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Abstract—Protecting state-of-the-art AI-based cybersecurity
defense systems from cyber attacks is crucial. Attackers create
adversarial examples by adding small changes (i.e., perturba-
tions) to the attack features to evade or fool the deep learning
model. This paper introduces the concept of low-level behavioral
adversarial examples and its threat model of evasive ransomware.
We formulate the method and the threat model to generate the
optimal source code of evasive malware. We then examine the
method using the leaked source code of Conti ransomware with
the micro-behavior control function. The micro-behavior control
function is our test component to simulate changing source
code in ransomware; ransomware’s behavior can be changed by
specifying the number of threads, file encryption ratio, and delay
after file encryption at the boot time. We evaluated how much an
attacker can control the behavioral features of ransomware using
the micro-behavior control function to decrease the detection rate
of a ransomware detector.

Index Terms—ransomware, evasion attacks, perturbation, deep
learning, behavioral features.

I. INTRODUCTION

The term adversarial example was first introduced by
Szegedy et al. [1]; they found that applying an imperceptible
non-random perturbation to a test image (i.e., the image is
called adversarial example) can arbitrarily change the neural
network’s prediction. As the application of deep learning in
cybersecurity increased, the attacks against AI-based defense
systems increased. Macas et al. presented a survey of attacks
and defenses in deep-learning-based cybersecurity systems
from the perspective of adversarial examples [2]; the sys-
tem includes malware detection, botnet detection, network
intrusion detection, fraud detection, and cyber-physical system
(CPS) security. In malware detection, they described attacks
using adversarial examples of static features obtained from a
Portable Executable (PE) file or Android Application Package
(APK), an image created from malware binary, and Control
Flow Graph (CFG) features. An adversarial example is created
using methods such as gradient-based attacks, optimization-
based attacks, and generative adversarial network (GAN)-
based attacks. This paper focuses on ransomware detection
using ransomware’s behavioral features.

Ransomware attacks can be detected using indicators ob-
tained from Application Programming Interface (API) and
system call monitoring, Input and Output (I/O) monitoring,

file system operation monitoring, etc [3]. Machine-learning-
based ransomware detection method uses structural features,
behavioral features, and both structural and behavioral features
[4]; the behavioral features include hardware behavior, file
system behavior, network traffic behavior, API call behavior,
and a set of all the behavioral features. This paper employs
low-level storage and memory access patterns as behavioral
features. We first describe the difficulty of creating evasive
ransomware against behavioral-based ransomware detectors.

A. Difficulty on generating evasive malware from behavioral
adversarial examples

Fig. 1 shows evasion attack scenarios using adversarial
examples χadv on image or audio classifier, static-analysis-
based malware detector, and dynamic-analysis-based malware
detector. The first example is an image or audio classifier using
a deep-learning model f . An attacker aims to cause the deep-
learning model to return an incorrect class. The attacker adds
subtle perturbation (e.g., slight noise) ϵ that is not recognized
by human perception to original image pixel values or audio
spectrogram χ to create an adversarial example χadv (= χ
+ ϵ). A deep-learning model f(χ) returns a class label for
the input χ. Evasion attacks succeed when an attacker inputs
adversarial example χadv to the target deep-learning model
f and obtains incorrect class label f(χadv) not equal to the
correct class label f(χ).

The second example is a malware detector using a deep-
learning model f . An attacker aims to evade the malware
detector by causing the deep-learning model to return an
incorrect class (i.e., benign class). The attacker adds a per-
turbation ϵ to the malware program P to evade the target
malware detector (i.e., deep-learning model) f . Evasion attack
succeeds when the attacker inputs adversarial example χadv

to the target deep-learning model f and obtained incorrect
class f(χadv) not equals to f(χ). Hu and Tan presented an
evasion attack method named MalGAN [5]; they assume the
target deep-learning model f uses a 160-dimensional binary
vector χ to represent the malware program’s static feature.
The 160-dimensional binary vector χ consists of a series
of binary values {0, 1} that represents the existence of 160
representative API calls (i.e., 1 means the API call exists
in the malware program, 0 means it does not exist). Since
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Problem to find the optimal source code 𝑺 of the evasive malware program 𝑷 from adversarial 
behavioral feature 𝝌𝒂𝒅𝒗

