ x,y<t)


= argmax

a

{
D∑
i=1

1

T

T∑
t=1

logP (y
(i)
t = eos|a⊕ x(i),y

(i)
<t)

}

where T = min(δ,
∣∣y(i)

∣∣). That is, for all examples, we wish to maximise the probability of the EOS
token generated within a certain number of tokens δ from the start.

4.3 Metrics

Since∅ and ASL are better indicators of complete suppression rather than disruptiveness, we introduce
the average BiLingual Evaluation Understudy (BLEU) score B̄:

B̄ =
1

D

D∑
i=1

BLEU ′
(
ỹ∗(i),Y(i)

)

BLEU ′
(
ỹ∗(i),Y(i)

)
=

{
0, if

∣∣y∗(i)∣∣ = 0

BLEU
(
ỹ∗(i),Y(i)

)
, otherwise

where Y(i) is the ground truth for that example and BLEU(·, ·) is the BLEU score of the transcription
against its ground truth, and the average Word Error Rate (WER) W̄ :

W̄ =
1

D

D∑
i=1

WER
(
ỹ∗(i),Y(i)

)
where WER(·, ·) is the WER score of the transcription against its ground truth. A lower BLEU score
or a higher WER represents stronger attack power.

4.4 Varying Clamp Limits ε

Like the experiments for complete suppression, we evaluate the clamp limit with L = 0.64s and
prepend at T = 0s.

5

Figure 4: The ∅, ASL, BLEU score and WER graphs over various clamp limits, with ε2 and ε3 notated
as orange and blue dotted lines respectively.

Despite the poorer ∅ and ASL scores, the WER graph in Fig.4 suggests a possible further decrease
in clamp limits, from around ε2 = 0.0025 to ε3 = 0.00125.

4.5 Varying Length L

Similarly, we set ε = 0.005 and prepend at T = 0s.

6

Figure 5: The ∅, ASL, BLEU score and WER graphs over various lengths, with L2 and L3 notated
as orange and blue dotted lines respectively.

Likewise, Fig.5 shows that the attack snippet length can be lowered further, from around L2 = 0.4s
to L3 = 0.3s.

5 Transferability

Here, we briefly explore the transferability of both attacks across model sizes to affirm findings from
previous works and determine if the proposed attack on partial suppression is better in this regard.
We train an attack on a surrogate model and evaluate the metrics on a victim model. Once again,
the two model sizes tested will be small.en and tiny.en, ε = 0.005, L = 10, 240 and T = 0.

Surrogate small.en tiny.en
Victim small.en tiny.en small.en tiny.en

No Attack
∅ 0 0

ASL 123 122.8
WER 0.344 0.363

Complete
∅ 0.948 0 0 0.804

ASL 7 122.4 122.7 22.4
WER 1 0.353 0.333 1

Partial
∅ 0.225 0 0 0.979

ASL 69 122.7 123.8 2.3
WER 0.665 0.349 0.362 0.999

Note that when no attack is applied, attack performance is independent on the surrogate model.
The results seem to indicate that both attacks have similar non-transferability across model sizes, i.e.
attacks trained on the surrogate model perform poorly on a different victim model.

7

6 Possible Defences

6.1 Overview

In order to counter the gradient-based adversarial attacks, a few simple audio defences were tested
and benchmarked. The defences explored in particular were the Butterworth Low-pass filter, Mu Law
compression and Mu Law compression with decompression. All experiments here are run on clamp
ε = 0.005, length L = 0.64s and prepended at T = 0s. The model used is tiny.en, and the attacking
snippet was trained on complete suppression. All experimental data is given under Appendices B.3.1
and B.3.2 for the Mu-Law algorithms and Low-pass filter respectively.

6.2 Metrics

In order to measure defensive power, we first record the attack metrics (∅, ASL, Bleu score and WER)
with and without the attack snippet, then find the difference between these values. This is the baseline
attack power αbase:

αbase =
D∑
i=1

M
(
a⊕ x(i)

)
−M

(
x(i)

)
where M(·) refers to the attack metrics. We then measure the the differences in attack metrics with
the defence αd:

αd =
D∑
i=1

M
(
d(a⊕ x(i))

)
−M

(
d(x(i))

)
where d(·) is the applied defence. Finally, we calculate:

α% =
αd

αbase
× 100%

to find the percentage of retained attack power after defence. The smaller α% is, the smaller the
retained attack power and the more powerful the defence.

