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ABSTRACT

In digital substations, security events pose significant challenges to the sustained operation of
power systems. To mitigate these challenges, the implementation of robust defense strategies is
critically important. A thorough process of anomaly identification and detection in information and
communication technology (ICT) frameworks is crucial to ensure secure and reliable communication
and coordination between interconnected devices within digital substations. Hence, this paper
addresses the critical cybersecurity challenges confronting IEC61850-based digital substations within
modern smart grids, where the integration of advanced communication protocols, e.g., generic object-
oriented substation event (GOOSE), has enhanced energy management and introduced significant
vulnerabilities to cyberattacks. Focusing on the limitations of traditional anomaly detection systems
(ADSs) in detecting threats, this research proposes a transformative approach by leveraging generative
Al (GenAl) to develop robust ADSs. The primary contributions include the suggested advanced
adversarial traffic mutation (AATM) technique to generate synthesized and balanced datasets for
GOOSE messages, ensuring protocol compliance and enabling realistic zero-day attack pattern
creation to address data scarcity. Then, the implementation of GenAl-based ADSs incorporating
the task-oriented dialogue (ToD) processes has been explored for improved detection of attack
patterns. Finally, a comparison of the GenAl-based ADS with machine learning (ML)-based ADSs
has been implemented to showcase the outperformance of the GenAl-based frameworks considering
the AATM-generated GOOSE datasets and standard/advanced performance evaluation metrics.
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1 Introduction

Power grid blackouts considerably interrupt societal and economic operations, caused by factors such as human errors,
technical malfunctions, and environmental incidents. Additionally, the risk of cyberattacks inducing these outages
highlights an increasing susceptibility. Consequently, ensuring the cybersecurity of ICT systems integral to power grid
functions has emerged as an imperative need [1]. Digital substations utilizing IEC61850 are pivotal within the power
grid architecture, overseeing the allocation, conversion, and integration of energy streams. The advent of smart grids
has amalgamated the power grid infrastructure with communication networks and computing functions, paving the way
for numerous groundbreaking applications such as automated data acquisition and the remote management of electrical
systems and elements [2}3]]. Nevertheless, integrating these systems introduces a range of security vulnerabilities to
the smart grid. ADSs play a crucial role in identifying and mitigating malicious activities by adversaries. Historically,
ADSs have proven effective in traditional ICT fields for this purpose. However, with the adoption of IEC61850 and
the implementation of specific communication protocols, such as multicast messages (e.g., GOOSE), new avenues
have emerged for customized malicious strategies that exhibit distinct traffic and attack patterns. These may comprise
unauthorized data interceptions and denial-of-service (DoS) attacks. Thus, it is essential for ADSs to develop and refine
new signatures for training, testing, validation, and assessment to address these emerging challenges effectively [4,5]].
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1.1 Problem Statement

The criticality of substations is grounded in their function as nodes that handle multiple transmission lines, a feature
that amplifies their impact on grid stability. Traditional contingency planning, such as N — 1 analyses, assesses the
system’s resilience to the loss of a single component, but the compromise of a substation due to different types of
cyberattack can lead to an N — m scenario—simultaneous outages of multiple lines—overwhelming the grid’s capacity
and triggering catastrophic disruptions. This vulnerability is particularly heightened in the U.S., where the expansion of
unmanned substations, dependent on remote access for maintenance, has created significant exposure points. These
facilities are ideal targets for cyber intrusions, as both authorized engineers and malicious actors can exploit the same
access mechanisms. The reliance on remote access in unmanned substations has advantages and limitations; while it
facilitates operational efficiency, it also increases cybersecurity risks. The potential for unauthorized access by intruders,
leveraging the same entry points as legitimate operators, underscores a critical gap in current security frameworks.
This issue is compounded by the evolving nature of cyber threats, which can exploit vulnerabilities in communication
protocols, leading to scenarios such as false data injection (FDI), DoS, and replay (RE) attacks. The need to reinforce
these systems is evident, given their role in ensuring grid reliability and the potential for cascading failures that can
disrupt entire regions.

Furthermore, ML techniques applied within ADSs play a crucial role in detecting and correcting inconsistencies in
GOOSE multicast transmissions. These techniques are acknowledged for their accuracy and emphasis on data, offering
a sophisticated foundation for cybersecurity measures. Nonetheless, they do present certain obstacles. A significant
limitation is the need for ongoing model retraining whenever new attack vectors emerge. Upon detection of a novel attack
pattern, the ML models require updating to integrate this novel data. This retraining procedure demands substantial
time and resources, which results in a period of vulnerability during which the system is exposed to new threats (e.g.,
zero-day attacks) that have not yet been included in the model’s intelligence framework [6]. Furthermore, the ability
of these ML-driven ADSs to scale, alongside their efficiency in decision-making and data processing, is critically
significant for the operational functionality. Scalability concerns focus on the model’s proficiency in adapting and
sustaining performance as the network expands or as data volume increases. The decision-making aspect relates to the
model’s capability for accurately identifying secure versus malicious actions, a challenge that grows more complicated
with the advancement of sophisticated attack methods. Finally, the domain of data processing highlights the necessity
for proficient management and analysis of extensive datasets that are frequently essential for system operations [[7,[8]].
The identified key deficiencies in existing ML-based ADSs pose substantial difficulties within industrial control system
(ICS) networks, especially in settings where GOOSE messages are fundamental to time-sensitive communications.

1.2 Research Objectives

The successful fusion of traditional electrical grids with advanced communication networks and computational frame-
works through smart grid technologies brings about significant security risks, particularly through the IEC61850
standard and its related protocols. This integration facilitates unique attack vectors marked by distinct traffic and
attack patterns that pose considerable challenges to conventional ADSs. Addressing this evolving security framework
requires the development of enhanced ADS capabilities featuring specialized signatures for robust training, testing,
and validation against novel threats. This is especially crucial for identifying zero-day attacks in traffic patterns,
which lack predetermined rules in practical scenarios, further complicated by the scarcity of realistic, balanced, and
comprehensive IEC61850-based communication datasets. In light of these significant challenges, it is essential to
develop adaptive, resilient, and scalable AD solutions that effectively reduce latency in integrating new threat intelli-
gence while simultaneously improving decision-making processes and data management capabilities. Applications
or systems known as GenAl tools employ large language models (LLMs) and sometimes other AI models to produce
content customized to user inputs within distinct contexts, presenting a revolutionary approach via platforms such as
OpenAI’s ChatGPT [9]], Anthropic Claude Pro [10]] and Microsoft Copilot Al [11]]. These GenAl solutions, crafted with
precision for deep contextual understanding using advanced memory architectures and natural language processing
(NLP) capabilities, demonstrate the ability to identify zero-day attacks through contextual evaluation, even in the
absence of substantial prior knowledge of particular threat signatures [12], thus significantly decreasing the workload
on human operators relative to traditional approaches that rely extensively on routine retraining procedures and fixed
data models. Synthesizing pre-processed datasets and engineering ADSs that integrate past trends while independently
analyzing changing network conditions and suggesting responses based on data insights, the goal of this research
is to design security frameworks that possess the ability to autonomously respond, continuously learn, and process
data at scale, thereby improving the robustness and dependability of digital substations. This is achieved by ensuring
that innovative or complex threats are promptly detected, preventing significant disruptions to essential infrastructure
systems [3,/13H16].
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1.3 Literature Review

