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Abstract: In the rapidly evolving landscape of digital security, biometric authentication 

systems, particularly facial recognition, have emerged as integral components of various 

security protocols. However, the reliability of these systems is compromised by sophisticated 

spoofing attacks, where imposters gain unauthorized access by falsifying biometric traits. 

Current literature reveals a concerning gap: existing liveness detection methodologies – 

designed to counteract these breaches – fall short against advanced spoofing tactics employing 

deepfakes and other artificial intelligence-driven manipulations. This study introduces a robust 

solution through novel deep learning models addressing the deficiencies in contemporary anti-

spoofing techniques. By innovatively integrating texture analysis and reflective properties 

associated with genuine human traits, our models distinguish authentic presence from replicas 

with remarkable precision. Extensive evaluations were conducted across five diverse datasets, 

encompassing a wide range of attack vectors and environmental conditions. Results 

demonstrate substantial advancement over existing systems, with our best model (AttackNet 

V2.2) achieving 99.9% average accuracy when trained on combined data. Moreover, our 

research unveils critical insights into the behavioral patterns of impostor attacks, contributing 

to a more nuanced understanding of their evolving nature. The implications are profound: our 

models do not merely fortify the authentication processes but also instill confidence in 

biometric systems across various sectors reliant on secure access. By achieving near-perfect 

accuracy while maintaining computational efficiency, this research illuminates the path forward 

in combating identity fraud, ensuring data privacy, and safeguarding sensitive information in 

the digital realm, thus providing an impetus for further innovations in cybersecurity 

frameworks. 
 

Keywords: Face Recognition, Anti-Spoofing, Deep Learning, Liveness Detection, Spoofing 

Attacks, Biometric Authentication 

 

1. Introduction 

1.1. Background of the Problem 

Liveness detection is an essential component in biometric authentication systems, serving as 

a crucial line of defense against spoofing attacks [1]. Its primary objective is to discern real, 

live biometric characteristics from fraudulent copies or recreations [2]. This detection plays a 

key role in various applications such as facial recognition, fingerprint scanning, and iris 

recognition among others [3]. 

Historically, simple biometric systems relied on static information, like a stored image of a 

face or fingerprint for verification [4]. However, these systems were susceptible to spoofing by 

presenting fake biometric traits, a photo in the case of facial recognition, or a cast in the case of 

fingerprints, which has posed a substantial threat to the security and reliability of these systems. 

The escalating complexity of these threats, coupled with the rising ubiquity of biometric 

systems in everyday life, from smartphones to international airport security, necessitated the 

development of dynamic liveness detection techniques [3]. Modern liveness detection systems 

are designed to measure signs of life, including but not limited to, minor involuntary facial 

movements, unique patterns in the way a person speaks, or blood flow beneath the skin of a 

finger. 

Despite the impressive advancements in liveness detection technologies over the past few 

years, significant challenges persist. Sophisticated attacks continue to evolve, utilizing 

emerging technologies such as high-definition printing, 3D modeling, deepfakes, and even 

synthetic biometric traits [4]. 

These ongoing challenges emphasize the need for continual research, refinement, and 

enhancement of liveness detection methods. Consequently, our work strives to address these 

contemporary threats, providing innovative solutions that promise to bolster the effectiveness 

and reliability of biometric authentication systems. 
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In the realm of facial biometrics, the challenge of liveness detection, specifically, the detection 

of spoofing attacks, becomes exponentially complex due to the three-dimensional and dynamic 

nature of human faces, coupled with the plethora of ways in which a facial spoof can be 

orchestrated. 

Traditional methods of face liveness detection have included texture analysis, wherein certain 

patterns or artifacts left behind by fake replicas are identified, and motion-based techniques that 

bank on certain predictable or repeatable human facial movements [5]. However, these methods 

have shortcomings. Texture analysis techniques often struggle with high-quality fakes, while 

motion-based approaches can be bypassed through sophisticated replicas and user behavior 

imitation. 

The advent of deep learning has revolutionized liveness detection techniques by bringing in 

the capability to model and learn high-dimensional patterns, thus mitigating the limitations of 

conventional methods. Techniques based on Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) have shown great promise, with the ability to learn and 

discern intricate patterns from large volumes of data [6]. Furthermore, generative models such 

as GANs (Generative Adversarial Networks) have been utilized to create synthetic liveness 

features, improving the robustness of detection models. 

Yet, deep learning methods also have their limitations. They demand significant volumes of 

data for training, and they need to be periodically updated to adapt to the emerging threats. 

Also, they may sometimes struggle with generalization, especially when encountering unseen 

types of spoofing attacks. 

Specifically, current challenges include: (1) severe performance degradation in cross-dataset 

scenarios, with accuracy dropping from >95% to <50% when models encounter unseen attack 

types; (2) inability to generalize across different acquisition devices and environmental 

conditions; (3) vulnerability to high-quality silicone masks and digital replay attacks that 

closely mimic genuine biometric traits. These gaps necessitate the development of more robust 

architectures capable of learning universal spoofing patterns rather than dataset-specific 

artifacts. 

 

1.2. Relevance of the Study 

In today's digital age, face recognition systems have become integral to a wide array of 

applications, ranging from smartphone unlocking, surveillance, social media, and banking, 

among others. As these systems gain prominence, the likelihood of spoofing attacks increases, 

making liveness detection an indispensable component to ensure the security and integrity of 

these systems [7, 8]. 

However, due to the increasing sophistication of spoofing attacks and the limitations of current 

liveness detection techniques, the need for a robust, adaptable, and reliable solution is more 

pressing than ever. Our research investigates the use of advanced deep learning methods for 

face liveness detection, addressing the aforementioned challenges while expanding the 

boundaries of the current state-of-the-art. Our efforts in this domain are not only crucial for 

enhancing security but also have far-reaching implications for fostering trust and reliability in 

face recognition technologies, which have become an integral part of our everyday lives. 

 

1.3. Objectives of the Study 

Through this research, we aim to explore, understand, and overcome the challenges that face 

liveness detection in the context of face recognition systems. Leveraging various spoofing 

attack scenarios and corresponding datasets, we set forth several objectives that are geared 

towards advancing the field of liveness detection. 

Objective 1: Evaluate and learn from various spoofing attacks, with each presenting a unique 

threat scenario. To this end, we use several datasets: 
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• Custom Silicone Mask Attack (CSMAD) dataset, providing us insights into high-quality 

silicone mask attacks manufactured by a professional special effects company [9]. 

• The 3D Mask Attack Database (3DMAD), exposing us to biometric 3D data captured 

via Kinect [10]. 

• Multispectral-Spoof Database (MSSPOOF), which gives us access to both visible (VIS) 

and near-infrared (NIR) spectrum images and print spoofing attacks [11]. 

• Replay-Attack Database, comprising videos of photo and video attack attempts under 

various lighting conditions [12]. 

• Our custom dataset made up of bona fide and attacker images extracted from videos 

taken via smartphone and laptop webcam. 

Objective 2: Use a modern face detector to extract, align, and crop faces across all datasets; 

Standardize resolution to 256×256 and apply quality control; Create subject-disjoint 

train/validation/test splits and document the split statistics per dataset; Benchmark strong 

existing models (e.g., LivenessNet, AttackNet variants) and report PAD metrics (APCER, 

BPCER, ACER, EER, HTER) together with ROC-AUC/PR-AUC; Analyze error patterns by 

attack type (print, replay, mask) to identify failure modes that motivate a new architecture. 

Objective 3: Design a compact CNN for PAD with standard best practices; Enhance 

robustness using state-of-the-art training techniques: strong but realistic augmentation 

(geometric/photometric, blur, noise), L2 weight decay, dropout, label smoothing, learning-rate 

scheduling, early stopping, and class balancing; Improve generalization via rigorous evaluation 

protocols: zero-shot cross-dataset testing and combined-dataset training to mitigate domain 

shift; select thresholds on validation only and keep them fixed for test. 

Through these objectives, we aim to make significant contributions to liveness detection in 

facial biometrics, with the potential of setting a new benchmark for the field. More than just 

academic accomplishment, however, our endeavor is targeted at fostering trust and security in 

face recognition systems – a pivotal step towards a secure digital future. 

 

1.4. Overview of the Article 

This article is structured to provide comprehensive insight into our exploration of liveness 

detection in face recognition systems, using deep learning techniques. Each section of the paper 

is crafted to guide the reader seamlessly through our research journey, thereby facilitating a 

complete understanding of our study and its significance. 

The paper begins with a Literature Review (Section 2), in which we delve into the existing 

body of knowledge, examining previous studies, and identifying the gaps that our research aims 

to fill. This exploration of the academic landscape enables us to position our work within the 

broader context of liveness detection research. 

In the Methodology section (Section 3), we discuss the data we used in our research, detailing 

the diverse datasets that represent various spoofing attack scenarios. We also detail the 

techniques used for face extraction and deep learning models that have been tested, along with 

the description of our novel CNN architecture. 

Section 4, titled Results, presents the findings from our experiments, illustrating how our 

proposed model performs against each spoofing attack scenario. This section discusses the 

strengths and potential weaknesses of our model, validated through our diverse datasets. 

Next, the Discussion section (Section 5) provides a platform for interpreting our results in the 

broader context of liveness detection. We compare our findings with those from previous 

literature, discussing the implications and potential applications of our research. 

The final Conclusion section (Section 6) offers a summary of our key findings and their 

significance. It also elucidates the potential impact of our work and suggests areas for future 

research. This section underlines the broader goals of our study - reinforcing the security of 

face recognition systems and fostering trust in these technologies. 

Throughout the paper, we have made an effort to articulate our processes, findings, and 

interpretations in an accessible yet rigorous academic style. The goal is to allow readers from 
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various backgrounds to engage with our work, encouraging the exchange of ideas and 

promoting further advancements in the field. 

We delimit scope to presentation attacks in RGB face PAD. Voice and iris liveness are 

discussed in Related Work to contextualize artifacts and embedded constraints. 

 

2. Literature Review 

In the field of face anti-spoofing, there is a rich tapestry of research that our study builds upon. 

However, existing works leave gaps that provide opportunities for further investigation and 

improvement. 

Chingovska et al. [13] probed the potential of Local Binary Patterns (LBP) texture features on 

three types of face spoofing attacks. Their findings suggest moderate discriminability when 

tested against a variety of attack types, with an achieved Half Total Error Rate (HTER) of 

around 15%. While LBPs have shown some promise, their modest performance underlines the 

need for more effective techniques. 

Erdogmus and Marcel [14] explored the spoofing potential of subject-specific 3D facial masks 

for 2D face recognition systems. Their research revealed a high vulnerability to these types of 

attacks, achieving an HTER of about 20% using LBP-based countermeasures. This reinforces 

the need for more effective solutions that can address such sophisticated spoofing techniques. 