Fig. 1: Evasion attack scenarios using adversarial examples χadv on image/audio classifier, static-analysis-based malware
detector, and dynamic-analysis-based malware detector.

deletion of critical API calls affects functions of malware (e.g.,
deleting WriteFile API call affects ransomware’s destruction
function), MalGAN only adds perturbation ϵ to API calls that
do not affect the original malware functions. The attacker
can create a malware program by adding some binary code
that calls the API calls (i.e., the code corresponding to the
perturbation ϵ) at the places that do not affect the original
function (e.g., slack space) in the original binary program
P . Creating an evasive malware program P against static-
analysis-based malware detector using an adversarial example
χadv is relatively easy when attackers can directly insert
binary code (i.e., perturbation ϵ) to the original binary program
P without corrupting its functions.

The last example is a behavioral-based malware detector
using a deep-learning model f . An attacker’s goal is to evade
the malware detector by causing the deep-learning model
to return an incorrect class (i.e., benign class); this time,
the malware detector (i.e., deep-learning model) f uses a
behavioral feature χ obtained when the malware is executed.
The attackers added perturbation ϵ to the original behavioral
feature χ to create an behavioral adversarial example χadv (=
χ + ϵ). Evasion attack succeeds when the attacker inputs χadv

to the target deep-learning model f and obtained incorrect
class f(χadv) not equals to f(χ). The attacker’s goal is to find
the optimal source code Sadv of the evasive malware program
Padv from behavioral adversarial examples χadv .

B. Contribution and organization of this paper

Although creating behavioral adversarial examples χadv at
the feature level is relatively easy, creating an evasive malware
program (i.e., source code) that produces the behavioral adver-
sarial examples χadv is challenging as shown in the example
(3) of Fig. 1. This paper’s contributions are as follows:

• We formulate a method and threat model in creating eva-
sive ransomware program; an attacker finds the optimal
source code S of evasive ransomware program P that

produces behavioral adversarial examples χadv to evade
the target behavioral-based ransomware detector f .

• We present the micro-behavior control function to exam-
ine the formulated method in a real-world ransomware
sample using the leaked Conti ransomware’s source code.

• We evaluated how much an attacker can change behav-
ioral features χadv by modifying the ransomware source
code. At last, we evaluated the success rate of evasive
ransomware attacks.

The rest of this paper is organized as follows. Section II
presents the formulation of the evasive ransomware problem
using behavioral adversarial examples. Section III describes
the low-level behavioral features used in this paper. Section IV
presents the design and implementation of the micro-behavior
control function to examine the formulated method. Section
V shows how much the micro-behavior control function can
change the behavioral features; section VI shows how much
the micro-behavior control function can evade the ransomware
detector. Section VII describes the limitations and future work.
We conclude the summary in Section VIII.

II. FORMULATION OF BEHAVIORAL ADVERSARIAL
EXAMPLES AND THREAT MODEL ON EVASIVE

RANSOMWARE PROBLEM

We aim to examine how the attackers can change a behav-
ioral feature χ of ransomware to evade the target behavioral-
based ransomware detector represented as a deep-learning
model f by adding small perturbations ϵ. In this paper, we
define behavioral adversarial examples χadv of ransomware
and threat model as follows.

• Attackers can create an approximation of the target ran-
somware detector (i.e., substitute model f ) by submitting
sufficient queries and receiving responses to learn the
input and output mappings. We assume that attackers
know what behavioral features the target ransomware
detector’s deep learning model uses (i.e., grey box attack).



When the substitute model f became an imitation close
enough to the target ransomware detector’s deep learning
model forig, attackers can use the substitute model f to
create adversarial behavioral feature χadv by submitting
the unlimited number of queries and of responses.

• Attackers’ first goal is to find an adversarial behavioral
feature χadv that is classified as benign by the target
detector with minimum perturbation ϵ.

