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Abstract—Double extortion ransomware attacks have become
mainstream since many organizations adopt more robust and
resilient data backup strategies against conventional crypto-
ransomware. This paper presents detailed attack stages, tactics,
procedures, and tools used in the double extortion ransomware
attacks. We then present a novel detection method using low-
level storage and memory behavioral features and network
traffic features obtained from a thin hypervisor to establish a
defense-in-depth strategy for when attackers compromise OS-
level protection. We employed the lightweight Kitsune Network
Intrusion Detection System (NIDS)’s network feature to detect the
data exfiltration phase in double extortion ransomware attacks.
Our experimental results showed that the presented method
improved by 0.166 in the macro F score of the data exfiltration
phase detection rate. Lastly, we discuss the limitations of the
presented method and future work.

Index Terms—ransomware, exfiltration, defense-in-depth, deep
learning, behavioral features.

I. INTRODUCTION

Double extortion ransomware attacks encrypt victim files
and exfiltrate them for extortion; the attacker demands a
double ransom to restore victim files and stop the victim’s
sensitive data leakage. As organizations adopt more robust
backup strategies for conventional crypto-ransomware attacks,
more ransomware attacks focus on data breach attacks. The
Maze ransomware (2020) was the first known ransomware
to exfiltrate sensitive data to blackmail victims into paying
ransom [1]. Since many attackers exfiltrate sensitive data be-
fore file encryption [2], detecting the early stage of the double
extortion ransomware attacks is crucial for an organization’s
risk mitigation.

Many ransomware attack detection and prevention methods
focus on indicators obtained at the post-infection or destruction
phase; for example, crypto-ransomware attacks that perform
file enumeration and encryption operations can be detected
using specific patterns of Application Programming Interface
(API) calls, system calls, Input and Output (I/0), file system
operations [3]. Cen et al., on the other hand, presented
a state-of-the-art survey of research on ransomware early
detection [4]. They defined early ransomware detection as
a continuous monitoring and identification mechanism that
detects ransomware attacks before the destruction phase using
behavioral and static analysis, anomaly detection, and machine
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learning. The behavioral and static features of ransomware
detection include API call sequences, I/O Request Packets
(IRP), network activity, Windows event logs, file entropy,
Windows Portable Executable (PE) header, Opcode sequence,
and file system activity. Singh and Tripathy presented an
Android ransomware detection method at the early stage using
MITRE ATT&CK knowledge base [5]. They used permis-
sions and APIs invoked by Android ransomware during its
execution; they used Android ransomware’s tactics specified
in MITRE ATT&CK (e.g., reconnaissance, initial access,
privilege escalation, command and control, discovery, lateral
movement, exfiltration, and impact) in training deep learning
models. Since ransomware attacks consist of many phases,
from initial accesses to final impact, detecting the early phase
of ransomware attacks as much as possible is crucial.

A. Limitation of prior work and new challenge

Many state-of-the-art ransomware detection methods em-
ploy deep learning models using behavioral indicators ob-
tained from API and system call monitoring, Input and Out-
put Request Packets (IRP) monitoring, file system operation
monitoring, network traffic monitoring, etc [3], [6]. Most of
them work on the operating system (OS) layer. However,
once attackers gain administrative privileges in the operating
system, they can hide their existence using evasion techniques
such as process injection and direct kernel object manipulation
(DKOM). To mitigate the risk of such OS-level attacks, we
presented a hypervisor-based ransomware detection method
using low-level storage and memory access patterns [7]-[9];
it provides an additional protection layer to the conventional
Anti-Virus software and Endpoint Detection and Response
(EDR) software executed on the operating system since a
hypervisor operates on the higher privilege than operating
systems.