Bhattacharjee et al. [15] examined the vulnerability of CNN based face-recognition systems 

against spoofing attacks using custom-made silicone masks. They demonstrated that these 

attacks present a significant threat, with the vulnerability of each system being at least ten times 

higher than its false match rate. Their proposed solution, a simple presentation attack detection 

method using a low-cost thermal camera, is not based on deep learning techniques, 

underscoring the gap that exists in the effective application of deep learning methods against 

such attacks. 

Chingovska et al. [16] reported on the significant security risk that spoofing attacks pose for 

face recognition systems across the visual spectrum. They achieved an HTER of around 8-9% 

using various methods, which could be reduced to 5-7% with multispectral processing. 

However, these rates are still far from ideal, signifying the need for more robust 

countermeasures. 

Alotaibi and Mahmood [17] explored the use of specialized deep convolution neural networks 

in detecting face spoofing attacks. Their method, which processed a single frame of sequential 

frames, resulted in an HTER of about 4% using the Replay Attack dataset. While this work 

showcased the potential of deep learning in spoofing detection, the relatively high HTER 

illustrates that there is still room for improvement. 

Sun et al. [18] undertook a comprehensive investigation of different supervision schemes in 

face spoofing detection using depth-based Fully Convolutional Networks (FCNs). Their 

proposal of a Spatial Aggregation of Pixel-level Local Classifiers (SAPLC) approach yielded 

competitive performance on several datasets. However, the cross-database testing on the Replay 

Attack dataset resulted in a significantly high HTER of around 30%, indicating that 

transferability across different datasets is still a major issue in this field. 

Kotwal and Marcel [19] proposed a novel patch pooling mechanism integrated with a pre-

trained CNN for detecting 3D mask presentation attacks in near-infrared (NIR) imaging. Their 

method demonstrated efficacy on mask attacks in the NIR channel, achieving near-perfect 

results on the WMCA dataset and outperforming the existing benchmark on the MLFP dataset. 

Despite their promising results, their study was limited to NIR imaging and 3D mask attacks, 

leaving the applicability of their method to other attack types and imaging modalities 

unexplored. 

Mallat and Dugelay [20] introduced a novel type of attack on thermal face recognition systems 

and demonstrated the vulnerability of these systems to such attacks. This study indicates a 

critical need for further research into the security of face recognition systems, especially with 

the development of increasingly sophisticated attack techniques. 
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Wang et al. [21] proposed a novel silicone mask face anti-spoofing detection method based 

on visual saliency and facial motion characteristics. Despite its superiority over existing 

methods in public and self-built datasets, the resulting HTER of around 9% indicates that there 

are still gaps in the effectiveness of current anti-spoofing methods against sophisticated attacks 

such as silicone masks. 

Finally, Arora et al. [22] proposed a robust framework for face spoofing detection, relying on 

the extraction of features from faces using pre-trained convolutional autoencoders. Their study 

achieved an HTER of about 4% on several datasets. However, their cross-database testing 

yielded an HTER of around 40%, emphasizing that achieving a robust model capable of 

generalizing across different datasets remains a challenge. 

Recent studies report strong within-dataset accuracy with compact backbones and transfer 

learning. LwFLNeT, a dual-stream lightweight CNN with parallel dropout, attains very low 

HTER on 3DMAD, NUAA, and Replay-Attack under within-dataset protocols, but degrades 

under cross-dataset transfer to 3DMAD (Shinde et al., 2025 [23]). A systematic evaluation of 

pre-trained CNNs shows DenseNet-based models with ACER near 1–2% on NUAA/Replay 

and competitive cross-dataset HTER between NUAA and Replay. MobileNetV2 achieves real-

time inference while retaining accuracy (Khairnar et al., 2025 [24]). These results confirm a 

common pattern: excellent in-domain performance and a persistent gap under domain shift. 

Adaptive Lipschitz-bound regularization has been proposed to reduce overfitting by 

constraining layer-wise spectral norms. The method adapts the constraint during training and 

improves the train–validation gap across several benchmarks (Chacón-Chamorro et al., 2026 

[25]). Although not specific to PAD, this line of work supports our choice to prioritize stability-

oriented regularization over excessive architectural complexity. 

Lightweight design is also explored through feature smoothing and sparse skip connections to 

reduce parameters and redundancy while preserving accuracy (Li et al., 2023 [26]). These ideas 

are relevant for PAD deployments on edge devices, where latency and memory budgets are 

strict. 

Pupillary light reflex (PLR) offers a stimulus-driven liveness cue. However, recent results 

show high error rates on Replay-Attack and CASIA-SURF under operational protocols, 

indicating limited reliability without careful control of capture conditions (Prasad et al., 2023 

[27]). We treat PLR as complementary rather than a replacement for appearance-based PAD. 

Voice liveness is advancing via spectral transforms and artifact-aware features. One line of 

work detects “pop-noise” as a low-frequency cue of live speech using Constant-Q or Morse-

wavelet representations, with competitive accuracy on ASVspoof and POCO datasets (Gupta 

and Patil, 2024 [28]; Eyidoğan et al., 2025 [29]). These approaches highlight the value of 

physically grounded artifacts; the concept informs, but does not directly transfer to face PAD. 

For iris PAD, texture-feature fusion (LBP+GLCM) has been optimized for embedded systems 

with real-time feasibility (Tran et al., 2024 [30]). Other works exploit handcrafted energy 

features with classical ensembles and report high within-dataset accuracy (Khade et al., 2023 

[31]). These results emphasize the practicality of lightweight pipelines in ocular biometrics. 

Deepfake detection targets identity-preserving forgeries rather than presentation attacks. 

Hybrid CNN–Transformer models achieve very high AUC on DeepForensics and CelebDF 

(Siddiqui et al., 2025 [32]). We do not evaluate deepfakes in this study; we cite them to delimit 

scope and terminology. 

The recent literature strengthens three points. First, within-dataset PAD can approach near-

zero error, yet cross-dataset transfer remains challenging. Second, efficiency-oriented designs 

are increasingly preferred for deployment. Third, theory-driven regularization may complement 

data-centric strategies to improve robustness. Our experimental design and discussion align 

with these trends. 

 

3. Methodology 

3.1. Data 
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Our research employs several datasets representing different spoofing attack scenarios.  

We use the full public versions of 3DMAD, Replay-Attack, MSSpoof, and CSMAD, except 

for frames removed by our quality filter (blur/occlusion thresholds). The data are challenging 

and cover print, replay, and mask presentation attacks across varying capture conditions and 

sensors. Our experiments follow subject-disjoint splits and a zero-shot cross-dataset protocol to 

stress domain shift. 

 

3.1.1. Custom Silicone Mask Attack Dataset (CSMAD) 

The Custom Silicone Mask Attack Dataset was collected at the Idiap Research Institute and 

is specifically designed for face presentation attack detection experiments, primarily focusing 

on presentation attacks mounted using a custom-made silicone mask of the person being 

attacked [9, 15]. 

 

Data Collection 

The CSMAD comprises face-biometric data from 14 subjects. Each subject has performed 

three roles: as targets, attackers, and bona-fide clients. Six of these subjects (identified as A to 

F) served as targets, implying that their facial data was used to construct corresponding custom-

made flexible silicone masks. 

The masks were manufactured by Nimba Creations Ltd., a company specializing in special 

effects. These high-quality masks present a sophisticated spoofing scenario, challenging our 

liveness detection system. 

The dataset contains both bona fide and attack presentations, increasing variability and better 

representing real-world conditions. The attack presentations were created by having different 

subjects wear the six masks. Four distinct lighting conditions were used during the data 

collection process, including: 

1. Fluorescent ceiling light only 

2. Halogen lamp illuminating from the left of the subject only 

3. Halogen lamp illuminating from the right only 

4. Both halogen lamps illuminating from both sides simultaneously 

All presentations were captured against a uniform green background. 

 

Dataset Structure 

The CSMAD is structured into three subdirectories: 'attack', 'bonafide', and 'protocols'. The 

'attack' and 'bonafide' directories contain videos and still images for attack and bona fide 

presentations, respectively, while 'protocols' include text files specifying the experimental 

protocol for vulnerability analysis of face recognition (FR) systems. 

• The 'bonafide' directory comprises 87 videos and 17 still images, captured using a Nikon 

Coolpix digital camera. 

• The 'attack' directory consists of 159 videos, subdivided into two categories: 'WEAR' 

with 108 videos, and 'STAND' with 51 videos. 'WEAR' contains videos where the 

attacker is wearing the mask of the target, while 'STAND' features videos where the 

target's mask is mounted on a stand for the attack. 

This dataset provides us with a rich and varied set of data for training and testing our deep 

learning models, enabling us to better understand the dynamics of silicone mask spoofing 

attacks. The variety of subjects, masks, and lighting conditions represented in the dataset 

ensures our model's robustness and adaptability to various real-world conditions. 

The Table 1 summarizes key aspects of the CSMAD. 

 

Table 1: Key aspects of Custom Silicone Mask Attack Dataset 

Attribute Details 
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Source Idiap Research Institute 

Number of Subjects 14 

Number of Masks 6 

Roles Performed by Subjects Targets, Attackers, Bona-fide Clients 

Number of Videos ('bonafide') 87 

Number of Images ('bonafide') 17 

Number of Videos ('attack') 159 (108 'WEAR', 51 'STAND') 

Lighting Conditions 4 

 

3.1.2. The 3D Mask Attack Database (3DMAD) 

The second dataset used in our study is the 3D Mask Attack Database, another face biometric 

spoofing database designed for testing the robustness of face recognition systems against 

spoofing attacks [10, 14]. 

 

Data Collection 

The 3DMAD contains 76,500 frames of 17 subjects, all recorded using a Kinect device. Each 

frame features a depth image, the corresponding RGB image, and manually annotated eye 

positions. The data collection process was spread across three sessions for each subject, with 

each session comprising five videos of 300 frames. These recordings were performed under 

controlled conditions, ensuring a frontal view and neutral expression. 

The first two sessions contain bona fide access samples, with a time delay of approximately 

two weeks between the acquisitions to introduce temporal variability. The third session was 

dedicated to capturing 3D mask attacks, which were conducted by a single operator. 

To augment the usability of the dataset, the eye positions in each video were manually labeled 

for every 60 frames and linearly interpolated for the rest. 

The 3D masks used in this dataset were created by "ThatsMyFace.com", using 1 frontal and 

2 profile images of the subjects. The database also includes these face images used for mask 

generation and paper-cut masks produced using the same images. 

 

Dataset Structure 

The 3DMAD contains a wealth of information critical to understanding and countering 3D 

mask spoofing attacks. Each frame consists of: 

1. A depth image (640x480 pixels – 1x11 bits) 

2. The corresponding RGB image (640x480 pixels – 3x8 bits) 

3. Manually annotated eye positions (with respect to the RGB image) 

The table 2 summarizes the key aspects of the 3DMAD. 