• Attackers have access to a source code Sorig of ran-
somware; Attackers’ final goal is to find the optimal
source code Sadv that produces a behavioral adversarial
feature χadv . The optimization (i.e., selecting the optimal
source code from candidates) is performed by minimizing
the ransomware’s functional degradation F and perfor-
mance degradation P .

In our threat model, attackers can find adversarial behavioral
feature χadv in (1). We assume the attacker aims to evade a
binary classification model (i.e., ransomware or benign class).

χadv = χ+ arg min
ϵ

{
||ϵ||p : f(χadv) ̸= f(χ)

}
(1)

where ϵ is a tensor representing the minimum perturbation
to the original behavioral feature χ (i.e., χadv = χ + ϵ).
||ϵ||p is an Lp-norm; it is Euclidean norm when p is 2.
A function f(χ) returns a class label (i.e., ransomware or
benign); attackers modify original ransomware that produces
a behavioral feature χ to evade the target detector; the modi-
fied version of ransomware produces a behavioral adversarial
feature χadv . When f(χadv) ̸= f(χ) is satisfied, the attacker
succeeds in evading the target detector using the modified
version of ransomware that is misclassified in benign class;
the perturbation ϵ should be small as possible.

However, unlike conventional adversarial examples prob-
lems such as image and audio perturbation, we need to
generate the evasive ransomware program Padv that can be
executed on a computer. We need to formulate how to find the
optimal source code Sadv of the evasive ransomware program
Padv . We first formulate the mapping between a behavioral
adversarial perturbation ϵ and source code S in (2).

ϵi,j = E(Si,Vj) (2)

where E(Si,Vj) is a projection function from a source code
candidate Si and an execution environment Vj to an adver-
sarial perturbation ϵ. For example, an evasive ransomware
program Pi,j created from a source code Si produces a
behavioral adversarial feature χadv (=χ + ϵi,j) when it is
executed on an environment Vj (e.g., specifications of comput-
ers and network including the number of Central Processing
Unit (CPU) cores and network throughput). Although evasive
ransomware should have some adaptive mechanism to repro-
duce behavioral adversarial examples on various computer
and network environments, we tested only one computer and
network environment (i.e., constant V) in this paper. The
advanced adaptive mechanism of evasive ransomware that can
be executed on various environments is possible future work.

The optimal source code selection is performed in (3).

Sadv = arg min
S

{
αF(S) + βP(S,V) :

f(χ+ E(S,V)) ̸= f(χ)
} (3)

where function F(S) returns the degradation in the number of
functions original ransomware has when attackers introduce
perturbation ϵ; the functions include file enumeration and
encryption, network drive encryption, data exfiltration, lateral
movement, privilege escalation, Command and Control com-
munication. On the other hand, the function P(S,V) returns
the performance degradation of ransomware (e.g., the number
of encrypted files per second, the throughput of data exfil-
tration) on the execution environment V . Attackers balance
functional degradation F and performance degradation P by
deciding appropriate coefficients α and β in (3) to select
the optimal source code from candidates while the minimum
condition for a successful evasion attack (1) is satisfied.

The contribution of this paper is to examine a method
to find an optimal source code Sadv of ransomware that
produces a behavioral adversarial feature χadv that meets
above requirements. The following section presents the detail
of the behavioral feature χ we used in this paper.

III. LOW-LEVEL BEHAVIORAL FEATURES USED IN
RANSOMWARE DETECTOR

We presented a hypervisor-based monitoring system to col-
lect low-level behavioral features for detecting ransomware’s
destruction phase [6], [7]. In our defense-in-depth approach,
we employed the thin hypervisor as an additional protection
layer to the conventional OS-level protection layer. Fig. 2
shows the hypervisor-based monitoring system; the low-level
behavioral features collected in the hypervisor layer consist of
access patterns on storage devices (e.g., Solid State Drive)
and memory access patterns on Random Access Memory
(RAM). We developed the monitoring functions using a thin
hypervisor named BitVisor [8]. The storage access patterns
are obtained using an extended Advanced Host Controller
Interface (AHCI) para-pass through driver [6], while memory
access patterns are obtained using a hardware-assisted memory
virtualization technology [7], Intel’s Extended Page Table
(EPT) [9]; we examined a deep-learning-based ransomware
detector trained using the low-level behavioral features. Please
refer to our paper [7] for details on the hypervisor-based
monitoring system.

