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Abstract—Intrusion Detection Systems (IDS) are a vital part
of a network-connected device. In this paper, we develop a deep
learning based intrusion detection system that is deployed in a
distributed setup across devices connected to a network. Our
aim is to better equip deep learning models against unknown
attacks using knowledge from known attacks. To this end, we
develop algorithms to maximize the number of transferability re-
lationships. We propose a Convolutional Neural Network (CNN)
model, along with two algorithms that maximize the number
of relationships observed. One is a two step data pre-processing
stage, and the other is a Block-Based Smart Aggregation (BBSA)
algorithm. The proposed system succeeds in achieving superior
transferability performance while maintaining impressive local
detection rates. We also show that our method is generalizable,
exhibiting transferability potential across datasets and even with
different backbones. The code for this work can be found at
https://github.com/ghosh64/tabfidsv2.

Index Terms—Network Intrusion Detection, Transferability,
Federated Learning, Block-Based Smart Aggregation, Temporal
Averaging.

I. INTRODUCTION

Intrusion Detection Systems (IDS) are essential for pro-
tecting network infrastructures from unauthorized access and
potential threats by identifying and mitigating the efforts
of malicious actors. Historically, network intrusion detection
systems have relied on traditional algorithms like Naive-Bayes
classifiers, Random Forest classifiers, and Support Vector Ma-
chines (SVM) for threat detection [1]. Methods like stochastic
gradient descent based models, hypergraph based machine
learning systems, random forest models with class probability
distributions have been shown to produce good intrusion
detection performances [2], [3]. Statistical models such as
Logistic Regression, SVMs, Decision Trees, Random Forests,
Multi layer Perceptrons have also been shown to perform well
with Feature selection methods [4].

While these methods have been foundational in effective
IDS development, recent research highlights the enhanced
performance of deep learning approaches and show that they
surpass traditional algorithms in detecting network intrusions
[5]. The popularity of these deep learning methods stems from
their exceptional performance, and their ability to effectively
manage imbalanced datasets, a prevalent issue in network
security [6]. As a result, deep learning techniques are now
considered benchmark standards in the development and eval-
uation of IDS datasets, playing a pivotal role in driving the
evolution of future network security measures [7].

The surge in research within this area has resulted in the
creation of numerous network traffic datasets, such as KDD
99 [8], NSLKDD [8], CIC-IDS 2017 [9], and ToN-IoT [10].

The first two authors contributed equally to this paper.

These datasets, often compiled using traffic monitoring tools
like Wireshark, provide an extensive overview of network
activities. However, their complex, high-dimensional nature
presents a significant challenge for machine learning models
in extracting meaningful information.

Contemporary deep learning models in intrusion detection
are often trained to identify specific, previously known attacks
or to learn from historical attack patterns. These models excel
in detecting familiar threats with high accuracy. However, their
capability significantly decreases when confronting novel or
zero-day attacks—unseen and undocumented threats appear-
ing in real-time. The unpredictable nature of these attacks
represents a substantial challenge in network security, given
the difficulty in predicting the spectrum of possible intrusions.
Moreover, anomaly detection approaches tend to categorize all
unknown network intrusions under a single class, thereby fail-
ing to offer a comprehensive analysis of model transferability.

The concept of model transferability has gained traction,
positing that models could recognize a broader array of attacks
beyond their initial training scope. Research into transfer-
ability, such as highlighted in [11] and [12], explores this
potential. In [11], models are trained on a specific dataset and
evaluated on another, focusing on a single type of attack. The
work presented in [12] extends this approach by investigating
the model’s ability to generalize across different attack types,
training on one and testing on another. However, it is worth
noting that both studies are performed on pre-selected training
and testing attack classes.

Recent advances have highlighted a critical challenge tradi-
tionally linked to deep learning: the substantial computational
power and memory it requires [13]. Deep learning models are
now embedded directly into hardware. The concept of model
transferability plays a pivotal role here, allowing for the use of
smaller datasets while maintaining the model’s ability to gen-
eralize across various attack vectors. This strategy significantly
cuts down on training times and reduces the computational
load and memory requirements, which is especially beneficial
for deployment on resource-constrained edge devices.