Although the previous work [7]-[9] can detect ransomware
attacks in the final destruction phase (i.e., file enumeration
and encryption phase) using low-level storage and memory
access patterns, it cannot detect the early phase of ransomware
attacks, including sensitive data exfiltration, because they did
not use network features. This paper presents a novel network
monitoring function in the hypervisor layer and the use of
the network features to detect the data exfiltration phase of
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the double extortion ransomware attacks. We employ Kitsune
network feature [10]; Kitsune is a network feature used in
the Kitune lightweight Network Intrusion Detection System
(NIDS). Although the original Kitsune NIDS consists of an
ensemble of small auto-encoders (i.e., neural networks) for
anomaly detection, we use only its feature structure to detect
the characteristic traffic patterns in the data exfiltration phase.
The challenge in this paper is to evaluate the usefulness
of lightweight Kitsune network features obtained from the
hypervisor layer in detecting ransomware’s data exfiltration
phase.

B. Contribution and organization of this paper
This paper’s contributions are as follows:

o The detailed attack stages, tactics, procedures, and tools
of the double extortion ransomware attacks are presented.

e A hypervisor-based data exfiltration detection method
using lightweight Kitsune network features [10] is pre-
sented.

o The detection method is evaluated in the lab environment
that simulates the scenario of the double extortion attacks
using the leaked Conti ransomware playbook [2].

The rest of the paper is organized as follows. Section II
presents the detailed attack stages of the double extortion
ransomware attacks using MITRE ATT&CK; the tools and
configurations used in the data exfiltration phase are presented
based on the leaked Conti playbook. Section III presents our
previous work on a hypervisor-based ransomware detection
method using low-level behavioral features of memory and
storage access patterns. Then, we describe the novel method
to detect the data exfiltration phase using Kitsune network
features. Section IV presents the design and implementation.
Section V shows how much the Kitsune network features
improve the detection rate in the data exfiltration phase of
double extortion attacks. Section VI presents the limitations
and future work. We conclude the summary in Section VIIL.

II. ATTACK STAGES OF DOUBLE EXTORTION
RANSOMWARE ATTACKS

Table I shows the mapping between attack stages of double
extortion ransomware attacks and tactics of MITRE Adversar-
ial Tactics, Techniques, and Common Knowledge (ATT&CK).
The four attack stages in the left-most column and the 10 tac-
tics of MITRE ATT&CK in the second left-most column were
presented by Singh and Tripathy [5]; we added procedures
and tools in each tactic in the right-most column based on the
leaked Conti playbook [2], [11]. The leaked Conti playbook
written in Cyrillic for Ransomware-as-a-Service affiliates is a
manual to conduct large-scale, damaging ransomware cam-
paigns; Ransomware-as-a-Service operators do not conduct
attacks but develop and sell infrastructure and playbooks to
affiliates. The affiliates do not need detailed knowledge and
infrastructure for attacks. For example, the Conti playbook
contains the concrete procedures, commands, and tools to
obtain admin access in enterprise networks operated using

Microsoft Active Directory (i.e., Kerberos-based authentica-
tion and authorization system for Windows-based enterprise
networks).

Since this paper focuses on the data exfiltration phase of the
double extortion ransomware, this section presents concrete
procedures and tools used in the data exfiltration phase. In
the later section, we simulate the data exfiltration phase in
our lab environment, where our detection method, described
in section III and IV, is tested. The procedures and tools of
the data exfiltration phase shown in the playbook [2] are as
follows:

1) registers a new account at the Mega cloud storage
(https://mega.io/).

2) downloads rclone program [12] from the official site
and creates a configuration file of rclone to sync files
to the Mega cloud storage.

3) executes rclone program with parameters, including
target directory, destination directory in the Mega cloud
storage, network bandwidth limit, number of threads
used to transfer, and number of file transfers in parallel.
An attacker specifies a target directory in the victim or-
ganization’s computers and network shares (i.e., a shared
directory in an enterprise network). The exfiltrated data
are sent to the Mega cloud storage.

4) copies the stolen sensitive data in the Mega cloud storage
to the dedicated server using tools such as MegaSync.

