
Shadow in the Cache: Unveiling and Mitigating
Privacy Risks of KV-cache in LLM Inference

Zhifan Luo1,2, Shuo Shao1,2, Su Zhang3, Lijing Zhou3, Yuke Hu1,2, Chenxu Zhao1,2, Zhihao Liu1,2, Zhan Qin1,2

1State Key Laboratory of Blockchain and Data Security, Zhejiang University
2Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security 3Huawei Technology

{luozhifan, shaoshuo ss, yukehu, zhaocx 7, zhihao liu, qinzhan}@zju.edu.cn; {zhangsu14, zhoulijing}@huawei.com

Abstract—The Key-Value (KV) cache, which stores intermediate
attention computations (Key and Value pairs) to avoid redundant
calculations, is a fundamental mechanism for accelerating Large
Language Model (LLM) inference. However, this efficiency
optimization introduces significant yet underexplored privacy
risks. This paper provides the first comprehensive analysis of these
vulnerabilities, demonstrating that an attacker can reconstruct
sensitive user inputs directly from the KV-cache. We design and
implement three distinct attack vectors: a direct Inversion Attack,
a more broadly applicable and potent Collision Attack, and a
semantic-based Injection Attack. These methods demonstrate
the practicality and severity of KV-cache privacy leakage issues.
To mitigate this, we propose KV-Cloak, a novel, lightweight,
and efficient defense mechanism. KV-Cloak uses a reversible
matrix-based obfuscation scheme, combined with operator fusion,
to secure the KV-cache. Our extensive experiments show that
KV-Cloak effectively thwarts all proposed attacks, reducing
reconstruction quality to random noise. Crucially, it achieves this
robust security with virtually no degradation in model accuracy
and minimal performance overhead, offering a practical solution
for trustworthy LLM deployment.

I. INTRODUCTION

Large Language Models (LLMs) have ignited a paradigm
revolution in artificial intelligence [20], [33], profoundly
impacting various domains and applications, such as machine
translation [40], chatbots [37], code generation [11], and content
creation [42]. However, the immense scale of these models,
characterized by billions or even trillions of parameters, coupled
with the need to process extensive input sequences and engage
in multi-turn dialogues, presents a substantial challenge to their
efficient deployment and inference. This computational demand
often translates into high latency and resource consumption,
hindering broader accessibility and real-time applicability [18].

To address the efficiency bottlenecks in LLM inference,
researchers have proposed several optimization techniques [35],
[44]. Among these, the Key-Value cache (KV-cache) mecha-
nism has emerged as a crucial and widely adopted solution [24],
[42]. During the autoregressive generation process typical of
LLMs, the attention mechanism computes key (K) and value
(V) matrices for each token based on its preceding tokens. The
KV-cache stores these intermediate attention computations (the
K and V pairs) for tokens that have already been processed
within the input sequence. By reusing these cached K and V
pairs for the generation of subsequent tokens, the KV-cache
significantly reduces redundant computations. This dramatically
accelerates inference speed and improves throughput, especially

LLM Server

Client

①Input ⑥Output

Compute Node

Compute Node

KV-cache

Storage

④KV-cache
Transfer

Entry

Attacker

Leaked KV-cache

Will KV-cache leak my privacy?

KV-cache will leak your privacy.

Fig. 1: LLM inference service workflow in a privacy-preserving
setting and its associated security risks.

for tasks involving long contexts or interactive sessions, making
LLMs more practical for real-world deployment.

However, the storage and potential sharing of the KV-cache
introduce significant yet underexplored privacy concerns [36],
[38], as illustrated in Figure 1. This vulnerability stems
from a critical trade-off made in production systems: while
end-user communication with the LLM service is typically
encrypted (represented by the black lines in our figure),
the KV-cache itself is almost always processed, transmitted
between compute nodes, and persisted in plaintext. This design
choice is a concession to performance, as the unacceptable
latency overhead from cryptographically securing the often
gigabyte-scale KV-cache would violate the stringent demands
of real-time inference. The feasibility of exploiting such
plaintext data exposure is not merely theoretical. It was
recently demonstrated by the LeftoverLocals attack [28]. This
vulnerability in certain AMD GPUs enables an unprivileged
attacker to read data remnants from the GPU’s shared on-
chip memory. This provides a concrete method to intercept
and exfiltrate plaintext KV-cache data originating from other
users’ concurrent inference sessions, proving that sensitive
conversational data is indeed at risk. Crucially, the KV-cache is
inherently derived from and directly correlated with user inputs.
Consequently, if an attacker gains access to the KV-cache, they
could potentially reverse-engineer sensitive information in the

ar
X

iv
:2

50
8.

09
44

2v
1

 [
cs

.C
R

]
 1

3
A

ug
 2

02
5

https://arxiv.org/abs/2508.09442v1

user’s original prompts or private data [6], [17]. A critical
research gap exists in understanding and mitigating the privacy
risks associated with KV-caches in LLMs, necessitating further
in-depth research.

In this paper, to bridge the research gap, we present the
first comprehensive study on the privacy risks of KV-cache in
LLM inference. Specifically, we primarily study and answer
the following two research questions:

• RQ1: Is an attacker able to reconstruct user inputs from
the KV-caches?
To address this question, we conduct a systematic investi-

gation, demonstrating that attacks against the KV-cache are
not only feasible but also diverse and broadly applicable. We
design and implement three distinct classes of targeted privacy-
stealing attacks. Each attack exposes inherent privacy risks of
KV-caches from a different perspective.

We first explore two relatively direct attack paths. The first
is the KV-cache Inversion Attack, a method that attempts
to leverage known model weight matrices to directly reverse-
calculate the input from the KV-cache. The second, more
general-purpose approach is the KV-cache Collision Attack.
This attack reframes input reconstruction as a matching task
based on forward computation: an attacker iteratively uses a
local model instance to generate KV-caches for candidate inputs
and compares them against the intercepted target KV-cache to
find a match. Because this method does not rely on any reverse
computation, it has broader applicability. Finally, we introduce
a novel, semantic-based KV-cache Injection Attack. The core
of this attack is to leverage the LLM’s powerful capability to
understand and execute instructions. By appending a specific
instruction, such as “Repeat the previous content,” to the end
of an intercepted KV-cache context, an attacker can induce
the model to “echo” or generalize the core information held
within the KV-cache.

Collectively, these attacks reveal that privacy leakage from
the KV-cache is not merely a theoretical concern. Their diversity
and feasibility constitute a significant threat to real-world LLM-
based applications, underscoring the urgent necessity of design-
ing specialized and efficient privacy-preserving mechanisms
for the KV-cache.

• RQ2: Can defenders effectively and efficiently mitigate
or prevent user privacy leakage from the KV-cache?
In response to this challenge, this paper provides an affir-

mative answer by first analyzing the shortcomings of existing
privacy-preserving techniques. Conventional methods like full
cryptographic encryption [2] or Homomorphic Encryption
(HE) [22] introduce prohibitive computational overhead and
latency, rendering them impractical for the high-throughput
demands of LLM inference. Meanwhile, applying Differen-
tial Privacy (DP) [8] requires adding a level of noise that
often severely degrades the model’s inference accuracy to
an unacceptable degree. Even specialized solutions like KV-
Shield [38], while lightweight, suffer from critical security
flaws. Their fixed shuffling mechanism, as we analyzed in
Section IV-A, is vulnerable to statistical analysis and is

incompatible with modern LLM architectures that use features
like Rotary Positional Embedding (RoPE). These limitations
highlight the urgent need for a novel defense mechanism, .

Therefore, we propose KV-Cloak, a lightweight and secure
mechanism for KV-cache obfuscation designed to overcome
these challenges. At its core, KV-Cloak employs a reversible
matrix-based obfuscation scheme that guarantees lossless model
accuracy. Its security is multi-layered: it applies secret invertible
linear transformations to obscure statistical properties, and
critically, introduces a one-time random permutation matrix for
each data block. This dynamic permutation prevents attackers
from building stable algebraic relations across multiple queries.
To further enhance performance, KV-Cloak utilizes operator
fusion, an optimization where a portion of the secret obfuscation
matrices is algebraically fused into the LLM’s attention layer
weights offline. This shifts the primary computational cost away
from the latency-sensitive online inference phase, striking an
effective balance between robust security, lossless accuracy,
and high performance.

Our contributions can be summarized as follows.

• Revealing the privacy risks of KV-cache in LLM in-
ference: We systematically investigate the privacy risks of
the KV-cache by designing and implementing three distinct
attacks, Inversion, Collision, and Injection Attacks.

• Proposing a lightweight and effective method to mitigate
privacy leakage: We propose KV-Cloak, a novel and prac-
tical defense mechanism that uses a lightweight, reversible
matrix-based obfuscation scheme combined with operator
fusion to protect the KV-cache without degrading model
accuracy and with minimal performance overhead.

• Conducting extensive experiments to evaluate attacks and
defenses: We conduct a systematic evaluation to empirically
demonstrate and quantify the feasibility of attacks that
reconstruct user input from the KV-cache of state-of-the-
art LLMs, establishing it as a practical and severe threat. We
further prove that our proposed KV-Cloak is a highly practical
solution that achieves robust security, near-lossless model
fidelity, and high efficiency simultaneously. Our experiments
show that KV-Cloak, with its negligible impact on accuracy
and minimal latency overhead (mostly < 10%), successfully
resolves the stark trade-off between security and utility that
plagues alternative approaches such as DP.

II. BACKGROUND AND RELATED WORK

A. Transformer-based LLM Inference

Prevailing large language models, such as LLaMA [32],
DeepSeek [20] and Qwen [37], are predominantly based on
the Transformer decoder architecture [42].

Self-Attention Mechanism.
The core of the Transformer architecture is the self-attention

mechanism. It captures dependencies between different posi-
tions within an input sequence, allowing the model to flexibly
focus on various parts of the sequence to better understand

2

the context. For an input sequence X = (x1, . . . , xn), the self-
attention layer first applies linear transformations to xi at each
position to obtain Query (q), Key (k), and Value (v) vectors,

qi = xiW
⊤
q Rd

Θ,i, ki = xiW
⊤
k Rd

Θ,i, vi = xiW
⊤
v . (1)

Here, Wq,Wk,Wv are learnable weight matrices for the at-
tention layer, and Rd

Θ,i denotes the Rotary Position Embedding
(RoPE) [29]. Then, the self-attention layer computes the dot
product of the current query qi with all preceding keys kj .
The results are scaled, and a softmax function is applied to
obtain attention weights aij . These weights are then used to
compute a weighted sum of the value vectors. Finally, this sum
is passed through a linear projection layer Wo to produce the
output oi for the current position. This process is detailed in
Eq. (2), where d is the dimension of each attention head.

aij =
exp

(
qikj

⊤/
√
d
)

∑i
t=1 exp

(
qikt

⊤/
√
d
) , oi =

 i∑
j=1

aijvj

W⊤
o . (2)

This mechanism enables the model to dynamically weigh
the importance of different parts of the input sequence, thereby
capturing complex contextual dependencies.

Autoregressive LLM Inference. The essence of large language
model inference is to model the probability distribution
P (x1, . . . , xn) of a token sequence x1, . . . , xn. Due to the
sequential nature of natural language, prevailing LLMs pre-
dominantly employ an autoregressive text generation approach
in inference tasks. The joint probability of the entire sequence
can typically be autoregressively decomposed [5] into a product
of conditional probabilities,

P (x1, . . . , xn) = P (x1)P (x2|x1) · · ·P (xn|x1, . . . , xn−1).
(3)

Specifically, the model generates the output sequence one
token at a time. When generating each new token, the model
considers not only the initial user-provided input but also
all previously generated tokens as context. For example,
when generating the token xi, the model utilizes information
from tokens x1 to xi−1. While this sequential generation
method effectively captures dependencies within the sequence,
it introduces significant computational redundancy. At each
step of generating a new token, attention computations for
all preceding tokens (particularly the calculation of k and v)
must be recalculated. This repetitive computation substantially
impacts inference efficiency.