The evolution of digital substations has necessitated the development of sophisticated ADSs leveraging ML techniques.
These systems analyze data patterns to identify cyber threats in real-time, ensuring power grid reliability [[17-19].
Recent research has explored diverse ML approaches for AD. Alvee et al. [20]] developed a convolutional neural
network (CNN)-based methodology that converts binary files into images for ransomware detection, though limited
by dataset constraints and scenario coverage. A real-time ADS using advanced ML was explored in [21]], but faced
challenges in processing large data volumes efficiently. Hybrid approaches combining CNN and long short-term
memory (LSTM) networks [22]] showed promise but struggled with generalization to new attack types. Several studies
focused on IEC61850 protocol-specific solutions. Eynawi et al. [23]] developed ML-based feature selection for GOOSE
and Sampled Value (SV) messages, though computational overhead limited real-time deployment. Quincozes et al. [24]]
introduced innovative feature engineering for IEC61850, but relied on static datasets. A game theory integration by
Jay [235]] offered proactive defense mechanisms, though practical implementation remained computationally intensive.
Bhattacharya et al. [26] achieved impressive results with k-Nearest Neighbors (KNN), but lacked deep learning (DL)
integration and real-world deployment validation. Other approaches included gradient boosting [[27], distributed security
systems [28]], and ML-driven GOOSE message analysis [29]], each with specific limitations in scalability, computational
demands, or protocol coverage. A GenAl-based ADS considering the human-in-the-loop (HITL) was proposed by
Zaboli et al. [13]] to implement the detection processes in IEC61850-based multicast messages, considering different
GPT tools. However, there was no continuous learning and automated processing of actions in this research alongside
the multicast messages extracted from the hardware-in-the-loop (HIL) testbed. Moreover, Zaboli et al. 5] suggested a
novel GenAl-based ToD framework for the AD process to overcome the challenges given in the GenAl-based ADS using
the HITL. It covered the learning and automated processes gaps and made a good comparison with the HITL technique
considering different GPT tools. While this framework showcased the outperformance over the HITL process, the lack
of a comparison of this framework with ML-based ADS was a gap of the research. Also, the balance and realistic issues
of datasets considering the zero-day attack were missed as new threats emerged in real-world applications.

Recent data balancing methodologies build upon and extend established traditional approaches. Bhattacharya et
al. [26] employed the RUS and SMOTE for imbalanced datasets in IEC61850-based messages. Although SMOTE can
efficiently generate new samples for datasets with few dimensions, its performance drops markedly when dealing with
high-dimensional data. Moreover, SMOTE’s method of interpolation does not always guarantee that the synthetic data
will be of high quality or that the interpolation is performed in the best possible way, which can lead to considerable
noise in the dataset. Recent developments in GANs have achieved outstanding results in computer vision and image
synthesis. As a result, researchers are now exploring the use of GANSs to generate samples for minority classes, with the
aim of addressing data imbalance challenges [30]. Some challenges in the data pre-processing part for the AD process
can include data imbalance, absence of prior information, increased data complexity, data generation for anomalies with
different patterns, resource extensiveness, and re-training process for zero-day attacks, which can be found in Table
with the relevant descriptions for each challenge [26|31H36]. Dairi et al. introduced semi-supervised DL schemes that
effectively learn temporal dependencies using only normal training data; nonetheless, their dependence on IEC60870-
5-104 datasets (for SCADA control) creates a challenge when extending these methods to the semantics of GOOSE
messages in digital substations [[37]]. Lopez et al. [|38] developed a substation-aware ADS that integrates substation
topology to enhance detection accuracy, although its limited capability to infer the deep semantic content of GOOSE
messages remains a critical gap. Moreover, Sahani et al. [39]] provided a comprehensive survey of ML-based ADS in
smart grids, offering valuable insights into ML applications while also revealing scalability and real-time processing
challenges. Additionally, Anwar et al. [40] compared unsupervised learning algorithms for intrusion detection in
the IEC60870-5-104 SCADA protocol, contributing to the understanding of detection performance while exposing
low detection accuracies that limit practical deployment. An ADS along with network packet features for wide-area
protection was proposed by Singh and Govindarasu [41], though the complexity in feature selection and high processing
overhead hinders a smooth integration. Khaw et al. [42] presented a universal DL-based cyberattack detection system
for transmission protective relays that simplifies model tuning across different fault types, but its reliance on static
training datasets limits its adaptability to evolving zero-day attacks. Lim et al. [43] reviewed the application of GANs
for AD in network security, demonstrating that these models can generate synthetic minority samples to improve the
detection of rare attack patterns; however, they also highlighted challenges such as an over-reliance on predefined
evaluation metrics and insufficient representation learning when dealing with extremely imbalanced datasets. Similarly,
Yuan et al. [|30] proposed a GAN framework, which leverages LSTM networks to capture temporal features and generate
high-quality synthetic intrusion data for industrial control systems, enhancing the AD performance on imbalanced
datasets; however, their approach is challenged by issues of mode collapse and limited diversity among the generated
anomalies. In addition, Sauber-Cole et al. [44] surveyed GAN techniques for mitigating class imbalance in tabular
data, emphasizing the promise of GAN architectures to produce representative minority instances; nevertheless, they
noted persistent challenges, including architectural sensitivity and the lack of standardized evaluation metrics to reliably
assess synthetic data quality. Manzoor et al. introduced a method that exploits the in-context learning (ICL) capability
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Table 1: The challenges encountered in detecting anomalies within network systems in terms of data availability.