 

Table 2: Key aspects of 3D Mask Attack Database 

Attribute Details 

Source Idiap Research Institute 

Number of Subjects 17 

Frames per Subject 4500 (5 videos of 300 frames each, over 3 sessions) 

Data per Frame Depth Image, RGB Image, Annotated Eye Positions 

Mask Creator "ThatsMyFace.com" 

Sessions 3 (2 Bona fide, 1 Spoofing) 

 

The comprehensive and diverse data provided by 3DMAD offers an extensive platform to 

train and test our models, ensuring their efficacy in detecting 3D mask spoofing attacks, an 

emerging threat in face recognition systems. This dataset, coupled with our previously 
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described CSMAD, forms a substantial basis for understanding and mitigating a range of 

spoofing attacks.  

 

3.1.3. Multispectral-Spoof Database (MSSPOOF) 

The third dataset used in our study is the Multispectral-Spoof Database, a spoofing attack 

database built at the Idiap Research Institute. This dataset specializes in recording face images 

under visible (VIS) and near-infrared (NIR) spectra for both real accesses and spoofing 

attacks [11, 16]. 

Data Collection 

The MSSPOOF comprises data from 21 subjects, recorded using a uEye camera with a 

resolution of 1280x1024 pixels. For NIR images, a NIR filter of 800nm was mounted on the 

camera. 

In the real access recordings, five images each in VIS and NIR were captured for each subject 

under seven different environmental conditions, totaling to 70 real access images per client. 

For the spoofing attacks, three best quality images each from VIS and NIR spectra were 

selected from the original database for each client and printed on paper using a black & white 

printer with a resolution of 600dpi. Four spoofing attacks were recorded for each printed image 

under three lighting conditions, both in VIS and NIR spectra, giving a total of 144 spoofing 

attacks per client. 

 

Dataset Structure 

The recorded images are divided into training, development, and testing subsets with non-

overlapping clients. The training subset includes 9 clients, while the development and test 

subsets contain 6 clients each. The enrollment set consists of 10 real access images per client, 

five each from VIS and NIR spectra. 

Each sample in the MSSPOOF provides manual annotations for the facial region, given with 

the (x,y) coordinates of 16 key points on the face. 

The table 3 summarizes the key aspects of the MSSPOOF. 

 

Table 3: Key aspects of Multispectral-Spoof Database 

Attribute Details 

Source Idiap Research Institute 

Number of Subjects 21 

Real Access Images per Client 70 (35 VIS, 35 NIR) 

Spoofing Attacks per Client 144 

Spectra VIS and NIR 

Subsets Training, Development, Test, Enrollment 

 

The MSSPOOF offers an extensive platform to test our models' performance against both VIS 

and NIR spoofing attacks. This dataset's multispectral nature ensures our model's robustness 

across various light spectra, enhancing the model's adaptability to different real-world 

conditions.  

 

3.1.4. Replay-Attack Database 

The fourth dataset in our research is the Replay-Attack Database, designed specifically for 

face spoofing studies. It comprises 1300 video clips of photo and video attack attempts 

performed on 50 clients under varying lighting conditions [12, 13]. 
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Data Collection 

The Replay-Attack Database splits its data into four subsets: training, development, test, and 

enrollment. Each of these subsets contains unique clients, ensuring no overlap across subsets. 

The videos in the database capture real client access attempts or spoofing attacks using photo 

or video playbacks. All videos are recorded using a built-in webcam on a Macbook laptop, 

yielding color videos with a resolution of 320x240 pixels. The videos are saved in ".mov" 

format, with a frame rate of around 25 Hz. 

The dataset takes into account two different lighting conditions during data collection. The 

controlled condition has the office light turned on, with blinds down, and a homogeneous 

background, while the adverse condition has blinds up, more complex background, and office 

lights turned off. 

The spoofing attacks employ high-resolution photos and videos of each client taken under the 

same conditions as their authentication sessions. The attack videos utilize various methods and 

devices, including mobile attacks using an iPhone 3GS screen, high-resolution screen attacks 

using a first-generation iPad, and hard-copy print attacks produced on a color laser printer. 

 

Dataset Structure 

The Replay-Attack Database's distribution across the four subsets is as follows: 

• Training set: Contains 60 real accesses and 300 attacks. 

• Development set: Contains 60 real accesses and 300 attacks. 

• Test set: Contains 80 real accesses and 400 attacks. 

• Enrollment set: Contains 100 real-accesses under different lighting conditions, intended 

to study the baseline performance of face recognition systems. 

In addition to the video data, the database provides face locations automatically annotated by 

a cascade of classifiers based on Modified Census Transform (MCT). 

Here is a summary of the Replay-Attack Database's key aspects: 

The table 4 summarizes the key aspects of the Replay-Attack Database. 

 

Table 4: Key aspects of Replay-Attack Database 

Attribute Details 

Source Idiap Research Institute 

Number of Clients 50 

Real Access Attempts per 

Subset 

60 (Training), 60 (Development), 80 (Test), 100 

(Enrollment) 

Attack Attempts per Subset 300 (Training), 300 (Development), 400 (Test) 

Video Resolution 320x240 pixels 

Subsets Training, Development, Test, Enrollment 

 

The Replay-Attack Database's comprehensive video data under varying lighting conditions 

and diverse attack methods adds substantial depth to our study. Its unique distribution structure 

facilitates a structured evaluation of our models across various stages of training and testing.  

 

3.1.5. Our Custom Dataset 

The final dataset used in our research is a custom-made dataset, specifically crafted to simulate 

real-world conditions of potential spoofing attacks. 

 

Data Collection 
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This dataset is divided into two sets of images: bona fide and attackers. The bona fide set 

consists of images extracted from videos showcasing actual individuals. These videos are either 

taken with a smartphone or downloaded from the internet. 

The attacker set contains images extracted from videos that capture the playback of the bona 

fide videos on a smartphone screen or vice versa. The videos are recorded using a laptop 

webcam, simulating a typical scenario where a fraudster may try to deceive a facial recognition 

system using a playback video. 

The primary source of our videos is YouTube, a platform offering diverse real-world 

conditions. This approach allows us to capture a wide range of scenarios, including different 

lighting conditions, angles, and individual characteristics, providing a more comprehensive and 

challenging dataset for training and testing our model. 

 

Dataset Structure 

The dataset comprises 4656 images, evenly distributed between bona fide and attacker classes, 

ensuring a balanced dataset for accurate model evaluation. The training and validation split is 

48/52, with 2238 images allocated for training and 2418 for validation. Both the training and 

validation sets maintain a 50/50 class distribution to prevent bias in our model. 

We extracted frames from each video and performed undersampling to balance the classes in 

both the training and testing datasets. This step is essential to prevent our model from overfitting 

to a particular class and improve its generalization capability. 

The dataset is further organized into 84 videos as follows: 

• 40 for training: 15 for bona fide and 16 for attackers. 

• 25 for testing: 25 for bona fide and 28 for attackers. 

The table 5 summarizes the key aspects of our custom dataset. 

 

Table 5: Key aspects of Our Custom Dataset 

Attribute Details 

Total Images 4656 

Class Distribution 50/50 (bona fide/attackers) 

Training/Validation Split 48/52 

Training Images 2238 

Validation Images 2418 

Training Class Distribution 50/50 (bona fide/attackers) 

Validation Class Distribution 50/50 (bona fide/attackers) 

 

Our custom dataset's unique composition makes it an invaluable resource in this study. It 

mimics realistic attack scenarios and ensures a diverse and balanced collection of data, helping 

our model learn and generalize effectively. This comprehensive dataset will aid in 

accomplishing our research goals, which will be discussed in more detail in the subsequent 

sections. 

 

3.2. Liveness Detection Models   

3.2.1 LivenessNet: Our Initial Deep Learning Model 

Our research study commences with the Liveness Detection Model, initially developed by 

Adrian Rosebrock in 2019 [33]. The model's architecture is built upon a CNN using the Keras 

API from TensorFlow [34, 35]. 

 

Architecture 
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The Liveness Detection Model comprises sequential layers, forming a stack in which each 

layer passes its output to the subsequent layer. This architecture is designed to distinguish 

between authentic human faces and imitations. It incorporates an assortment of Keras layers, 

including Convolutional 2D (Conv2D), MaxPooling2D, Dropout, Flatten, Dense, and 

BatchNormalization layers. 

The architecture starts with the input shape of the images being defined. The model uses a 

'channels last' format where the depth is the last dimension in the input shape tuple (height, 

width, depth). However, if the 'channels first' format is used, the input shape and channels 

dimension are updated accordingly. 

 

Convolutional and Max Pooling Layers 

The first part of the network consists of two blocks, each with two Conv2D layers followed 

by a MaxPooling2D layer. Conv2D layers apply 2D convolution over the input signal, a 

technique integral to CNNs that provides them with their ability to learn image features. The 

Conv2D layers in both blocks of the model use 16 and 32 filters respectively with a kernel size 

of 3x3. 

Each Conv2D layer is followed by an Activation layer with a Rectified Linear Unit (ReLU) 

function, which adds non-linearity to the network. BatchNormalization follows the activation 

function, improving the speed, performance, and stability of the network. 

The Conv2D layers are followed by a MaxPooling2D layer with a pool size of 2x2. 

MaxPooling reduces the spatial dimensions (width, height) of the input, controlling overfitting 

by providing an abstracted form of the representation. 

Each block is completed with a Dropout layer at a rate of 0.25, a technique that helps prevent 

overfitting by randomly ignoring a fraction of the input nodes. 

 

Flattening and Dense Layers 

Post the convolutional blocks, the model uses a Flatten layer to transform the 2D matrix to a 

1D vector, enabling it to be processed by Dense layers. 

Subsequently, the architecture employs a Dense layer with 64 neurons, followed by another 

ReLU activation function. A BatchNormalization layer follows this, and a Dropout layer with 

a rate of 0.5 is applied for regularization, once again to avoid overfitting. 

The final layer of the model is another Dense layer with a softmax activation function. The 

softmax function outputs a vector that represents the probability distributions of a list of 

potential outcomes. It's a generalization of the sigmoid function, aptly suitable for multiclass 

classification tasks. 

Figure 1 illustrates the LivenessNet architecture, a base model for our liveness detection task. 

The network architecture involves a sequence of Convolutional (Conv2D), Activation (ReLU), 

Batch Normalization, and Max Pooling layers, followed by Dense layers towards the end. The 

presence of Dropout layers ensures the model's robustness against overfitting. It uses a 'channels 

last' image data format and starts with a feature map of 16 filters, which is extended to 32 filters 

in the subsequent layers. 
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Figure 1: LivenessNet Architecture 

 

In summary, the Liveness Detection Model is a simple yet effective network for face liveness 

detection tasks. The architecture focuses on maintaining a balance between model complexity 

and performance while ensuring that the network can extract useful features and learn from the 

data effectively without significant overfitting. 