This integration of edge based federated learning into the
realm of Intrusion Detection Systems (IDS) signifies a pivotal
shift towards distributed, privacy-preserving, and computation-
ally efficient cybersecurity measures [14]. Research, including
findings from [14] and [15], [16] highlight federated learning’s
capability to surpass self-learning models and achieve compa-
rable accuracy to centralized systems in IDS applications. The
exploration of model transferability within federated learning
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Fig. 1. Architecture of proposed intrusion detection model.

is emerging as a key area of interest [17].
In this paper, we propose a federated deep learning setup

aimed at achieving maximum transferability, while preserving
in-class IDS performance. The contributions of this work can
be outlined as follows:

1) We develop a deep learning model that performs well for
both traditional and transferable IDS applications.

2) We introduce two data preprocessing steps before model
training-temporal averaging and bootstrapping that boost
the transferability performance, and name the resulting
algorithm Temporally Averaged Bootstrapped Federated
Intrusion Detection System (TabFIDS) version 1.

3) We further propose a novel Block-Based Smart Aggre-
gation(BBSA) algorithm that works with FedAvg [18]
aggregation to make performance driven decisions about
layer-wise weight aggregation in every round of training.
This setup is called TabFIDSv2. In our experiments,
we find that TabFIDSv2 outperforms other methods in
both localized detection and transferability, while being
generalizable across different neural network backbones,
and datasets.

4) We develop a Data-Driven Feature Elimination(DDFE)
algorithm that helps us determine which features are most

important for model learning.
We note that part of the work included in this paper has
been presented in [19]. This paper is organized as follows:
In Section II, we explain our system architecture, and the
federated learning setup. Next, we present the deep learning
model for intrusion detection. We then explain bootstrapping
and temporal averaging, the two pre-processing steps to im-
prove the transferability along with our BBSA algorithm.
Finally, in Section III, we explain our experimental setup and
show that our proposed algorithm significantly improves the
transferability in a federated setup, performs well even with
different backbones, and shows inter dataset transferability.

II. SYSTEM ARCHITECTURE

In this section, we discuss the overall architecture of our
federated system environment, as shown in Fig. 1.

A. Nodes

Consider a scenario where several devices with networking
capabilities are connected on a network. Each of these devices
are referred to as a node. There are attackers within the
network injecting harmful data packets with the objective of
compromising the security of the nodes. Each node however, is
equipped with a deep learning based intrusion detection system



that should be able to identify the malicious data packets.
Our objective is to create a framework in which the intrusion
detection softwares leverage traffic data at each node to detect
existing as well as rare attacks.
B. Intrusion Detection System

The IDS on each node is trained before deployment on
labeled benign and attack data. There is a central server that
participates in the training of the IDS, and it may have one of
two different roles:

1) Centralized Learning: In centralized learning configura-
tion, the data on each node is sent to a central server where a
central model is trained using all the aggregated data. The
trained model is sent back to each of the local nodes for
deployment and detection. Nodes do not perform any kind
of localized training based on the data samples of that node.

2) Federated Learning: In a federated learning configura-
tion, each node trains their local models on local data. Each
node then sends their locally trained model to the central
server for aggregation. The central server uses an aggregation
algorithm to create a single model from the localised models
called global model. The global model is then sent back to
each of the nodes for another round of continued training. In
this regime, there is no data being exchanged over the network,
rather only the model weights are sent.

In our setup, the central server uses a FedAvg [18] aggrega-
tion algorithm to aggregate the model parameters sent by the
nodes. The global model is sent back to the nodes for further
rounds of localised training and this continues over multiple
communication rounds. The local and global models have the
same architecture as shown in 1 but differ in their parameters.
The global model is aggregated from the local models using
the following equation:

∀k,wk
t+1 ← wt − ηgk;wt+1 ←

K∑
k=1

nk

n
wk

t+1 (1)

where wt are the model weights after communication round
t, nk is the number of local samples in the training data, n is
the total number of data samples across all nodes, assuming
we have K nodes in total.

3) Block-Based Smart Aggregation: A notable limitation
within the federated averaging methodology is the potential
reduction in detection accuracy at the level of individual nodes
over successive communication rounds. This challenge arises
from the practice of averaging the weights across nodes for
updating a model, where a locally optimized set of weights
might be more effective for a particular node than the globally
aggregated set.