5) accesses the Mega cloud storage using anonymizing
tools such as Tor; then search keywords such as “cyber
insurance” and “corporate security policy” in the stolen
documents for later extortion purposes.

The playbook uses rclone program, a legitimate cloud
storage management program, for data exfiltration purposes
[12]. The rclone program supports many major cloud stor-
age providers, including Google Drive and iCloud Drive, in
addition to the Mega cloud storage. Fig. 1 shows an example
command of rclone program in the leaked Conti playbook.
In the playbook, the option “~-multi-thread-streams”
(i.e., the number of threads used to transfer) is set between 1
and 12, and the option “~-transfers” (i.e., the number
of file transfer to run in parallel) is set between 3 and 12;
the authors of the playbook did not recommend the use of
the maximum value (12) for the option “—-transfers”
since the exfiltration process is more likely to be detected.
The option “~-bwlimit” means bandwidth limits in bytes/s
to upload and download files. For example, when the option
“——bwlimit 5M” is specified, the bandwidth is limited to
SMB/s.

In our preliminary experiment, we counted the num-
ber of packets sent to and received from the Mega
cloud storage by changing the following three parame-
ters: “~-multi-thread-streams”, “--transfers”,
and “—-bwlimit”. We specified the same values (i.e., 3,
6, 9, and 12) both for “~——multi-thread-streams” and
“——transfers” and specified four values (i.e., 0, SM, 50M,
and 100M) for “—-bwlimit”; the bandwidth is unlimited



TABLE I: Stages, tactics, procedures, and tools used in double extortion ransomware attacks; the procedures and tools are
based on the leaked Conti playbook [2], [11].

Stage Tactics

Procedures and tools

Reconnaissance
Initial Access

Initial stage

Pre-operational stage ~ Command and Control

Privilege Escalation
Persistence

Discovery

Credential Access
Lateral Movement

Operational stage

checks the company revenue
performs phishing attacks, obtains credentials from Initial Access Brokers (IABs), accesses using the
internet-facing Virtual Private Network (VPN) appliances and Remote Desktop Protocol (RDP) machines

once the attacker intrudes into the internal network, they establish communication channels to Command
and Control (C2) servers using C2 framework such as Cobalt Strike and Sliver

obtain administrator’s privilege using tools such as Rebeus (Kerberoasting attacks) and Mimikatz
as soon as administrator rights are granted, download AnyDesk or Atera remote access application
and set up it

scans the internal local area network (LAN) using tools such as NetScan and examine domain
information

logs on to the Domain Controller server using the administrator accounts obtained in the previous stage
logs on to other computers using obtained credentials in the previous stage

Final stage Exfiltration uploads confidential data using tools such as rclone and MegaSync
Impact executes ransomware programs on the organization’s entire computers to encrypt the organization’s files
using the compromised Domain Controller and shows ransom notes for extortion
shell rclone.exe copy local-path Mega:remote-path —-gq —-—-ignore-existing --auto-confirm

——multi-thread-streams 1

-—transfers 3

——bwlimit 5M

Fig. 1: An example of the rclone command for sensitive data exfiltration [2].

TABLE II: Specification of the test machine used in develop-
ing hypervisor-based double extortion detection method.

CPU Intel Core i3 12100 (4 P-cores, 8 threads)
RAM DDR4 2133 8GiB x 2
Motherboard ASRock B660M-HDV

SSD Crucial CT240BX, CT250MX, Samsung 840

Network Intel Pro1000 NIC (1 Gbps), Intel X550-T1 NIC (10 Gbps)
Hypervisor  BitVisor downloaded on 25th Jan. 2022 (8c129al)

Guest OS Windows 10 LTSC

13

when we specify 0 for “—-bwlimit”. In the experiment,
we connected the test computer to the commercial optical
fiber network with a bandwidth of 1 Gbps on a best-effort
basis. Table II shows the computer’s specifications used in the
experiment.