Fig. 3 shows graphs of a behavioral feature χ obtained using
the developed hypervisor-based monitoring system; a low-level
behavioral feature χ consists of a storage feature χs and a
memory feature χm. A storage feature χs consists of the
following five-dimensional feature vectors (x0 to x4): entropy
of written blocks (top-left graph), write and read throughput
in Byte/s (center-top graph), and variance of written and read
Logical Block Address (LBA) on storage devices (top-right
graph). On the other hand, a memory feature χm consists
of the following 18-dimensional feature vectors (x5 to x22):



Operating system
(Windows 10)

Storage
(SSD) RAM

Ransomware

Memory
access

monitor

Storage 
access

monitor
Hypervisor
(BitVisor)

send behavioral 
features to monitoring 
machine via 10 Gigabit 
Ethernet 

Fig. 2: Hypervisor-based monitoring system to collect low-
level behavioral features [6], [7].

entropy in write and read-write operations (bottom-leftmost
graph), the number of EPT violations (i.e., the number of
memory accesses) for 4KiB, 2MiB, and Memory Mapped In-
put Output accesses of write, read, instruction fetch, and read-
write operations (the three bottom-center graphs), and variance
of accessed Guest Physical Address (GPA) of write, read,
instruction fetch, and read-write operations (bottom-rightmost
graph). We counted the number of memory accesses using EPT
violation. An EPT violation occurs when a hypervisor does not
have the accessed GPA page table entry in the Extended Page
Table (EPT). Once the address is translated, the EPT violation
never occurs at the same address. Therefore, our system
periodically flushes a Translation Lookaside Buffer (TLB)
to cause intentional EPT violations. Performance degradation
caused by the monitoring system was examined in our previous
paper [10], which presented the use of memory access patterns
to detect ransomware. We presented the details of the feature
engineering in another paper [7], which showed the analysis of
our dataset that contains memory and storage access patterns
of ransomware.

Fig. 4 shows a structure of a behavioral feature χ that
consists of a storage feature χs and a memory feature χm;
they are collected in 30 s after executing a ransomware
sample (i.e., Conti, Darkside, LockBit, REvil, Ryuk, and
WannaCry) or a benign application (i.e., AESCrypt, Firefox,
Idle, Office, SDelete, and Zip). The graphs is created using
Twindow = 1 s and Td = 30; Twindow is a period to calculate
a feature vector x. Td is the duration of access patterns
used in detecting ransomware; therefore, Td is also referred
to as the detection time of ransomware. As we can see in
Fig. 4, χ = {χs,χm} = {x(0),x(1),x(2), ...,x(29)}.
Each row represents a feature vector at a specific period; for
example, x(0) is a 23-dimensional feature vector calculated
using storage and memory access patterns between 0 s and
1 s. On the other hand, a behavioral feature χ can also be
expressed in χ = {χs,χm} = {x0,x1,x2, ...,x22}. Each
column represents a specific feature vector between 0 s and 29
s. For example, x0 = {x0(0),x0(1),x0(2), ...,x0(29)} is a
feature vector of storage entropy between 0 s and 30 s. xi(j) is

an ith feature vector calculated using access patterns between
j s and (j+1) s. The following section describes how we can
change behavioral feature χ by changing the micro-behaviors
of ransomware.