To mitigate this, a strategy is employed wherein nodes, upon
receipt of the global model, undertake a phase of re-training
using their local data prior to the deployment of the model, in-
corporating local specificity with broader, aggregated insights.
However, some nodes might still encounter a drop in intrusion
detection performance. The diversity in data distribution and
attack patterns across nodes can result in varying degrees of
effectiveness for this approach, with some nodes potentially

Algorithm 1 Block-Based Smart Aggregation (BBSA) Tech-
nique
Require: N nodes each with local dataset Di, i ∈
{1, 2, . . . , N}

Ensure: Optimized global model G
1: Initialize global model G with random weights
2: for each communication round r do
3: for each node i in parallel do
4: Train local model Lr

i on Di

5: Save local model weights W r
Li

before aggregation
6: Send local model weights W r

Li
to server

7: end for
8: Aggregate weights on server to update global model

Gr

9: Distribute updated global model Gr to all nodes
10: for each node i in parallel do
11: Re-train local model Lr+1

i on Di using Gr

12: Save re-trained model weights W r+1
Li

13: BBSA Step: Compare W r
Li

and W r+1
Li

14: for each block b in model do
15: Select weights for block b from either W r

Li
or

W r+1
Li

based on performance
16: end for
17: Update Lr+1

i with selected block weights
18: Send updated Lr+1

i weights to server for next
round

19: end for
20: Aggregate updated weights on server to update Gr+1

21: end for

not achieving the desired level of accuracy improvement in
identifying network intrusions.

The proposed Block-Based Smart Aggregation (BBSA)
technique addresses the challenge of maintaining or enhancing
accuracy across individual nodes during iterative communi-
cation rounds in a federated learning setup. This method
introduces a strategic layer of decision-making in the model
updating process that is tailored to optimize performance on
a per-node basis.

The algorithm for BBSA is presented in Algorithm 1. Here,
nodes save their local model weights prior to dispatching
them to the central server for aggregation. Upon receiving the
aggregated global model, nodes engage in a re-training session
utilizing their specific local datasets.

Unlike the conventional federated learning process, where
this updated model would directly advance to the central server
for further aggregation, the BBSA methodology introduces a
critical comparative evaluation step. In the proposed selective
weight integration process, the decision to utilize weights from
either the original local model, as it existed before being
sent for aggregation, or the model retrained after receiving
the global updates, is made. The primary objective is to
harness the strengths of both models—leveraging the specific
insights captured by the local model before aggregation and
the broader, globally informed updates of the re-trained model.



The methodology for constructing the combined model
involves carefully analyzing the deep learning architecture to
identify distinct blocks within the model, delineated based
on the function of layers that operate collectively within the
architecture. The optimization process entails selecting all the
weights within a given block to be exclusively sourced either
from the original local model prior to aggregation or from the
model that has been re-trained post-aggregation. This block-
based selection process is critical for several reasons:

1) Preservation of Functional Integrity: By treating blocks
as the units for weight selection, this approach ensures
that the functional integrity of closely interacting layers
is preserved. This is crucial because layers within a block
often share a contextual relationship, designed to capture
specific features or patterns from the input data.

2) Computational Efficiency: Working with blocks signifi-
cantly reduces the computational overhead —instead of
making decisions for potentially thousands of individual
weights or layers, the process is simplified to a choice
between block configurations. This streamlined approach
facilitates quicker iterations and optimizations, especially
when computational resources and time are at a premium.

3) Enhanced Generalizability: By evaluating the effective-
ness of entire blocks of layers, the block-based strategy
can leverage the collective performance enhancement that
these layers provide when their weights are aligned with
either the local context (pre-aggregation) or the global
learning objective (post-aggregation). This approach al-
lows for a strategic enhancement of the model’s ability
to generalize across diverse datasets and attack scenarios,
potentially leading to better detection capabilities.

In summary, by identifying and optimizing blocks of layers
as cohesive units, this strategy ensures the computational
tractability of the optimization process, and aims to enhance
the model’s overall performance by maintaining the functional
cohesion of layers that are designed to work together.
C. Deep Learning Model

The proposed model is developed empirically with the aim
to not only maximize the classification accuracy, but also to
uncover transferability—when the model is trained with one
attack and tested on another attack. This model has been tuned
to perform deep feature extraction from high dimensional
dataset both for well-represented as well as under-represented
classes of data. Fig. 1 shows the architecture of this model.
D. Bootstrapping

A characteristic of network traffic data is that the number
of benign data packets encountered significantly surpasses the
number of attack data packets, which poses challenges for
deep learning models. A popular solution to this problem
is bootstrapping, where the minority class is re-sampled and
appended to the majority class until the dataset is balanced.
E. Temporal Averaging

Temporal averaging, when employed as a pre-processing
step, has been shown to boost the transferability of an IDS
system [20]. Mathematically this can be given as:

Algorithm 2 Data-Driven Feature Elimination (DDFE)
Require: TabFIDS model, Full 1D input feature vector
Ensure: Reduced feature set model with maintained accuracy