Fig. 2 shows the number of packets sent and received in 30
s in the experiment. We confirmed the impact of the options
of “~——multi-thread-streams” and “~-transfers”
is limited compared to the option “~-bwlimit” from the
perspective of the total number of packets (i.e., throughput of
data exfiltration); therefore, we decided to employ the option
“——bwlimit” to evaluate our data extortion ransomware
detection method in the later section. In addition, since we
used a commercial Internet service provider and cloud storage
provider, the throughput fluctuations were difficult to avoid, es-
pecially when we set the option “~—-bwlimit 07 that means
no bandwidth limit; we thus confirmed that the detection
method using network features have to handle some through-
put fluctuations to adapt various network environments. In
the next section, we present a detection method for the data
exfiltration phase and encryption phase of ransomware attacks.
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Fig. 2: The number of packets processed by the rclone
program in the preliminary experiment.

III. LOW-LEVEL MEMORY AND STORAGE BEHAVIORAL
FEATURES AND KITSUE NETWORK FEATURES FOR DOUBLE
EXTORTION RANSOMWARE DETECTION

We presented a hypervisor-based monitoring system to col-
lect low-level behavioral features for detecting ransomware’s
destruction phase (i.e., impact in MITRE ATT&CK) [8], [9];
the thin hypervisor works as an additional protection layer
to the conventional OS-level ransomware protection layer. We
briefly describe the previous work.

A. Thin-hypervisor-based monitoring system

Fig. 3 shows the hypervisor-based monitoring system de-
veloped using a thin hypervisor named BitVisor [13]; storage



Ransomware

Guest
Operating system

A 4 send collected behavioral

Storage \[SANGT@ [ data to the monitoring
access traffic machine via 10 Gigabit
monitor il | Ethernet
HYpe.rwsor A 10GbE
(BitVisor) NIC 3
\ 4 \ 4 N
o |
( ) Guest OS traffic to the

internet, including data
exfiltration of ransomware

Network Interface Card (NIC)
Solid State Drive (SSD)
Fig. 3: Hypervisor-based monitoring system to collect low-
level behavioral data [8], [9]; the network traffic monitor is
a novel function to detect data exfiltration phase of double
extortion ransomware attacks.

access monitor collects access patterns on storage devices
(e.g., Solid State Drive) using an extended Advanced Host
Controller Interface (AHCI) para-pass-through driver of the
hypervisor [8]. The memory access patterns on RAM are
collected using a hardware-assisted memory virtualization
technology named Intel’s Extended Page Table (EPT) [9],
[14]. Our previous paper [9] showed that a deep-learning-
based ransomware detector trained using the low-level stor-
age and memory behavioral features collected using the
thin-hypervisor-based monitoring system can detect crypto-
ransomware in 0.964 of F score.

In this paper, we developed a novel network traffic monitor
in the thin hypervisor software (Fig. 3). We added the network
monitoring function to BitVisor’s para-pass-through Network
Interface Card (NIC) driver of Intel Pro 1000 (pro1000.c). The
network traffic monitor collects all Ethernet frames sent and
received through the Gigabit Ethernet Network Interface Card
(GbE NIC) the guest OS uses. The obtained data consists of
1,518-byte Ethernet frames. The Ethernet frames, in addition
to memory and storage access pattern data, collected in the thin
hypervisor are sent to the monitoring machine via a dedicated
10 Gigabit Ethernet Network Interface Card (10GbE NIC);
the 10GbE NIC is concealed from the guest OS by the thin
hypervisor to prevent attacks against the monitoring function.
We use the received data on the monitoring machine to train
deep learning models.