KV-cache in LLM Inference. In the context of autoregressive
generation, the previously generated tokens form the context
for predicting the next token. To avoid redundant computations,
LLMs employ a caching strategy known as the KV-cache.
For each processed token (either from the input or previously
generated by the model), its corresponding k and v vectors,
computed by the self-attention layers, are stored in the KV-
cache. When generating the next token, the model reuses these
cached k and v vectors from all preceding tokens, only needing
to compute the q, k, v vector for the current prediction step

and the k and v vectors for the most recently generated token
to add to the cache. This significantly accelerates the inference
process, especially for long sequences.

B. Privacy Attacks against LLMs

Inversion Attacks. While LLMs offer powerful capabilities,
their inference process exposes new attack surfaces that can
lead to the theft of sensitive user inputs. Privacy attacks
targeting the inference process can be broadly categorized
into two types: (1) Output-based inversion attacks, which
aim to reconstruct inputs from the model’s final outputs
(e.g., probability distributions or embedding vectors), and (2)
Intermediate state-based inversion attacks, which seek to
extract information from the model’s internal computational
states [15], [21], [34] (e.g., hidden states). Early work focused
on inverting final representations [15], such as sentence
embeddings, with methods like Vec2Text [21]. However, these
approaches overlooked the richer information in deeper layers.
The Embed Parrot attack [34] demonstrated that even deep
hidden states can be exploited to accurately reconstruct user
inputs, establishing the entire inference pipeline as a critical
attack surface.

Unlike a hidden state (the fused output of a Transformer
layer), the KV-cache contains the more primitive Key (K) and
Value (V) vectors that serve as direct inputs to the attention
calculation. Crucially, the KV-cache is a specialized data
structure explicitly designed for persistence and reuse across
generation steps to optimize inference. This unique role makes
it a more potent and exploitable source of privacy leakage than
other transient states.

Side-Channel Attacks Exploiting the KV-cache. Currently,
research on attacks against the KV-cache has been primarily
limited to side-channel attacks. A prominent example is
PromptPeek [36], which exploits timing discrepancies created
by KV-cache sharing in multi-tenant LLM services. An attacker
observes variations in response latency to determine if their
guessed prefix has hit another user’s cached entries, allowing
them to reconstruct the prompt without direct data access.

However, the viability of such timing side-channel attacks is
diminished by modern memory management optimizations.
Contemporary inference engines, particularly those using
PagedAttention [14], manage the KV-cache in non-contiguous
memory blocks (pages), with a typical default block size of 16
tokens. This block-based management means that for a cache
hit to occur, an attacker would need to correctly guess an
entire block of 16 tokens simultaneously. For an LLM with a
vocabulary size in the hundreds of thousands, the search space
for a single block exceeds 100, 00016, rendering the attack
computationally infeasible. In contrast, our work considers a
different, more direct threat model: if an attacker can gain
direct access to the KV-cache content (e.g., through memory
access or network eavesdropping), they can bypass these side-
channel limitations. This direct access enables a more practical
collision attack on a per-token basis, reducing the attack
complexity to a feasible level and exposing a more fundamental

3

LLM ServerUser Input

KV-cache

Attacker Result

Open-source Hub

Model Weights

Fig. 2: The attacker restores user input based on model
parameters and leaked KV-cache.

vulnerability. Given that the KV-cache is commonly stored and
transmitted in plaintext to preserve performance, this paper
aims to systematically explore this underexplored problem of
direct, content-based attacks.

III. ATTACK LANDSCAPE: INFERRING PRIVATE USER
INPUTS FROM KV-CACHE

While KV-cache is crucial for enhancing the inference
efficiency of LLMs, it concurrently introduces novel privacy
vulnerabilities. The contextual information stored within KV-
cache can contain private user data. Specifically, entries in
the KV-cache often correspond directly to tokens in the user’s
input sequence. An attacker gaining access to this KV-cache
information could potentially infer the original user input,
thereby compromising user privacy.

In this section, we aim to study an important research
question: is an attacker able to conduct a prompt reconstruction
attack to recover the user input from the KV-cache? We first
present the threat model of the attack. Subsequently, we propose
two distinct attacks to achieve this goal.

A. Threat Model

In our threat model, we assume that an LLM server has
deployed an open-source LLM based service. After a user uses
the service with private user inputs, it generates a large number
of KV-caches. The attacker gains access to the KV-caches and
tries to infer the private inputs, as showed in Figure 2.

Attacker’s Objective. The primary objective of the attacker is
to recover the user input prompt from the accessed KV-cache.
In this paper, we assume that the attacker attempts to restore
the user input verbatim, which may significantly compromise
the privacy of the user.

Attacker’s Capabilities. We consider an attacker with relatively
strong yet still practical capabilities, as follows.
• Access to KV-cache. The attacker can obtain the KV-

caches stored by an LLM server. This can be achieved
by eavesdropping on the communication channel between
nodes (e.g. through the LeftoverLocals attack [28]), reading
persisted KV-cache from storage, or other unspecified means
of accessing the KV-cache pool.

• Access to the foundation model on which the deployed
LLM is developed. We assume a gray-box setting where the
attacker can gain access to the foundation model’s weights

on which the deployed LLM is developed1. The deployed
model could be a fine-tuned version of the foundation model.

B. Input Reconstruction Attacks from KV-cache

This section investigates the risk of user input leakage
from KV-cache data during LLM inference. We systematically
present three attack vectors, namely inversion attack, collision
attack, and injection attack, for reconstructing the original
user inputs from the KV-cache. These attacks differ in com-
plexity, applicability, and exploited vulnerabilities, collectively
illustrating the threat landscape.

1) KV-cache Inversion Attack: The KV-cache Inversion
Attack, as showed in Figure 3a, is a direct method that
attempts to reverse-engineer the input to the attention layer by
leveraging the KV-cache data in conjunction with the model’s
known attention projection matrices. As defined in the forward
computation (Eq. (1)), an attacker who obtains the KV-cache
and knows the model’s attention layer parameters Wk and Wv

could theoretically perform a reverse calculation to recover the
attention layer’s input xi, as Eq. (4).

xi = ki(R
d
Θ,i)

−1(W⊤
k)−1, xi = vi(W

⊤
v)−1. (4)

However, the practicality of this direct inversion attack
is severely constrained by two fundamental factors. First, it
requires the attention projection matrices (e.g., Wk,Wv) to
be invertible. This condition is met by some earlier models
using standard Multi-Head Attention (MHA), such as LLaMA-
7B [32], but not by many contemporary models. Architectures
like LLaMA 3 [9], Qwen [37], and DeepSeek [20] employ
optimizations like Grouped-Query Attention (GQA) [3] or
Multi-Head Latent Attention (MLA) [26], which often result
in non-square, non-invertible projection matrices, rendering
the attack impractical. Second, the attack’s effectiveness is
largely confined to the first decoder layer’s KV-cache, as its
inversion directly yields the input sequence’s embeddings. In
contrast, inverting from deeper layers only recovers intermedi-
ate hidden states, from which reconstructing the original text is
a significantly more complex and data-intensive problem often
requiring auxiliary models [34].

Due to these significant limitations, the KV-cache Inversion
Attack, while theoretically straightforward, has a narrow scope
of applicability and does not pose a threat to most modern
LLM architectures.

2) KV-cache Collision Attack: Unlike the KV-cache Inver-
sion Attack, the KV-cache Collision Attack operates by itera-
tively generating KV-cache entries for candidate tokens from
the model’s vocabulary. For each candidate token appended to
a partially reconstructed input sequence, the attack performs
local model inference, generates the corresponding KV-cache,

1This assumption is realistic given that now most LLM services are developed
on open-source foundation models. First, disclosing the underlying foundation
model is often a fundamental requirement of open-source licenses. Second,
even if model information isn’t publicly disclosed, an attacker could identify
the specific foundation model via model fingerprinting attacks [7], [23].

4

……
User Input

LLM Server

……
Leaked KV-cache

…
…

Vocabulary

Match

Local LLM
Predicted

Query

Predicted

KV-cache

× =
𝑥 𝑘

× =

𝑘 𝑥

𝑊𝑘

𝑊𝑘
-1

Repeat Instruction

Local LLM
Predicted

Query

……

Leaked KV-cache

……

……
……

…

(a) KV-cache Inversion Attack.

……
User Input

LLM Server

……
Leaked KV-cache

…
…

Vocabulary

Match

Local LLM
Predicted Query Predicted KV-cache

× =
𝑥 𝑘

× =

𝑘 𝑥

𝑊𝑘

𝑊𝑘
−1

Repeat Instruction

Local LLM
Predicted

Query

……

Leaked KV-cache

……

……
……

…

(b) KV-cache Collision Attack.
……

User Input
LLM Server

……
Leaked KV-cache

…
…

Vocabulary

Match

Local LLM
Predicted

Query

Predicted

KV-cache

× =
𝑥 𝑘

× =

𝑘 𝑥

𝑊𝑘

𝑊𝑘
-1

Repeat Instruction

Local LLM
Predicted

Query

……

Leaked KV-cache

……

……
……

…

(c) KV-cache Injection Attack.

Fig. 3: Workflow of input reconstruction attacks.

and compares it against the intercepted KV-cache to determine
if the candidate token is correct for the current position.

Fundamental Principle of the Collision Attack. The collision
attack reconstructs user input by identifying the token at each
position that minimizes a distance metric (e.g., L2 distance)
between a locally generated KV-cache and the leaked KV-cache.
Its effectiveness hinges on the assumption that the distance
for the correct token, distarget, is statistically separable from
the distances of all other incorrect tokens from the vocabulary,
disother, allowing for its unambiguous identification.

General Attack Procedure. As illustrated in Figure 3b,
the attack reconstructs the user’s input token-by-token. After
initially intercepting the target KV-cache from the cloud service,
the attacker enters an iterative loop for each unknown token
position. First, guided by the already-reconstructed prefix, the
attacker’s local model instance predicts a probabilistically-
ranked list of candidate tokens. Next, for each high-probability
candidate, the attacker performs a forward pass to generate
a local KV-cache segment and compares it against the corre-
sponding segment of the target KV-cache to test for a match
(a “collision”). Upon a successful match, the correct token is
confirmed and appended to the reconstructed prefix, and the
attacker proceeds to the next position. This process continues
until the entire input sequence is recovered.

Implementation Optimizations for the Collision Attack. A
naive collision attack that processes the entire model vocabulary
is impractical due to prohibitive VRAM consumption and
execution time. We therefore introduce some synergistic
optimizations to make the attack practical. First, instead
of analyzing all prioritized candidates, we apply batched
statistical validation, testing a subset of candidate tokens
and computing the distribution of their distances (disbatch)
from the leaked KV-cache. The correct token is then identified
as any distinct statistical outlier within this batch, under the
assumption that the batch provides a representative sample
of the distance distribution for incorrect tokens. Second, we
employ a probability-guided search. Using the model’s own
predictions based on the already reconstructed prefix, we
prioritize collision tests for high-likelihood candidate tokens.
Furthermore, we prune the search space by truncating the
vocabulary and discarding tokens with very low probabilities.
Together, these techniques reduce the memory footprint and
bring the attack latency down to the order of seconds.

Enhancing Collision Attack with Prior Knowledge. A
key challenge in the collision attack is setting an optimal
classification threshold to distinguish the correct token’s
distance (distarget) from the distribution of incorrect token
distances (disother). A basic attacker, lacking ground-truth
data, must rely on a static, heuristic threshold, typically
derived from the statistics of observed incorrect token distances
(e.g., µother − 3σother). However, an adversary capable of
performing chosen-plaintext attacks can generate KV-caches
for known inputs. This prior knowledge enables a more precise
statistical characterization of both the distarget and disother
distributions, allowing for a more effective, adaptive threshold
that significantly boosts reconstruction accuracy.

The need for an adaptive threshold is formalized by the
success probability for a token at rank r in the probability-
sorted vocabulary, as defined in Eq. (5):

P (success|t) = P (disother > t)r−1 × P (distarget < t). (5)

This equation demonstrates that the optimal threshold t is
dependent on the token’s expected rank r, as it must balance
the trade-off between correctly rejecting the r − 1 preceding
(incorrect) candidates and accepting the true token. A static
heuristic, by contrast, cannot effectively manage this rank-
dependent trade-off.