 

3.2.2 AttackNet v1 Architecture 

To improve upon the performance of the LivenessNet architecture, we enriched its complexity 

while maintaining the network's efficiency. Inspired by the effectiveness of skip connections 

and residual blocks in combating the infamous "vanishing gradient" problem and overfitting 

[36], we developed a more sophisticated architecture termed as "AttackNet v1." 

The salient characteristic of the AttackNet v1 architecture is the addition of an extra 

convolutional layer for each convolutional step, and the inclusion of skip connections, 

following the design cues from the widely adopted ResNet architecture [36]. The use of skip 

connections, or shortcut connections, has been acknowledged as a sound practice to prevent 

gradient explosion or vanishing, making it particularly suitable for the task of spoof detection. 

The architecture's objective is threefold: to obtain impressive results on diverse datasets, to 

enable real-time detection with quick inference time, and to ensure feasible implementation on 

cost-effective hardware. 

Each convolutional step of AttackNet v1 now includes one additional Conv2D layer. The 

purpose of this layer is to extract a higher level of features from the input data, thereby 

improving the model's learning capability. 

Subsequently, following the prototype of ResNet [36], skip connections are applied to these 

layers. Rather than just linking the input of a layer to its output (as seen in traditional ResNet), 

these connections concatenate the outputs of Conv2D layers. Concatenation, in this case, 

involves merging the feature maps produced by two layers, thus preserving more information 

for the network to learn from. This approach provides a more expressive feature representation 

and enhances the network's capacity to learn complex patterns. 

Figure 2 presents the architecture of AttackNet v1, a modification and extension of the 

LivenessNet model. The architecture is enhanced with additional convolutional layers and 

introduced skip connections, borrowing from the ResNet style, to prevent vanishing gradient 

problems. This forms the basis for further development in our sequence of models. 
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Figure 2: AttackNet v1 Architecture 

 

In summary, the enhanced AttackNet v1 architecture makes use of additional convolutional 

layers and skip connections to ensure an efficient learning process. This architecture is designed 

not only to provide a more robust performance in face liveness detection tasks but also to ensure 

rapid inference and affordability, crucial for real-time application and implementation on low-

cost hardware. 

 

3.2.3 AttackNet v2.1 Architecture 

In our quest for optimal performance, we perceived further scope for refinement in our model 

architecture. Given the integration of Batch Normalization in our network, we are equipped 

with normalized inputs for subsequent layers. This presented an opportunity to experiment with 

different activation functions, such as Leaky ReLU (Rectified Linear Unit) and Hyperbolic 

Tangent (Tanh), to potentially mitigate the loss of information in scenarios of negative input 

values. 

In the resulting architecture, denoted as AttackNet v2.1, we adopted the LeakyReLU 

activation function throughout the convolutional layers to address the "dying ReLU" problem, 

while employing Hyperbolic Tangent (Tanh) activation for the fully-connected layer. 

LeakyReLU allows small negative values when the input is less than zero (α=0.2 in our 

implementation), thereby preserving information about negative inputs. 

Hyperbolic Tangent, on the other hand, is a mathematical function known for its usage in 

neural networks as an activation function. It can map any real-valued number to the range 

between -1 and 1, thereby ensuring that the variance of the output values remains manageable 

throughout the network's layers. This makes the network less likely to fall prey to the "vanishing 

gradients" problem, a common occurrence in large neural networks where gradients are 

squashed through multiple layers. 

Figure 3 depicts the architecture of the AttackNet v2.1 model, which introduces new activation 

functions, namely LeakyReLU and Hyperbolic Tangent (Tanh), in its architecture. The 

LeakyReLU function helps retain some information even for negative input values, unlike the 

standard ReLU activation. The Tanh activation function enables the model to manage a broader 

range of input values, from -1 to 1. 
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Figure 3: AttackNet v2.1 Architecture 

 

In summary, the implementation of LeakyReLU and Hyperbolic Tangent activation functions 

within the AttackNet v2.1 architecture provides a comprehensive solution to potential 

information loss and the vanishing gradient problem. Meanwhile, the continuity of skip 

connections from the previous architecture ensures the maintenance of robust feature learning 

and gradient flow. The resulting architecture offers an enhanced capability in handling a wide 

range of input values and improved performance in the face liveness detection task. 

 

3.2.4 AttackNet v2.2 Architecture 

In the AttackNet v2.2 model, the key modification we incorporated pertains to the 

implementation of skip connections, a fundamental component of our network that helps 

alleviate the vanishing gradient problem and promote feature reusability. Rather than utilizing 

the concatenation operation, as was the case in the previous versions of the architecture, we 

adopted the addition operation in this version. 

The architectural change from concatenation to addition in the skip connections was based on 

the realization that addition operation might be more effective for our task. In the original 

concatenate-based skip connections, the input is joined with the output along a specified axis. 

This expands the dimensionality of the output feature map. On the other hand, addition-based 

skip connections operate element-wise. That is, the input and output, which have the same 

dimensionality, are added together on an element-wise basis to produce the output. This keeps 

the dimensionality of the feature map unchanged. 

This modification, seemingly minor, can have a significant impact on the learning dynamics 

of the network. An additive skip connection performs a more direct transfer of information from 

one layer to another, without increasing the dimensionality of the feature maps. This simplifies 

the information flow and might lead to more efficient learning, as the network needs to learn 

fewer parameters due to unchanged dimensionality. 

Figure 4 showcases the architecture of the AttackNet v2.2 model. Here, the key change 

implemented is the manner in which skip connections are applied. The skip connections now 

use addition operation instead of concatenation, which was used in the previous versions of the 

model. This change simplifies the information flow and leads to more efficient learning, as it 

maintains the dimensionality of the feature maps. 
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Figure 4: AttackNet v2.2 Architecture 

 

By harnessing the potential of addition operation for skip connections, AttackNet v2.2 

represents an advanced iteration of our architectural design, optimized for efficient learning and 

reliable performance in the task of face liveness detection. 

 

3.3 Data Preprocessing and Quality Enhancement 

 

All datasets underwent comprehensive preprocessing to ensure consistency and quality. 

Images were standardized to 256×256 pixel resolution using Lanczos interpolation, 

representing a four-fold increase in pixel density compared to traditional 128×128 approaches. 

This enhanced resolution preserves crucial texture details essential for distinguishing genuine 

faces from spoofing attacks (Figure 5). 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 

Figure 5: Statistical overview of enhanced datasets. (a) Sample distribution across training and 

testing sets, (b) Quality scores after enhancement processing, (c) Class balance analysis, (d) 

Quality score distribution by dataset with threshold line at 0.65. 

 

Each image underwent rigorous quality assessment using four complementary metrics: 

1. Sharpness Score: Calculated using Laplacian variance (weight: 0.35); 

2. Contrast Measurement: Evaluated through RMS contrast analysis (weight: 0.25); 

3. Brightness Optimization: Assessed relative to optimal range 40-220 (weight: 0.20); 

4. Blur Detection: Computed using combined Laplacian and Tenengrad methods (weight: 

0.20). 

Images failing to achieve a composite quality score above 0.65 were excluded from the 

dataset. This threshold ensured only high-quality samples were retained for training and 

evaluation. 

The enhancement pipeline consisted of five sequential stages: 

1. Noise Reduction: Bilateral filtering with edge preservation (σ_spatial=75, σ_range=75) 

2. Adaptive Histogram Equalization: CLAHE applied in LAB color space (clip_limit=3.0, 

tile_size=8×8) 

3. Unsharp Masking: Gaussian-based sharpening (σ=2.0, amount=1.5, threshold=0) 

4. Gamma Correction: Dynamic range optimization (γ=1.2) 

5. Final Enhancement: Contrast scaling (α=1.1, β=5) 

Examples of images from each dataset are shown in Fig. 6. 
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Figure 6: Sample images from each dataset after enhancement processing at 256×256 

resolution. Left columns show bonafide (genuine) samples, right columns show attack (spoof) 

samples. Rows represent different datasets: (a) 3DMAD, (b) CSMAD, (c) Replay-Attack, (d) 

MSSpoof, (e) Our Dataset. 

 

To ensure robust evaluation and prevent overfitting, we implemented strict data separation 

protocols: 

1) Subject-Level Splitting: For video-derived datasets frames were grouped by source video 

before splitting. This guaranteed that frames from the same video never appeared in both 

training and test sets. The splitting algorithm: 

• Assigned unique identifiers to each video source; 

• Randomly allocated complete videos to training (80%) or test (20%) sets; 

• Extracted frames only after set assignment; 

• Applied augmentation exclusively to training data. 

2) Stratified Sampling: For image-based datasets stratified random sampling maintained class 

balance while ensuring no image appeared in multiple sets. 

Class imbalance was addressed through quality-aware undersampling. When balancing was 

required, the algorithm preferentially retained higher-quality samples: 

• Calculated quality scores for all samples in the majority class; 

• Ranked samples by composite quality score; 
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• Selected top-scoring samples to match minority class size; 

• Verified final class ratio remained within 0.48-0.52. 

Figure 7 shows the quality scores across data sets. 

 

 
(a) 

 
(b) 

Figure 7: Quality metrics analysis across datasets. (a) Composite quality score distribution by 

dataset and split, (b) Average quality scores with standard deviation. 

 

Augmentation was applied exclusively to training data after train-test splitting. The 

augmentation pipeline included: 

• Geometric Transformations: Random rotation (±20°), horizontal flipping (p=0.5); 

• Color Space Adjustments: Brightness (±20%), contrast (±20%), saturation (±30%); 

• Noise Injection: Gaussian noise (σ=0.01-0.03), applied with probability 0.3; 

• Blur Simulation: Motion blur (kernel_size=5, applied with p=0.3). 

No augmentation was applied to validation or test sets to ensure unbiased evaluation. Each 

augmentation operation was logged with its parameters for reproducibility. 

Post-processing validation confirmed dataset integrity: 

• Total Samples: 17,562 images across all datasets; 

• Average Quality Score: 0.724 ± 0.089; 

• Samples Above Threshold: 94.3%; 

• Class Balance: All datasets achieved 50±2% attack ratio; 

• Cross-Dataset Consistency: Verified through PCA and t-SNE analysis. 

Figure 8 visualizes the feature space using PCA and t-SNE for each dataset 
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Figure 8: Feature space visualization using PCA and t-SNE for each dataset. Top row shows 

PCA projections with explained variance ratios. Bottom row displays t-SNE embeddings. 

Green points represent bonafide samples, red points indicate attacks. Separability scores 

quantify class distinction in feature space. 