B. Behavioral features to train deep learning models for
ransomware detection

Fig. 4 shows a structure of a behavioral feature x that con-
sists of a five-dimensional storage feature xs = {x1,...,24},
a 18-dimensional memory feature X, = {xs,...,%22},
and a 100-dimensional Kitsune network feature Xritsune =
{®as, ..., x122}; a Kitsune network feature X gitsune 1S @ new
feature introduced in this paper. Thus, the 123-dimensional
feature x is created to train deep-learning models for ran-
somware detection. Fig. 4 presents the 123-dimensional

Xs Xm Xkitsune
A A
4 Y \
€ x(0)
4 x(29.9)
L s *e t*t
X0 X4 X5 X22 X323 X122

Fig. 4: Structure of a behavioral feature x consisting of X,
Xm»> Xkitsune 1 30 s after executing a malicious program or
benign program (Tyindow =0.1 s and T3 =30 s).

feature x in 30 s after executing a malicious program
(i.e., a ransomware executable and a data exfiltration pro-
gram) or a benign program. The 123-dimensional feature
x 1is created using Tyindow =0.1 s and T3=30; Twindow
is a period to calculate a feature vector x. Ty is the
duration of access patterns used in detecting ransomware;
therefore, T, is also referred to as the detection time of
ransomware. Fig. 4 shows the feature structure of x =
{Xss Xm> Xkitsune} = {x(0),x(0.1),2(0.2),...,2(29.9)}.
Each row represents a feature vector at a specific time window;
for example, x(0) is a 123-dimensional feature vector between
0 s and 0.1 s. On the other hand, a behavioral feature
Xx can also be expressed in x = {Xs, Xm, Xkitsune} =
{xo,x1,x2,...,£122}. Each column represents a specific
feature vector between 0 s and 30 s. For example, x23 =
{x23(0), x25(0.1), 225(0.2), ..., £23(29.9)} is a feature vec-
tor of the first element of Kitsune network feature Xkitsune
between 0 s and 30 s. x;(j) is a ith feature vector calculated
using storage and memory access patterns and network traffic
between j s and (5 + Twindow) S-

C. Kitsune network features to detect data exfiltration

Mirsky et al. presented a lightweight Kitsune Network
Intrusion Detection System (NIDS) designed to deploy on
inexpensive distributed routers [10]; Kitsune means fox in
Japanese and foxes are famous for tricking humans by chang-
ing their appearance except for their tails in Japanese folklore.
The original Kitsune NIDS detects anomaly using ensembles
of small auto-encoders (i.e., neural networks) trained using
Kitsune network feature Xgitsune. In this paper, we employ
only the feature extractor of Kitsune NIDS and do not use
ensembles of auto-encoders.

Kitsune NIDS support high-speed feature extraction of
temporal statistics over a dynamic number of network channels
with a small memory footprint; the features are extracted
using incremental statistics, which means feature vectors that
are updated using transmitted or received packet size with
elapsed-time-based decay factors. Let S = {z1,22,...} be
a sequence of observed packet sizes where z; € R. A
tuple IS := (N, LS, SS) consists of the number of received
packets, a linear sum, and a squared sum of packet sizes
transmitted or received so far. The update procedure of 1.5
for the packet size x; is IS « (N + 1,LS + ;, 5SS + 2?).



TABLE III: 1D and 2D incremental statistics used in Kitsune
NIDS.

Type Statistic Notation Calculation
Weight w w
1D Mean 1S, LS/w
Stdard
— 2
Deviation IS, [SS/w — (LS/w)?|
Magnitude [1Si, S5l \ 1s; %+ ps;?
D Radius RS@,SJ (0'57,’2)2 + (O'sz)2
CAppfox. Covs, s SRij
ovariance J w; + w;
Correlation Ps. s Covg, ,S;
Coefficient Lt 05,05,

The Kitsune NIDS uses five time-window of 100 ms, 500 ms,
1.5 s, 10 s, and 1 min to attenuate incremental statistics 1S
values in .S of each time window are attenuated by applying
each of decay factors A = {5, 3, 1, 0.1, 0.01}; the decay
factors were chosen in the original paper [10].