The KV-cache Collision Attack overcomes the limitations
of the Inversion Attack concerning specific KV-cache and
model attention mechanism requirements. An attacker who
intercepts KV-cache from potentially any layer of various
LLM architectures can, in principle, employ this collision-based
approach to reconstruct user inputs. The practical effectiveness
and performance of this attack will be demonstrated and
evaluated in subsequent experimental sections.

3) KV-cache Injection Attack: The KV-cache Injection At-
tack leverages the LLM’s own semantic capabilities to exfiltrate
information, operating differently from direct state-matching
methods. The KV-cache contains substantial information from
user-model interactions, however, itself (comprising only k and
v vectors for past tokens) lacks the q vectors for the current
generation step and thus cannot be directly used to continue
model inference without a new input token. The core principle
involves an attacker appending a crafted instruction (e.g.,
“Repeat the previous content.”) to an intercepted KV-cache,
as showed in Figure 3c. This action provides the necessary
query, key, and value vectors to resume inference from the

5

compromised state, effectively tricking a standard LLM into
executing the command within the context of the user’s private
data. This can compel the model to “echo” or regenerate the
sensitive input stored implicitly within the cache. While this
method is generally less precise than the collision attack, its
primary advantage is speed, requiring only a single forward
inference pass. The viability of this attack vector reveals a
crucial requirement for any comprehensive defense: a protected
KV-cache must be rendered semantically unintelligible to
prevent an unauthorized LLM from meaningfully parsing its
contents or continuing generation from it.

We conduct comprehensive evaluations on these three
attacks in Section V. The experimental results demonstrate the
practicality and effectiveness of input reconstruction attacks
from KV-cache, underscoring the urgent need for developing
an effective defense technique.

IV. KV-CLOAK: A DEFENSE MECHANISM FOR
KV-CACHE OBFUSCATION

A. Motivation for KV-Cloak

Limitations of Existing Privacy-Preserving Techniques.
While several techniques exist for data privacy, they prove
impractical or inadequate for securing the LLM KV-cache,
highlighting the need for a specialized solution. The intro-
duction to existing privacy-preserving techniques and their
limitations is as follows.
• Cryptographic Methods: Standard cryptographic tech-

niques [4], [31], such as symmetric AES encryption, provide
confidentiality by ensuring data remains in ciphertext during
storage and transmission, requiring decryption only for
legitimate use. A more advanced approach, Homomorphic
Encryption (HE) [2], [22], allows for direct computation on
encrypted data, theoretically enabling parts of the attention
mechanism to operate on the KV-cache without ever decrypt-
ing it. However, despite their strong security guarantees, the
immense computational overhead and latency introduced by
these methods are prohibitive. Given that the KV-cache can
be tens or hundreds of gigabytes, applying full encryption
or HE is unsuitable for the high-throughput, low-latency
requirements of LLM inference.

• Differential Privacy (DP): Differential Privacy is a rigorous
model that protects individual privacy by injecting carefully
calibrated random noise into data or query results [1],
[16], [39]. The fundamental goal is to make the output
of a computation statistically insensitive to the presence or
absence of any single individual’s data in the input dataset.
In the context of the KV-cache, this would involve adding
noise to the Key and Value vectors. The primary limitation
of this approach is the inherent trade-off between privacy
and utility. To achieve a meaningful level of privacy, the
required amount of noise would significantly degrade the
LLM’s inference accuracy to an unacceptable degree.

• KV-Shield: KV-Shield [38] is a lightweight obfuscation
scheme and, to our best knowledge, the only privacy-
preserving method designed specifically for the KV-cache.

Its process involves synchronously permuting the rows of
the model’s attention layer parameters (Wq,Wk,Wv). This
operation effectively shuffles the element positions within
the resulting KV-cache vectors, obfuscating them before an
attention score is calculated. The obfuscated attention output
is then de-obfuscated for subsequent steps. However, this
approach has critical flaws. From a security perspective, its
fixed shuffling pattern does not alter the statistical properties
of the data, leaving it vulnerable to collision attacks. For
compatibility, its technique is incompatible with modern
LLM architectures that utilize features like Rotary Positional
Embedding (RoPE), as the shuffling interferes with the
position-dependent calculations.

Design Objectives. The shortcomings of existing methods
reveal an urgent need for a defense mechanism that is both
secure and practical. To be effective, such a solution must
achieve three key objectives:
• High Security: It must provide robust protection against

targeted reconstruction attacks.

• Minimal Accuracy Impact: It must operate without causing
any degradation in the model’s output accuracy.

• Low Performance Overhead: It must introduce only
negligible latency into the inference pipeline.
To meet these challenges, we propose KV-Cloak, a novel

defense mechanism designed to provide strong, lossless, and
efficient protection for the KV-cache.

B. A Naive Defense: Obfuscation via Reversible Linear Trans-
forms

We first evaluate a baseline defense that employs a reversible
linear transform to obscure the statistical properties of the k
and v vectors. In the context of modern inference frameworks
like vLLM, we represent all key vectors for a single attention
head within a KV-cache block as a matrix K ∈ Rb×d, where b
is the number of vectors per block and d is the attention head
dimension. As the obfuscation method is analogous for both
keys and values, we use K as our canonical example. The
transformation is defined as:

K ′ = SKM, (6)

where S ∈ Rb×b and M ∈ Rd×d are secret, randomly gener-
ated, and invertible matrices. The objective is to transform the
original matrix K without altering its dimensions, preventing
an adversary from directly recovering its contents.

Vulnerability Analysis. Despite its simplicity, this linear
transform is fundamentally insecure under a Chosen-Plaintext
Attack (CPA). While an adversary cannot craft an arbitrary
matrix K from scratch—as its contents are determined by the
model’s embedding and projection layers—they can still exert
significant influence through carefully constructed inputs. This
capability is sufficient to break the scheme.

The fixed linear nature of the transformation makes it highly
susceptible to algebraic cryptanalysis. An adversary can mount
a differential attack by choosing two plaintexts, K1 and K2,

6

𝐾⊤

(𝐾′)⊤

×

×

𝑞 𝑎

𝑞 𝑎′

Permute

𝑉𝐾

𝐾′ 𝑉′

×
×
×
×

=
=
=
=

𝑜 = 𝑎0𝑣0 + 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3

×
×
×
×

=
=
=
=

𝑜′ = 𝑎1𝑣1 + 𝑎0𝑣0 + 𝑎3𝑣3 + 𝑎2𝑣2 = 𝑜

Fig. 4: Shuffling k, v vectors within a KV-cache block preserves
attention computation results while disrupting positional order.

thereby controlling the difference ∆K = K1−K2 and observ-
ing the corresponding output difference ∆K ′ = S(∆K)M .
By systematically choosing ∆K to be a series of standard
basis matrices (i.e., matrices with a single non-zero entry),
the adversary can isolate the columns of S and the rows of
M . This process allows for the full recovery of the secret
matrices S and M (up to a trivial scaling ambiguity), leading
to a complete compromise of the scheme.

C. The Improved Defense: One-Time Pad Block-wise Shuffling

Eliminating Redundant Positional Information in KV-cache.
To enhance the security of the obfuscation scheme, we introduce
additional randomness by eliminating redundant positional
information inherent to KV-cache storage. During attention
mechanism computations, the physical ordering of k, v vectors
in the KV-cache is an unnecessary redundancy for inference.
In reality, positional information critical for computation is
already embedded into the elements of q and k vectors through
rotary positional encoding.

By randomly permuting k, v within each block while main-
taining their correspondence to input tokens x, we eliminate
positional clues that attackers could exploit, and the results
of the attention mechanism were not affected (as Figure 4).
This permutation increases the computational complexity for
attackers to match plaintext-ciphertext pairs by a factor of b!,
where b denotes the block size (default b = 16 in vLLM).

The enhanced obfuscation process employs a one-time pad
permutation matrix P̂ to reorder vectors within blocks before
applying invertible matrices S and M :

K ′ = SP̂KM. (7)

Crucially, P̂ does not need to be stored as a key since the
deobfuscated P̂K can directly participate in subsequent com-
putations without reconstruction. This design choice preserves
computational efficiency.

Additive Mask Matrices with Position-Identifiable Features.
However, when the original K matrix has rank 1 (i.e., all row
vectors are identical), the entropy of the permutation P̂ will
collapse. To prevent rank deficiency, KV-Cloak introduce an
additive masking matrix A before permutation. Thereby, we
can ensure the transformed matrix (K+A) maintains sufficient
rank to preserve cryptographic strength of P̂ .

Since the one-time pad permutation matrix P̂ is not stored,
computing P̂A during inverse obfuscation becomes infeasible,

20 10 0 10 20
Element Value of K-cache

10 5

10 4

10 3

10 2

10 1

Pr
ob

ab
ili

ty
 D

en
si

ty
 (l

og
)

 = 0.030
 = 2.452

4 2 0 2 4
Element Value of V-cache

10 4

10 3

10 2

10 1

100

Pr
ob

ab
ili

ty
 D

en
si

ty
 (l

og
)

 = -0.000
 = 0.313

Fig. 5: Using an excerpt from “The Bitter Lesson” [30] (see
Appendix B) as the input of LLaMA-3.2-1b, the KV-cache data
element distribution generated during the inference process.

and thus P̂K = P̂ (K+A)−P̂A cannot be derived from P̂ (K+
A). To avoid storing the one-time pad permutation matrix P̂ ,
we exploit the sparsity and small-elements properties of k
and v vectors to design the additive matrix A with additional
structural constraints. This enables us to infer P̂A based on
the data characteristics of P̂ (K +A).

As shown in Figure 5, we observe that the elements of k and
v vectors typically remain below a small threshold θK (e.g.,
100). This allows us to construct a matrix A where positional
information is embedded into K +A via additive operations
using values significantly larger than θK in specific row vectors.
After applying row permutations, the positional identifiers in
P̂ (K +A) remain identifiable. During inverse obfuscation, the
positional information of P̂A can be directly identified from
P̂ (K +A) by detecting these outliers. Subtracting P̂A from
P̂ (K + A) yields P̂K for subsequent inference, drastically
reducing storage overhead for the one-time pad key.

The complete obfuscation transformation, as shown in
Eq. (8), incorporates additional matrices P̂ and A alongside
invertible linear transformations S and M :

K ′ = SP̂ (K +A)M, (8)

where P̂ ∈ {0, 1}b×b is a row-permutation matrix generated
as a one-time pad for each block of the KV-cache. A ∈ Rb×d

is a secret additive matrix with the same dimensions as K,
designed to encode positional identifiers into its rows through
outlier values. By embedding additive masks and applying
invertible row/column transformations, this approach obscures
the statistical properties of k and v vectors while enabling
efficient inverse obfuscation without compromising model
accuracy or inference performance.

D. Implicit Obfuscation via Operator Fusion

To mitigate the performance overhead introduced by the
obfuscation and de-obfuscation processes during runtime, we
now demonstrate how the obfuscation operators can be fused
directly into the model’s weight matrices. This allows the
primary cost of obfuscation to be paid offline, resulting in a
minimal impact on online inference latency.

Fusing the Obfuscation Operator into Model Weights.
We define three transformed vectors (qm, km, vm) and a
transformed output projection matrix Wm

o using two secret,
invertible matrices, M1 and M2. Let q, k, v be the original
query, key, and value vectors, and let Wo be the original

7

output projection matrix. The transformations are defined as
follows: 

qm = q(M−1
1)⊤,

km = kM1,
vm = vM2,
Wm

o = Wo(M
−1
2)⊤.

(9)

These transformations are specifically designed to leave the
core attention mechanism computations invariant. The attention
scores remain unchanged, as shown by the dot product:

qmi (kmj)⊤ =
(
qi(M

−1
1)⊤

)
(kjM1)

⊤
= qi(M

−1
1)⊤M⊤

1 k⊤j

= qi(M1M
−1
1)⊤k⊤j = qik

⊤
j .

