
Extending the OWASP Multi-Agentic System Threat Mod-
eling Guide: Insights from Multi-Agent Security Research

Klaudia Krawiecka kkrawiecka@acm.org
Association for Computing Machinery (ACM)

Christian Schroeder de Witt cs@robots.ox.ac.uk
Department of Engineering Science
University of Oxford

Abstract

We propose an extension to the OWASP Multi-Agentic System (MAS) Threat Modeling
Guide, translating recent anticipatory research in multi-agent security (MASEC) into prac-
tical guidance for addressing challenges unique to large language model (LLM)-driven multi-
agent architectures. Although OWASP’s existing taxonomy covers many attack vectors,
our analysis identifies gaps in modeling failures, including, but not limited to: reasoning
collapse across planner–executor chains, metric overfitting, unsafe delegation escalation,
emergent covert coordination, and heterogeneous multi-agent exploits. We introduce ad-
ditional threat classes and scenarios grounded in practical MAS deployments, highlighting
risks from benign goal drift, cross-agent hallucination propagation, affective prompt fram-
ing, and multi-agent backdoors. We also outline evaluation strategies, including robustness
testing, coordination assessment, safety enforcement, and emergent behavior monitoring, to
ensure complete coverage. This work complements the framework of OWASP by expanding
its applicability to increasingly complex, autonomous, and adaptive multi-agent systems,
with the goal of improving security posture and resilience in real world deployments.

1 Introduction

The emerging field of multi-agent security (MASEC) (Schroeder de Witt, 2025) is the science and practice
of anticipatory security for AI ecosystems: proactively identifying, modelling, and mitigating vulnerabilities
before they manifest, guided by what is mathematically or physically possible rather than limited to ob-
served incidents or existing infrastructure. It goes beyond detecting known failure modes to predicting novel
risks from emergent behaviours in open-ended agent interactions. Spanning from theoretical modelling to
deployable defences, MASEC complements multi-agent systems security in its interest in real-world deploy-
ments, but distinguishes itself through its anticipatory ambition, its extension to open-ended AI ecosystems
beyond existing cyber-physical systems, and its integration of sociotechnical contexts where agents engage
with humans and institutions.

This work applies the MASEC framework to extend and operationalize the OWASP Multi-Agentic System
(MAS) Threat Modeling Guide (OWASP Foundation, 2024), illustrating how the anticipatory, interaction-
focused methodology of MASEC already influences the design of real-world security standards. We identify
taxonomic gaps, propose additional threat classes grounded in empirical multi-agent AI research, and outline
evaluation strategies aimed at improving the resilience of deployed MAS against both known and emergent
adversarial behaviors. The following sections outline the proposed threat categories, illustrate how they
manifest in practice, and compare their coverage within the current OWASP taxonomy.
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1.1 Terminology: Agent Roles in Multi-Agent Systems

In this document, we refer to common functional roles observed in multi-agent system architectures (e.g.,
AutoGen, Reflexion, BabyAGI, and Toolformer). Although these agentic frameworks do not explicitly define
the aforementioned roles, we adopt the following terminology to support consistent threat modeling:

• Planner/Orchestrator (inc. Subplanner): An agent responsible for decomposing goals into
actionable plans or subtasks. Planners often initiate delegation to other agents.

• Executor: An agent that carries out specific actions or tool invocations in service of a plan. It may
rely on APIs, external tools, or environments.

• Verifier: An agent that passively evaluates the validity, safety, or accuracy of the outputs produced
by other agents, often acting as a quality control layer.

• Refiner: An agent that actively modifies the outputs produced by other agents, often acting as
active quality assurance (in contrast to the passive Verifier).

2 Proposed Extensions

Table 1 outlines the coverage and overlap between existing and new threats presented in the OWASP frame-
work. Table 2 outlines additional threat categories and vectors observed in multi-agent systems, which we
propose as extensions to the Maestro taxonomy. Each proposed category includes a threat description, a
vector, and an example scenario.

Table 1: Coverage of proposed threat categories in the OWASP
Multi-Agent Threat Taxonomy

Proposed
Threat Class

OWASP Cover-
age

Key Differentiator Why It Matters in Multi-Agent
Systems

Reasoning
Collapse

Not Covered The guide does not model
breakdowns in stepwise
reasoning across planner-
executor chains.