Table III shows two types of incremental statistics used in
Kitsune NIDS. A one-dimensional (1D) incremental statistics
consists of three real numbers of statistics (i.e., R3). On
the other hand, a two-dimensional (2D) incremental statistics
consists of four real numbers of statistics (i.e., R?). The values
of ID and 2D incremental statistics are maintained in a hash
table; a key-value pair in the hash table is maintained using
the following keys:

o sSrcMAC+srcIP: A string that concatenates a source
Media Access Control (MAC) address and source Internet
Protocol (IP) address

o srcIP+dstIP: A string that concatenates a source IP
address and destination IP address

o srclP, dstIP: A source IP address and destination IP
address

o srcIP+srcPort, dstIP+dstPort: A string that concate-
nates a source IP address and source port number and
a string that concatenates a destination IP address and
destination port number

An 1D incremental statistics is calcurated for each of
the keys in srcMAC+srcIP, srcIP+dstIP, srcIP, and sr-
cIP+srcPort. A 2D incremental statistics is calculated for
each pair of the keys (srcIP, dstIP) and (srcIP+srcPort,
dstIP+dstPort); the 2D statistics represent dual traffic be-
havior between source and destination. Therefore, a Kitsune
network feature in a single time window contains four 1D
incremental statistics consisting of 12 real numbers (i.e., R'2)
and two 2D incremental statistics consisting of eight real
numbers (i.e., R?). We concatenate the Kitsune network feature
of five time windows; thus, we obtains a 100-dimensional
Kitsune network feature Xgitsune (.6, R'9) in total. We
used the 100-dimensional Kitsune network features Xgitsune
of the last packet processed in each time window T,;ndow-
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Fig. 5: A lab environment to test the detection system.

IV. DESIGN AND IMPLEMENTATION

We developed the network traffic monitor function in
Gigabit Ethernet Network Interface Card (NIC) para-pass-
through driver of the thin hypervisor (BitVisor) described in
Section III. Table II shows the test machine’s specification in
developing the hypervisor-based double extortion ransomware
detection method. Fig. 5 shows a lab environment to test the
detection system. We connected the test machine, where the
hypervisor-based monitoring system runs, to the Internet using
a commercial optical fiber network with a bandwidth of 1
Gbps on a best-effort basis. The test machine that executes the
thin-hypervisor-based monitoring system is connected to the
monitoring machine via a direct 10 Gigabit Ethernet link; the
monitoring machine receives the collected storage and memory
access patterns and Ethernet frames sent to and received from
the Internet on the test machine.

In the evaluation, we collected behavioral feature x of Fire-
fox with autopilot plugin, Microsoft 365 Office applications
(i.e., Excel, PowerPoint, Word) that open a remote file from
OneDrive and process them using a macro program or play
slide show, teleconference applications (i.e., Microsoft Teams
and Zoom) that play YouTube video of Mirsky’s Kitsune NIDS
presentation recorded at NDSS2018 conference in a meeting
with two participants, and MegaSync and rclone programs
that sent dummy files to cloud storage. We copied the first 50
directories of the GovDocsl dataset [15] to the Desktop on
the test machine. The rclone program is configured to send
dummy files to Google Drive or Mega; we configured the pa-
rameter of “——bwlimit’ to 5 MB/s, 50 MB/s, and 100 MB/s.
We executed each program 10 times to create the dataset. We
used the same deep neural network model consisting of a one-
dimensional Convolutional Neural Network (ID-CNN) layer
and two Long Short-Term Memory (LSTM) layers used in the
previous paper [9], trained and evaluated the model using the
obtained feature x. We used 70% of the dataset for training
and 30% of the dataset for prediction.

V. EVALUATION

We evaluated the impact of introducing Kifsune network
feature Xgitune in addition to storage behavioral feature
Xs and memory behavioral feature x,,. Fig. 6 shows the
confusion matrix of the deep learning model trained using



only storage and memory access patterns x = {Xs, Xm }- The
confusion matrix was created using the sum of the five model
predictions. The average micro F-score of 13 classifications in
five trials was 0.267 when we used only storage and memory
features.