Challenge

Description

Excessive dependence on prior knowl-
edge [31]

Contemporary approaches to AD exhibit a pronounced reliance on es-
tablished attack signatures and predefined network behavioral baselines.
Such dependence on historical data and fixed analytical frameworks can
restrict their effectiveness in detecting novel or rapidly evolving security
threats (zero-day attacks).

Resource-demanding & time-

consuming implementation [32]]

Generating new signatures or updating profiles for current detection
systems entails considerable time and resource investment, typically
requiring the specialized expertise of network security professionals.

Unavailability of prior contextual attack
data [33]]

The scarcity of preceding intelligence, particularly regarding threat vec-
tors such as zero-day attacks, represents a significant operational chal-
lenge. Moreover, unknown system vulnerabilities and evolving attack
methodologies often further complicate the implementation of effective
cybersecurity countermeasures.

Elevated data complexity and absence
of real-time detection mechanisms [34]

Due to the exponential increase in data complexity and size, network
traffic continues to intensify, making the real-time attack detection and
the maintenance of consistent monitoring increasingly difficult.

Data augmentation aimed at anomalous
trend emergence [35]]

Conventional AD methods often encounter difficulties in producing
unknown anomalous datasets, which are crucial for effectively training
and evaluating detection algorithms.

Imbalanced class [26]36]

The network AD inherently suffers from class imbalance, characterized

by a privilege of normal instances relative to a scarcity of abnormal ones.
Consequently, AD models may experience performance degradation
when faced with extreme discrepancies in training samples, underscoring
the criticality of addressing data imbalance.

inherent in transformer architectures to detect zero-day attacks in digital substations. Their technique allows the
model to integrate new attack examples with minimal retraining, achieving detection accuracies exceeding 85% for
zero-day scenarios where conventional state-of-the-art baselines fail. Nonetheless, the method is contingent on the
diversity of training data, as its efficacy is highly dependent on the number and heterogeneity of attack classes included
during training. Moreover, the overall performance of the system is significantly influenced by the quality of the weak
classifiers, with notable performance degradation observed. Further, this research used the multi-mixing technique to
generate synthetic datasets without good validation and meeting the IEC61850-based messages violation rules, which
is a critical gap [45,/46]. Lin et al. [47] developed “CausalPrompt,” a novel prompting strategy designed to adapt
LLMs for classification and regression tasks via weakly supervised causal reasoning. By integrating domain-specific
causal inferences during the fine-tuning phase, their approach enhanced the adaptability and resilience of energy
systems against data distribution shifts. Their experimental results revealed improvements in predictive performance
under feature changes. However, the method encounters challenges in safety-critical applications, as performance
still degrades under significant feature shifts. Additionally, the approach’s heavy reliance on domain expert reasoning,
which is not always readily available, coupled with the high financial costs associated with fine-tuning commercial
LLM APIs, presents further practical constraints. Also, the nature of the data generation process based on the different
energy rules in terms of the unknown anomalies is not clear. Quincozes et al. [48]] proposed the Efficacious Reproducer
Engine for Network Operations (ERENO), a framework for generating realistic intrusion detection datasets specialized
to IEC61850-based standards. Their system synthesized traffic features by integrating data from both network and
physical domains, thereby facilitating cross-protocol detection between GOOSE and SV messages. The framework
successfully generated datasets that model eight distinct use cases, including common attack types as well as normal
network traffic and demonstrates that the integration of enriched substation features can enhance intrusion detection
performance. Nevertheless, their implementation faces gaps in effectively detecting sophisticated masquerade attacks
that are engineered to mimic legitimate behavior, and the current proof-of-concept primarily addresses attack scenarios
based on illegitimate GOOSE messages, leaving other potential attack vectors and protocols less explored.

1.4 Contributions

According to the current research gaps, the enhancements of this research can be classified based on the data generation
and efficiency of the proposed GenAl-based ADS based on the ToD framework [5]]. Therefore, the main strengths of
the proposed methodology using the previously proposed GenAl-based ADS can be summarized as follows:
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* An AATM technique for synthetic data generation: A novel perturbation and mutation-based synthetic
data generation methodology is proposed to address the critical challenge of insufficient and imbalanced
[EC61850-based communication datasets in digital substations. The AATM technique employs protocol-aware
transformation functions that generate realistic zero-day attack patterns while maintaining strict adherence to
GOOSE protocol rules through gradient-guided perturbations and categorical feature mutations. This method
can outperform existing approaches including conditional generative adversarial network (CGAN). This
methodology establishes a robust foundation for generating protocol-compliant synthetic datasets essential for
training advanced ADSs against evolving cyber threats in digital substations.

* A validation of the GenAI-Based ADS considering the ToD framework, compared with ML-based
models through standard and advanced performance metrics: This method advances traditional ML-based
ADSs by utilizing the contextual comprehension abilities of GenAl, along with integrating expertise from
domain specialists through the continuous learning. Hence, a comparative analysis of the GenAl-based ADS
with a ToD configuration is conducted to demonstrate the superiority of rule-based GenAl frameworks over
traditional ML algorithms including Feedforward Neural Networks (FNN), Recurrent Neural Networks (RNN),
and Support Vector Machines (SVM) for an AD process in IEC61850 communications. In this case, the AATM
generated GOOSE datasets are considered for the comparative analysis which have better balance rate (BR)
and realism rate (RR). The evaluation employs both standard and advanced metrics to provide comprehensive
assessment of detection capabilities. This validation establishes that incorporating domain-specific rules and
contextual understanding through GenAl significantly enhances AD performance beyond what traditional ML
algorithms can achieve.