Flawed reasoning structure or logic
within/among agents. Incoherent
plans or logical errors can propagate
unchecked, resulting in task failure or
tool misuse.

Metric Over-
fitting

Not Covered Evaluation-stage nor
design-stage metric gam-
ing is not addressed in
Maestro’s layers.

Agents may prioritize optimizing
score signals rather than achieving
correct or safe outcomes.

Unsafe Dele-
gation Escala-
tion

Not Covered Role inheritance or un-
clear access boundaries are
not addressed in delegation
threats.

A verifier agent may inadvertently
gain executor powers, creating im-
plicit privilege escalation.

Evaluation
Framework
Failures

Not Covered The framework does not
treat flawed benchmarks or
test-time logic as attack
surfaces.

Systems may reinforce invalid behav-
iors if flawed metrics reward halluci-
nated or biased results.

Delegation
Pressure Ex-
ploits

Not Covered Coercive overrides from
planning agents are not
discussed as a unique fail-
ure mode.

A planner may suppress verifier ob-
jections and force execution of risky
plans.
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Affective
Prompt
Framing

Not Covered Persuasive or stylistic
prompt framing is not
modeled as a manipulation
vector.

An agent may bias others using tone,
confidence, or emotional appeal, by-
passing standard checks.

Emergent
Covert Coor-
dination

Not Covered OWASP does not model
emergent symbolic proto-
cols or adaptive learning
behavior used to evade fil-
ters or coordinate covertly.

Multi-agent systems can develop en-
codings or probing strategies that ex-
ploit safety layers over time, even
without explicit compromise or in-
struction injection.

Heterogeneous
Multi-Agent
Exploits

Not Covered OWASP does not model
threats that arise only
from orchestrated coordi-
nation across individually
safe agents with divergent
policies.

Adversaries can split tasks among
compliant agents to bypass safe-
guards; attribution becomes difficult
and traditional single-agent monitor-
ing fails.

Context dis-
tortion from
active secu-
rity monitor-
ing (refine-
ment)

Not Covered OWASP does not cover
threats arising from active
monitoring techniques

Agent communication context distor-
tion due to context loss through sani-
tisation or active paraphrasing (the
latter used to suppress covert coordi-
nation)

Multi-Agent
context con-
fusion

Not Covered OWASP does not cover
threats arising from con-
text confusion when a sin-
gle agent operates on con-
text generated from mul-
tiple agents with different
roles

A verifier agent needing to separate
contexts from different agent commu-
nications on a message board

Goal Drift
in Delegated
Chains (Tele-
phone Game)

Partially (Intent
Manipulation)

The framework discusses
intent manipulation, but
not benign drift between
agents in the same hierar-
chy (in contrast to Reason-
ing Collapse).

Multi-agent chains may subtly shift
task definitions, leading to unintended
actions despite no malicious input
(e.g., models following different prin-
ciples, sharing different context or un-
derstanding)

Hallucinated
Inference

Partially (Tool
Misuse, Memory
Poisoning)

Hallucinations are treated
as isolated events, not
multi-agent propagation
risks.

Incorrect outputs may cascade
through systems if trust and verifica-
tion protocols are weak.

Emergent
Collusion

Partially (Cascad-
ing Trust Failure)

The guide warns about
trust loss but not coopera-
tion for metric exploitation
or mutual validation.

Agents may co-adapt outputs to pass
evaluations or reduce rejections with-
out external grounding.

Trust Mis-
use Between
Legitimate
Agents

Partially Cov-
ered (Trust Ex-
ploitation, Rogue
Agents)

OWASP models deception
by compromised or spoofed
agents but does not ad-
dress goal-driven misre-
porting by agents acting
within valid roles.