(10)
Similarly, the output of the attention head after projection
remains identical:

vmj (Wm
o)⊤ = (vjM2)

(
Wo(M

−1
2)⊤

)⊤
= vjM2(M

−1
2)W⊤

o = vjW
⊤
o .

(11)

This invariance guarantees that the model’s output is mathe-
matically identical to that of the original, unprotected model,
ensuring lossless accuracy.

Next, we incorporate the projection from the input embed-
ding x and the application of RoPE, denoted by the position-
dependent matrix Rd

Θ,i. The equations for the transformed
vectors become:

qm = xW⊤
q Rd

Θ,i(M
−1
1)⊤

km = xW⊤
k Rd

Θ,iM1

vm = xW⊤
v M2

Wm
o = Wo(M

−1
2)⊤

. (12)

From these formulations, we can observe the path to operator
fusion. The secret matrices M2 and M−1

2 , which obfuscate the
value vectors, can be straightforwardly fused into the model’s
weights by pre-computing new weight matrices (Wm

v)⊤ =
W⊤

v M2 and Wm
o = Wo(M

−1
2)⊤.

However, fusing M1 and M−1
1 into Wk and Wq is more

complex due to the intermediate application of the position-
dependent RoPE matrix Rd

Θ,i. The fusion becomes feasible
under a specific algebraic condition: if the secret matrix M1

and the RoPE matrix Rd
Θ,i commute, i.e., Rd

Θ,iM1 = M1R
d
Θ,i.

If this condition holds, we can rewrite the expression for km:

km = xW⊤
k Rd

Θ,iM1 = x(W⊤
k M1)R

d
Θ,i. (13)

This allows us to pre-compute a new, position-independent
weight matrix (Wm

k)⊤ = W⊤
k M1. A similar argument applies

to fusing (M−1
1)⊤ into Wq .

Therefore, the viability of this operator fusion approach
hinges on our ability to construct a secret matrix M1 that
commutes with the RoPE matrices. In Appendix A, we
formally prove that this commutativity is achieved when M1

is structured as a block-diagonal matrix composed of 2 × 2
rotation-scaling sub-matrices, a structure analogous to that of
RoPE itself. Furthermore, to ensure the reversibility of the
entire transformation for lossless de-obfuscation, M1 must be
constructed to be invertible.

By constraining M2 to also be a random, invertible rotation-
scaling matrix, and by carefully controlling the range of
rotation-scaling coefficients in both M1 and M2, we ensure
that the transformed padding tokens (which involve the
affine transformation with matrix A) remain identifiable as
outliers. These conditions allow the obfuscation operators
(M1,M2) and their corresponding de-obfuscation counterparts
(M−1

1 ,M−1
2) to be fused into the attention layer parameters

Wq,Wk,Wv, and Wo. Let the model parameters after operator
fusion be denoted by Wm

q ,Wm
k ,Wm

v ,Wm
o . The new, fused

weights are pre-computed as follows:
Wm

q = M−1
1 Wq

Wm
k = M⊤

1 Wk

Wm
v = M⊤

2 Wv

Wm
o = Wo(M

−1
2)⊤

. (14)

By deploying the LLM with these pre-computed fused weights,
we effectively integrate the random invertible block-diagonal
matrix M1 and the general random invertible matrix M2 ∈
Rd×d into the attention layer parameters. This eliminates the
need for explicit online matrix multiplications with M1 and
M2, significantly reducing performance overhead.

Ultimately, the KV-Cloak obfuscation formula, leveraging
operator fusion, is applied as follows:

K ′ = SP̂ (Km +A), (15)

where Km = KM represents the KV-cache generated by the
inference process using the fused model weights. It is crucial to
control the range of the rotation and scaling factors within the
matrix M to ensure that the additive mask A can still reliably
embed its positional information via the outlier mechanism.

With this optimization, the online computational overhead
is drastically reduced. The matrix multiplication with M is
now part of the offline weight preparation. The online cost
for obfuscating and de-obfuscating one KV-cache block is
now dominated by the multiplications with S, P̂ , S−1, totaling
approximately b3 + 2b2d floating-point operations. For the
LLaMA-3.1-8B example (b = 16, d = 128, D = 4096), this
overhead is merely 0.83% of the cost of re-computing the
KV-cache block, rendering the performance impact minimal.
Detailed analysis can be found in Appendix F.

V. EVALUATION

A. Experimental Setup

Models. We first select several state-of-the-art models from the
popular LLaMA [9] and Qwen [37] series, including LLaMA-
3.2-1B, LLaMA-3.2-3B-Instruct, LLaMA-3.1-8B, Qwen2.5-
Math-7B, and DeepSeek-R1-Distill-LLaMA-8B (LLaMA-3.1-
8B-Distilled) [10], which is fine-tuned from LLaMA-3.1-8B. In
addition to these five models that use Grouped-Query Attention
(GQA), we also leverage a classic models with Multi-Head
Attention (MHA), namely LLaMA-7B [32], to demonstrate the
generalizability of our method.

8

TABLE I: Effectiveness of the inversion, collision, and injection attacks against the unprotected KV-cache from different model
layers. Here, “collision+” denotes the collision attack enhanced with prior knowledge.

Model Metric
Inversion Collision Collision+ Injection

First Mid Last First Mid Last First Mid Last All

LLaMA-7B
BERTScore (↑) 1.000 0.065 0.092 0.449 0.769 0.611 1.000 1.000 1.000 0.765
ROUGE-L (↑) 1.000 0.036 0.062 0.500 0.562 0.436 1.000 1.000 1.000 0.687

LLaMA-3.2-1B
BERTScore (↑) 1.000 0.084 0.057 0.877 0.791 0.894 1.000 1.000 1.000 0.544
ROUGE-L (↑) 0.994 0.038 0.000 0.709 0.617 0.680 0.994 0.994 0.994 0.315

LLaMA-3.2-3B-Instruct
BERTScore (↑) 0.055 0.095 0.083 0.782 0.668 0.820 1.000 1.000 1.000 0.540
ROUGE-L (↑) 0.000 0.000 0.000 0.732 0.456 0.621 0.994 0.994 0.994 0.324

LLaMA-3.1-8B
BERTScore (↑) 0.071 0.061 0.062 0.873 0.652 0.764 1.000 1.000 1.000 0.616
ROUGE-L (↑) 0.000 0.000 0.001 0.825 0.443 0.564 0.994 0.994 0.994 0.447

LLaMA-3.1-8B-Distilled
BERTScore (↑) 0.083 0.062 0.081 0.642 0.492 0.635 0.894 0.258 0.762 0.610
ROUGE-L (↑) 0.000 0.000 0.001 0.633 0.227 0.413 0.868 0.122 0.479 0.421

Qwen2.5-Math-7B
BERTScore (↑) 0.229 0.105 0.105 0.918 0.552 0.783 1.000 0.983 0.996 0.422
ROUGE-L (↑) 0.186 0.000 0.000 0.842 0.355 0.580 1.000 0.977 0.996 0.286

Datasets. To evaluate the effectiveness of our attacks, we use
the lmsys-chat-1m dataset [43], which is collected from a real-
world inference service and contains a rich variety of dialogues
and instructions. We randomly sample 1,000 instances from
this dataset as the test set for validating attack effectiveness. To
assess the impact of KV-Cloak on model accuracy and inference
latency, we employ standard language model benchmarks,
including MMLU [12], [13] and SQuAD [25].

Attack and Defense Evaluation Metrics. BERTScore [41]
and ROUGE-L [19] are used to measure the similarity between
the original input and the text reconstructed from the KV-cache.
BERTScore, which is based on the all-mpnet-base-v2 model,
is better at capturing semantic similarity, while ROUGE-L
primarily reflects lexical-level precision and recall.

B. Attack Effectiveness

In this section, we first evaluate the privacy leakage risk of
using the KV-cache by implementing our proposed inversion,
collision, and injection attacks. Additional experiments, such
as the ablation study of attacks, can be found in Appendix C.

Experimental Settings. We attack 7 LLMs as described in
Section V-A. Notably, while attacking the LLaMA-3.1-8B-
Distilled, which is a fine-tuned version, we assume that the
attacker can only get access to its base model (i.e., LLaMA-
3.1-8B). It can be utilized to validate the attack effectiveness
against fine-tuning models. Furthermore, the inversion and
collision attacks require KV-cache data from only a single
layer. Given that models have varying numbers of layers, we
select the KV-cache from the first, middle, and last layers to
perform the inversion and collision attacks. In contrast, the
injection attack is conducted on the complete KV-cache data,
encompassing all layers.

Results of KV-cache Inversion Attack. As shown in Table I,
our experimental results generally align with our analysis: a
successful inversion attack requires two sufficient conditions
to be met: (1) access to the KV-cache from the model’s
first layer, and (2) an invertible attention projection matrix,
which is characteristic of the MHA mechanism. The inversion
attack can reconstruct the user input with near-perfect fidelity

(approaching 100%) from the first-layer KV-cache of MHA-
based models. In contrast, reconstruction attempts using the KV-
cache from subsequent layers yield completely unintelligible
results (mostly < 0.1).

However, we also find that for the LLaMA-3.2-1B model
using GQA, the inversion attack achieved a reconstruction
fidelity of nearly 100% on the first-layer KV-cache. This may
be because the ratio of the rank of this model’s attention
projection matrix to its hidden state dimension is particularly
high. Consequently, even though the projection matrix is not
a square, invertible matrix, the least squares method can still
recover the input to the attention layer with high accuracy.

Takeaway 1: Inversion attack is mostly effective against the
KV-cache of the first MHA layer.

Results of KV-cache Collision Attack. For the collision attack,
we measure the distance between a locally generated KV-
cache and the leaked KV-cache using the Frobenius norm. We
experimentally observed that the distances (disother) between
the leaked KV-cache and the caches generated from incorrect
tokens in the vocabulary approximate a Gaussian distribution,
as shown in Figure 8. Consequently, we leverage the statistical
properties of this distribution (i.e., its mean and standard
deviation) to identify the correct token, whose corresponding
distance (distarget) will manifest as a statistical outlier.

After experimental analysis, we defined outliers as values
falling below 3 standard deviations from the mean of the
disbatch distribution. The batch size for local analysis was
set to 256. Details of the ablation study can be found in
Appendix C1. Under these settings, the experimental results
for the collision attack are presented in the “Collision” column
of Table I, demonstrating high reconstruction accuracy across
all layers of all models.

We also experimented with truncating the probability-sorted
vocabulary on the LLaMA-3.2-1B model, aiming to reduce
the time lost on unlikely tokens. The results are presented
in Figure 6. We found that even when searching only the
top 1/8 of tokens with the highest predicted probabilities, the
average input reconstruction fidelity remains at approximately

9

1/16 1/8 1/4 1/2 1
Truncation Ratio

65

70

75

80

85

90

95

100
A

tt
ac

k
Su

cc
es

s R
at

e
(%

)

90.9%

96.1%
98.4% 99.5% 100.0%

Attack Success Rate
Average Time

0

1

2

3

4

5

Av
er

ag
e

Ti
m

e
(s

)

1.62s

2.17s

2.76s

3.54s

5.06s

Fig. 6: The effect of truncating the probability-sorted vocabulary
on reconstruction fidelity and attack time. Experiments were
run with a batch size of 256 and an outlier threshold of 3σother.

96.1% of what is achieved by searching the entire vocabulary.
Meanwhile, the attack time is reduced to less than 42.9% of
the full search, with the average time to reconstruct a user
input from a single layer’s KV-cache dropping from 5.06s to
2.17s. This confirms that truncating the vocabulary based on
model-predicted probabilities is a highly effective strategy for
accelerating the collision attack.

The experimental results for the collision attack demonstrate
that this method overcomes the limitations of the inversion
attack, which is restricted to specific layers (i.e., the first
layer) and attention mechanisms (i.e., MHA). For open-source
models, the collision attack can reconstruct user inputs with
high accuracy and acceptable efficiency from the KV-cache of
any layer. Crucially, it is also effective against the LLaMA-3.1-
8B-Distilled model—a model fine-tuned from Meta-LLaMA-
3.1-8B—by using the public weights of its open-source base
model.