1.5 Paper Organization

The rest of this paper is organized as follows: Section [2] presents the IEC61850-based multicast data generation
techniques, particularly GOOSE messages. Further, this section provides different steps of the generation process
based on the proposed and current techniques, GOOSE rules, and validation framework. Section [3]demonstrates the
description of the proposed GenAl-based ToD framework and modeling of this structure alongside ML-based ADSs.
The results and discussion of the proposed AATM data generation techniques in terms of the balance and realistic
aspects are given in Sectiond] Also, a comparison of the proposed GenAlI- and ML-based ADSs is implemented in
this section considering the novel GOOSE message generation technique. Finally, the concluding remarks, along with
potential directions for future research, are presented in Section [5]

2 Proposed IEC61850-based Multicast Data Generation Technique in Digital Substations

In a controlled and realistic environment, a HIL testbed is crucial for evaluating the interaction between cyber attacks
and the robustness of power systems. This real-time HIL testbed comprises an integration of various elements, such as
hardware, software, communication protocols, and simulation technologies, all integrated with GPS synchronization.
The incorporation of these elements is essential for exploring the real-time dynamics inherent in communication and
information processing. This understanding is critical for the analysis of cyber attacks, enhancing detection protocols,
and developing robust strategies for effective mitigation [49]]. The configuration of the HIL testbed comprises diverse
elements such as protection IEDs, SDN switches, a GPS unit, a merging unit IED, a SCADA system, a real-time digital
simulator, and an amplifier. The system utilizes a SCADA-based distribution management system (DMS) that gathers
measurements and implements control commands utilizing DNP3 protocols. The designed IEDs possess the function of
dispatching control signals to circuit breakers (CBs). A CB, in turn, is engineered to react to GOOSE messages by
communicating its operational status—either open or closed—back to the protective IEDs. Moreover, the merging
unit IED is responsible for transmitting digital current and voltage measurements from the digital real-time simulator
to the protective IEDs by employing the amplifier [[16,|17]]. It is important to mention that specifics about the HIL
testbed are outside the scope of this study, as this research primarily focuses on techniques for data pre-processing and
generation. Within the HIL test environment, Wireshark (a tool for analyzing network packets) enables a comprehensive
capture of communication packets. This procedure entails real-time observation and examination of network traffic
in the HIL testbed, facilitating comprehensive tracking and recording of packet flows. Utilizing the functionalities of
Wireshark, researchers can capture a snapshot of communication flows, facilitating a deeper comprehension of the
interactions among various components within the test environment. This systematic approach guarantees precise
extraction of essential packets, thereby enriching the research endeavor with significant insights into the operational
behaviors of cyber-physical systems (CPSs) [13]]. Detailed information on the datasets, the procedures for extraction,
and the outlined features, along with the GOOSE rules for both normal and abnormal patterns, will be discussed in the
forthcoming section. This methodology can similarly be applied to other multicast messages (e.g., SV messages) due to
their unique rules and characteristics. Hence, this section introduces an innovative analytical framework for an analysis
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of AD processes in IEC61850-based communication messages (specifically GOOSE messages). An in-depth analysis is
outlined as follows:

2.1 Synthetic Balanced and Realistic Data Generation Process

This part shows the process for the generation of the GOOSE datasets in a way that can meet the requirements for the
generation of realistic zero-day attacks and balancing issues. Hence, a comparison of the proposed technique known
as the AATM with another methodology (i.e., CGAN [30,43])) is carried out to show the better performance of this
proposed method. Hence, a general framework of the data generation part considering the contributions and different
steps is illustrated in Fig. [T} This pipeline begins with a raw packet capture step, proceeds through feature extraction and

Raw .pcap Files

Y
GOOSE Messages
Extraction

Y
Feature

Extraction

Y
GOOSE Rules
Definitions
(GR#1 - GR#8)

Synthetic Data Generation Techniques

CGAN AATM

- Adversarial learning approach - Protocol-compliant mutations
- Inconsistent GOOSE rule adherence - Novel pattern generation
- Some variation in attack patterns - Balanced class distribution

(f--——— - - - -
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Figure 1: A systematic workflow of the proposed methodology for generating balanced and realistic GOOSE datasets.

GOOSE rules definitions. Before the GOOSE rules definitions, it is necessary to provide details of GOOSE features in a
sample dataset. The GOOSE packet data encompasses 14 distinct data types, designated by the features extracted using
tshark (a terminal-oriented version of Wireshark) which is shown in Fig. 2] [13]. The temporal attribute meticulously
logs the exact transmission instance of a packet, detailing the time in hours, minutes, seconds, and milliseconds to
ensure comprehensive precision. The abbreviations DM and SM stand for the destination and source media access
control (MAC) addresses, respectively, acting as essential identifiers in the communication framework. In particular,
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Figure 2: The process of GOOSE packets and features extraction using tshark.

the designated DM address associated with GOOSE messages is referred to as (010003), and is directed at devices
associated with this specific MAC address, whereas the SM address is depicted as 273431, which determines the
transmitting IED. In GOOSE packet classification, the type indicator is specified by the value 88b8. Furthermore, for
GOOSE communications, the Application identifier (APPID) is set to 3. The dataset name and GOOSE identification
are expressed by the dataset and goid attributes, which depend on the DM address. Additionally, state number (stNum)
and sequence number (sqNum) are utilized in the context of GOOSE messages. In the analysis phase, datal (d1) and
data2 (d2) are considered, both of which are derived as binary features from GOOSE packets. Given a “.pcap” file, P
containing all packets in which p represents only each individual packet. The GOOSE set is defined as G that only
includes packets that meet specific criteria as described in Eq. [ISOLS1]:

G = {p € P | p.eth_type = 0 x 8100 A p.appid = 1000} (1)

The first condition shows the Ethernet type that must be 0 x 8100 for GOOSE messages, and the second condition is
relevant to GOOSE APPID which should 1000 according to messages. By meeting these two conditions, the system
guarantees extracting only GOOSE packets. This process can be carried out using tshark, enabling the capture of
packet data from live networks as well as the reading of packets from pre-existing capture files. It provides the option
to output a decoded representation of the data to the standard output or to write the packets to a file for subsequent
analysis. Further, it can extract the features of data as well as a data conversion to other formats (e.g., .csv format).
This extraction process ensures the capture of all relevant GOOSE messages while filtering out other traffic types. In
the subsequent phase, GOOSE guidelines (GR#! through GR#8) are outlined to address a range of both normal and
abnormal scenarios. Eqgs. (2)—(9) demonstrate the GOOSE guidelines utilized in this study to examine the various
anomalies within datasets as follows [|5}/14]:

GR#1: In the event that sequential data packets possess the same DM and SM characteristics, the sgNum parameter
must be incremented. If there are discrepancies, it is indicative of an abnormality.

1, lfDMl = DMi_l A\ SMl = SMi_l AN sqNumi = sqNumi_1 + 1
0, otherwise

GR#1(Gi,Gi1) = { )

GR#2: In GOOSE communications, an anomaly that suggests a DI attack occurs when there is a transition in a data
value, such as datal (dI) or data2 (d2), from 0 to 1 or from 1 to 0, while the stNum remains unchanged and the sgNum
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is consistently incremented in sequence.