Agents may strategically overstate
success or omit uncertainty to main-
tain trust or optimize local rewards,
leading to unsafe but seemingly coop-
erative behaviors.
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Multi-Agent
backdoors

Partially Covered OWASP does not cover
multi-agent threats arising
from model backdoors that
specifically compiled to en-
able multi-agent threats
with model copy agents

An agent featuring a secure stegano-
graphic capability compiled into its
model weights that allows it to con-
duct covert symbolic coordination
with other agents

Emergent in-
sider threats

Partially Covered OWASP does not cover
multi-agent threats emerg-
ing spontaneously from
within the system due to
misaligned or competitive
objectives

Agents become incentivised to use
worst-case exploits against other
agents due to misaligned or partially
competitive objectives, e.g. jailbreak-
ing attacks against verifier agents

AI supply
chain social
engineering

Partially Covered OWASP does not cover
threats arising from AI-
based social engineering at-
tacks on human factors in
AI supply chains

Mass-scale, long-term manipulation
or blackmailing of open source soft-
ware maintainers as in the xz utils
approach using disinformation or AI-
generated messages

Table 2: Proposed new threat categories with Multi-Agent exam-
ples as extensions to OWASP’s Multi-Agent Threat Taxonomy

Threat Class Description Threat Vector Example Scenario (Multi-
Agent Focus)

Reasoning
Collapse

Breakdown in
chain-of-thought,
logic, or planning
across agent steps.

Misuse of planner tools, in-
coherent intermediate out-
puts.

A planner agent passes vague sub-
goals to an executor, which at-
tempts invalid tool actions due to
unclear/underspecified intent.

Metric Over-
fitting

Agents overfit to
evaluation metrics
without solving ac-
tual tasks.

Prompt engineering
exploits, metric misalign-
ment. This can happen
at the systems design
level if security metrics
insufficiently capture true
intents (Goodheart’s law).

A chain of agents returns outputs
with specific keywords to pass eval-
uation scripts.

Unsafe Dele-
gation Escala-
tion

Subagents gain
unintended ele-
vated privileges
due to subgraph
permission design
flaws.

Role misconfiguration, im-
plicit permission inheri-
tance.

A verifier starts executing tasks due
to inherited permissions.

Evaluation
Framework
Failures

Flawed or outdated
evaluation metrics
reinforce unsafe be-
havior.

Ambiguous success crite-
ria, hallucinated correct-
ness.

A verifier accepts hallucinated an-
swers due to vague benchmark defi-
nitions.

Delegation
Pressure Ex-
ploits

Higher-tier agents
override down-
stream agents.

Prompt suppression,
system-level override.

A planner forces task execution de-
spite verifier objections.
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Affective
Prompt
Framing

Agents influence
decisions through
stylistic language,
fictional or hypo-
thetical scenarios.

Authority mimicry, emo-
tional tone.

An executor uses confident language
that biases the verifier into approv-
ing faulty output.

Emergent
Covert Coor-
dination

Agents au-
tonomously de-
velop symbolic
protocols or adapt
behaviors to
covertly coordi-
nate, bypass safety
filters, or encode
intent. These
behaviors emerge
without explicit
programming.

Multi-round prompt shap-
ing, token-based flagging,
steganography, learned fil-
ter probing, covert signal-
ing.

A planner and verifier evolve a
shared flag convention in outputs
to bypass a content filter that only
evaluates explicit prompt phrasing.

Heterogeneous
Multi-Agent
Exploits

Attackers coor-
dinate multiple
agents with dif-
ferent capabilities,
each compliant in
isolation, to bypass
safety mechanisms
collectively.

Delegated task splitting,
policy evasion via com-
plementary agents, cross-
model chaining.

A frontier LLM with refusal policies
handles code synthesis, while a jail-
broken model crafts unsafe phras-
ing; together they produce vulner-
able outputs undetected by either
model alone.

Context
Distortion
from Ac-
tive Security
Monitoring
(refinement)

Agent communica-
tion context distor-
tion due to con-
text loss through
in/output or com-
munications refine-
ment.

Active security monitoring
of in/outputs or communi-
cations, including sanitisa-
tion and filtering, or para-
phrasing (the latter used
to suppress covert coordi-
nation).

A dynamic firewall sanitises a nat-
ural language query in a way that
drops subtle query context, lead-
ing to wrong, inaccurate, or sensi-
tive data being returned from the
database.

Multi-Agent
Context Con-
fusion

Reasoning failures
over multi-agent
contexts

Innate foundation model
weaknesses in handling
context levels.