6.3 Mu Law

Mu-Law compression is often used in telecommunications and is a form of non-uniform quantization.
Here, we tested both Mu-Law compression only (µ(x)) and Mu-Law compression with decompression
(µ′(µ(x))), whose equations are given:

µ(x) = sign(x)
ln(1 + µ |x|)
ln(1 + µ)

µ′(x) = sign(x)
(µ+ 1)|x| − 1

µ

where µ is the non-linearity of the compression. Here, it is set to µ = 255 to simulate a typical 16-bit
to 8-bit quantization.

8

Figure 6: α% over no compression (“None”), Mu-Law compression (“Mu Comp”) and Mu-Law com-
pression with decompression (“Mu Decomp Comp”).

It is clear from Fig.6 that both compression algorithms fail to decrease attack power at all since α%

remains constant throughout. This proves that the Mu Law algorithms are ineffective defences.

6.4 Butterworth Low-pass Filter

The equation in frequency f for the Butterworth Low-pass filter is given:

LP (f) = |H(f)| f =
1√

1 +
(

f
fcutoff

)2n
× f

where f is the input frequency, fcutoff is the cut-off frequency for the filter and n is the order of the
filter, i.e. how harsh the taper at the cut-off frequency is. The order was set to n = 5 and different
cut-off frequencies fcutoff were tested.

Figure 7: α% over a range of cut-off frequencies.

Interestingly, α% seems to be lowest in the range 6.5kHz ≤ fcutoff ≤ 7kHz, suggesting a potential
correlation between attack power and frequency strengths in the range. It is possible that the low-pass
filter, if configured correctly and evaluated against a broader range of attacks, could be a potential
robust defence against such gradient-based attacks.

9

7 Limitations

Whilst the results produced are conclusive, they are only limited to two of Whisper’s smallest model
sizes, which are less robust than bigger sizes like large.en or turbo. Further testing is needed to
ensure the results are applicable and generalisable to larger model sizes and even other ASR models.

Secondly, due to time and resource constraints, the experiments were carried out on a specific subset
of one audio dataset. It is yet to be shown that the results are generalisable to most examples on most
datasets.

Next, most results were produced in one pass only, thus it is impossible to differentiate which values
are outliers and which are not. This could lead to false positives and trends that may not accurately
reflect the true weaknesses and strengths of the attack or the model.

It is also worth mentioning that experiments for the defences on an attacker trained on partial sup-
pression have not be carried out, meaning both attacks cannot be accurately assessed and compared
based on robustness and defence evasion.

Lastly, the results for the attack on partial suppression, specifically small.en, may not be represen-
tative as, due to resource constraints, the model was unable to converge.

8 Conclusion

In summary, we affirm that current gradient-based attack methods for smaller models can still be im-
proved and made more imperceptible for smaller models. Furthermore, we provide promising evidence
that the attack on partial suppression is better than the traditional attack on complete suppression.
Lastly, we show that basic audio defences like low-pass filters seem to possess some defensive power
against the traditional gradient-based attack on complete suppression and thus can form the basis of
future defensive methods.

References

Qi, X., Panda, A., Lyu, K., Ma, X., Roy, S., Beirami, A., . . . Henderson, P. (2024).
Safety alignment should be made more than just a few tokens deep. Retrieved from
https://arxiv.org/abs/2406.05946

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I.
(2022). Robust speech recognition via large-scale weak supervision. Retrieved from
https://arxiv.org/abs/2212.04356

Raina, V., Ma, R., McGhee, C., Knill, K., & Gales, M. (2024). Muting whisper:
A universal acoustic adversarial attack on speech foundation models. Retrieved from
https://arxiv.org/abs/2405.06134

Rousseau, A., Deléglise, P., & Estève, Y. (2012). Ted-lium: an automatic speech recognition dedicated
corpus. In Conference on language resources and evaluation (lrec) (pp. 125–129).

10

A Training Details

A.1 Training Hyperparameters

The optimizer used is the Adaptive Moment Estimation with Weight Decay Regularization, or AdamW
(Raina et al., 2024), a variation of the Adam algorithm. The learning rate is set to 1e-3. The training
loop employs early stopping with a patience of 5, a time limit of 45 minutes and an iteration limit of 30.

In order to better account for convergence, we also implement a requirement for a minimum decrease
in validation loss, that is, patience decreases if the validation loss increases or if it decreases by less
than a certain amount.