GRE(G:, G ) = 1, if (dl; #dli—1V d2; # d2;—1) A (stNum; = stNum;—1) A (sgNum; = sqNum;—1 + 1)
O N0, otherwise
(3)

GR#3: Within GOOSE messages where the DM and SM are identical, the stNum is expected to either stay constant
under normal scenarios or increment when data changes occur. A reduction in stNum is considered irregular unless it
results from a system rollover—specifically, when stNum attains its maximum value of 232 — 1, it resets to 0 in the next
GOOSE transmission—or from a valid system reboot.

1, if DM; =DM;_1=...=DM;_,&SM; = SM;_1 = SM;_, A\
(stNum; = stNum;—1 V stNum; = stNum;—1 + 1V stNum; = OA
stNum;_1 = 232 — 1))

0, otherwise

GR#3(Gi,Grii—1) = @)

GR#4: Variations in the parameters DM, SM, type, appid, dataset, or goid imply the occurrence of abnormal conditions.

1, if DM; = DM;_1 N SM; = SM;_1 A type;, = type;,_1 N\ dataset; = dataset;_1
0, otherwise

GR#4(Gi,Gi—1) = { &)

GR#5: Although GOOSE messages transmit timestamps in a binary format, it is essential that the timestamps extracted
and subsequently decoded within this dataset adhere to a uniform presentation format, specifically reflecting hours,
minutes, seconds, and milliseconds (e.g., HH:MM:SS.mmm).

GR#5(time;) =

1, if téme; is in format
{ (6)

0, otherwise

GR#6: Although it is recognized that the frequent occurrence of GOOSE messages is typical during protection
operations—such as those involving busbar protection with several breaker activations lasting up to 500 ms—this
framework analyzes the patterns in message frequency. The core of this monitoring focuses on the count of consecutive
messages, identified by their timestamps at the millisecond level, and sets a standard threshold of 10 instances occurring
within a 10 s window.

1, ifVy€i—9,i—1]:timejt1 — time; < 10us
0, otherwise

GR#6(Gi-9:i) = { O]

GR#7: A data transmission interruption extending beyond 10 seconds serves as a sign of an anomalous condition.

1, iftime; — time;—1 < 10
,  if time; ime;—1 < 10s )

GRAT(G, Gimr) = {O7 otherwise

GR#8: In the context of GOOSE messages, a transition in a data value (e.g., datal or data2) from 1 to 0 or from 0 to 1,
coupled with an unchanged stNum and a sgNum that remains at 0, signifies an irregularity suggestive of a possible RE
attack.

1, if (d1; #dli—1 V d2; # d2i—1) A (stNum; = stNum;—1) A (sgNum; = sqNum;_1)
0, otherwise

GR#8(Gi,Gi—1) = { ©)]
According to Fig.[T} the next step presents two different techniques for synthetic data generation including CGAN and
the proposed technique known as AATM. Compared with the CGAN technique, the AATM technique is characterized
by its use of transformation functions instead of NNs, eliminating the need to train a model from scratch while operating
through directed perturbations of existing samples under rule-based constraints and utilizing gradient information (i.e.,
derivatives or rates of change of a function) to guide these perturbations without building or training an NN architecture.
Also, there are other techniques (e.g., multi-mixing [46]]) which cannot meet requirements for balance and realistic
concerns because the nature of this method is based on simple combinations with some weighting coefficients. While
the multi-mixing technique merely interpolates between existing samples and cannot explore beyond known patterns,
AATM applies protocol-aware transformations that can generate novel attack vectors while maintaining protocol
compliance. Then, the generated datasets undergo evaluation for balance and realism checks before being used in the
ADS frameworks. The following subsections represent the mathematical modeling of the CGAN and proposed AATM
techniques along with GOOSE guidelines, considering the BR and RR functions to check the validity of synthesized
datasets.
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2.1.1 CGAN Technique

The CGAN formulation for GOOSE message generation employs an adversarial approach, as shown in Eq. [30,/44]:

mcgn max V(D,G) = Egppora(@log D(zly,c)] + E.op 2y [log(1 — D(G(2]y, c)))] (10)

Where:

2z ~N(0,14): A d-dimensional random noise vector sampled from a standard normal distribution, serving as
the randomization source for generating diverse GOOSE messages while maintaining desired characteristics.
Each dimension influencing different aspects of the synthetic message.

» y € {0,1}™ is a vector representing the attack class (e.g., DI, RE attack, and DoS) or normal traffic, allowing
the CGAN to generate class-conditional samples. For GOOSE messages, m typically ranges from 5 — 8
depending on how many attack types are modeled.

* ¢ € {0,1}? is a binary vector encoding the GOOSE context. These contextual factors ensure generated
messages reflect realistic operational scenarios within IEC61850 environments.

* G:R?x {0,1}™ x {0,1}? — R!*: The generator function that transforms the noise vector, conditioned on
attack class and protocol context, into a synthetic 14-dimensional GOOSE message containing all required
features.

e D:R™ x {0,1}™ x {0,1}? — [0, 1] x {0,1}8: The discriminator function that evaluates whether a given
GOOSE message appears realistic given its claimed attack class and protocol context; outputting a probability
between 0 and 1 considering the GOOSE rules where higher values indicate the message appears genuine
rather than synthetic.

The adversarial loss for statistical realism and the rule compliance loss for protocol validity constitute the total loss
function as Eq. (TI):

Etotal = £adv + )\rules‘crules (] D

Where the rule compliance loss has different weights based on the security importance, as shown in Eq. (12):

8
ﬁrules = sz(l - GRl(G(Z‘ya C)))2 (12)
=1

The adversarial loss ensures generated messages match the statistical properties of real GOOSE traffic, while the rule
compliance loss (weighted at A,,.s = 8.0) enforces adherence to the eight GOOSE rules. The generator is directly
penalized for producing non-compliant GOOSE messages via the weighted sum of squared errors. Conversely, the
discriminator learns about rule compliance indirectly by comparing real rule-following samples to generated ones.
Within the rule compliance term, individual weights (i.e., 0 < w; < 2) reflect each rule’s security importance: critical
integrity rules (GR#3, GR#4) receive the highest weights (2.0), RE and data manipulation rules (GR#2, GR#8) receive
moderate-high weights (1.5 — 1.8), and formatting/timing rules receive lower weights (0.8 — 1.0). This formulation
creates a balanced objective that prioritizes both realistic message generation and protocol compliance, with emphasis
on security-critical constraints.