A verifier agent needing to separate
contexts from different agent com-
munications on a message board.

Goal Drift
in Delegated
Chains (Tele-
phone Game)

Planner’s intent
shifts through
agent-to-agent
delegation.

Poor prompt transmission
(inc. prompt interfacing,
formatting) .

A subplanner alters strategy, and
the executor completes an action
misaligned with the original goal.

Hallucinated
Inference

Agents generate
confidently incor-
rect outputs that
propagate (Could
trigger Reasoning
Collapse and Goal
Drift)

Lack of grounding, recur-
sive generation flaws.

An executor hallucinates a function;
the verifier accepts it based on prior
trust.

Emergent
Collusion

Agents reinforce
each other’s out-
puts for mutual
gain.

Reciprocal approvals, echo
validation.

A verifier always accepts the output
of an executor to maintain high suc-
cess rates of tasks. This includes
the planner-executor-verifier coor-
dination to maximize their com-
bined reword or global task score.
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Trust Mis-
use Between
Legitimate
Agents

A non-
compromised
agent misleads an-
other agent within
the system to max-
imize local goals or
optimize rewards,
without external
compromise or
identity spoofing.

Overconfident outputs,
fabricated success claims,
omitted caveats.

An executor agent overstates task
success to the verifier to avoid roll-
back, preserving its local perfor-
mance metric despite introducing
downstream risk.

Multi-Agent
Backdoors

Backdoor circuits
hidden in agent
model weights that
enable agents to
orchestrate multi-
agent threats

Agent model backdoors ei-
ther learnt from poisoned
data, or compiled into the
model weights

An agent based on open-source
model weights featuring a hid-
den secure steganographic capabil-
ity compiled into its model weights
that allows it to conduct covert
symbolic coordination with other
agents based on the same model

Emergent in-
sider threats

Agents become
incentivised to
use worst-case
exploits against
other agents due to
emergence under
misaligned or par-
tially competitive
objectives

Optimisation under mis-
aligned optimisation objec-
tives or unexpected envi-
ronment shifts (including
in-context learning)

Agents perform jailbreaking attacks
against verifier agents due to sub-
tle misalignments in multi-objective
optimisation objectives.

AI supply
chain social
engineering

Threats arising
from AI-based
social engineering
attacks on human
factors on AI sup-
ply chains

AI-generated disinforma-
tion or communications
spread by bots or humans

Mass-scale, long-term manipulation
or blackmailing of open source soft-
ware maintainers as in the xz utils
approach using disinformation or
AI-generated messages

3 Testing Framework(s)

3.1 Robustness

An ongoing work from Owotogbe (2025) suggests ’chaos engineering’ to stress-test LLM-based multi-agent
systems. This means deliberately injecting failures, for example, by introducing communication delays, or
corrupting messages. This framework could be used to simulate agent failures and communication break-
downs in LLM multi-agent setups. This helps ensure the whole system remains reliable even if some agents
behave unexpectedly.

Another idea is to test agentic communication topology against malicious interference. The NetSafe frame-
work Yu et al. (2024) could evaluate safety under targeted attacks in a network of LLM-driven agents. It
suggests injecting malicious content (misinformation, biased, or harmful prompts) into certain ’attacker’
agents and measures how the bad information spreads through various network structures.

Beyond specific frameworks, we could look at simulations where agents might be placed in certain scenarios
with missing information, random interruptions, or noisy inputs to see if they still achieve desired goals. The
purpose is to ensure the multi-agent system can degrade gracefully, which means that if one agent fails or
provides a wrong output, others should detect and correct it (akin to fault tolerance).
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3.2 Coordination Evaluation

A central promise of multi-agent LLM systems is improved performance through coordination – multiple
agents working together should accomplish tasks more effectively than any could alone. Evaluating coordi-
nation involves measuring how well agents communicate, synchronize, and complement each other’s actions.