1: Initial Training:
2: Train the TabFIDS model on the full 1D input feature

vector {F : lenght(F ) = N}
3: for each feature fi in the input feature vector do
4: Create a modified version of the feature vector with

fi set to zero
5: Train/evaluate the model with the modified feature

vector
6: Record the change in classification accuracy
7: end for
8: Performance Assessment:
9: for each feature fi do

10: if removal of fi does not significantly reduce accuracy
then

11: Mark fi as non-contributory
12: end if
13: end for
14: Simplification:
15: Create a reduced feature vector {F̂ : nonzero feature

length = (N − n)} by setting all n non-contributory
features to zero

16: Deploy TabFIDS model with the reduced feature set

yt =

∑r−1
i=0 x(t− i)

r
, r = window size (2)

where xt represents the input data sample at time t and yt
represents the corresponding temporally averaged data sample.
Thus each input sample to the model is the temporal average of
r other samples. Temporal averaging further improves privacy
of the data, as the deep learning model is trained with the
pre-processed data and it never sees the original data.

F. Data-Driven Feature Elimination (DDFE)

To reduce the computational cost of deep learning systems,
optimizing the size of the feature vector is crucial. The Data-
Driven Feature Elimination (DDFE) approach is designed
to iteratively evaluate the impact of each feature on the
model’s performance and then eliminate those that contribute
minimally. The algorithm for DDFE is presented in Algorithm
2. The DDFE process involves the following steps:

1) Initial Training: Train the TabFIDS model on a specific
node using the entire 1D input feature vector to establish
baseline performance metrics.

2) Feature Elimination Simulation:
• For each feature in the input vector, create a modified

version of the input where the current feature’s value
is set to zero, simulating its removal.

• Assess the model’s performance with the modified
input vector to determine the impact of the feature’s
removal on classification accuracy.



3) Performance Assessment: Evaluate the model’s perfor-
mance with the removal of each individual feature, fo-
cusing on classification accuracy. Identify features whose
elimination does not impose a large performance penalty.

4) Simplification:
• Remove non-contributory features by setting their val-

ues to zero in the input vector, resulting in a reduced
feature set.

• Train or fine-tune the model on this optimized feature
set to achieve a balance between computational effi-
ciency and detection accuracy.

By employing the DDFE method, TabFIDS can maintain
high detection accuracy while operating within computational
resource constraints, making it particularly suitable for envi-
ronments where processing power and memory are limited.

III. EXPERIMENTAL RESULTS

In this section, we first present details about the dataset,
experimental setup and the evaluation metric. Then we provide
a step by step analysis of the development of the proposed
TabFIDSv2, with each step highlighting the impact of indi-
vidual components of the algorithm. Then we analyze the
generalization performance of TabFIDSv2 across different
deep learning backends, and across datasets.

A. Dataset

We employ the CIC-IDS 2017 dataset from the Canadian
Institute of Cybersecurity [9]. This dataset features 78 features
and 14 distinct attack categories. However, the data distribution
is very unbalanced: 80% of it is benign, while the remaining
20% consists of various forms of attack data. We ignore three
attack classes that suffer from extremely low data availability,
together constituting only 0.00232% of total data. Even then,
the smallest of the remaining attack categories represents just
0.023% of the total dataset, making it extremely challenging
for a data-driven IDS. We use 80% of this data for training,
10% for validation and 10% for testing.

B. Evaluation Metric

Intrusion detection systems typically encounter imbalanced
datasets, with significantly more benign data packets than
attack data packets. This imbalance poses a unique evaluation
challenge, as high overall accuracy may mask poor intrusion
detection performance. For instance, in a dataset with 90%
benign data, a classifier achieving 90% accuracy might fail to
detect any attack packets.

To address this problem, precision and recall metrics are of-
ten reported in addition to accuracy, providing a more nuanced
understanding of the system’s performance. Let tp, tn, fp and
fn represent accurately detected attack data points, accurately
detected benign data points, wrongly detected attack data
points, and wrongly detected benign data points, respectively.
The overall accuracy of the system would then be calculated
as (tp+ tn)/(tp+ tn+ fp+ fn). Precision is (tp)/(tp+ fp)
and recall would be (tp)/(tp+fn). The recall value provides
the ratio of attack data samples that are accurately classified.

However, it does not contain information about whether the
system can accurately classify benign data samples.