2.1.2 Proposed AATM Technique

This proposed approach employs a protocol-aware transformation function which is particularly useful for communica-
tion messages. As communication messages have a specific pattern with some subtle changes, a proper definition of
perturbations can help to distinguish these small changes. These subtle changes can even happen in some numbers
and/or letters in the different features (both numerical and categorical) which the CGAN technique might fail to
understand; these variations, specifically in cases of the generation of realistic zero-day attacks and a high similarity
between the normal datasets and some types of attacks (e.g., RE attacks) [52,/53]]. The following information shows the
process of different steps in the proposed method.
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Vector Representation  Suppose a GOOSE dataset is represented as:

wi = [27"", 2] (13)
Where 2™ represents 9 numerical features (e.g., time, appid, and stNum) and z§** represents 5 categorical features
(e.g., DM, SM, and type). In the numerical part, three different functions including protocol compliance, balance, and
novelty functions are presented in Egs. (I4)- (I6) as follows:

fprotocol (mz) = Z wy - GR] (xz) (]4)
j=1
1
fbalance(zi) = - Z Pc — W (15)
ceC
nove i) = in d iy Lyg 16
frovet (i) Jnin (2, ;) (16)
The protocol compliance function, f107 . (%), uses weighted rule compliance metrics GR;(z;) to guide perturbations

toward protocol-valid regions, ensuring attacks remain credible by preserving necessary relationships between features.
The balance function, fpaiance(;), calculates the negative sum of deviations between current class proportions, p., and
ideal uniform distribution, ﬁ, directing mutations toward minority attack classes to create diverse datasets with equal

representation across attack types; and the novelty function, f,ove1(;), calculates the minimum distance between a
candidate sample and all training examples, encouraging exploration of unexplored feature space regions to discover
attack vectors not present in existing datasets, thereby enhancing the model’s ability to generate previously unknown
attack patterns that could evade traditional detection systems while maintaining structural validity. The selection of
weights, w;, for the eight GOOSE protocol rules is crucial for effective attack generation and follows a priority-based
approach: higher weights (0.15 — 0.2) are assigned to critical sequence rules (i.e., stNum & sqNum) and timestamp
validation as these are fundamental to the protocol’s integrity and frequently monitored by ADSs. The medium weights
(0.1) are given to APPID compliance and MAC address validity as they represent network-level identifiers that must
appear legitimate. This weighted approach allows the proposed framework to generate attacks that target specific
vulnerabilities while maintaining sufficient protocol compliance to avoid simple detection, creating attack effectiveness.

Gradient Computation The base gradient for perturbation in the numerical part can be mentioned as Eq. which
states a combination of presented functions along with different hyperparameters.

6{%?2 (xv) =« vmfpv‘otocol(xi) + /B . va:fbalance (-Tz) + - vxfnovel (fz) (17)

The hyperparameters «, 3, and -y in this equation are typically set to & = 0.4, 5 = 0.3, and 7 = 0.3, respectively. This
weighting prioritizes protocol validity (o = 0.4) to ensure attacks remain credible within the IEC61850 framework,
while equally distributing the remaining influence between class balance and novelty exploration (8 = v = 0.3).
These values can be adjusted based on specific attack objectives. For example, an increased 3 is required when greater
attack diversity is needed, or raising -y is needed when novel attack discovery is prioritized over keeping the protocol
compliance. The zero-day perturbation formulation represents the core innovation of the AATM approach, as stated in

Eq. (T3).

ST (3) = G () — A+ Y VLGR.(zs) (18)

zero base
rERtarget

According to this, the base perturbation is modified by subtracting the weighted gradient of targeted protocol rules,
with A controlling the violation strength and Ry,,qc+ specifying which rules to deliberately violate; this approach
effectively pushes samples away from compliance with selected rules while maintaining overall protocol validity.
The new numerical features are then generated using the projection function (Eq. (I9)) which applies the zero-day
perturbation to the original numerical features and projects the result into the valid numerical feature space through
Pnum.

10
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xnu’m — P’VL’LL’H’L (:E;L’U/UL + 67Lu’fn($i)) (19)

new zero

This ensures that perturbed values maintain protocol compliance except for the deliberately targeted violations,
producing realistic attack vectors that specifically exploit the targeted protocol vulnerabilities.

Categorical Feature Processing A categorical transition matrix, 7. ; to show how feature j should change to affect

rule r as Eq. (20):

Ty, Tio -+ Tip
To1 Too -+ Tos

;=1 . . . . (20
Tm,l Tm,2 T Tm,5

Next, the categorical mutations can be defined as Eq. (Z1)) to generate zero-day attacks in terms of non-numerical parts.

m1
ma

Mzero(xi) - . (21)
ms
Where each m; is calculated based on Eq. , and the base mutation combines protocol, balance, and novelty
objectives:

m; = base_mutation; — \ - Z T, (22)

TE€Rtarget

base_mutation; = « - protocol_mut; + 3 - balance_mut; + ~ - novelty_mut; (23)

Now, a new categorical feature vector can be given according to Eq. that describes how categorical features in
GOOSE messages are mutated during zero-day attack generation. It works by first finding the index position of the
current categorical values, applying the calculated mutation value, and then selecting the corresponding categorical
value at the new index position while ensuring it remains within the valid set of possible values through the modulo
operation.

26t = Ci[(1;(25%) + Round(m;))  mod |C5l]1xa 4

new,j %7

Where C} is the set of valid values for the categorical feature j, and I; maps the categorical value to its index. Further,
“Round” converts the mutation to an integer value. Also, the modulo operation helps to ensure that the resulting index
does not exceed the bounds of the array. Suppose that multiple values in the DM column are as follows:

Cpy = [01 00 03,” “01 00 04,” “01 00 05”] with |Cpps| = 3.
- For a row with DM = “01 00 03” and mpy; = 1.5:

- Ipp(010003”) =0

- Round(mpyr) = 2

-Newindex =042 =2

- Tpew,pm = Cpar[2] = “010005”

However, if mpy = 2.5:

- Round(mDM) =3

-Newindex=0+3=3

11
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This would be an error since the valid indices are only 0, 1, and 2. This is why the modulo operation is important to
bound the indices to the available size. Hence, the complete process of the proposed technique can be summarized as
follows to clearly show different steps in plain language.