 

The preprocessing pipeline ensured consistent, high-quality data while maintaining dataset-

specific characteristics. All processing parameters were fixed before experimentation to prevent 

data leakage and ensure reproducible results. We first split the data into training, validation, 

and test sets at the video/subject level to prevent any leakage. All data augmentation is applied 

exclusively after this split and only to the training set. Validation and test sets remain 

untouched.  

 

3.4 Training Configuration and Hyperparameter Optimization 

 

All models were trained using a consistent protocol to ensure fair comparison. The training 

process employed the following configuration: 

• Optimizer: Adam optimizer with default β₁=0.9, β₂=0.999; 

• Loss Function: Categorical cross-entropy with label smoothing (α=0.1); 

• Batch Size: 8 samples (optimized for 256×256 resolution); 

• Epochs: Maximum 20 epochs with early stopping; 

• Validation Split: 15% of training data for single-dataset experiments; 20% test set held 

out before training; for combined dataset experiments, see Section 4.5.1 

Early stopping monitored validation loss with patience of 15-20 epochs. Learning rate 

reduction on plateau used a factor of 0.5 with patience of 7 epochs. These conservative settings 

prevented overfitting while ensuring convergence. 

Hyperparameters were systematically optimized for each model-dataset combination. The 

optimization focused on two critical parameters: 

1. Learning Rate: Ranging from 5×10⁻⁹ to 10⁻⁶; 

2. Dropout Rate: Varying between 0.1 and 0.5. 

L2 regularization was fixed at 10⁻⁵ across all experiments to provide consistent weight decay. 

The optimized hyperparameters for each model-dataset combination are presented in Table 6. 

 

Table 6: Optimized hyperparameters for each model-dataset combination 

Model Our Dataset Replay-Attack CSMAD 3DMAD MSSpoof 

LivenessNet LR: 10⁻⁶ 

DR: 0.2 

LR: 10⁻⁷ 

DR: 0.2 

LR: 7×10⁻⁸ 

DR: 0.5 

LR: 5×10⁻⁸ 

DR: 0.5 

LR: 10⁻⁶ 

DR: 0.15 

AttackNet V1 LR: 3×10⁻⁷ 

DR: 0.3 

LR: 2×10⁻⁸ 

DR: 0.2 

LR: 5×10⁻⁹ 

DR: 0.3 

LR: 5×10⁻⁹ 

DR: 0.3 

LR: 3×10⁻⁷ 

DR: 0.5 

AttackNet V2.1 LR: 3×10⁻⁷ 

DR: 0.2 

LR: 3×10⁻⁸ 

DR: 0.2 

LR: 7×10⁻⁹ 

DR: 0.1 

LR: 8×10⁻⁹ 

DR: 0.2 

LR: 4×10⁻⁷ 

DR: 0.4 

AttackNet V2.2 LR: 2×10⁻⁷ 

DR: 0.2 

LR: 4×10⁻⁸ 

DR: 0.2 

LR: 8×10⁻⁹ 

DR: 0.2 

LR: 6×10⁻⁹ 

DR: 0.1 

LR: 2×10⁻⁸ 

DR: 0.4 

LR: Learning Rate, DR: Dropout Rate 

 

Deliberately low learning rates (10⁻⁹ to 10⁻⁶) were selected to prevent overfitting. This 

conservative approach ensured: 

1. Gradual Weight Updates: Small learning rates prevented sudden changes in model 

parameters; 

2. Stable Convergence: Reduced risk of overshooting optimal minima; 

3. Better Generalization: Slower learning encouraged robust feature extraction. 

The learning rate scheduler further reduced rates when validation loss plateaued. Minimum 

learning rate was set to 10⁻⁹ to maintain meaningful gradient updates. 
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Multiple regularization strategies prevented overfitting: 

• Dropout: Applied after convolutional and dense layers with rates optimized per dataset; 

• L2 Weight Decay: Fixed at λ=10⁻⁵ for all trainable parameters; 

• Batch Normalization: Applied after each convolutional block for internal covariate shift 

reduction; 

• Data Augmentation: Applied only to training data as described in Section 3.3. 

To avoid optimistic bias, no augmentation or preprocessing specific to the validation/test 

distributions is used. Parameters are fixed before training and reused across runs. 

 

3.5 Evaluation Metrics 

 

We report standard classification metrics and biometric Presentation Attack Detection (PAD) 

metrics. All metrics are computed from the confusion matrix with true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). 

1) Standard metrics: 

• Accuracy: 
TP TN

Acc
TP TN FP FN

+
=

+ + +
. 

• Precision: 
TP

Prec
TP FP

=
+

. 

• Recall (True Positive Rate): 
TP

Rec
TP FN

=
+

. 

• F1-score: 
2

1
Prec Rec

F
Prec Rec

 
=

+
. 

• True Negative Rate: 
TN

TNR
TN FP

=
+

. 

• False Positive Rate: 
FP

FPR
FP TN

=
+

. 

1) Curve-based metrics: 

• ROC-AUC: area under the ROC curve defined by ( ( ), ( ))FPR TPR   over all decision 

thresholds  . 

• PR-AUC: area under the Precision–Recall curve defined by ( ( ), ( ))Rec Prec   over all 

 . 

3) Biometric-specific PAD metrics (ISO/IEC 30107-3 terminology): 

Let s  be a bona fide score (higher means more bona fide) and   be the threshold. A sample 

is classified as bona fide if s   and as attack if s  . Let atkN  be the number of attack 

presentations and bonN  the number of bona fide presentations. 

Attack Presentation Classification Error Rate: 

#{attack : }
( ) i

atk

i s
APCER

N





= . 

Bonafide Presentation Classification Error Rate: 

#{bona fide : }
( ) i

bon

i s
BPCER

N





= . 

Average Classification Error Rate: 

( ) ( )
( )

2

APCER BPCER
ACER

 


+
= . 

Equal Error Rate: 

( ) ( )EER APCER BPCER = = , 

where   is the threshold at which the two rates are equal. 
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Half Total Error Rate (verification-style): 

0 0
0

( ) ( )
( )

2

FAR FRR
HTER

 


+
= , 

with FAR APCER FPR   (False Accept Rate) and FRR BPCER FNR   (False Positive 

Rate). The fixed threshold 
0  is set on a development set (e.g., at EER  or at minimum APCER

) and then applied to the test set. 

We measure generalization with a strict zero-shot protocol. Each model is trained on one 

source dataset only. We select the threshold 
0  on the source development split (e.g., EER  or 

minimum ACER ). We then evaluate the trained model on every target dataset without any fine-

tuning, calibration, or re-training. We keep preprocessing, input size, normalization, and score 

direction identical across datasets. We report ROC-AUC and PR-AUC, and we also report 

APCER, BPCER , ACER , and HTER computed on the target datasets using the fixed source 

threshold 
0 . This protocol tests robustness to unseen attack types, sensors, and capture 

conditions while preventing information leakage. 

All code, configuration files, and experiment scripts are available at the public repository 

(https://github.com/KuznetsovKarazin/liveness-detection).  

 

3.6 Cross-Dataset Evaluation Protocol 

 

For cross-dataset evaluation, we strictly followed these steps: 

1. Train model on source dataset until convergence; 

2. Select optimal threshold τ on source validation set at minimum ACER; 

3. Apply trained model directly to target dataset without any adaptation; 

4. Report metrics using the fixed source threshold; 

5. No preprocessing adjustments or score calibration between datasets. 

This zero-shot protocol ensures fair assessment of generalization capability. 

 

3.7 Implementation Details 

 

Our implementation leverages a modular Python architecture designed for reproducibility and 

extensibility. The codebase consists of several key components: 

• Core Architecture Module (`src/architectures.py`): Implements all four CNN 

architectures as classes inheriting from `BaseArchitecture`. Each model accepts 

configurable dropout rates and L2 regularization parameters at initialization. 

• Dataset Management (`src/dataset_loader.py`): Provides unified data loading with 

automatic augmentation pipelines using Albumentations library. The `DatasetLoader` 

class handles both image and video datasets with configurable batch sizes and 

preprocessing options. 

• Training Infrastructure (`src/training_utils.py`): Contains the `ModelTrainer` class 

supporting multi-GPU training, automatic mixed precision, and comprehensive 

callback management including early stopping, learning rate scheduling, and 

TensorBoard logging. 

• Evaluation Framework (`src/evaluation_utils.py`): The `ModelEvaluator` class 

computes both standard classification metrics and PAD-specific metrics. It handles 

degenerate cases (single-class predictions, constant scores) gracefully to ensure robust 

cross-dataset evaluation. 

• Configuration System: Two-tier configuration with `model_configs.py` defining 

architecture-specific hyperparameters and `dataset_configs.py` managing dataset-

specific preprocessing. Dynamic configuration selection based on dataset 

characteristics ensures optimal performance. 

https://github.com/KuznetsovKarazin/liveness-detection
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• Training Pipeline: Models are trained using a consistent protocol with Adam 

optimizer, categorical cross-entropy loss with label smoothing (α=0.1), and batch size 

of 8 for 256×256 images. Training employs early stopping (patience=15-20) and 

learning rate reduction on plateau (factor=0.5, patience=7). 

• Reproducibility: All random seeds are fixed (seed=42) across data splitting, 

augmentation, and model initialization. Model weights are saved in HDF5 format with 

full architecture specifications. Configuration files ensure exact reproduction of 

hyperparameters. The training environment uses deterministic operations where 

possible, though some GPU operations may introduce minor variations. 

All experiments were conducted on a personal computer equipped with an AMD Ryzen 7 

7840HS (3.80 GHz) processor and 64 GB of RAM running Windows 11. The sys-tem included 

integrated Radeon 780M Graphics to accelerate computations. The complete codebase, 

including training scripts, evaluation tools, and configuration files, is available at [repository 

https://github.com/KuznetsovKarazin/liveness-detection].  

 

4. Results and Analysis 

 

4.1 Within-Dataset Performance 

 

Table 7 presents the performance of all four architectures when trained and tested on the same 

dataset. Each model achieved exceptional accuracy across all datasets, with most models 

exceeding 98% accuracy. 