To overcome this issue, we propose to use the attack
accuracy, defined as:

Accr =

tn
tn+fp + tp

tp+fn

2
(3)

which gives equal weight to correct detection of benign and
attack data packets. In this paper, we use the attack accuracy
metric to quantify the performance of IDS systems in our
severely imbalanced dataset.

C. Transferability in a centralized setup

In the next few subsections, we will gradually introduce
individual components of the proposed TabFIDSv2, with ac-
companying analysis of the design choices.

D. Experimental Setup

In a centralized environment, the model is trained on all
available benign data in the training set and one class of attack
data. The transferability is then evaluated by testing the model
against test data packets from attack classes it has not seen
during the training phase. We perform this experiment for all
11 attack classes.

On the other hand, in a federated setup, we divide the train-
ing dataset to 11 separate nodes. During training, we expose
each node to a single attack type only. There is no overlap
between the benign data present in different nodes during
training. Each node only sees a 1

11 fraction of the benign data
and one attack class, effectively making local training data set
availability much lower compared to a centralized system.

When employing bootstrapping, we sample attack data
packets from the same class with replacement until the dataset
contains 50% benign data and 50% attack data. We employ
the Adam [21] optimizer with a learning rate of 0.001 and the
loss function is CrossEntropy Loss. For the federated model,
we run 20 rounds of federated model aggregation.

For the purpose of this study, we define transferability as an
IDS achieving an attack accuracy ≥70% on a test attack class
after training on a different attack class. Transferability pairs
are denoted by (training attack, test attack) and categorized by
performance: very high (≥90%), high (80-90%), or moderate
(70-80%) transferability.

E. Centralized vs Federated Transferability

We start our analysis with an investigation of the transfer-
ability relationships for the centralized and federated approach.
First, in Fig. 2(a), we observe that the centralized model
performs reasonably well, identifying 13 transferable pairs. In
contrast, the federated approaches yield disappointing results,
with only 5 transferable pairs detected, as presented in Fig.
2(b). This is surprising, given that federated learning facilitates
information exchange between nodes with diverse training at-
tacks during aggregation, which should enhance transferability.
However, the smaller individual training sets at each node,



(a) (b) (c)

(d) (e) (f)

Fig. 2. Transferability Relationships of (Train,Test) Attack Pairs for (a) A Centralized Setup, (b) A Federated Setup, (c) Federated Learning with Bootstrapping,
and (d,e,f) Federated Learning with Temporal Averaging (d) Window Length of 3, (e) Window Length of 5, (f) Window Length of 7.

combined with the imbalanced dataset, may contribute to the
significant decline in transferability performance.

We then employ bootstrapping as a pre-processing step to
mitigate the impact of the imbalanced dataset in the federated
setup. We present the results in Fig. 2(c). This augmentation
leads to a substantial improvement in performance, with the
detection of 22 transferable pairs, a notable increase from the
5 pairs detected without bootstrapping.

F. Temporal Averaging
We investigate the effect of temporal averaging on trans-

ferability, with the results in Fig. 2(d) demonstrating a re-
markable improvement over the federated setup, with 14
transferable pairs detected compared to 5. Here we average
three data packets and feed them to the input layer. This
enhancement is noteworthy, as it demonstrates that temporal
averaging can boost deep learning model performance even
in the presence of severe dataset imbalance, without relying
on data augmentation. This can be attributed to the ability of
temporal averaging to aggregate multiple input data packets,
providing the IDS with a more comprehensive understanding
of the network environment. This approach is particularly
valuable in resource-constrained training scenarios, where data
augmentation can substantially increase training time.

1) Window Length for Temporal Averaging: One question
arising from the previous discovery is the impact of the number
of samples that are averaged before the input layer. We define
this as the window length of temporal averaging. In Fig. 2(e)
and Fig. 2(f), we present the results for window lengths of 5
and 7, respectively. The results illustrate that there is a correla-
tion between the window length and the number of transferable

pairs. A window length of five results in an increase to 19
transferable pairs, and a window length of seven gives us
23 transferable pairs, which is higher than the bootstrapping
approach. Thus with a simple pre-processing operation we
can achieve comparable trasferability to bootstrapping while
avoiding the massive increase in training dataset size. The
tradeoff here is the introduction of a latency even during
deployment in a live system. A bigger window requires more
input data packets, resulting in a higher latency penalty.