. Split the original GOOSE message into numerical and categorical components
. Compute numerical perturbation 747 (z;)

. Compute categorical mutations M, e, (;)

. Apply perturbation to numerical features

. Apply mutations to categorical features

AN L bW =

. Combine into final vector Z,,e,, = [z7%™ x4 |

new ’ new

This process demonstrates the AATM’s ability to precisely target specific protocol rules for violation while maintaining
overall message validity, creating attacks that are challenging to detect. The next part shows the validation process
including the BR and RR for further processing in the first layer of this framework.

2.1.3 Validation Framework

A validation framework focusing exclusively on two critical quality metrics, including BR and RR, is presented to
evaluate the quality of generated synthesized datasets.

- Balance Rate Assessment of Generated Datasets

The BR quantifies dataset balance using Eq. that the first segment focuses on the relationship between the most
extreme classes in the dataset, and the second segment shows the normalized Shannon entropy [541/55].

1 ( min,;(n;)
BRX)=-|——=%+FE 25
(X) 2 <maxi(ni) + (25)
Where n; is the number of samples in class ¢, z;i((z)) is the inverse of the imbalance ratio (ranges from O to 1),
K
E = — 2= P 1080 4o he normalized Shannon entropy, p; = <% is the proportion of samples in class i and

log, (K) S

K is the total number of classes. The first part directly measures hjow much smaller your least represented class is
compared to your most common class. This is particularly important for GOOSE message security applications because
it highlights if any attack class is significantly infrequent compared to normal traffic. While the first part only looks at
the extremes, Shannon entropy examines the distribution across all classes simultaneously. It measures how evenly
distributed the samples are across every class, not just the smallest and largest ones. Also, BR(X) has a range of
0 < BR(X) < 1 which 0 and 1 show the completely imbalanced and perfectly balanced datasets, respectively. Hence,
this combination shows two key aspects of class balance in terms of the ratio between least and most frequent classes,
addressing extreme imbalances as well as the overall diversity of the distribution, capturing how evenly samples are
distributed across all classes.

- Realism Rate Assessment of Generated Datasets

For synthesized GOOSE datasets, an RR can be presented that evaluates protocol compliance through essential rule
verification as shown in Eq. where GR;(z) evaluates compliance with each essential GOOSE protocol rule.

8
RR(z) = H GR;(z) (26)

Moreover, Eq. expresses the scoring mechanism for each protocol rule using function G R;(x), which assigns
a value of 1 when rule 7 is completely satisfied, thus signifying perfect compliance, while an exponential penalty is
applied in cases of rule violation.

1

, if rule ¢ is fully satisfied
GRi(z) = {exi-vi(m)

27
Otherwise @7

Vi(x) represents the normalized severity of the violation (scaled between 0 and 1) and )\, is the importance weight
assigned to that specific rule. This formulation effectively creates a continuous scoring mechanism that severely

12
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penalizes violations of critical rules (those with higher A; values) while allowing minor deviations in less critical aspects,
making it particularly suitable for evaluating synthesized GOOSE messages [56].

for critical integrity rules: GR3, G Rg
for important rules: GR1, GRy, GRy
for structural rules: GR5, GR~

, for timing pattern rules: G Rg

= N W Ot

The violation severity, V;(x), provides a standardized illustration for quantifying deviations from GOOSE protocol
rules, with each measure (V; (z) — Vz()) targeting a specific aspect of message integrity as shown in Table[2] V; ()
assesses sqNum correctness, Va(x) detects DI patterns, V3(2) monitors stNum consistency, V4 (2) measures unexpected
field changes as a proportion, Vi () validates timestamp formatting, Vi () evaluates message frequency anomalies on a
continuous scale, Vz(x) quantifies communication gaps relative to acceptable thresholds, and V() identifies RE attack
signatures. In this context, X represents a single dataset (a group of messages), and | X | is the number of messages

Table 2: The violation severity measures for GOOSE protocol rules.
Measure Description Value
Binary: 1 if sgNum does not increment correctly,

Vi(x) sqNum increment violation 0 otherwise.
Data change with unchanged Binary: 1 if data change logic is violated,
stNum violation 0 otherwise.
e Binary: 1 if stNum decreases inappropriately,
Va(x stNum monotonicity violation .
0 otherwise.
‘/4 T Field integrity violation (Number of unexpectedly changed critical features)

(Total number of critical features)
Binary: 1 if timestamp format is invalid,
0 otherwise.

Vs(x Message frequency violation min(1, m —-1)

Vi (z Temporal gap violation min(1, W) for gaps > 10s
. Binary: 1 if data changes without stNum

Ve(x RE attack indicator Ty g

(z)
(z)
Vs(x) Timestamp format violation
(z)
(z)
(z)

increment and sqNum reset, O otherwise

within that specific dataset. Hence, the aggregate realism can be given as Eq. (28):

RR(X) = = > RR(x) (28)
Xl =

In which RR(X) > 0.95 shows the excellent realism of the generated synthesized dataset. This methodology offers
a robust and compelling strategy for assessing the authenticity of generated GOOSE datasets, all while ensuring
adherence to fundamental protocol compliance standards is not compromised. To recap, this section presented the data
pre-processing, a generation of normal and zero-day attacks, and data post-processing according to the balance and
realism assessments. Different methods, including the proposed AATM technique, are represented according to the
application for GOOSE messages in digital substations considering the rules and data features. The purpose of the
upcoming sections is to use these pre-processed datasets for an AD based on the proposed frameworks.

3 GenAl-based Anomaly Detection Systems in Digital Substations

ML-based ADSs have served as the basis for identifying anomalies within IEC61850 message frameworks. Although
these approaches are known for their accuracy and reliance on data, they face a substantial limitation. Specifically, with
the emergence of novel attack patterns (i.e., zero-day attacks), the models necessitate re-training. This requirement
for model re-training is resource-intensive and time-consuming, introducing periods of vulnerability during which the
system may not be equipped to cope with these unforeseen threats until they are integrated into the model’s knowledge
repository [3]]. Conversely, GenAl tools present a more flexible and versatile strategy. Differing from traditional ML
models, GenAl systems possess the ability to comprehend context, thereby enabling them to identify and address
emerging threats without the need for prior explicit training. This capability of contextual comprehension reduces the
necessity for constant updates and retraining in the rapidly changing landscape of cyber threats. By interpreting and
accommodating new data, GenAl tools offer a robust and effective approach to AD in digital substations, leveraging
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NLP capabilities [15]. According to the challenges mentioned and the comprehensive literature surveys, a GenAl-based
ADS framework considering the ToD system is presented in [S]] to show its performance evaluations.