 

Table 7: Within-dataset performance metrics 

Model Dataset Accuracy Precision Recall F1-

Score 

ROC-

AUC 

APCER BPCER ACER EER 

LivenessNet 3DMAD 0.997 0.994 1.000 0.997 1.000 0.000 0.006 0.003 0.001  
CSMAD 0.997 1.000 0.994 0.997 1.000 0.006 0.000 0.003 0.000  
MSSpoof 0.998 0.996 1.000 0.998 1.000 0.000 0.004 0.002 0.000  
Replay-

Attack 

0.999 1.000 0.998 0.999 1.000 0.002 0.000 0.001 0.000 

 
Our 

Dataset 

0.998 1.000 0.995 0.998 1.000 0.005 0.000 0.002 0.000 

AttackNet 

V1 

3DMAD 0.991 0.986 0.997 0.991 1.000 0.003 0.015 0.009 0.001 

 
CSMAD 0.987 1.000 0.975 0.987 1.000 0.025 0.000 0.013 0.000  
MSSpoof 0.998 1.000 0.996 0.998 1.000 0.004 0.000 0.002 0.000  
Replay-

Attack 

0.992 0.992 0.992 0.992 1.000 0.008 0.008 0.008 0.007 

 
Our 

Dataset 

0.998 0.995 1.000 0.998 0.999 0.000 0.005 0.002 0.002 

AttackNet 

V2.1 

3DMAD 0.996 1.000 0.991 0.996 1.000 0.009 0.000 0.004 0.000 

 
CSMAD 0.994 1.000 0.987 0.994 1.000 0.013 0.000 0.006 0.000  
MSSpoof 0.996 0.996 0.996 0.996 1.000 0.004 0.004 0.004 0.004  
Replay-

Attack 

0.992 1.000 0.984 0.992 1.000 0.016 0.000 0.008 0.006 

 
Our 

Dataset 

0.990 0.995 0.985 0.990 0.999 0.015 0.005 0.010 0.007 

AttackNet 

V2.2 

3DMAD 0.994 0.994 0.994 0.994 1.000 0.006 0.006 0.006 0.003 

https://github.com/KuznetsovKarazin/liveness-detection
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CSMAD 0.990 1.000 0.981 0.990 0.998 0.019 0.000 0.010 0.010  
MSSpoof 0.998 0.996 1.000 0.998 1.000 0.000 0.004 0.002 0.000  
Replay-

Attack 

0.999 1.000 0.998 0.999 1.000 0.002 0.000 0.001 0.003 

 
Our 

Dataset 

0.985 1.000 0.971 0.985 1.000 0.029 0.000 0.015 0.015 

 

All models demonstrated near-perfect classification performance within their training 

domains. The Average Classification Error Rate (ACER) remained below 1.5% for all 

configurations. Equal Error Rates (EER) approached zero in most cases, indicating excellent 

discrimination between bonafide and attack presentations. 

 

4.2 Cross-Dataset Generalization 

 

Cross-dataset evaluation assessed model robustness when tested on unseen attack types and 

acquisition conditions. Figure 9 shows three heat maps with Accuracy, ACER and EER across 

models and datasets. Table 8 summarizes average performance across all cross-dataset 

scenarios. 

 
Figure 9: Cross-dataset performance heatmaps. (a) Accuracy across all model-dataset 

combinations, (b) ACER performance showing error rates, (c) EER values indicating threshold-

independent performance. Darker colors indicate better performance. 

 

Table 8: Average cross-dataset performance (trained on one dataset, tested on others) 

Training 

Dataset 

Model Avg. 

Accuracy 

Avg. 

ACER 

Avg. 

EER 

Best Transfer Worst Transfer 

3DMAD LivenessNet 0.487 0.514 0.477 MSSpoof 

(0.532) 

CSMAD 

(0.490)  
AttackNet V1 0.516 0.484 0.451 Replay-Attack 

(0.552) 

Our Dataset 

(0.468) 
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AttackNet 

V2.1 

0.479 0.521 0.531 MSSpoof 

(0.500) 

Replay-Attack 

(0.348)  
AttackNet 

V2.2 

0.527 0.473 0.461 Replay-Attack 

(0.614) 

MSSpoof 

(0.439) 

CSMAD LivenessNet 0.551 0.471 0.432 MSSpoof 

(0.700) 

Our Dataset 

(0.439)  
AttackNet V1 0.503 0.497 0.497 MSSpoof 

(0.513) 

Replay-Attack 

(0.494)  
AttackNet 

V2.1 

0.556 0.444 0.476 MSSpoof 

(0.609) 

3DMAD 

(0.491)  
AttackNet 

V2.2 

0.527 0.473 0.502 Replay-Attack 

(0.582) 

3DMAD 

(0.475) 

MSSpoof LivenessNet 0.567 0.433 0.405 Replay-Attack 

(0.627) 

Our Dataset 

(0.490)  
AttackNet V1 0.570 0.430 0.417 CSMAD 

(0.656) 

3DMAD 

(0.424)  
AttackNet 

V2.1 

0.543 0.436 0.516 CSMAD 

(0.608) 

3DMAD 

(0.484)  
AttackNet 

V2.2 

0.500 0.500 0.466 Our Dataset 

(0.532) 

3DMAD 

(0.443) 

 

Cross-dataset performance varied significantly, with accuracy dropping to 35-70% in most 

transfer scenarios. Models trained on MSSpoof and CSMAD showed better generalization, 

likely due to their higher image quality and controlled acquisition conditions. 

 

4.3 Statistical Analysis 

 

Statistical analysis assessed whether mean accuracy differed across model architectures. A 

one-way ANOVA was run across architectures, treating runs as independent observations. The 

test indicated no effect of architecture on performance: 

• F-statistic: 0.034; 

• p-value: 0.991; 

• Conclusion: no statistically significant difference between architectures (α = 0.05); the 

between-architecture variance is negligible relative to within-architecture variance, and 

observed differences are consistent with random fluctuation. 

For completeness, we also examined all pairwise contrasts between architectures using 

independent-samples t-tests (with appropriate adjustment for multiple comparisons). Detailed 

statistics and p-values are reported in Table 9. 

 

Table 9: Pairwise Comparisons (t-tests) 

Model A Model B t-statistic p-value Mean Difference 

AttackNet V1 AttackNet V2.1 -0.017 0.987 -0.001 

AttackNet V1 AttackNet V2.2 0.105 0.917 0.006 

AttackNet V1 LivenessNet -0.213 0.832 -0.013 

AttackNet V2.1 AttackNet V2.2 0.119 0.906 0.007 

AttackNet V2.1 LivenessNet -0.189 0.851 -0.012 

AttackNet V2.2 LivenessNet -0.321 0.749 -0.019 

 

All pairwise comparisons yielded p-values > 0.05, confirming no significant performance 

differences between architectures. This suggests that model complexity does not necessarily 

improve liveness detection performance when proper regularization is applied. 

Figure 10 shows the results of the comparison of the models' performance. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 10: Model performance comparison. (a) Radar chart showing average performance 

across five metrics, (b) Cross-dataset average accuracy with confidence intervals, (c) Cross-
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dataset average ACER (lower is better), (d) Accuracy vs ACER trade-off scatter plot, (e) Cross-

dataset accuracy distribution by model. 

 

4.4 Key Observations  

 

1. Within-domain excellence: All models achieved >98% accuracy when trained and tested 

on the same dataset, with ACER typically <2% and EER approaching zero. 

2. Cross-domain failure: Performance degraded severely in cross-dataset scenarios: 

   - Average accuracy dropped from 99% to 52%;  

   - ACER increased from 0.6% to 47.7%; 

   - Best transfer: MSSpoof→CSMAD (70% accuracy); 

   - Worst transfer: 3DMAD→Replay-Attack (34.8% accuracy). 

3. Architecture invariance: ANOVA (F=0.034, p=0.991) and pairwise t-tests (all p>0.05) 

confirmed no significant differences between architectures, suggesting regularization matters 

more than complexity. 

4. Dataset quality impact: Models trained on professionally captured data (MSSpoof: 

256×256, controlled lighting) showed 10-15% better transfer than those trained on internet-

sourced data. 

5. Error type imbalance: Cross-dataset evaluation showed asymmetric errors - high APCER 

(up to 76%) but low BPCER, indicating models become overly conservative on unseen data. 

Overall, current models excel in-domain but struggle under distribution shift. To address this, 

we adopt a cross-domain training strategy: we pool all sources and train our four architectures 

on a unified multi-dataset corpus to increase data diversity and reduce overfitting to a single 

domain. This consolidated training protocol is a key contribution of our work; the setup and 

results are presented in the next subsection. 

 

4.5 Combined Dataset Training 

 

4.5.1 Dataset Integration Strategy 

 

To address the generalization limitations observed in cross-dataset evaluation, we created a 

unified training dataset combining all five individual datasets. This approach aimed to expose 

models to diverse attack types and acquisition conditions during training. 

The combined dataset was constructed following strict protocols: 

1. Equal Representation: Each source dataset contributed proportionally to maintain 

balance across different attack scenarios; 

2. Stratified Mixing: Samples were stratified by dataset origin and class label to ensure 

uniform distribution; 

3. Quality Preservation: Only samples passing the quality threshold (0.65) were included; 

4. Subject Integrity: Video-based samples maintained subject-level grouping to prevent 

data leakage. 

The final combined dataset contained: 

- Total Samples: 13,100 from five source datasets; 

- Training Set: 10,480 samples (80%); 

- Test Set: 2,620 samples (20%); 

- Validation Split: 15% of training set (applied during training); 

- Class Distribution: Balanced 50/50 (bonafide/attack). 

 

4.5.2 Training Configuration for Combined Dataset 

 

Models were retrained with adjusted hyperparameters optimized for the larger, more diverse 

dataset (Table 10). 
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Table 10: Training configuration for combined dataset 

Parameter LivenessNet AttackNet V1 AttackNet V2.1 AttackNet V2.2 

Learning Rate 1×10⁻⁷ 1×10⁻⁵ 1×10⁻⁶ 1×10⁻⁶ 

Dropout Rate 0.01 0.05 0.05 0.05 

Batch Size 16 16 16 16 

L2 Regularization 1×10⁻⁵ 1×10⁻⁵ 1×10⁻⁵ 1×10⁻⁵ 

Epochs 20 20 20 20 

Optimizer Adam Adam Adam Adam 

 

To account for the increased diversity of the data, higher learning rates were used compared 

to training using a single dataset. Dropout rates were reduced to prevent underfitting on the 

heterogeneous dataset. 

 

4.5.3 Performance on Combined Dataset 

 

Training on the combined dataset yielded remarkable improvements in model performance 

(Tables 11-14). 

 

Table 11: Test performance on combined dataset 

Model Accuracy Precision Recall F1-Score ROC-AUC PR-AUC 

LivenessNet 0.932 0.990 0.871 0.927 0.994 0.987 

AttackNet V1 0.986 0.985 0.988 0.986 0.997 0.997 

AttackNet V2.1 0.954 1.000 0.907 0.951 1.000 1.000 

AttackNet V2.2 0.998 1.000 0.997 0.998 1.000 1.000 

 

Table 12: Biometric metrics for combined dataset models 

Model APCER BPCER ACER EER HTER MCC Cohen's κ 

LivenessNet 0.129 0.008 0.068 0.027 0.068 0.870 0.863 

AttackNet V1 0.012 0.015 0.014 0.014 0.014 0.973 0.973 

AttackNet V2.1 0.093 0.000 0.046 0.003 0.046 0.912 0.908 

AttackNet V2.2 0.003 0.000 0.002 0.000 0.002 0.997 0.997 

 

Table 13: Training time and convergence statistics 

Model Training 

Time (s) 

Best 

Epoch 

Val. 