IV. MICRO-BEHAVIOR CONTROL FUNCTION OF EVASIVE
RANSOMWARE

In Section I, we described difficulty on generating an evasive
malware program P (i.e., source code S corresponding to
P) that produces adversarial behavioral feature χadv . In
Section II, we formulated the optimal source code selec-
tion problem in (3). The goal of the problem in (3) is to
find the best source code Sadv from candidate source codes
S = {S0,S1,S2, ...,S∞}. Si (= Sorig + Sϵi ) is a source code
to produce a behavioral adversarial feature χi; Sorig is an
original source code of ransomware and Sϵi is a patch to create
Si from Sorig. Since the search space is vast and we do not
have generative AI that outputs the optimal source code yet,
we first test the method in limited source code space; in this
paper, we simulated 24 patterns of source code candidates
S = {S0,S1,S2, ...,S23} using boot options of a modified
version of Conti ransomware. The boot options consist of
the number of threads, encryption ratio, and delay after file
encryption; these parameters are used in our micro-behavior
control function of evasive ransomware. The micro-behavior
control function tested in this paper produces 24 patterns of
a behavioral feature χi. We examined the changes in the
behavioral features and tested the success rates of evasion
attacks on the target ransomware detector.

Fig. 5 shows a flow chart of the micro-behavior control
function of modified Conti ransomware. The extended parts of
Conti ransomware are shown in grey. We control the micro-
behaviors of Conti ransomware by changing the following
three parameters that are specified at the execution time of
ransomware: (1) the number of threads, (2) the encryption
ratio per file, and (3) the delay after encrypting a file. We
added the source code of the extended parts to the leaked
source code of Conti ransomware [12]. The development and
test were performed using the isolated lab environment.

Table I shows the computer’s specification for developing
and testing the micro-behavior control function of Conti ran-
somware. Fig. 6 shows the changes in the number of encrypted
files when we executed the Conti ransomware with the micro-
behavior control function; we tested the number of threads
between 1 and 8. Although we used the computer with eight
logical cores (i.e., eight threads), the number of encrypted
files decreased when we specified more than three threads.
The original Conti ransomware uses twice the number of
logical cores as the number of threads; therefore, the number
of threads will be 16 when we execute the original Conti
ransomware on the computer with a CPU that supports eight
logical cores. The performance degradation in more than three
threads on the test machine indicates that some ransomware
samples are not correctly optimized for computers of various
performances. This study aims to change the micro-behavior
of ransomware; we use the number of threads between 1
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Fig. 3: Example of a storage feature χs (top) and a memory feature χm (bottom) of Conti ransomware sample in the RanSMAP
dataset, open behavioral feature dataset of ransomware storage and memory access patterns [7], [11]. The graphs were created
using average behavioral features of 10 trials on the computer with Intel Core i3 and DDR4-2133 16GB RAM.
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Fig. 4: Structure of a behavioral feature χ consisting of χs and
χm in 30 s after executing a ransomware sample or benign
application (Twindow = 1 s and Td = 30 s).

TABLE I: Specification of the computer used in developing
the micro-behavior control function of evasive ransomware.

CPU Intel Core i3 12100
4 P-cores, 8 threads

RAM DDR4 2133 8GiB x 2
Motherboard ASRock B660M-HDV
Solid State Drive Crucial CT240BX, CT250MX, Samsung 840
Hypervisor BitVisor downloaded on 25th Jan. 2022 (8c129a1)

and 3 in the later section since the number of threads and
the number of encrypted files are proportional in the range
between 1 and 3 on the test machine. Please note that the
behavior depends on the computer on which ransomware is
executed (i.e., an environment V); for example, the range will
change if we use high-performance file servers with high-
grade CPU and storage. In this paper, we tested our micro-
behavior control function only on the test machines shown in
Table I. Examining the micro-behavior control function of the
computers of various performances is possible for future work.

Start
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No
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Others: 50%

End
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Yes

Encrypt a file

Are all files
encrypted?

YesNo

Fig. 5: Flow chart of the micro-behavior control function of
Conti ransomware. The extended parts are shown in grey.