G. TabFIDS
Next, we combine bootstrapping and temporal averaging

to create the Temporally Averaged Bootstrapped Federated
Intrusion Detection System (TabFIDS). This approach yields
the most impressive transferability results yet, achieving trans-
ferability for 31 pairs, as seen in Fig. 3(a). To minimize the
latency penalty we use a temporal averaging window size of
three. However if better performance is desired and a small
increase in processing time is not an issue, we can deploy
the same system with a larger temporal averaging window. As
shown in Fig. 3(a) and later summarized in Table II, TabFIDS
not only excels in transferability but also achieves the highest
number of pairs so far with attack accuracy above 90% (17
pairs), outperforming the next best approach (bootstrapping
only) (10 pairs). Furthermore, TabFIDS demonstrates excep-
tional performance in localized intrusion detection, attaining
an average accuracy of 97.18% across nodes when tested with
the same attack class used during training, showcasing its
robustness and effectiveness.

Notably, when combining temporal averaging and bootstrap-
ping in TabFIDS, we observe a trade-off, where 5 transferabil-



(a) (b) (c)

(d) (e) (f)

Fig. 3. Transferability Relationships of (Train,Test) Attack Pairs for (a) TabFIDSv1 - Federated Setup with Bootstrapping and Temporal Averaging, (b)
Centralized Setup with Bootstrapping and Temporal Averaging, (c) TabFIDSv1 with Data-Driven Feature Elimination, and (d,e,f) TabFIDSv2 - Block-Based
Smart Aggregation combined with TabFIDSv1, with a Train-Validation-Test Split of (d) 80-10-10, (e) 50-10-10, and (f) 25-10-10.

ity pairs detectable by standalone bootstrapping and 2 pairs
from standalone temporal averaging approach are no longer
detectable. This suggests that refining the integration method
could further enhance TabFIDS.

Another finding that is worth investigating is the impact of
the TabFIDS pipeline on a centralized setup, illustrated in Fig.
3(b). The integration of bootstrapping and temporal averaging
in a centralized setup also results in improvements in perfor-
mance, resulting in 32 transferable pairs. This highlights the
versatility and broad applicability of the proposed approach.

Impact of DDFE

Next, we implement the DDFE algorithm mentioned in
Algorithm 2, along with TabFIDS. The results are presented
in Fig. 3(c). DDFE’s ability to judiciously reduce the feature
set by 39.34% on average—ranging from a minimal 8.97%
reduction for specific attack types to as much as 74.36%
for others—underscores its effectiveness. DDFE retains 19
transferable pairs (38.7% reduction in transferable pairs), with
13 pairs achieving high transferability rates (>90%). This
demonstrates DDFE’s effective feature selection, preserving
the model’s ability to generalize across unseen attacks. We ob-
serve that the introduction of DDFE decreases transferability
performance the most for pairs which previously had moderate
transferability. DDFE emerges as a valuable tool in resource-
constrained setups, where balancing speed and performance is
crucial, and a reduction in transferability can be tolerated with
a comparable reduction in computational complexity.

H. TabFIDS v2: Incorporating TabFIDS and BBSA
In Fig. 3(d), we present the transferable pairs achieved by

TabFIDSv2, an enhanced version of TabFIDS incorporating
block-based smart aggregation. Interestingly, the introduction
of the BBSA algorithm results in a reduction in the number
of transferable pairs, from 31 to 30. However for localized
intrusion detection (training and testings sets from the same
attack class), performance improves from 97.18% to 99.64%.

I. Fine Tuning TabFIDSv2: Size of Training Dataset
We cannot directly train for transferability, as the unknown

attack classes are not available during training. Moreover, the
BBSA algorithm focuses on optimizing localized intrusion
detection through recursive fine-tuning of neural architecture
blocks, and this may compromise transferability. We suspect
overfitting to training classes causes this issue.

To test this, we reduce the size of the available training
dataset. Up to the previous section, the train-validation-test
split was 80-10-10. In this experiment, we only use 50% of
the available data for training, instead of 80%. For the purpose
of consistency, the validation and test sets remain unchanged,
with 10% of the data in each. The remaining 30% of data is
not used. The results are presented in Fig. 3(e).

Here, we observe an interesting trend. Reducing the size of
the training set improves transferability (we get 34 transferable
pairs compared to 30 with a 80-10-10 split) while having a
very small decrease in localized intrusion detection perfor-
mance (from 99.64% to 99.45%). This shows that a reduction
in the training set has an advantageous impact by making the
training more transferable.



Fig. 4. Transferability Relationships for TabFIDSv2 with a Train-Validation-
Test split of 05-10-10.