Takeaway 2: Collision attack achieves relatively high
accuracy, demonstrating its universality and the high-risk
threat it poses to real-world systems.

Collision Attack Enhanced with Prior Knowledge (Colli-
sion+). As shown in Table I, our enhanced collision attack
(assuming rank r = 8) is highly potent, achieving near-perfect
reconstruction accuracy (approaching 100%) on any layer of
any tested open-source model, while also demonstrating notable
effectiveness against fine-tuned models.

We also conducted experiments on the LLaMA-3.1-8B-
Distilled model using optimal thresholds derived for different
assumed ranks (r). The results are shown in Figure 7. For
the first layer, the actual average rank of the target token
is approximately 4; using the optimal threshold for this
rank increases the reconstruction accuracy to 138.6% of the
unenhanced attack. For the middle layer, the actual rank appears
to be greater than 128, as none of the tested enhanced thresholds
surpassed the accuracy of the baseline attack. For the last layer,
the optimal rank is between 64 and 128, and applying the
corresponding enhanced threshold boosts the reconstruction

21 22 23 24 25 26 27 28

Assumed Token Position in Vocabulary

40

60

80

100

120

140

A
tt

ac
k

Su
cc

es
s R

at
e

R
at

io
 (%

)

138.2%

52.9%

118.0%

138.6%

49.4%

126.7%

136.7%

50.0%

132.1%
135.8%

43.9%

136.9%

135.2%

46.3%

135.9%

133.2%

44.6%

139.2%

129.9%

47.2%

138.8%

106.7%

56.5%

138.4%

Baseline (100%)

First Layer Attack
Middle Layer Attack
Last Layer Attack

Early Positions (2-64)
Late Positions (128-256)

Fig. 7: Collision attack experiments on LLaMA-3.1-8B-
Distilled using optimal thresholds derived for different assumed
token ranks (r).

accuracy to approximately 139.0% of the baseline.

Takeaway 3: Augmenting the collision attack with model-
specific prior knowledge achieves near-perfect (≈ 100%)
user-input recovery accuracy.

To further illustrate this, we analyzed the distance distri-
butions using an excerpt from “The Bitter Lesson” as input.
Figure 8 shows these distributions for an attack on the last-layer
KV-cache. We observe that for the open-source model (left
panel), the baseline heuristic threshold of 3σother results in a
0.13% false-positive rate (i.e., 0.13% of disother distances are
misclassified). If we assume the correct token is at rank r = 64
in the sorted vocabulary, this yields a per-token attack success
rate of 91.84%. In contrast, by leveraging a more precise
threshold derived from statistical analysis, this success rate can
be boosted to a perfect 100%. For the fine-tuned model (right
panel), the enhanced threshold improves the per-token success
rate from 91.79% to 97.82%. This substantial improvement in
per-token accuracy leads to a dramatic increase in the overall
reconstruction fidelity for the entire input sequence.

Results of KV-cache Injection Attack. The success of
this attack hinges on two factors: the model’s ability to
effectively parse the semantic content of the KV-cache and its
comprehension of the injected instruction. For our evaluation,
we employed the most effective instruction identified in our
ablation study, “Repeat the previous content.” (the selection
process is detailed in Appendix C2), to attack the KV-cache
data from each target model. As shown in Figure I, the injection
attack yielded an average BERTScore of 0.58 and a ROUGE-L
score of 0.42 for the reconstructed user inputs. These results
are consistently lower than those achieved by the more direct
collision attack.

The attack performed best on the LLaMA-7B. This supports
the hypothesis that the MHA mechanism preserves more
contextual information than the more compressed attention
variants (e.g., GQA) within the KV-cache.

10

0 10 20 30 40 50 60
Distance

0

2

4

6

8
D

en
si

ty
 (T

ar
ge

t D
is

ta
nc

es
)

Target:
: 0.00
: 0.00

Other:
: 42.37

: 5.37

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 26.26
 1.52

(a) The distributions of LLaMA-3.1-8B model.

20 30 40 50
Distance

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)

Target:
: 20.90

: 2.31

Other:
: 40.28

: 3.94

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 28.45
 26.28

(b) The distributions of LLaMA-3.1-8B-Distilled model.

Fig. 8: Distributions of distarget (orange) and disother (blue) from a collision attack. The input is an excerpt from “The Bitter
Lesson”. The attack uses the LLaMA-3.1-8B model’s weights against the last-layer KV-cache generated by itself (left) and by
LLaMA-3.1-8B-Distilled (right). The green dotted line shows the baseline heuristic threshold (3σother), while the red dashed
line shows the enhanced threshold derived from prior knowledge (assuming rank r = 64).

Takeaway 4: Absent verbatim recovery, injection attacks
can still exfiltrate the core information of user inputs through
semantic-level interaction.

The reconstruction accuracy of the injection attack is
generally lower than that of the collision attack, and it requires
access to the complete KV-cache from all layers. However,
its key advantage is speed: the attack’s execution time is
equivalent to a single inference step, making it significantly
faster than the iterative collision attack. Moreover, the existence
of this attack vector imposes an additional requirement on any
defense mechanism: it must ensure that a protected KV-cache
is rendered unintelligible even to a standard, unprotected LLM.

C. Evaluation of KV-Cloak

1) Experimental Settings: In order to comprehensively
evaluate our proposed KV-Cloak scheme, this section presents
a systematic comparison against two baselines: (1) a standard,
unprotected system (Plaintext) and (2) a defense based on
differential privacy with Gaussian noise (DP). Our evaluation
is structured around three core dimensions: Security, Model
Accuracy, and Performance Overhead. The results demonstrate
that KV-Cloak is the only solution that provides robust security
protection with acceptable performance overhead, all without
sacrificing model accuracy.

In our KV-Cloak, the obfuscation involves matrix multipli-
cation of KV-cache blocks with invertible secret matrices S
and M , along with the addition of a random mask A.
• Block Size: To ensure compatibility with the PagedAttention

mechanism used in modern inference engines like vLLM,
we experimented with common block sizes: 16, 32, and 64.

• Invertible Matrices S,M : To avoid precision loss from
matrix inversion during de-obfuscation, we sample S and
M from the space of orthogonal matrices.

• Additive Mask A and Padding: The values in the mask
A and the padding for incomplete blocks are kept small to

minimize their impact on numerical precision. We sample
the elements of A from the range [3θK , 4θK] and use a value
of 1.5θK for padding. Here, θK is the maximum absolute
value observed in the K-cache elements when inferring on
an excerpt from “The Bitter Lesson”. The same methodology
is applied for the V-cache.
To establish a robust DP baseline, we conducted an ablation

study (detailed in Appendix D) to select a configuration that
balances utility and privacy for comparison against KV-Cloak.
Based on our findings, we selected a practical configuration:
the clipping threshold was set to the 50th percentile of the L2
norm distribution observed across the dataset. Subsequently,
we applied Gaussian noise calibrated to satisfy (ϵ = 108, δ =
10−5)-DP independently to both the K-cache and V-cache.

2) Evaluation of Security: This section evaluates the capa-
bility of different protection schemes to defend against our
three KV-cache-based reconstruction attacks. We repeat the
attack experiments on the KV-cache after applying each defense
mechanism. As shown in Table II (evaluation on the remaining
models can be found in Appendix E), for the “Plaintext”
baseline, all three attacks achieve very high success rates. After
applying KV-Cloak, the semantic similarity (BERTScore) of
all attack outputs drops to a level consistent with random
chance, and the ROUGE-L score falls to nearly 0. These
results are statistically indistinguishable from comparing the
original input with a random string, demonstrating that semantic
reconstruction is entirely disrupted. This proves that KV-Cloak
effectively protects the private information within the KV-cache.
For the DP baseline, its defensive efficacy is strongly correlated
with the privacy budget ϵ. With a weak budget of ϵ = 108, the
accuracy of the inversion and injection attacks is reduced, but
the collision attack can still recover some useful information.

We also compare the distributions of disttarget and distother
for the collision attack on the last layer of LLaMA-3.2-1B’s
KV-cache under different protections. As shown in Figure 9,
the two distributions remain effectively distinguishable under

11

TABLE II: Efficacy of Defense Mechanisms Against Input Reconstruction Attacks.

Model Protect Type Metric
Inversion Collision Collision+ Injection

First First Mid Last First Mid Last All

LLaMA-7B

Original
BERTScore (↓) 1.000 0.449 0.769 0.611 1.000 1.000 1.000 0.765
ROUGE-L (↓) 1.000 0.500 0.562 0.436 1.000 1.000 1.000 0.687

KV-Cloak
BERTScore (↓) 0.091 0.070 0.069 0.071 0.036 0.036 0.036 0.082
ROUGE-L (↓) 0.068 0.000 0.000 0.000 0.044 0.044 0.044 0.000

(108, 10−5)-DP
BERTScore (↓) 0.085 0.082 0.672 0.344 0.109 0.937 0.991 0.085
ROUGE-L (↓) 0.065 0.041 0.433 0.197 0.097 0.901 0.979 0.009

LLaMA-3.2-1B

Original
BERTScore (↓) 1.000 0.877 0.791 0.894 1.000 1.000 1.000 0.544
ROUGE-L (↓) 0.994 0.709 0.617 0.680 0.994 0.994 0.994 0.315

KV-Cloak
BERTScore (↓) 0.085 0.072 0.074 0.069 0.051 0.051 0.051 0.079
ROUGE-L (↓) 0.009 0.000 0.000 0.000 0.002 0.002 0.002 0.000

(108, 10−5)-DP
BERTScore (↓) 0.633 0.849 0.763 0.849 0.973 0.995 1.000 0.393
ROUGE-L (↓) 0.622 0.604 0.587 0.604 0.966 0.989 0.994 0.248

LLaMA-3.1-8B-Distilled

Original
BERTScore (↓) 0.083 0.642 0.492 0.635 0.885 0.251 0.829 0.610
ROUGE-L (↓) 0.000 0.633 0.227 0.413 0.858 0.112 0.552 0.421

KV-Cloak
BERTScore (↓) 0.093 0.070 0.070 0.069 0.041 0.041 0.041 0.088
ROUGE-L (↓) 0.002 0.000 0.000 0.000 0.003 0.003 0.003 0.000

(108, 10−5)-DP
BERTScore (↓) 0.079 0.320 0.440 0.566 0.526 0.267 0.824 0.118
ROUGE-L (↓) 0.003 0.291 0.185 0.351 0.530 0.122 0.543 0.049

DP protection. When using an enhanced threshold derived from
prior knowledge, the per-token attack success rate is as high as
94.84% for (107, 10−5)-DP, and achieving nearly 100% (the
same as plaintext) for (107, 10−5)-DP. In contrast, under KV-
Cloak’s protection, the two distributions become completely
indistinguishable, resulting in a 0% attack success rate.

To assess the robustness of our defense, we also tested
KV-Cloak’s performance against the enhanced collision attack
on multiple LLMs. As illustrated in Table II, our mechanism
demonstrates strong defensive capabilities. With KV-Cloak
enabled, the reconstruction accuracy of the attack drops to near-
zero, and the recovered outputs are qualitatively equivalent to
random noise, confirming that KV-Cloak effectively neutralizes
this advanced attack vector.

Takeaway 5: KV-Cloak completely thwarts all our proposed
attacks, reducing the quality of any reconstructed text to a
level statistically indistinguishable from random noise.

3) Inference Accuracy: To evaluate the model fidelity of
our KV-Cloak, we simulate an inference service with a prefill-
decode architecture. The KV-cache generated during the prefill
phase is protected using either DP or KV-Cloak. This protected
cache is then passed to the decode node (after de-obfuscation
in KV-Cloak’s case) for subsequent token generation. We then
evaluate this protected inference service on the MMLU and
SQuAD benchmarks to measure the impact of each method
on model accuracy.

We tested the impact of KV-Cloak on all experimental
models. The results in Table III show that across both
benchmarks, the impact of KV-Cloak on inference accuracy is
negligible. This confirms our theoretical design: KV-Cloak is
a lossless protection scheme that does not degrade the model’s
generation quality or its performance on downstream tasks.

TABLE III: Impact of KV-Cloak on inference accuracy (higher
is better) across various models, using a block size of 16.