V. EVALUATION OF MICRO-BEHAVIOR CONTOROL
FUNCTION OF EVASIVE RANSOMWARE

How much can a ransomware author control behavioral fea-
ture χ by changing the ransomware’s source code? This sec-
tion presents an analysis of changes in the behavioral feature χ
obtained from the modified Conti ransomware with the micro-
behavior control function that simulates changes in source
code. Fig. 7 shows cosine similarity between adversarial
behavioral features χadv of modified Conti ransomware with
the micro-behavior control function. The tested parameters are
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Pthread = {1, 2, 3}, Pratio = {50%, 100%}, and Pdelay = {0
ms, 25 ms, 50 ms, 100 ms}. The number of combinations
of parameter P is 24 in total. Please note that we excluded
x17 and x18 since there were no MMIO accesses of instruction
fetch and read-write. we calculated cosine similarity between
x(i,base) and x(i,k) in (4).

Sim(x(i,base),x(i,k)) =
x(i,base) ·x(i,k)

||x(i,base)|| ||x(i,k)||
(4)

where x(i,base) is an ith behavioral feature vector xi of the
modified ransomware using the parameter set base that uses
Pthread = 3, Pratio = 100%, and Pdelay = 100 ms; we used the
bottom row of Fig. 7 as baseline to calculate all other cosine
similarity values. x(i,k) is an ith behavioral feature vector
of the modified ransomware using kth parameter set; we use
the 24 combinations of parameters (i.e., 24 rows shown in
Fig. 7). The numerator is a dot product of two vectors, and
the denominator is a product of the L2 norm of each vector.

Fig. 8 shows the average cosine similarity of all the
23-dimensional behavioral features, Sim(k,sample), between
modified Conti ransomware with the micro-behavior control
function and 12 samples of the RanSMAP dataset [7], [11].
We calculated the cosine similarity in (5).

Sim(x(i,k),x(i,sample)) =
x(i,k) ·x(i,sample)

||x(i,k)|| ||x(i,sample)||
(5)

where x(i,k) is an ith behavioral feature of the modified ran-
somware using kth parameter set; we use the 24 combinations
of parameters (i.e., 24 rows in Fig. 8). x(i,sample) is an ith
behaviraol feature of a sample. The samples comprise six ran-
somware and six benign applications of the RanSMAP dataset.
For example, x(0,Conti) is storage entropy feature x0 of Conti
ransomware. Please note that the Conti ransomware sample of
the RanSMAP dataset (shown in the leftmost column) is not
the same sample we used in changing ransomware behavior;

instead, we used the leaked Conti source code [12]. An average
cosine simiairy Sim(k,sample) was calculated in (6).

Sim(k,sample) =
1

23

22∑
i=0

Sim(x(i,k),x(i,sample)) (6)

VI. SUCCESS RATE OF EVASIVE RANSOMWARE ATTACKS

Next, we examined the success rate of evasive ransomware
attacks using the micro-behavior control function of modified
Conti ransomware. We trained the deep-learning model using
behavioral feature χ from the RanSMAP dataset [7], [11];
we used behavioral features χ of six ransomware (i.e., Conti,
Darkside, LockBit, REvil, Ryuk, and WannaCry) and six
benign applications (i.e., AESCrypt, Firefox, Idle, Office,
SDelete, and Zip) executed on the computer with Intel Core
i3 CPU and DDR4 2133Mhz 16GB RAM since we collected
adversarial behavioral features χadv using the micro-control
function on the computer with the same specification. We used
Twindow = 0.1 s and Td = 30 s to create behavioral feature χ.
We created five deep-learning models and tested them for each
parameter set of Pthread, Pratio, and Pdelay and calculated the
sum of each confusion matrix. Recall was used to measure the
performance of evasive ransomware attacks since we predicted
only positive class (i.e., we input only behavioral features of
ransomware with the micro-behavior control function). The
recall was calculated in (7).

Recall =
TP

TP + FN
(7)

where TP (True Positive) is the number of features in the
correct class that are correctly classified. FN (False Negative)
is the number of incorrectly classified features that are not in
the correct class. Fig. 9 shows a recall of modified Conti ran-
somware with the micro-behavior control function. In Fig. 9(a)
(i.e., encryption ratio of 50%), the highest recall of 0.98
was reduced to 0.72 at a minimum; thus, the micro-behavior
control function could reduce recall of 0.26. In Fig. 9(b) (i.e.,
encryption ratio of 100%), the highest recall of 0.98 was
reduced to 0.64 at the minimum; thus, the micro-behavior
control function could reduce recall of 0.34.