Fig. 6 shows the confusion matrix of the deep learn-
ing model trained using Kitsune network features in ad-
dition to storage and memory access patterns x =
{Xss Xm, Xkitsune }- The confusion matrix was created using
the sum of the five model predictions. The average micro
F-score of 13 classifications was 0.513 in five trials when
we used Kitsune network feature in addition to storage and
memory features. We improved 0.246 in the micro F score of
13 classifications using Kitsune network feature.

Next, we assume that MegaSync and rclone programs
belong to a malicious class that exfiltrates sensitive data; other
programs (i.e., Firefox, three Microsoft Office applications,
Teams, and Zoom) belong to a benign class. The macro F
score of the binary classification was 0.721 when we used
only storage and memory features. On the other hand, the
macro F score of the binary classification was 0.887 when
we used Kitsune network feature in addition to storage and
memory features. We thus confirmed that the presented method
improved by 0.166 in the macro F score of binary classification
using Kitsune network feature.

VI. DISCUSSION

We first discuss the experimental results in detail. In the
experiment, we used three bandwidth limits (i.e., 5 MB/s, 50
MB/s, and 100 MB/s) and two cloud storage providers (i.e.,
Google Drive and Mega) for the rclone program. Fig. 7
shows that the developed detection system could distinguish
the two cloud storage providers; however, it was difficult to
determine the differences in bandwidth limits. In addition, the
developed detection system could distinguish the behaviors
between MegaSync and rclone programs that use the Mega
cloud storage. We also confirmed that the developed system
could distinguish the behaviors between Office applications
with low-traffic patterns (i.e., Excel, PowerPoint, and Word).
The detection rates of two teleconference applications (i.e.,
Teams and Zoom) also improved.

The limitations and future work of the presented detection
method are as follows: (1) although the current system shown
in Fig. 3 has the monitoring function of storage and memory
access patterns and network traffic, it does not have the
deep-learning-based ransomware detection function in the thin
hypervisor; we created the model and predicted results in
another machine for now. Therefore, our future work includes
implementing machine-learning or deep-learning model up-
date and prediction functions in the hypervisor software. (2)
this paper examined only the data exfiltration phase using
the limited tools shown in the leaked Conti playbook [2];
we need to examine earlier stages of the double extortion
ransomware attacks, including lateral movement, credential
access, discovery, persistence, privilege escalation, command
and control, and initial access of MITRE ATT&CK tactics

described in Section II. The early detection will reduce the
security risk of the victim organizations. (3) since the pre-
sented method uses a hypervisor to collect storage and memory
access patterns and network traffic, it cannot distinguish the
behaviors of multiple applications executed in parallel, for ex-
ample, including the operating system’s processes and benign
high-bandwidth transfers (e.g., large backups). Although we
conducted the experiment executing a single application at a
time, we need further realistic conditions that run multiple
applications simultaneously. Therefore, the challenges in our
future work include mitigating some degree of semantic gap
problem between the operating system and hypervisor (e.g.,
distinguishing each process in hypervisor software). Tapaswi
defined the semantic gap problems in Virtual Machine Intro-
spection (VMI) techniques as difficulties in deriving a com-
plete view of the guest operating system from the hypervisor
due to the highly dynamic nature of modern operating systems
and virtualization software [16]. Many ransomware detection
methods using network activity have been implemented on
Windows but not on hypervisors, unlike our method [4].

VII. CONCLUSION

As organizations prepare for crypto-ransomware attacks us-
ing more robust backup strategies, more ransomware attackers
have focused on sensitive data exfiltration. The early detection
of such double extortion ransomware attacks is crucial to
keep the organization’s security risk low. This paper first pre-
sented the detailed attack stages, tactics of MITRE ATT&CK,
procedures, and tools used in the real double-extortion ran-
somware attacks based on the leaked Conti playbook [2].
We developed the novel network traffic monitor function in
the thin hypervisor of our previous work [9]; we employed
lightweight network feature used in Kitsune Network Intrusion
Detection System (NIDS) in training our deep-learning-based
ransomware detector.