Model
Plaintext KV-Cloak (108, 10−5)-DP

MMLU SQuAD MMLU SQuAD MMLU SQuAD

LLaMA-7B 0.304 0.646 0.304 0.652 0.016 0.000

LLaMA-3.2-1B 0.335 0.457 0.335 0.458 0.262 0.258

LLaMA-3.2-3B-Instruct 0.619 0.652 0.619 0.652 0.379 0.012

LLaMA-3.1-8B 0.668 0.708 0.668 0.709 0.283 0.026

LLaMA-3.1-8B-Distilled 0.584 0.568 0.584 0.570 0.108 0.001

Qwen2.5-Math-7B 0.620 0.630 0.620 0.632 0.042 0.000

Takeaway 6: KV-Cloak is virtually lossless, preserving the
model’s fidelity and core utility without any degradation.

4) Evaluation of Computational Overhead: Integrating a
new cryptographic primitive into a highly-optimized system like
vLLM presents a significant engineering challenge. Therefore,
to accurately assess the performance overhead of KV-Cloak
and demonstrate its compatibility with PagedAttention, we
employ a dual approach: direct latency measurement combined
with architectural analysis.

To quantify the computational overhead of KV-Cloak, we
measured the inference time for the MMLU benchmark under
its protection. We selected this benchmark specifically to
evaluate a worst-case scenario: the MMLU task requires
applying KV-Cloak’s obfuscation and de-obfuscation to the
entire KV-cache of a long input sequence, yet generates
only a single output token. This setup maximizes the ratio
of cryptographic overhead to inference work. Furthermore,
our measurements are conservative as they are based on
a serial PyTorch-level implementation without any custom
CUDA kernel optimizations, and they do not factor in network
communication latency.

12

0 10 20 30 40
Distance

0

50

100

150
D

en
si

ty
 (T

ar
ge

t D
is

ta
nc

es
)

Target:
: 0.00
: 0.00

Other:
: 30.99

: 4.01

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 18.96
 1.81

(a) The distributions of LLaMA-3.2-1B model without protection.

0 2500 5000 7500 10000
Distance

0.0000

0.0005

0.0010

0.0015

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)

Target:
: 3429.40
: 1215.19

Other:
: 3429.51
: 1214.97

0.0000

0.0005

0.0010

0.0015

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 -215.39
 3429.40

(b) The distributions of LLaMA-3.2-1B model with KV-Cloak.

35 40 45 50 55
Distance

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)

Target:
: 37.09

: 1.05

Other:
: 48.41

: 2.79

0.00

0.05

0.10

0.15

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 40.03
 39.93

(c) The distributions of LLaMA-3.2-1B model with (107, 10−5)-DP.

10 20 30 40
Distance

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

 (T
ar

ge
t D

is
ta

nc
es

)

Target:
: 11.71
: 0.38

Other:
: 33.20

: 3.78

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

 (O
th

er
 D

is
ta

nc
es

)

 21.86
 13.69

(d) The distributions of LLaMA-3.2-1B model with (108, 10−5)-DP.

Fig. 9: Distributions of distarget (orange) and disother (blue) for a collision attack on the last-layer KV-cache. The input is
an excerpt from “The Bitter Lesson” to the LLaMA-3.2-1B model. The distributions are shown under four conditions: (a)
Plaintext, (b) KV-Cloak protection, (c) (107, 10−5)-DP protection, and (d) (108, 10−5)-DP protection. The green dotted line is
the baseline heuristic threshold (3σother), and the red dashed line is the enhanced threshold assuming rank r = 8.

TABLE IV: Performance overhead of KV-Cloak (with a block
size of 16) on various models during the MMLU benchmark.

Model
Inference Time(s)

Plaintext KV-Cloak
LLaMA-7B 10193.1 10649.0 +4.47%

LLaMA-3.2-1B 1956.8 2155.6 +10.16%
LLaMA-3.2-3B-Instruct 4525.7 4821.4 +6.53%

LLaMA-3.1-8B 9797.4 10135.0 +3.45%
LLaMA-3.1-8B-Distilled 9832.8 10297.7 +4.73%

Qwen2.5-Math-7B 9184.7 9452.3 +2.91%

The results of our evaluation across various models are
presented in Table IV. The findings show that KV-Cloak
introduces a modest average latency overhead of approximately
5%. Notably, we observe a favorable scaling property: the
relative overhead decreases as the model’s hidden size increases.
In a real-world distributed deployment, the inclusion of network
latency between prefill and decode nodes would make the
relative impact of KV-Cloak’s computational overhead on
the total end-to-end time even lower. These empirical results
align with our theoretical analysis, confirming that with
standard production optimizations, such as operator fusion, the
performance impact of KV-Cloak is expected to be minimal.

Takeaway 7: KV-Cloak introduces negligible computational
overhead to the inference pipeline.

VI. CONCLUSION

This research exposes a critical security flaw at the heart of
modern LLM inference systems: the privacy risk of data leakage
from the KV-cache. We have demonstrated the feasibility of
reconstructing sensitive user inputs through three novel attack
strategies, with our collision attack proving particularly effec-
tive across various models. This underscores the urgent need
for dedicated protection mechanisms that do not compromise
the efficiency gains the KV-cache provides.

In response, we designed KV-Cloak. By employing a
lightweight, reversible obfuscation technique, KV-Cloak neu-
tralizes the identified threats without degrading model accuracy
or imposing significant latency. It is designed for seamless in-
tegration into existing high-performance inference frameworks
like vLLM. Our work provides a vital contribution to building
secure and trustworthy AI, offering a blueprint for balancing
the competing demands of performance and user privacy in
the next generation of LLM services. It establishes that strong
privacy protection can be achieved without sacrificing the utility
and efficiency that have made these models so powerful.

13

ETHIC CONSIDERATIONS

This research aims to enhance the privacy and trustworthiness
of LLM inference, but we acknowledge the dual-use nature of
the vulnerabilities and attack methods we have uncovered. To
fulfill our ethical responsibilities and mitigate any potential for
misuse, we have committed to a policy of responsible disclosure.
Prior to the public dissemination of this paper, we will share
our findings, including the details of the vulnerabilities and
our proposed defense, with the developers of major affected
inference frameworks, such as vLLM. Furthermore, all of our
attack validation experiments were conducted exclusively on
public and non-sensitive academic datasets. No real user data
was involved at any stage of our research. We firmly believe that
by taking these responsible measures, the positive contributions
of our defensive work, KV-Cloak, will far outweigh the risks
associated with the disclosure of these attacks. We are confident
that this work will encourage the community to build more
trustworthy AI services that are secure by default.

REFERENCES

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[2] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” ACM
Computing Surveys, vol. 51, no. 4, pp. 1–35, 2018.

[3] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and
S. Sanghai, “Gqa: Training generalized multi-query transformer models
from multi-head checkpoints,” arXiv preprint arXiv:2305.13245, 2023.

[4] M. N. Alenezi, H. Alabdulrazzaq, and N. Q. Mohammad, “Symmetric
encryption algorithms: Review and evaluation study,” International
Journal of Communication Networks and Information Security, vol. 12,
no. 2, pp. 256–272, 2020.

[5] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic
language model,” Journal of Machine Learning Research, vol. 3, no.
Feb, pp. 1137–1155, 2003.

[6] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson et al., “Extracting training
data from large language models,” in USENIX Security Symposium, 2021,
pp. 2633–2650.

[7] Y. Chen, C. Shen, C. Wang, and Y. Zhang, “Teacher model fingerprinting
attacks against transfer learning,” in USENIX Security Symposium, 2022.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of Cryptography
Conference. Springer Berlin Heidelberg, 2006, pp. 265–284.

[9] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle,
A. Letman, A. Mathur, A. Schelten, A. Vaughan et al., “The llama 3
herd of models,” arXiv preprint arXiv:2407.21783, 2024.

[10] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma,
P. Wang et al., “Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning,” arXiv preprint arXiv:2501.12948, 2025.

[11] Y. He, H. She, X. Qian, X. Zheng, Z. Chen, Z. Qin, and L. Cavallaro,
“On benchmarking code llms for android malware analysis,” in ACM
SIGSOFT International Symposium on Software Testing and Analysis
Workshop, 2025.

[12] D. Hendrycks, C. Burns, S. Basart, A. Critch, J. Li, D. Song, and
J. Steinhardt, “Aligning ai with shared human values,” International
Conference on Learning Representations, 2021.

[13] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and
J. Steinhardt, “Measuring massive multitask language understanding,” in
International Conference on Learning Representations, 2021.

[14] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management
for large language model serving with pagedattention,” in Symposium
on Operating Systems Principles, 2023.

[15] H. Li, M. Xu, and Y. Song, “Sentence embedding leaks more information
than you expect: Generative embedding inversion attack to recover
the whole sentence,” in Findings of the Association for Computational
Linguistics: ACL 2023, 2023, pp. 14 022–14 040.

[16] X. Li, Z. Qin, K. Ren, C. Gong, S. Feng, Y. Hong, and T. Wang,
“Delay-allowed differentially private data stream release.” in Network
and Distributed System Security Symposium, 2025.

[17] Y. Li, S. Shao, Y. He, J. Guo, T. Zhang, Z. Qin, P.-Y. Chen, M. Backes,
P. Torr, D. Tao, and K. Ren, “Rethinking data protection in the (generative)
artificial intelligence era,” arXiv preprint arXiv:2507.03034, 2025.

[18] B. Lin, C. Zhang, T. Peng, H. Zhao, W. Xiao, M. Sun, A. Liu,
Z. Zhang, L. Li, X. Qiu et al., “Infinite-llm: Efficient llm service for
long context with distattention and distributed kvcache,” arXiv preprint
arXiv:2401.02669, 2024.

[19] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out, 2004, pp. 74–81.

[20] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng,
C. Zhang, C. Ruan et al., “Deepseek-v3 technical report,” arXiv preprint
arXiv:2412.19437, 2024.

[21] J. Morris, V. Kuleshov, V. Shmatikov, and A. M. Rush, “Text embeddings
reveal (almost) as much as text,” in Conference on Empirical Methods
in Natural Language Processing, 2023, pp. 12 448–12 460.

[22] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1999, pp. 223–
238.

[23] D. Pasquini, E. M. Kornaropoulos, and G. Ateniese, “Llmmap: Finger-
printing for large language models,” in USENIX Security Symposium,
2025.

[24] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” Proceedings of Machine Learning and Systems, vol. 5, pp.
606–624, 2023.

[25] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+
questions for machine comprehension of text,” in Conference on
Empirical Methods in Natural Language Processing, 2016.

[26] Z. Shao, D. Dai, D. Guo, B. L. B. Liu), Z. Wang, and H. Xin,
“Deepseek-v2: A strong, economical, and efficient mixture-of-experts
language model,” ArXiv, vol. abs/2405.04434, 2024. [Online]. Available:
https://api.semanticscholar.org/CorpusID:269613809

[27] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” in International Conference on Learning
Representations, 2017.

[28] T. Sorensen and H. Khlaaf, “Leftoverlocals: Listening to llm responses
through leaked gpu local memory,” arXiv preprint arXiv:2401.16603,
2024.

[29] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, “Roformer: Enhanced
transformer with rotary position embedding,” Neurocomputing, vol. 568,
p. 127063, 2024.

[30] R. Sutton, “The bitter lesson,” Incomplete Ideas (blog), vol. 13, no. 1,
p. 38, 2019.

[31] E. Thambiraja, G. Ramesh, and D. R. Umarani, “A survey on various
most common encryption techniques,” International Journal of Advanced
Research in Computer Science and Software Engineering, 2012.

[32] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro et al., “Llama: Open and efficient
foundation language models,” arXiv preprint arXiv:2302.13971, 2023.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Annual
Conference on Neural Information Processing Systems, vol. 30, 2017.

[34] Z. Wan, A. Cheng, Y. Wang, and L. Wang, “Information leakage from
embedding in large language models,” arXiv preprint arXiv:2405.11916,
2024.