VII. DISCUSSION

We presented the micro-behavior control function to change
the behavior of ransomware; this test component simulates
source code changes in (3) to find the optimal source code
Sadv . The experimental results in Fig. 7 show that some
features are easy to change and others are difficult. For
example, the behavioral features that were easy to change
include storage throughput (read) x2, MMIO accesses (write)
on RAM x15, MMIO accesses (read) on RAM x16, variance
of GPA on RAM (write) x19. Please note that we excluded
4KiB page accesses since the number of 4KiB accesses was
very small. On the other hand, the behavioral features that
were difficult to change include storage entropy x0, 2MB page
accesses on RAM x11, x12, x13, x14, and variance of GPA
on RAM (instruction fetch) x21.
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Fig. 7: Cosine similarity between adversarial behavioral features χadv of modified Conti ransomware with the micro-behavior
control function. Cosine similarity is calculated using the parameters of Pthread = 3, Pratio = 100%, and Pdelay = 100 ms.

Fig. 8 shows how an attacker can use behavioral adversarial
example χadv to mimic benign applications. For example,
behavioral adversarial example χadv created using the micro-
behavior control function with Pthread = 3, Pratio = 100%,
and Pdelay = 25 ms is similar to the behavioral features of
SDelete (i.e., benign secure delete program). Please note that
each of the 23-dimensional features is not treated equally in
deep learning models; therefore, the average cosine similarity
is not directly reflected in the result in Fig. 9. The success rate
of evasive ransomware attacks can be confirmed in Fig. 9. The
recall was reduced to 0.64 at a minimum; however, the success
rate is insufficient to complete attacks; further tests using more
parameters (e.g., delay of more than 100 ms) are needed.

We discuss the limitations of the presented micro-behavior
control function, the test component to simulate changing the
source code of evasive ransomware. We formulated how to find
the optimal source code Sadv in (3); since the search space of
possible source code for all possibilities is vast, we developed
the micro-behavior control function to add perturbations to be-
havioral features by changing the number of threads that affect
file encryption speed, the encryption ratio that affects entropy
values of written data, and the delay after file encryption that
affects encryption speed. The three control functions reduced
recall but were insufficient for reliable evasive attacks. More
flexible and automated behavioral manipulation techniques are

needed to cover the ample input space of source code. The
fundamental problem to be solved to generate an evasive
ransomware’s source code is to find reverse mapping from
a behavioral adversarial perturbation ϵ to a source code S
formulated in (2); the adversarial perturbation ϵ corresponds
to a patch (i.e., diff) to create the target source code Sadv from
the original source code Sorig.

VIII. CONCLUSION

Recently, AI-based cybersecurity defense systems have been
attacked using adversarial examples; from the defender’s per-
spective, developing a defense system resistant to adversarial
examples is crucial. In particular, this paper focused on “be-
havioral” adversarial examples to evade ransomware detectors.
We formulated an evasive ransomware attack and examined
it using the test component named the micro-behavior con-
trol function in Conti ransomware. We tested the evasive
attack on the deep-learning-based ransomware detector. The
presented attack reduced recall from 0.98 to 0.64; however,
the current prototype cannot cover the vast source code space
for reliable evasive attacks. Future work includes a more
flexible and automated source code generation method that
meets the requirements we formulated in this paper; a reliable
defense mechanism against the presented evasive attacks will
be needed.
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Fig. 8: Average cosine similarity of 23-dimensional behavioral features between adversarial behavioral features χadv of modified
Conti ransomware with the micro-behavior control function and 12 samples of the RanSMAP dataset [7], [11].
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Fig. 9: Recall of ransomware detector in binary classification (i.e., ransomware or benign) using modified Conti ransomware
with the micro-behavior control function. The deep-learning model was trained using the RanSMAP dataset [7], [11].
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