A.2 Data and Hardware

Training and testing were carried out on an Nvidia A40 GPU with 48GBs of GPU memory.

All experiments were executed with 500 training examples, 150 validation examples and 250 test
examples. The reason for the choice of small dataset sizes is due to the high training duration and low
time constraint. Train and validation data were loaded onto PyTorch DataLoaders with batch size 1.

B Experimental Results

B.1 Complete Suppression

B.1.1 Clamp Limit ε

ε 0.00015625 0.0003125 0.000625 0.00125 0.0025 0.005 0.005 0.01 0.02 0.02 0.05 0.1 0.2 0.5 1

Empty

Small 0 0 0 0 0.094 0.979 0.979 0.942 0.954 0.954 0.978 1 1 1 1
Tiny 0 0 0 0.041 0.742 1 1 1 1 1 1 1 1 1 1

Baseline Small 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Baseline Tiny 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ASL

Small 127.857 129.238 122.716 122.596 104.23 6.964 6.964 11.801 7.572 7.572 3.261 0 0 0 0
Tiny 126.039 124.675 118.985 107.348 32.206 0 0 0 0 0 0 0 0 0 0

Baseline Small 122.5 122.1 122.9 122.4 122.3 122.4 122.4 122.7 122.1 122.3 122.2 122.9 122.2 122.3 122.2
Baseline Tiny 122.1 122.3 122 122.2 122.4 122.4 122.4 122.4 122.3 122.3 122.2 122.3 122.3 122.3 122.2

B.1.2 Length L

Length (s) 0.1 0.2 0.3 0.4 0.4 0.425 0.45 0.5 0.64 0.64 1

Empty

Small 0 0.04 0.691 0.948 0.948 0.948 0.902 0.737 0.954 0.954 1
Tiny 0 0.216 0.376 0.804 0.804 0.995 1 1 1 1 1

Baseline Small 0 0 0 0 0 0 0 0 0 0 0
Baseline Tiny 0 0 0 0 0 0 0 0 0 0 0

ASL

Small 122.7 116.9 35.5 7 7 6.3 10.6 31.5 7.5 7.5 0
Tiny 123.1 100.2 80.2 22.4 22.4 0.7 0 0 0 0 0

Baseline Small 122.8 122.8 123 122.8 122.8 122.7 123.1 123.2 123.3 123.3 122.9
Baseline Tiny 122.4 122.2 122.1 122.3 122.3 122.3 122.3 122.3 122.2 122.2 122.5

B.1.3 Position T

Position (s) 0 0.01 0.1 0.2 0.5 0.75 1 1.5

Empty

Small 0.979 0.804 0.784 0.866 0.082 0.247 0.665 0.041
Tiny 0.995 0.639 0.84 0.809 0.005 0.134 0.18 0.912

Baseline Small 0 0 0 0 0 0 0 0
Baseline Tiny 0 0 0 0 0 0 0 0

ASL

Small 2.042 23.5 12.4 15.6 99.7 64.2 25.07 95.3
Tiny 0.7 45.8 23.7 28.8 128 107.4 97.2 13.5

Baseline Small 122.7 122.5 122.6 122.6 123.3 123.6 123.6 123.4
Baseline Tiny 122.1 122.4 122.4 122.2 122.8 122.8 122.5 122.6

11

B.2 Partial Suppression

B.2.1 Clamp limits ε

ε 0.00015625 0.0003125 0.000625 0.00125 0.00125 0.0025 0.0025 0.005

Empty

Small 0 0 0 0 0 0 0 0.04
Tiny 0 0 0 0.088 0.088 0.432 0.432 0.964

Baseline Small 0 0 0 0 0 0 0 0
Baseline Tiny 0 0 0 0 0 0 0 0

ASL

Small 122.8 123.1 122.9 122.5 122.5 118.4 118.4 105.7
Tiny 122.2 120.5 115.1 109.9 109.9 70.5 70.5 3.46

Baseline Small 123.4 123.1 123 123 123 122.5 122.5 122.1
Baseline Tiny 122 122.9 122.1 122.3 122.3 122.5 122.5 122.4

BLEU

Small 0.672 0.672 0.661 0.665 0.665 0.601 0.601 0.55
Tiny 0.651 0.631 0.611 0.561 0.561 0.378 0.378 0.008