[35] Z. Wan, X. Wang, C. Liu, S. Alam, Y. Zheng, J. Liu, Z. Qu, S. Yan,
Y. Zhu, Q. Zhang et al., “Efficient large language models: A survey,”
Transactions on Machine Learning Research, 2024.

[36] G. Wu, Z. Zhang, Y. Zhang, W. Wang, J. Niu, Y. Wu, and Y. Zhang,
“I know what you asked: Prompt leakage via kv-cache sharing in
multi-tenant llm serving,” in Network and Distributed System Security
Symposium, 2025.

[37] A. Yang, B. Zhang, B. Hui, B. Gao, B. Yu, C. Li, D. Liu, J. Tu, J. Zhou,
J. Lin et al., “Qwen2.5-math technical report: Toward mathematical

14

https://api.semanticscholar.org/CorpusID:269613809

expert model via self-improvement,” arXiv preprint arXiv:2409.12122,
2024.

[38] H. Yang, D. Zhang, Y. Zhao, Y. Li, and Y. Liu, “A first look at efficient
and secure on-device llm inference against kv leakage,” in Workshop on
Mobility in the Evolving Internet Architecture, 2024, pp. 13–18.

[39] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, “Differentially private
model publishing for deep learning,” in IEEE Symposium on Security
and Privacy. IEEE, 2019, pp. 332–349.

[40] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer
language models,” arXiv preprint arXiv:2205.01068, 2022.

[41] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “BERTScore:
Evaluating text generation with BERT,” in International Conference on
Learning Representations, 2020.

[42] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, vol. 1, no. 2, 2023.

[43] L. Zheng, W.-L. Chiang, Y. Sheng, T. Li, S. Zhuang, Z. Wu, Y. Zhuang,
Z. Li, Z. Lin, E. P. Xing, J. E. Gonzalez, I. Stoica, and H. Zhang,
“Lmsys-chat-1m: A large-scale real-world llm conversation dataset,” in
International Conference on Learning Representations, 2024.

[44] Z. Zhou, X. Ning, K. Hong, T. Fu, J. Xu, S. Li, Y. Lou, L. Wang,
Z. Yuan, X. Li et al., “A survey on efficient inference for large language
models,” arXiv preprint arXiv:2404.14294, 2024.

APPENDIX

A. Proof of Commutativity with Rotary Position Embedding
Denoting both Rd

Θ,i and the random invertible matrix M1

as a 2× 2 block matrix, we obtain:

Rd
Θ,i =

[
C −S
S C

]
,M1 =

[
T Y
U Z

]
, (16)

where C, S ∈ R d
2×

d
2 are shown in Eq. (17), assuming that

T,U, Y, Z ∈ R d
2×

d
2 are all random matrices.

C =


cos iθ0 0 · · · 0

0 cos iθ1 · · · 0
...

...
. . .

...
0 0 · · · cos iθ d

2−1

 ,

S =


sin iθ0 0 · · · 0

0 sin iθ1 · · · 0
...

...
. . .

...
0 0 · · · sin iθ d

2−1

 .

(17)

If the secret matrix M1 and the RoPE matrix Rd
Θ,i commute,

then:[
T Y
U Z

] [
C −S
S C

]
=

[
C −S
S C

] [
T Y
U Z

]
. (18)

With j and k as subscripts of matrix elements, Eq. (19) is
equivalent to the following system of linear equations:

tjk cos iθj − ujk sin iθj = tjk cos iθk + yjk sin iθk
tjk sin iθj + ujk cos iθj = ujk cos iθk + zjk sin iθk
yjk cos iθj − zjk sin iθj = −tjk sin iθk + yjk cos iθk
yjk sin iθj + zjk cos iθj = −ujk sin iθk + zjk cos iθk

(19)
Calculating the equation, the T,U, Y, Z need to satisfy the
following relationship: yjj = −ujj ,

zjj = tjj ,
tjk = ujk = yjk = zjk = 0, (j ̸= k)

. (20)

Specifically, the structure of M1 is defined as follows in
Equation 21,

M1 =



t0 0 · · · 0 −u0 0 · · · 0
0 t1 · · · 0 0 −u1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · t d

2−1 0 0 · · · −u d
2−1

u0 0 · · · 0 t0 0 · · · 0
0 u1 · · · 0 0 t1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · u d

2−1 0 0 · · · t d
2−1


.

(21)

B. Detailed Experimental Settings

Input Text for Parameter Calibration. The following text,
an excerpt from “The Bitter Lesson” by Rich Sutton, was used
as model input in our experiments to analyze the numerical
characteristics of the KV-cache (e.g., for parameter calibration
as described in Section V-B).

Input Text for Parameter Calibration

One thing that should be learned from the bitter lesson
is the great power of general-purpose methods, of
methods that continue to scale with increased compu-
tation even as the available computation becomes very
great. The two methods that seem to scale arbitrarily in
this way are search and learning. The second general
point to be learned from the bitter lesson is that the
actual contents of minds are tremendously, irredeemably
complex; we should stop trying to find simple ways
to think about the contents of minds, such as simple
ways to think about space, objects, multiple agents, or
symmetries.

C. Additional Experiments about Attacks

1) Ablation Study of Collision Attack: Outlier Detection
Threshold. We experimented with different outlier detection
thresholds on the LLaMA-3.2-1B model. The results are shown
in Table V. We observed that setting the threshold to 3σother

(i.e., treating a value as an outlier if it is more than three
standard deviations below the mean of the disother distribution,
which corresponds to approximately 0.13% of a standard
normal distribution) yields the highest reconstruction accuracy.
A threshold that is too low (e.g., 2σother) leads to misiden-
tifying incorrect tokens as the target, thus reducing accuracy.
Conversely, a threshold that is too high (e.g., 4σother) can cause
the correct token to be missed, which also decreases accuracy
while significantly increasing the attack time. Therefore, we
set the outlier detection threshold to 3σother for all subsequent
experiments.

Batch Size. We evaluated the effect of different batch sizes
on the LLaMA-3.2-1B model. As shown in Table VI, with
the outlier threshold fixed at 3σother, a batch size of 256

15

TABLE V: Impact of different outlier detection thresholds on
reconstruction accuracy, with a fixed batch size of 256.

Model Layer Metric
Gap

2σ 2.5σ 3σ 3.5σ 4σ

LLaMA-3.2-1B

First
BERTScore (↑) 0.531 0.783 0.877 0.821 0.719
ROUGE-L (↑) 0.358 0.579 0.709 0.706 0.663

Mid
BERTScore (↑) 0.419 0.619 0.791 0.820 0.724
ROUGE-L (↑) 0.310 0.482 0.617 0.661 0.592

Last
BERTScore (↑) 0.579 0.807 0.894 0.878 0.727
ROUGE-L (↑) 0.455 0.615 0.680 0.648 0.485

Average Time(s) 1.17 2.13 5.06 12.65 21.58

TABLE VI: Impact of different batch sizes on reconstruction
accuracy, using a fixed outlier detection threshold of 3σother.

Model Layer Metric
Batch Size

64 128 256 512 1024

LLaMA-3.2-1B

First
BERTScore (↑) 0.830 0.856 0.877 0.869 0.837
ROUGE-L (↑) 0.711 0.723 0.709 0.666 0.594

Mid
BERTScore (↑) 0.765 0.786 0.791 0.771 0.753
ROUGE-L (↑) 0.590 0.617 0.617 0.588 0.554

Last
BERTScore (↑) 0.837 0.865 0.894 0.902 0.887
ROUGE-L (↑) 0.513 0.616 0.680 0.674 0.636

Average Time(s) 12.94 7.58 5.06 4.04 4.62

achieves the highest reconstruction accuracy. Theoretically, a
larger batch size may provide a more robust statistical sample
of the disother distances, leading to higher accuracy. However,
our experiments show that as the batch size increases beyond
256, the reconstruction accuracy paradoxically decreases. We
attribute this to a mismatch between the batch size and the
fixed threshold; a larger batch would likely require a higher,
more stringent threshold to maintain accuracy. However, larger
batches increase GPU memory consumption, and a higher
threshold would multiplicatively increase attack time. To
balance accuracy, memory usage, and attack speed, we chose
a batch size of 256 for our experiments.

2) Ablation Study of Injection Attack: We tested various
instructions against each model’s KV-cache, with the results
shown in Table VII. The instruction “Repeat the previous
content.” achieved the highest overall reconstruction accuracy
across all models, with an average BERTScore of 0.58 and
ROUGE-L of 0.42.

D. DP Baseline Parameter Selection

To establish a robust DP baseline, we first defined its
parameterization methodology. We then conducted experiments
to select a configuration that balances utility and privacy for
comparison against KV-Cloak.
• Noise Application: As illustrated in Figure 5, the element

distributions of the K and V caches differ significantly.
Consequently, we apply (ϵ, δ)-DP Gaussian noise to the
K and V tensors independently.

• Clipping Threshold C: The noise magnitude in DP is
determined by the function’s sensitivity, which we control
by clipping the Frobenius norm of the K and V tensors. To
find an appropriate clipping threshold, we generated 1,000

TABLE VII: Results of the KV-cache injection attack against
the KV-cache from each model with four distinct adversarial
instructions: ”Repeat the previous content.” (Ins1), ”Summarize
the previous content.” (Ins2), ”Repeat what I said.” (Ins3), and
”Summarize what I said.” (Ins4).

Model Metric
Inject Instruction

Ins1 Ins2 Ins3 Ins4

LLaMA-7B
BERTScore (↑) 0.765 0.716 0.557 0.598
ROUGE-L (↑) 0.687 0.606 0.449 0.473

LLaMA-3.2-1B
BERTScore (↑) 0.544 0.533 0.423 0.353
ROUGE-L (↑) 0.315 0.358 0.232 0.217

LLaMA-3.2-3B-Instruct
BERTScore (↑) 0.540 0.360 0.506 0.271
ROUGE-L (↑) 0.324 0.157 0.358 0.124

LLaMA-3.1-8B
BERTScore (↑) 0.616 0.544 0.432 0.457
ROUGE-L (↑) 0.447 0.365 0.275 0.279

LLaMA-3.1-8B-Distilled
BERTScore (↑) 0.610 0.536 0.348 0.434
ROUGE-L (↑) 0.421 0.348 0.218 0.249

Qwen2.5-Math-7B
BERTScore (↑) 0.422 0.381 0.413 0.329
ROUGE-L (↑) 0.286 0.222 0.281 0.194

TABLE VIII: Inference accuracy of the LLaMA-3.2-1B model
when applying DP with various parameters to its KV-cache.

Model Norm Ratio Metric
ϵ

1 10 107 108 109

LLaMA-3.2-1B

50%
MMLU (↑) 0.051 0.052 0.052 0.262 0.299
SQuAD (↑) 0.000 0.000 0.000 0.258 0.443

90%
MMLU (↑) 0.053 0.053 0.045 0.259 0.309
SQuAD (↑) 0.000 0.000 0.000 0.171 0.435

95%
MMLU (↑) 0.052 0.053 0.045 0.252 0.309
SQuAD (↑) 0.000 0.000 0.000 0.136 0.437

long sequences (approximately 2,000 tokens each) from the
MMLU dataset, recorded the distribution of the resulting KV-
cache Frobenius norms, and experimented with thresholds
corresponding to different percentiles of this distribution.

• Privacy Budget ϵ: This parameter governs the fundamental
trade-off between privacy and utility. We evaluated a wide
range of ϵ values to map out their impact on model accuracy.

• Failure Probability δ: This represents the probability of
the privacy guarantee being violated. We adopt the common
standard value of δ = 10−5 for all DP experiments.

Our experimental results, presented in Table VIII, reveal a
stark trade-off between privacy and model accuracy for the DP
baseline. Under conventionally strong privacy settings (e.g.,
ϵ = 1 or ϵ = 10), model accuracy on both MMLU and SQuAD
collapses to the level of random guessing, regardless of the
chosen clipping threshold. Accuracy only begins to recover
when the privacy budget is substantially relaxed: at ϵ = 108,
it reaches 59.13% of the unprotected baseline’s accuracy; and
at ϵ = 109, it improves to 93.61%. This extreme sensitivity is
due to the highly sparse nature of the KV-cache, where most
elements are near zero. Directly adding noise disproportionately
perturbs the cache’s delicate structure, severely degrading
model performance unless the noise is made negligible by
an extremely large ϵ. And its defensive efficacy, presented in

16

TABLE IX: Effectiveness of the inversion, collision, and
injection attacks against different layers of the KV-cache from
the LLaMA-3.2-1B model, under various DP mechanisms.