The most direct metric is success on cooperative tasks. Benchmarks from multi-agent reinforcement learn-
ing and board games are used to test LLM-based agents. For example, the Star-Craft Multi-Agent Chal-
lenge Samvelyan et al. (2019) (a cooperative card game requiring communication under partial information)
has been a standard for coordination in AI (though typically with RL agents). More recently, Vending-
Bench LessWrong (2025) is a virtual environment where two or more agents with a shared goal must operate
a vending machine together. The evaluation checks if they can coordinate actions to acquire resources
(coins, items) without mishaps. Such scenarios yield metrics like task completion rate (did the team achieve
the goal?), efficiency (time or steps taken), and resource utilization (did they waste actions due to poor
coordination?).

In addition, agents could be assessed on how ’in sync’ they are. In cooperative settings, one can measure
the agreement or consistency among agents’ decisions. For instance, in a hidden-role game environment,
Curvo (2025) define a Faithful Agreement Score (’quantifies consensus among faithful agents’) and Traitor
Agreement Score (’measures how consistently traitors vote as a single unified group’) to see how consistently
each group votes together. High agreement within teams indicates effective coordination or collusion, whereas
divergence might signal miscommunication. Similarly, they could measure the communication overhead
required through this game. This study has tested how different models handle deceptions between each
other.

3.3 Safety

TrustAgent Hua et al. (2024) evaluates safety via a three-stage process: before an agent makes a plan, it
’prepends’ safety knowledge to its context, during the plan, it uses special prompting to steer away from
unsafe choices, after the plan, it performs checks and self-edits. In evaluations across multiple domains, this
framework successfully identified and mitigated potential dangerous actions the agent was about to take,
thereby reducing the occurrence of unsafe outputs. For instance, if an agent’s plan involved accessing private
user data, the ’constitution layer’ would flag and alter that. The experiments showed not only improved
safety compliance, but interestingly, also a boost in the helpfulness of the agent. This demonstrates that
structured safety enforcement can be evaluated by comparing agent behavior with and without the safety
strategies, measuring metrics like safety violations prevented and task success retained.

As mentioned earlier, NetSafe Yu et al. (2024) examines how a network of agents can resist unsafe content
propagation. One safety dimension this study measured was hallucinations and aggregation safety, referring
to phenomena where one agent’s hallucinated misinformation gets accepted and amplified by others. NetSafe
introduced static metrics (graph-based measures of network resilience) and dynamic metrics (like the drop in
task performance when an attack is introduced). These metrics were validated by showing strong alignment
with actual outcomes in the experiments, e.g., a network that scored better on the static safety metric
indeed suffered less performance degradation when malicious prompts were injected. This kind of evaluation
is practical for organizations deploying many agents since it helps decide how to connect agents safely (e.g.,
limit which agents can talk to which others) by quantifying the risk of a ’contagion’ of errors or harmful
content.

Overall, multi-agent setups can include redundancy for safety. For example, one agent can be assigned as a
’verifier’ to critique or veto another agent’s potentially harmful decision. An evaluation methodology here is
to use challenge scenarios, e.g., have one agent suggest an unsafe action and see if the second agent catches
it.
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3.4 Emergent Behaviors

One of the most interesting aspects of multi-agent systems is the potential for emergent behavior – complex
dynamics or capabilities that are not programmed in any single agent, but arise from agentic interactions.

Particioners can (and probably should) create sandbox multi-agent ecosystems or long-term simulations
and simply let multiple agents interact, logging everything. Through a simulations like this, we can catch
emergent behaviors and we can measure them, for example, novelty metrics (did the system generate new
kinds of activity?), complexity metrics (e.g. average length of interaction chains, number of agents involved
in a single event), and through human evaluation of plausibility.

In scarce evaluations so far, the emergent behaviors observed (tool use, social planning, secret codes, etc.)
have often been impressive but also cautionary. They show that multi-agent systems can evolve beyond their
initial design. Therefore, a forward-looking evaluation strategy could be to include long-run simulations in
test suites – essentially, ’let’s watch the agents interact for 100 steps and see if anything odd or interesting
happens’ and have analysts or monitors ready to capture that. As multi-agent AI deployments become
persistent (e.g. a fleet of service robots or a network of dialogue agents that continually talk), this kind of
ongoing monitoring becomes part of the evaluation pipeline, ensuring that emergent behaviors are caught
early and aligned with human intent.
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