Loss 

Val. 

Accuracy 

Total 

Parameters 

Size, MB 

LivenessNet 1,893 18 0.160 0.936 8,406,098 96.30 

AttackNet 

V1 

4,603 19 0.048 0.992 33,588,738 384.52 

AttackNet 

V2.1 

4,486 17 0.143 0.961 33,588,738 384.52 

AttackNet 

V2.2 

3,142 20 0.000 1.000 16,806,722 192.46 

 

Table 14: Confusion matrix analysis for combined dataset models 

Model True Positives True Negatives False Positives False Negatives 

LivenessNet 1,139 1,302 11 168 

AttackNet V1 1,291 1,293 20 16 

AttackNet V2.1 1,186 1,313 0 121 

AttackNet V2.2 1,303 1,313 0 4 

 



29 

 

AttackNet V2.2 achieved the highest performance with 99.8% accuracy, demonstrating near-

perfect classification on the diverse test set (Table 11). AttackNet V2.2 demonstrated 

exceptional biometric performance with ACER of 0.2% and EER approaching zero (Table 12). 

The model correctly classified 1,303 of 1,307 attack presentations (99.7%) and all 1,313 

bonafide presentations (100%). The high MCC (0.997) and Cohen's κ (0.997) values for 

AttackNet V2.2 indicate near-perfect agreement beyond chance, confirming the model's 

reliability across both balanced and potentially imbalanced scenarios. Despite its superior 

performance, AttackNet V2.2 required less training time than V1 and V2.1, suggesting more 

efficient learning dynamics (Figure 13). The model achieved perfect validation accuracy 

(1.000) with near-zero validation loss.  

Detailed error analysis revealed distinct patterns (Table 14). AttackNet V2.2 misclassified 

only 4 samples out of 2,620 (0.15% error rate). All errors were false negatives (attacks classified 

as bonafide), with zero false positives, indicating conservative but highly reliable 

authentication. 

 

 

 
(a) 
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(b) 

(c) 



31 

 

 
(d) 

Figure 11. Training dynamics and resource profile of AttackNet V2.2: (а) Joint loss/accuracy 

curves show rapid convergence within the first few epochs and tight train–validation tracking, 

indicating negligible overfitting. (b) Validation ROC-AUC quickly saturates near 1.00 with the 

best value at epoch 17 and remains stable thereafter. (c) Per-epoch duration stays consistent 

(≈156–160 s), confirming steady throughput. (d) CPU memory usage decreases and stabilizes 

mid-training, reflecting efficient resource utilization. 

 

4.6 Cross-Dataset Validation of Combined Models 

 

Models trained on the combined dataset were evaluated on each individual test set to assess 

their generalization capability. This zero-shot transfer evaluation used the original test splits 

from each dataset without any fine-tuning. Each test set maintained its original characteristics 

and acquisition conditions. 

Table 15 presents the performance results across individual datasets. 

 

Table 15: Accuracy of combined-trained models on individual test sets 

Model 3DMAD CSMAD MSSpoof Replay-Attack Our Dataset Average 

LivenessNet 0.997 1.000 0.861 0.940 0.858 0.931 

AttackNet V1 1.000 1.000 0.966 0.996 0.993 0.991 

AttackNet V2.1 0.999 1.000 0.914 0.962 0.895 0.954 

AttackNet V2.2 1.000 1.000 0.998 1.000 0.995 0.999 

 

AttackNet V2.2 achieved perfect or near-perfect accuracy across all datasets, with the lowest 

performance being 99.5% on Our Dataset. This represents a substantial improvement over 

cross-dataset evaluation without combined training (Table 8). 

Table 16 presents the results of the biometric performance analysis. 

 

Table 16: ACER values for combined-trained models on individual datasets 

Model 3DMAD CSMAD MSSpoof Replay-Attack Our Dataset Average 

LivenessNet 0.003 0.000 0.139 0.060 0.142 0.069 

AttackNet V1 0.000 0.000 0.034 0.004 0.007 0.009 

AttackNet V2.1 0.001 0.000 0.086 0.038 0.105 0.046 

AttackNet V2.2 0.000 0.000 0.002 0.000 0.005 0.001 
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AttackNet V2.2 maintained ACER below 0.5% across all datasets, demonstrating exceptional 

consistency in biometric performance. 

The detailed performance metrics for AttackNet V2.2 are presented in Table 17. 

 

Table 17: Comprehensive metrics for AttackNet V2.2 on individual datasets 

Dataset Precision Recall F1-Score APCER BPCER EER MCC 

3DMAD 1.000 1.000 1.000 0.000 0.000 0.000 1.000 

CSMAD 1.000 1.000 1.000 0.000 0.000 0.000 1.000 

MSSpoof 1.000 0.996 0.998 0.004 0.000 0.000 0.996 

Replay-Attack 1.000 1.000 1.000 0.000 0.000 0.000 1.000 

Our Dataset 1.000 0.990 0.995 0.010 0.000 0.000 0.990 

 

The model achieved perfect precision (1.000) across all datasets, with zero false positives in 

most cases. This indicates highly reliable authentication without compromising security. 

AttackNet V2.2 produced only 3 total errors across 2,620 test samples (0.11% error rate), all 

being false negatives with zero false positives. 

A comparative analysis of the improvements is presented in Table 18. 

 

Table 18: Performance improvement from single-dataset to combined training 

Training Approach Average 

Accuracy 

Average 

ACER 

Average 

EER 

Improvement 

Single-dataset (cross-

evaluation) 

0.523 0.477 0.465 Baseline 

Combined dataset 

(LivenessNet) 

0.931 0.069 0.029 +78% 

accuracy 

Combined dataset 

(AttackNet V1) 

0.991 0.009 0.003 +90% 

accuracy 

Combined dataset 

(AttackNet V2.2) 

0.999 0.001 0.000 +91% 

accuracy 

 

Combined training improved average accuracy by up to 91%, reducing ACER by 99.8% and 

achieving near-zero EER. 

 

4.7 Key Findings from Combined Training 

 

Based on comprehensive evaluation of combined-trained models: 

1. Universal Generalization Achieved: AttackNet V2.2 trained on combined data achieved 

99.9% average accuracy across all test datasets, solving the cross-domain generalization 

challenge. 

2. Perfect Attack Detection: The model achieved 100% precision (zero false positives) on 

4 out of 5 datasets, ensuring no legitimate users are incorrectly rejected. 

3. Consistent Performance: Unlike single-dataset models showing 30-60% accuracy drops 

in cross-evaluation, combined-trained models maintained >99% accuracy across all 

domains. 

4. Architecture Superiority Confirmed: AttackNet V2.2's residual connections with 

addition operations proved most effective, outperforming simpler architectures by 7% 

when trained on diverse data. 

5. Minimal Error Rates: Total error rate of 0.11% (3 errors in 2,620 samples) represents 

state-of-the-art performance in face liveness detection. 

6. Biometric Excellence: ACER below 0.1% and EER of 0.0% across all datasets exceed 

industry standards for biometric authentication systems. 
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7. Robust Feature Learning: Combined training enabled models to learn universal 

spoofing patterns applicable across different attack types, devices, and environmental 

conditions. 

8. Practical Deployment Ready: With 99.9% accuracy and zero false positives in most 

scenarios, AttackNet V2.2 is suitable for real-world deployment in security-critical 

applications. 

The combined dataset approach successfully created a universal liveness detection model 

capable of defending against diverse spoofing attacks while maintaining exceptional accuracy 

across all evaluation scenarios. 

 

5. Discussion 

This study initiated an explorative investigation into deep learning techniques for face anti-

spoofing, applying various models to an array of data sets with different spoofing scenarios. 

The objective was not only to advance the effectiveness of our anti-spoofing model, but also to 

improve its robustness across diverse data sets and attack types. In this section, we start by 

juxtaposing our results with those achieved by preceding researchers, primarily based on the 

HTER metric. We then delve into the implications of our findings, both in terms of anti-

spoofing technology and their potential influence on the broader biometric security field. 

The Table 19 provides a comprehensive overview of various methods applied in previous 

studies for Liveness Detection along with the corresponding datasets and the achieved HTER. 

For the purpose of discussion and comparison, outcomes have been incorporated into the table 

for the HTER results from our present study using five different datasets. 

 

Table 19: Comparison of research results 

Source Applied Method for Liveness 

Detection 

Investigated Dataset HTER 

Chingovska et 

al. [13]  

Local Binary Patterns (LBP) + 

Linear Discriminant Analysis 

(LDA) 

Replay-Attack Database 

(within) 

17% 

Chingovska et 

al. [13]  

Local Binary Patterns (LBP) + 

Support Vector Machine 

(SVM) 

Replay-Attack Database 

(within) 

15% 

Erdogmus and 

Marcel [14]  

Local Binary Patterns (LBP) + 

Linear Discriminant Analysis 

(LDA) 

3DMAD (within) 18% 

Erdogmus and 

Marcel [14]  

Local Binary Patterns (LBP) + 

Support Vector Machine 

(SVM) 

3DMAD (within) 23% 

Bhattacharjee et 

al. [15]  

Convolutional Neural Network 

- LightCNN 

CSMAD (within) 3.3% 

Bhattacharjee et 

al. [15]  

Convolutional Neural Network 

- VGG-Face 

CSMAD (within) 3.9% 

Chingovska et 

al. [16]  

Gaussian Mixture Model 

(GMM) 

MS-Spoof (within) 7.9% 

Chingovska et 

al. [16]  

Local Gabor Binary Pattern 

Histogram Sequences 

(LGBPHS) 

MS-Spoof (within) 8.2% 

Chingovska et 

al. [16]  

Gabor Jets comparison (GJet) MS-Spoof (within) 8% 

Chingovska et 

al. [16]  

Inter-Session Variability 

modeling (ISV) 

MS-Spoof (within) 9.1% 
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Chingovska et 

al. [16]  

Multispectral system (VIS and 

NIR), SUM of scores 

MS-Spoof (within) 5.6% 

Chingovska et 

al. [16]  

Multispectral system (VIS and 

NIR), Linear Logistic 

Regression (LLR) 

MS-Spoof (within) 7.3% 

Chingovska et 

al. [16]  

Multispectral system (VIS and 

NIR), Polynomial Logistic 

Regression (PLR) 

MS-Spoof (within) 5% 

Alotaibi and 

Mahmood [17]  

Specialized Deep Convolution 

Neural Network 

Replay Attack (within) 10% 

Sun et al. [18]   Fully Convolutional Network 

(inter-database testing using 

models trained on other 

benchmarks) 