Fig. 5. Transferability Relationships for TabFIDSv2 with Temporal Averaging
Window of Length 5 (25-10-10 Split).

Next, we test a 25-10-10 train-validation-test split, with the
results presented in Fig. 3(f). We get 33 transferable pairs.
While the total number of transferable pairs is one less than
the 50-10-10 case, on a closer look we notice that here 20
pairs showcase a transferablity performance higher than 90%
(dark purple), compared to 16 pairs in the previous case. In
the 25-10-10 case, localized intrusion detection performance
decreases slightly, to 98.09%. In our opinion, This presents
a good trade off between strong transferability and good
localized performance.

Finally, we also perform tests using a 5-10-10 split, where
only 5% of data is used for training, and the results in Fig.
4 show 36 transferable pairs, the highest so far. However,
due to the significant reduction in training data size, localized
intrusion detection performance suffers and falls to 95.90%.

The notable insight from this analysis is the finding that
the block-based aggregation algorithm in TabFIDSv2 achieves
better transferability when aided with a reduction in the
training set size. We also note that in addition to facilitating
robust and resilient intrusion detection, this reduction in the
training set size results in significantly faster training times.

1) Even Higher Transferability: Window Size: Next, we
focus on extending the analysis on the impact of temporal
window size on TabFIDSv2. In Figs. 5 and 6, we present
the impact of temporal windows of sizes 5 and 7 on a 25-
10-10 training case. We note that with a temporal window
size of 3 in Fig. 3(f), we got 33 transferable pairs with
a localized intrusion detection of 98.09%. For a temporal

Fig. 6. Transferability Relationships for TabFIDSv2 with Temporal Averaging
Window of Length 7 (25-10-10 Split).

TABLE I
NUMBER OF OCCURRENCES FOR AN ATTACK CLASS IN TRANSFERABLE
(TRAIN ATTACK, TEST ATTACK) PAIRS (TABFIDSV2, 25-10-10 SPLIT,

TEMPORAL AVERAGING WINDOWS OF LENGTH 5)

Attack Number 1 2 3 4 5 6 7 8 9 10 11
Present as Train Attack 2 3 2 2 6 5 5 2 2 4 4
Present as Test Attack 3 3 2 2 3 3 2 7 2 5 5

window size of 5, we get 37 transferable pairs (22 with
> 90%), which is the highest we have achieved. The localized
intrusion detection rate also improves to 98.36%. Interestingly,
when we move to a temporal window of 7, the localized
intrusion detection rate further improves to 98.82%, but the
number of transferable pairs falls to 33 (20 with > 90%).
This indicates that there is also an optimal temporal window
size for maximum transferablity.

In Table I, we present an analysis of the (train,test) pairs
present in the best performing experiment (TabFIDSv2, 25-
10-10 train-validation-test split, temporal windows of size 5).
We note that every attack is present in at least two (train,test)
pairs, with the DoS Slowhttptest attack showing the highest
transferability in detecting other attacks, being present in 6
pairs as train attack. On the other hand, the PortScan attack
is the easiest attack to be detected by transferable learning,
being present as test attack in 7 pairs.

J. Generalizability of TabFIDSv2: Using a Different Back-end

TabFIDSv2, as presented above, consists of several compo-
nents - the federated system architecture, the neural network
architecture, temporal averaging, bootstrapping, block-based
smart aggregation, and optimal training set selection. So far
we have analyzed the individual impacts of all of these com-
ponents except the neural network architecture. In this section,
we analyze the impact of the neural network architecture
by replacing the back-end with two different architectures -
Resnet and Autoencoder.

1) Resnet: First, we use a resnet architecture presented in
Fig. 8, similar to the one in [22]. This model consists of 3
blocks. The first block, consisting of linear layers takes the
input and resizes it to fit the inputs of the resnet backbone. The
resnet backbone is a pretrained 18-layer model, followed by
the last block which takes the output from the resnet backbone
and classifies it.



Fig. 7. TabFIDSv2 Transferability with a ResNet Backend (25-10-10 Split).

Fig. 8. Architecture of the ResNet Backend.

The results from this analysis are presented in Fig. 7. Here
we use a 25-10-10 train-validation-test split. As we can see
from the analysis, even with the resnet backend, we find 31
transferable pairs, which shows the generalizability of the
proposed approach. This setup achieves a localized intrusion
detection rate of 98.91%.