Model Protect Type Metric
Inversion Collision Injection

First First Mid Last All

LLaMA-3.2-1B

Plaintext
BERTScore (↓) 1.000 0.877 0.791 0.894 0.544
ROUGE-L (↓) 0.994 0.709 0.617 0.680 0.315

(107, 10−5)-DP
BERTScore (↓) 0.096 0.469 0.651 0.672 0.131
ROUGE-L (↓) 0.073 0.353 0.402 0.336 0.067

(108, 10−5)-DP
BERTScore (↓) 0.633 0.849 0.763 0.849 0.393
ROUGE-L (↓) 0.622 0.604 0.587 0.604 0.248

(109, 10−5)-DP
BERTScore (↓) 0.994 0.808 0.786 0.886 0.524
ROUGE-L (↓) 0.980 0.635 0.610 0.667 0.304

Table IX, is strongly correlated with the privacy budget ϵ. With
a weak budget of ϵ = 108, the accuracy of the inversion and
injection attacks is reduced, but the collision attack can still
recover some useful information. As ϵ is strengthened to 107,
the overall attack success rate decreases further. However, the
collision attack can still achieve a reconstruction with over
55% semantic similarity. Importantly, this protection comes
at the cost of model accuracy, a trade-off we will discuss in
detail in the next section.

To balance security and accuracy for our comparative
analysis, we selected ϵ = 108 and a clipping norm at the
50th percentile for subsequent experiments, as this offered a
reasonable degree of utility for the DP baseline.

E. Evaluation of Security on the Remaining Models

As showed in Table X, KV-Cloak completely thwarts all our
proposed attacks, reducing the quality of any reconstructed text
to a level statistically indistinguishable from random noise.

F. Performance Analysis and the Impact of Operator Fusion

A critical aspect of any practical defense mechanism is
its performance overhead. In this section, we analyze the
computational cost of KV-Cloak and demonstrate the significant
efficiency gains achieved through our operator fusion technique.
Overhead of a Naive Implementation. Without operator
fusion, a naive implementation would apply the obfuscation
transform K ′ = SP̂ (K + A)M and its inverse as explicit,
sequential steps during runtime. Neglecting the computationally
inexpensive matrix additions involving A, the primary overhead
stems from matrix multiplications. For a single KV-cache block
of size b× d:
• The obfuscation operation requires approximately b3 (for
SP̂), b2d (for (SP̂)K), and bd2 (for (SP̂K)M) floating-
point multiplications.

• The de-obfuscation requires an additional b2d (for S−1K ′)
and bd2 (for (K ′)M−1) multiplications.

This results in a total of approximately b3 + 2b2d + 2bd2

multiplications per block per decoding step. To put this into
perspective, the cost of re-computing the same KV-cache block
from the LLM’s hidden states (dimension D) is b ·D · d. For a
model like LLaMA-3.1-8B (with b = 16, d = 128, D = 4096),
the naive obfuscation overhead constitutes a substantial 7.1%
of the re-computation cost.

Efficiency Gains from Operator Fusion. By fusing the
matrix M and its inverse into the model’s weights offline, as
described in Section IV-D, we eliminate the two most expensive
online multiplications (bd2 terms). The online obfuscation
and de-obfuscation, governed by Eq. (15), now only require
approximately b3 + 2b2d multiplications.

Revisiting the LLaMA-3.1-8B example, this optimization
reduces the computational overhead to just 0.83% of the re-
computation cost. This represents a nearly 8-fold reduction in
latency compared to the naive implementation (specifically, the
new cost is 11.72% of the original overhead). This dramatic
improvement makes the runtime performance impact of KV-
Cloak minimal and highly practical for real-world deployment.

Auxiliary Costs. Our analysis primarily focuses on floating-
point multiplications, which dominate the computational cost.
However, we acknowledge other minor costs, such as the
generation of the one-time permutation matrix P̂ , the element-
wise additions for the mask A, and function call overhead.
These costs are considered secondary for several reasons: the
generation of P̂ can be performed asynchronously in parallel
with other computations; matrix addition has a much lower
complexity than multiplication; and any remaining overhead
can be further optimized through techniques like computation
graph optimization and hardware acceleration.

G. Architectural Compatibility with PagedAttention

The compatibility of KV-Cloak with modern inference
engines stems from its core “block-oriented” design prin-
ciple. All cryptographic operations—both obfuscation and
de-obfuscation—are self-contained within a single physical
memory block. This design intentionally creates no cross-
block dependencies, allowing a memory manager like vLLM’s
PagedAttention to schedule, copy, swap, and share physical
blocks freely, without any awareness of their obfuscated
contents.

To empirically validate this compatibility and assess the
impact of different configurations, we evaluated KV-Cloak on
the LLaMA-3.2-1B model using the most common block sizes
in PagedAttention: 16, 32, and 64. As shown in Table XI, KV-
Cloak remains virtually lossless, achieving nearly 100% model
fidelity across both benchmarks for all tested block sizes. In
terms of performance, the latency overhead in the worst-case
MMLU benchmark remained consistently low at approximately
10% across all block sizes (Figure XII), and applying operator
fusion reduces 2.79% the inference latency.

These results confirm that KV-Cloak’s design has no funda-
mental conflicts with the PagedAttention memory management
model. Its negligible impact on accuracy and its low, stable
overhead across various block sizes demonstrate that a full
integration into an inference engine like vLLM is a practical
and feasible engineering task.

H. Broader Impact of KV-Cloak for LLM Inference Security

Although KV-Cloak targets the KV-cache specifically, it
underscores a broader issue: the internal states of large

17

TABLE X: Efficacy of Defense Mechanisms Against Input Reconstruction Attacks on the Remaining Models.

Model Protect Type Metric
Inversion Collision Collision+ Injection

First First Mid Last First Mid Last All

LLaMA-3.2-3B-Instruct

Original
BERTScore (↓) 0.055 0.782 0.668 0.820 1.000 1.000 1.000 0.540
ROUGE-L (↓) 0.000 0.732 0.456 0.621 0.994 0.994 0.994 0.324

KV-Cloak
BERTScore (↓) 0.088 0.069 0.070 0.069 0.033 0.033 0.033 0.088
ROUGE-L (↓) 0.000 0.000 0.000 0.000 0.042 0.042 0.042 0.000

(108, 10−5)-DP
BERTScore (↓) 0.061 0.223 0.592 0.760 0.967 0.938 1.000 0.129
ROUGE-L (↓) 0.000 0.261 0.360 0.517 0.951 0.907 0.994 0.032

LLaMA-3.1-8B

Original
BERTScore (↓) 0.071 0.873 0.652 0.764 1.000 1.000 1.000 0.616
ROUGE-L (↓) 0.000 0.825 0.443 0.564 0.994 0.994 0.994 0.447

KV-Cloak
BERTScore (↓) 0.076 0.069 0.069 0.069 0.041 0.041 0.041 0.084
ROUGE-L (↓) 0.004 0.000 0.000 0.000 0.003 0.003 0.003 0.000

(108, 10−5)-DP
BERTScore (↓) 0.076 0.343 0.526 0.614 0.639 0.986 0.999 0.115
ROUGE-L (↓) 0.003 0.328 0.284 0.419 0.639 0.947 0.994 0.057

Qwen2.5-Math-7B

Original
BERTScore (↓) 0.229 0.918 0.552 0.783 1.000 0.983 0.996 0.422
ROUGE-L (↓) 0.186 0.842 0.355 0.580 1.000 0.977 0.996 0.286

KV-Cloak
BERTScore (↓) 0.099 0.069 0.069 0.070 0.112 0.112 0.113 0.075
ROUGE-L (↓) 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(108, 10−5)-DP
BERTScore (↓) 0.108 0.879 0.274 0.317 0.331 0.432 0.373 0.325
ROUGE-L (↓) 0.018 0.790 0.100 0.143 0.336 0.445 0.404 0.208

TABLE XI: Inference accuracy of the LLaMA-3.2-1B model
when applying KV-Cloak with different block sizes.

Model Metric Plaintext
Block Size

16 32 64

LLaMA-3.2-1B
MMLU (↑) 0.335 0.335 0.335 0.335
SQuAD (↑) 0.457 0.463 0.462 0.460

TABLE XII: Inference latency on the LLaMA-3.2-1B model
when applying KV-Cloak with different block sizes.

Model Plaintext Type
Block Size

16 32 64

LLaMA-3.2-1B 1956.8
No Fuse

2199.9 2191.9 2206.2
+12.42% +12.01% +12.75%

Fused
2155.6 2148.5 2129.8

+10.16% +9.80% +8.84%

language models represent a rich and vulnerable attack sur-
face. As models grow in scale and architectural complexity
(e.g., via Mixture-of-Experts [27]), they produce substantial
context-dependent intermediate data—such as activations and
attention weights—that may leak sensitive information. KV-
Cloak introduces a lightweight, structure-aware obfuscation
approach as an alternative to costly cryptographic methods.
By exploiting mathematical reversibility, it preserves model
accuracy while embedding sufficient algebraic complexity
to resist cryptanalysis. This algorithm-architecture co-design
paradigm offers a promising direction for enhancing LLM
inference security.

I. Limitations and Future Work

While our work provides a solid foundation for protecting
the KV-cache, we also recognize its limitations, which in turn
open up exciting avenues for future research.

Key Management and Hardware Security Integration. KV-
Cloak’s security model assumes its secret keys are protected in
memory, leaving a residual risk from privileged host attackers.
Future work could harden this by integrating with hardware-
level Trusted Execution Environments (TEEs) or confidential
GPUs for defense-in-depth. Additionally, developing efficient
key rotation schemes would enhance the long-term security for
persistent services that currently rely on static secrets.
Performance Optimization and Hardware Acceleration.
While KV-Cloak’s core overhead is low, its end-to-end
performance in hyper-scale systems could be further opti-
mized. This includes software-level improvements, such as
the asynchronous generation of one-time-pad matrices to hide
latency. At the hardware level, an algorithm-hardware co-
design approach, creating custom GPU instructions or dedicated
accelerators for KV-Cloak’s matrix operations, could render
the overhead negligible.
Extension to Quantized Models. Our current work focuses
on floating-point models. A key future direction is to extend
these principles to the increasingly popular integer-quantized
models. This will require designing new, lossless reversible
transformations suitable for discrete data types, potentially
based on mathematical structures like modular arithmetic.

18

	Introduction
	Background and Related Work
	Transformer-based LLM Inference
	Privacy Attacks against LLMs

	Attack Landscape: Inferring Private User Inputs from KV-cache
	Threat Model
	Input Reconstruction Attacks from KV-cache
	KV-cache Inversion Attack
	KV-cache Collision Attack
	KV-cache Injection Attack

	KV-Cloak: A Defense Mechanism for KV-cache Obfuscation
	Motivation for KV-Cloak
	A Naive Defense: Obfuscation via Reversible Linear Transforms
	The Improved Defense: One-Time Pad Block-wise Shuffling
	Implicit Obfuscation via Operator Fusion

	Evaluation
	Experimental Setup
	Attack Effectiveness
	Evaluation of KV-Cloak
	Experimental Settings
	Evaluation of Security
	Inference Accuracy
	Evaluation of Computational Overhead

	Conclusion
	References
	Appendix
	Proof of Commutativity with Rotary Position Embedding
	Detailed Experimental Settings
	Additional Experiments about Attacks
	Ablation Study of Collision Attack
	Ablation Study of Injection Attack

	DP Baseline Parameter Selection
	Evaluation of Security on the Remaining Models
	Performance Analysis and the Impact of Operator Fusion
	Architectural Compatibility with PagedAttention
	Broader Impact of KV-Cloak for LLM Inference Security
	Limitations and Future Work