We examined the two data exfiltration tools (i.e., rclone
and MegaSync programs) and six benign applications, in-
cluding a web browser with autopilot plugin, three Office ap-
plications that open and manipulate files on OneDrive, and two
teleconference applications. The presented method improved
0.166 in the macro F score of binary classification (i.e., data
exfiltration programs and benign programs) compared to the
method that used only storage and memory features. We finally
discussed the limitations of the current work, including the
lack of detection function in the hypervisor software, the need
to detect earlier attack stages, and examining detection perfor-
mance in more realistic conditions of simultaneous execution
of applications that need to solve some semantic gap problems.
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Predicted

Firefox Microsoft 365 Rclone (GoogleDrive) Rclone (Mega)
topilot Zoom MegaSync
autopilo Excel [PowerPoint| Word Teams 100MB/s | 50MB/s | 5MB/s | 100MB/s | 50MB/s | 5MBIs
Firefox autopilot 5 2 1 2 0 0 0 2 0 1 0 0 1
Excel 2 4 0 0 0 1 0 2 0 1 0 0 2
Microsoft PowerPoint 3 0 4 1 1 0 0 2 0 0 0 0 1
365 Word 1 2 2 3 4 0 1 2 1 0 0 0 0
Teams 1 1 2 1 2 4 0 2 0 0 0 0 0
B Zoom 0 2 0 0 2 9 0 0 0 1 1 0 2
% MegaSync 0 1 2 1 0 0 6 1 0 0 0 3 0
<
100MB/s 0 3 1 3 0 0 0 3 3 1 1 2 3
(Goig:ggfive) 50MB/s 1 2 1 4 0 0 0 1 1 3 0 3 1
5MBI/s; 0 1 0 2 1 0 0 0 1 4 0 7 0
100MB/s 0 0 1 0 0 3 0 4 0 0 2 0 5
RIS 50MB/s 0 0 0 0 1 1 0 0 0 2 1 4 1
(Mega)
5MB/s 0 1 0 0 1 1 0 4 1 1 3 2 5
Fig. 6: Confusion matrix of deep learning model trained using only storage and memory feature x = {Xs, Xm }-
Predicted
Firefox Microsoft 365 Rclone (GoogleDrive) Rclone (Mega)
topilot Zoom MegaSync
autopilo Excel [PowerPoint| Word Teams 100MB/s | 50MB/s | 5MB/s | 100MB/s | 50MB/s | 5MBIs
Firefox autopilot 9 1 1 1 0 0 0 0 0 2 1 0 0
Excel 2 11 0 0 0 0 0 2 0 0 0 0 0
Microsoft PowerPoint 5 3 8 1 0 0 0 0 1 2 0 0 0
365 Word 0 2 3 7 0 0 0 0 2 0 0 1 0
Teams 1 1 0 0 9 2 0 0 0 0 0 1 0
B Zoom 0 0 0 0 0 12 0 1 0 0 0 0 0
% MegaSync 0 0 0 0 0 0 12 0 1 0 0 0 0
<
100MB/s 0 2 0 3 0 0 1 2 6 1 0 0 1
Rclone
(GoogleDrive) 50MB/s 0 0 3 1 0 0 0 2 8 2 0 0 0
5MBI/s; 0 0 0 0 0 0 0 7 5 3 0 0 0
100MB/s 0 0 0 0 0 0 0 0 0 0 6 5 6
RIS 50MB/s 0 0 0 0 0 0 0 0 2 0 2 9 3
(Mega)
5MB/s 0 0 0 0 0 0 0 0 0 0 2 4 4

Fig. 7: Confusion matrix of deep learning model trained using Kitsune network features in addition

features x = {Xs; Xms intsune}~
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