2) Autoencoder: We also utilize an autoencoder based
approach, with the architecture—similar to the approach in
[23]—presented in Fig. 10. The autoencoder network consists
of an encoder and a decoder. The encoder, using convolutional
layers, captures the important features of the network and
learns the lower dimensional representation of the input. The
decoder consists of convolutional, upsample and transpose
convolution layers to reconstruct the original input from the
encoded lower dimensional representation.

The results from this approach are presented in Fig. 9,
with a 25-10-10 split. We get 24 transferable pairs. One
interesting point to note here is that 5 training attacks and 2 test
attacks are absent from any transferable pairs. In the original
TabFIDSv2 or the Resnet backend, every train or test attack

TABLE II
NUMBER OF TRANSFERABLE PAIRS FOR DIFFERENT APPROACHES AND

THEIR ATTACK ACCURACY

Total >90% 80%
-90%

70%
-80%

Localized
Accr %

Central 13 5 7 1 80.09
Federated 5 2 1 2 74.27
Fed+BStrap 22 10 4 8 98.18
Fed+TempAv(3) 14 3 8 3 80.91
TabFIDSv1(80/10/10) 31 17 7 7 97.18
TabFIDSv2(25/10/10) 33 20 7 6 98.09
TabFIDSv2(25-TempAv 5) 37 22 8 7 98.36
TabFIDSv2(ResNet) 31 20 5 6 98.91
TabFIDSv2(AutoEnc) 24 11 8 5 75.09

Fig. 9. Transferability Pairs Detected by TabFIDSv2 with a Autoencoder
Backend (25-10-10 Train-Validation-Test Split).

Fig. 10. Architecture of the Autoencoder Backend.

was represented in multiple (train,test) pairs. This indicates
the importance of choosing a backend carefully.

Finally, in Table I, we summarize the notable experimental
results. Here, we note the total number of transferable pairs
achieved by each approach, as well as a breakdown of very
high (≥90%), high (80-90%), and moderate (70-80%) trans-
ferability. We also include the localized intrusion detection
rates for each of these approaches. We note that both Tab-
FIDS and TabFIDSv2 achieve excellent transferability while
maintaining very high localized intrusion detection rates. The
combination of TabFIDSv2, with a 25-10-10 train-validation-
test split, and a temporal windows of size 5 achieves the best
transferability. While the Resnet backend performs pretty well,
the autoencoder backend underperforms in both transferability
and localized intrusion detection.

K. TabFIDSv2 with a different dataset

To further investigate the generalizability of TabFIDSv2,
we replace the CIC-IDS 2017 dataset with the CIC-ToN_IoT
dataset [10]. This analysis aims to show that the versatility of
the proposed approach is not dependent on a specific dataset.
The CIC-ToN_IoT dataset consists of benign data along with 8
different types of attacks-XSS, Injection, Password, Scanning,
MITM, DDoS, DoS, and Backdoor.

For this experiment, the non-numeric features are removed
from the dataset. Similar to the approach in [15], we restrict
our analysis to the data samples corresponding to the top 10
destination IP addresses. This data is then distributed among
8 nodes. The benign data packets are divided equally to each
of the 8 nodes. Each node gets only one class of attack data.
This distribution is similar to the the one followed earlier for



Fig. 11. Transferability Relationships with Tabfidsv2 on the Ton-IoT Dataset.

CIC-IDS 2017. The results for TabFIDSv2 on this dataset are
presented in Fig. 11. The train, validation and test split for
this experiment is 80-10-10. Here, we notice transferability in
32 pairs, out of a possible 56 pairs. Out of these 32 pairs,
22 pairs show transferability with >90%. This performance
validates the generalizability of our approach in uncovering
transferability across a wide variety of attacks.

IV. CONCLUSION

In this paper, we develop TabFIDSv2, a novel intrusion
detection system designed to optimize transferability in feder-
ated learning environments. By integrating two pre-processing
techniques—bootstrapping and temporal averaging—with our
empirically developed deep neural network, our proposed
TabFIDSv1 algorithm achieves exceptional localized detection
performance and high transferability across significantly im-
balanced datasets. We also evaluate a Data-Driven Feature
Elimination algorithm that presents a reasonable trade-off
between transferability and processing cost. The integration
of a Block-Based Smart Aggregation algorithm, resulting in
TabFIDSv2, further enhances transferability performance and
localized intrusion detection accuracy. Comprehensive evalua-
tions demonstrate the system’s generalizability across diverse
neural network backbones, and different datasets. Although
TabFIDSv2 is developed with a focus on intrusion detection
systems, this development can be of value in other deep
learning domains where transferability is a desired attribute.
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