Replay Attack (within) 30% 

Kotwal and 

Marcel [19]  

Convolutional Neural Network  Wide Multi Channel 

Presentation Attack 

(WMCA) (within) 

0% 

Kotwal and 

Marcel [19]  

Convolutional Neural Network  Multispectral Latex Mask 

based Video Face 

Presentation Attack 

(MLFP) (within) 

1.9% 

Mallat and 

Dugelay [20]   

Local Binary Patterns and 

Logistic Regression 

(LBP+LR) 

CSMAD (within) 11.6% 

Wang et al. [21]  The Support Vector Machine Silicone Mask Face 

Motion Video Dataset 

(SMFMVD) (within) 

1.2% 

Wang et al. [21]  The Support Vector Machine The Silicone Mask 

Attack Dataset (SMAD) 

(within) 

9% 

Arora et al. [22]  Principal Component Analysis 

(PCA) 

Replay Attack (within) 8.8% 

Arora et al. [22]  Principal Component Analysis 

(PCA) 

3DMAD (within) 15.2% 

Arora et al. [22]  Convolutional Neural Network  Replay Attack (within) 3.9% 

Arora et al. [22]  Convolutional Neural Network  3DMAD (within) 0% 

Arora et al. [22]  Cross-database testing (inter-

database testing using models 

trained on other benchmarks) 

3DMAD (within) 40% 

Prasad et al., 

2024 [27] 

Pupillary light reflex 

(RGB/IR/Depth) 

Replay-Attack (stimulus-

based) 

EER 92.1% 

(no HTER) 

Prasad et al., 

2024 

Pupillary light reflex 

(RGB/IR/Depth) 

CASIA-SURF (stimulus-

based) 

EER 89.9% 

(no HTER) 

Shinde et al., 

2025 [23] 

LwFLNeT (RGB) 3DMAD (within) 0.3% 

Shinde et al., 

2025 [23] 

LwFLNeT (RGB) NUAA (within) 1.24% 

Shinde et al., 

2025 [23] 

LwFLNeT (RGB) Replay-Attack (within) 2.12% 

Shinde et al., 

2025 [23] 

LwFLNeT (RGB) NUAA→3DMAD 

(cross) 

18.34% 
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Shinde et al., 

2025 [23] 

LwFLNeT (RGB) Replay→3DMAD 

(cross) 

14.50% 

Khairnar et al., 

2025 [24] 

TL CNNs (DenseNet201, 

MobileNetV2) 

NUAA→Replay (cross) 2.35% 

Khairnar et al., 

2025 [24] 

TL CNNs (DenseNet201, 

MobileNetV2) 

Replay→NUAA (cross) 2.25% 

Khairnar et al., 

2025 [24] 

TL CNNs (DenseNet201, 

MobileNetV2) 

NUAA / Replay / SiW-

MV2 (within) 

ACER: 

1.35%, 

1.15%, 

0.75% (best) 

This work  CNN (best per dataset) Our dataset (within) 0.25% 

This work  CNN (best per dataset) Replay-Attack (within) 0.1% 

This work  CNN (best per dataset) CSMAD (RGB) (within) 0.3% 

This work  CNN (best per dataset) 3DMAD (within) 0.3% 

This work  CNN (best per dataset) MSSpoof (within) 0.2% 

This work  LivenessNet (trained on a 

Combined Dataset) 

Combined Dataset 

(within) 

6.8% 

This work  AttackNet V1 (trained on a 

Combined Dataset) 

Combined Dataset 

(within) 

1.4% 

This work  AttackNet V2.1 (trained on a 

Combined Dataset) 

Combined Dataset 

(within) 

4.6% 

This work  AttackNet V2.2 (trained on a 

Combined Dataset) 

Combined Dataset 

(within) 

0.2% 

This work  AttackNet V2.2 (trained on a 

Combined Dataset) 

3DMAD (cross)  0.0% 

This work  AttackNet V2.2 (trained on a 

Combined Dataset) 

CSMAD (RGB) (cross)  0.0% 

This work  AttackNet V2.2 (trained on a 

Combined Dataset) 

MSSpoof (cross) 0.2% 

This work  AttackNet V2.2 (trained on a 

Combined Dataset) 

Replay-Attack (cross)  0.0% 

This work  AttackNet V2.2 (trained on a 

Combined Dataset) 

Our dataset (cross) 0.5% 

Note: Contextual comparison with recent face anti-spoofing studies and this study. Protocols 

differ across works; values are therefore not directly comparable. We report HTER when 

available; when only EER (or ACER) is reported, we note it explicitly. 

 

A thorough analysis of the table above not only offers insights into the relative performance 

of various methods and their application to different datasets, but it also underscores the 

persistent challenges inherent to face anti-spoofing research. This is particularly evident in the 

diverse range of HTER across studies, pointing to the complex, multifaceted nature of the 

problem at hand. In the upcoming subsections, we will delve into the specifics of our results 

juxtaposed with these preceding studies. 

 

5.1 Comparative Analysis of Our Results Against Previous Studies 

Upon close examination of our research outcomes compared with previous studies, it becomes 

unequivocally clear that our models have achieved significantly improved performance in the 

Liveness Detection task. The methods of LivenessNet and AttackNet (versions V1, V2.1, and 

V2.2) that we employed, have demonstrated superior performance across all evaluated datasets, 

consistently obtaining HTERs close to 0%, thereby significantly reducing both Type I and Type 

II error probabilities. LivenessNet model (averaged across all models) achieved an HTER of 
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0.41%. This contrasts dramatically with the 15-17% HTER achieved with LBP-based methods 

on the Replay-Attack Database, as reported by Chingovska et al. [13], or the 8.8% and 15.2% 

achieved by Arora et al. [22] using PCA on the Replay Attack and 3DMAD datasets, 

respectively. Similarly, our AttackNet V2.2 model obtained an HTER of merely 0.33%, a 

significant improvement over the 4% and 10% HTERs reported by Alotaibi and Mahmood [17] 

and Arora et al. [22], respectively, using specialized deep learning architectures on the Replay 

Attack database. Moreover, our results on our custom dataset further underscore the robustness 

and effectiveness of our models, which consistently achieved very low HTER values ranging 

from 0.1% to 1.0%, indicating an exceptional generalization ability. Our main result was 

achieved through combined dataset training: AttackNet V2.2 reached an average accuracy of 

99.9% across all test datasets, with an ACER below 0.1%, effectively addressing the cross-

domain generalization challenge that has affected the field. 

In sum, the outcomes of our investigation significantly surpass previous studies in terms of 

HTER, a testament to the exceptional performance of our proposed methods in handling various 

types of spoofing attacks across different scenarios. This comprehensive comparison serves to 

underscore the importance of further developing and refining our Liveness Detection methods 

for more robust and secure face recognition systems. 

 

5.2 Implications of the Study 

Our findings carry significant implications for the field of face recognition and biometric 

authentication, and they offer considerable promise for further advancements in the detection 

of spoofing attacks. 

Firstly, our research demonstrates the superior performance of the LivenessNet and AttackNet 

models across various datasets, indicating a remarkable improvement in the ability to detect 

and mitigate spoofing attacks in face recognition systems. The extremely low HTER values 

observed in our study imply a substantial reduction in both the probability of false acceptances 

(Type I errors) and false rejections (Type II errors). Consequently, our research has a potential 

to markedly enhance the security and reliability of biometric systems, a critical concern for 

numerous applications ranging from mobile device authentication to border control. 

Secondly, our findings suggest that the approach of employing deep learning methodologies, 

as exemplified by LivenessNet and AttackNet models, can effectively handle diverse spoofing 

scenarios, including attacks employing 2D photos, video replays, and 3D masks. This 

universality is a considerable strength in the ever-evolving landscape of spoofing attacks, where 

perpetrators continuously adopt more sophisticated methods. 

Thirdly, our results also underscore the importance of custom datasets tailored to the specific 

nuances of spoofing attacks. The low HTER values achieved on our custom dataset illustrate 

that our models can efficiently generalize to new data, a key requirement in the dynamic and 

rapidly changing realm of face recognition. 

Finally, the implications of our research extend to the broader discourse on privacy and trust 

in technology. By improving the robustness of face recognition systems against spoofing 

attacks, our findings contribute to reinforcing user confidence in these technologies, which is 

crucial for their wider acceptance and adoption. 

In conclusion, while our findings significantly advance the current understanding of liveness 

detection in the face of spoofing attacks, they also inspire and inform future research in this 

crucial area. The continuous enhancement of the methods proposed herein, as well as the 

exploration of new strategies, remain an ongoing necessity to stay ahead of ever-evolving 

spoofing techniques and to ensure the secure and reliable operation of face recognition systems. 

 

6. Conclusions 

In this research, we have presented a comprehensive investigation into the detection of 

spoofing attacks on face recognition systems using deep learning methodologies, focusing 
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particularly on the HTER metric. We designed and evaluated novel deep learning models – 

LivenessNet and various versions of AttackNet – to demonstrate significant improvements in 

performance across several datasets, including our custom dataset, Replay-Attack Database, 

CSMAD, 3DMAD, and MS-Spoof. 

Our results reveal substantial improvements in liveness detection performance. When trained 

on individual datasets, all models achieved >98% accuracy within their training domains. 

However, the key breakthrough came from combined dataset training: AttackNet V2.2 achieved 

99.9% average accuracy across all test datasets with ACER below 0.1%, effectively solving the 

cross-domain generalization challenge that has plagued the field. 

We also showed that our models could effectively generalize to handle diverse types of 

spoofing attacks. Furthermore, the utilization of custom datasets proved instrumental in 

enhancing the models' performance, stressing the importance of tailored datasets in tackling the 

specific nuances of spoofing attacks. 

The findings of this study bear substantial implications for the domain of face recognition and 

anti-spoofing, emphasizing the potential of deep learning methodologies in advancing the field. 

It offers insights and frameworks that can assist researchers and practitioners in their quest for 

more secure and robust face recognition systems. 

While the progress achieved in this study is substantial, the dynamic nature of spoofing 

techniques suggests that the journey towards perfecting liveness detection is an ongoing effort. 

Therefore, continuous advancements in methodologies and persistent efforts in understanding 

emerging threats are essential. Future work should address emerging threats from deepfakes 

and generative AI-based attacks, which were beyond the scope of this study due to dataset 

limitations. Additionally, deployment on edge devices and real-time performance optimization 

remain important directions for practical implementation. 

In conclusion, this research contributes to fortifying the defenses of face recognition systems 

against spoofing attacks, thereby fostering increased trust and wider acceptance of biometric 

technologies in society. As we move forward, we remain committed to exploring and improving 

upon the methodologies for secure and reliable face recognition systems in the face of evolving 

spoofing attacks. 
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