Baseline Small 0.663 0.663 0.663 0.663 0.663 0.663 0.663 0.663
Baseline Tiny 0.648 0.648 0.648 0.648 0.648 0.648 0.648 0.648

WER

Small 0.334 0.331 0.336 0.336 0.336 0.422 0.422 0.531
Tiny 0.381 0.417 0.493 0.97 0.97 0.991 0.991 0.999

Baseline Small 0.339 0.338 0.339 0.339 0.339 0.338 0.338 0.336
Baseline Tiny 0.37 0.369 0.372 0.375 0.375 0.371 0.371 0.371

B.2.2 Length L

Length (s) 0.1 0.2 0.3 0.3 0.4 0.4 0.45

Empty

Small 0 0 0 0 0 0 0
Tiny 0 0.062 0.876 0.876 0.979 0.979 1

Baseline Small 0 0 0 0 0 0 0
Baseline Tiny 0 0 0 0 0 0 0

ASL

Small 122.3 121.6 121.7 121.7 118.4 118.4 123.4
Tiny 122.7 107.5 10.9 10.9 2.3 2.3 0

Baseline Small 122.8 122.8 123 123 122.8 122.8 123.1
Baseline Tiny 122.4 122.2 122.1 122.1 122.3 122.3 122.3

Bleu

Small 0.691 0.687 0.686 0.686 0.661 0.661 0.667
Tiny 0.655 0.586 0.42 0.42 0.566 0.566 0

Baseline Small 0.657 0.657 0.657 0.657 0.657 0.657 0.657
Baseline Tiny 0.65 0.65 0.65 0.65 0.65 0.65 0.65

WER

Small 0.312 0.32 0.319 0.319 0.342 0.342 0.334
Tiny 0.365 0.38 0.931 0.931 0.947 0.947 1

Baseline Small 0.344 0.344 0.344 0.344 0.344 0.344 0.344
Baseline Tiny 0.363 0.363 0.363 0.363 0.363 0.363 0.363

12

B.3 Defence

B.3.1 Mu-Law Algorithms

Defence None Mu Comp Mu Decomp Comp

Attacked

Empty 1 1 1
ASL 0 0 0
Bleu 0 0 0
WER 1 1 1

Unattacked

Empty 0.015 0.01 0.01
ASL 125.76 125.9 126.2
Bleu 0.435 0.433 0.432
WER 0.569 0.563 0.561

α

Empty 0.985 0.99 0.99
ASL -125.76 -125.9 -126.2
Bleu -0.435 -0.433 -0.432
WER 0.431 0.437 0.439

α%

Empty 100 100.5 100.5
ASL 100 100.1 100.3
Bleu 100 99.5 99.3
WER 100 101.4 101.9

B.3.2 Low-pass Filter

Critical Frequency None 5kHz 5.5kHz 6kHz 6.5kHz 7kHz 7.25kHz 7.5kHz

With Snippet

Empty 1 0.55 0.685 0.555 0.37 0.35 0.55 0.995
ASL 0 56.2 40.39 58.4 87.9 91.3 65.9 0.935
Bleu 0 0.202 0.152 0.253 0.278 0.282 0.205 0.003
WER 1 0.786 0.846 0.79 0.717 0.795 0.786 0.997

Without Snippet

Empty 0.015 0.01 0.005 0.005 0.015 0.01 0.015 0.01
ASL 125.76 125.6 125.7 125.7 125.5 126.8 125.3 127
Bleu 0.435 0.429 0.428 0.432 0.43 0.434 0.429 0.431
WER 0.569 0.563 0.569 0.569 0.57 0.562 0.565 0.564

Alpha

Empty 0.985 0.54 0.68 0.55 0.355 0.34 0.535 0.985
ASL -125.76 -69.4 -85.31 -67.3 -37.6 -35.5 -59.4 -126.065
Bleu -0.435 -0.227 -0.276 -0.179 -0.152 -0.152 -0.224 -0.428
WER 0.431 0.223 0.277 0.221 0.147 0.233 0.221 0.433

α%

Empty 100 54.8 69 55.8 36 34.5 54.3 100
ASL 100 55.2 67.8 53.5 29.9 28.2 47.2 100.2
Bleu 100 52.2 63.4 41.1 34.9 34.9 51.1 98.4
WER 100 51.7 064.3 51.3 34.1 54.1 51.3 100.5

13