Moreover, this section identifies critical sources for the dataset used in training the GenAl-enhanced ADS, along with
the criteria applied for selecting these datasets. Compared to publicly accessible datasets, those sourced from the HIL
testbed deliver high-resolution, authentic data that accurately represents actual substation operations [[13]]. However,
it is challenging to have balanced and realistic datasets, without the existence of zero-day attacks. Hence, this paper
evaluates the performance of the proposed ADS with 5,000 GOOSE datasets generated using the proposed AATM
technique, which cover a wide range of classes including the normal and abnormal scenarios, and the BR and RR of the
generated datasets are better than the CGAN approach.

3.1 GenAl-based Task-Oriented Dialogue ADS

The GenAl-powered ToD system’s architectural framework incorporates advanced computational strategies through its
hierarchical processing structure as proposed in our previous research [S]. The full training (FT) configuration of this
framework is demonstrated in Fig. [3] that considers all GOOSE rules. It is designed to optimally leverage the structured
communication protocols prevalent in digital substation environments. This system’s belief state is mathematically
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Figure 3: The proposed GenAl-based ToD ADS framework in the full training levels considering all GOOSE rules.

represented by aggregated sequences of packets and system states and is iteratively refined through rule-based SQL query
executions that assess compliance to predefined operational constraints, including temporal synchronization, sqNum
progression, and data integrity verification protocols [57.|58]]. By integrating adaptive validation tools characterized
by a hybrid function that includes belief states, dynamic conditions, and evolving rule sets, the system effectively
distinguishes between legitimate operational behaviors and anomalies within the [IEC61850 communication network.

The framework efficiently interacts with CPS components through advanced interfacing techniques, which facilitate
its integration with supervisory control systems. This enables real-time coordination of identified anomalies with
responses from protective relays within the power grid setup. A continuous learning approach, utilizing iterative
feedback loops that incorporate both detection outcomes and scenario simulations, progressively refines classification
boundaries while preserving the computational efficiency necessary for urgent protection strategies. This detailed
training approach guarantees that the system’s query processing mechanism, which evaluates multi-conditional rules,
attains an ideal balance between detection sensitivity and specificity. Therefore, it reinforces a strong security barrier
for the protection of critical infrastructure, as indicated by performance metrics that surpass those of conventional
detection methods. More information regarding the parameters and detailed analysis of different blocks is expanded
in [5]]. The intention of this paper is to evaluate the FT level of the GenAl-based ToD for the AD process, trained by
the proposed AATM-generated GOOSE datasets, which are more realistic and balanced. Also, the previous research
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assessed the performance of different HITL and ToD in various GPT tools to show the better performance, in which the
ToD framework implemented in Anthropic Claude Pro had the best performance in terms of the evaluation metrics as
well as the accuracy. Hence, this paper uses the GenAl-based ToD framework implemented in Anthropic Claude Pro to
make a comparison with other ML-based ADSs.

3.2 ML-based ADSs vs. GenAl-based ADSs

Traditional ML approaches, including FNNs, RNNs, and SVM, have shown promising results in detecting anomalies in
IEC61850-based multicast messages. Hence, this part shows the modeling of these ML algorithms, particularly for
GOOSE messages, as well as the general GenAl-based AD model. However, the emergence of GenAl technologies,
particularly transformer-based architectures, has opened new possibilities for the AD concept. Hence, a general
mathematical modeling of these ML algorithms, in addition to the GenAl-based system, is given below. More
information and discussion about the results of the AD process considering different classes and their performance
metrics are provided in the next section [59].

3.2.1 Feedforward Neural Network (FNN)

represents the fundamental architecture of DL, consisting of multiple layers of interconnected neurons where information
flows one way from input to output without cycles or loops. In the context of the GOOSE AD process, FNNs are
configured with an input layer that accepts normalized feature vectors extracted from GOOSE messages (e.g., timing
parameters, sqNum, and data values), followed by multiple hidden layers with non-linear activation functions (typically
ReLU), and an output layer with softmax activation for multi-class classification [60]]. According to the application of
the AD process in GOOSE messages, given an input vector x € R", the FNN computes the output through successive
layer transformations as Eq. (29):

h®) = fOWOR=Y 4 p®) (29)

where h(") represents the activation of layer I, W) is the weight matrix, b(®) is the bias vector, and f¥) is the activation
function. For the AD process, the network is trained to minimize the reconstruction error through the loss function in

Eq. (30):

N

L

1 -

Lrnw =5 D% =%l + A Y [WO3 (30)
i=1 =1

where X; is the reconstructed input and A controls regularization, thus,the anomaly score can be computed as Eq. (31)):

Apny(x) = |x — x| 31)

3.2.2 Recurrent Neural Network (RNN)

is designed to process sequential data by forming directed graphs between nodes across time steps, enabling them to
capture temporal patterns and maintain internal states. These networks consist of three types of nodes—input nodes
that receive external data, output nodes that produce results, and hidden nodes that transform information. RNNs have
proven particularly effective for applications requiring temporal understanding. According to the application of this
research, RNNs process GOOSE messages as sequences, maintaining a “memory” of previous messages [19/61]]. For
each message at time ¢, the hidden state update can be given as Eq. (32):

ht = tanh(Wh . htfl + Wz - Xt + b) (32)
where h; is the current hidden state, h;_; is the previous state, and x; is the current input. To handle long sequences, a

long-short term memory (LSTM) with three gates can be employed as Eq. (33):

Forget gate: f; = o(Wy - [hy—1, 2] + by)
Input gate: iy = o(W; - [hi—1, 2] + b;) (33)
Output gate: o = o(W,, - [he—1, T¢] + bo)

15



Zaboli et al., “Generative Al for Critical Infrastructure in Smart Grids”

where o(z) = 1/(1 + e #) is the sigmoid function. Then, the final hidden state is used for classification as the AD
process, shown in Eq. (34):

P(anomaly) = 0(Wous - hr + bout) (34

3.2.3 Support Vector Machine (SVM)

represents a supervised learning algorithm employed primarily for data classification tasks. The fundamental objective
of SVM implementation involves achieving precise categorization of previously unseen data through the optimization
of a decision boundary that reduces misclassification rates. This methodology operates through a two-phase process;
initially, the algorithm undergoes training using labeled datasets to establish optimal parameters, followed by the
application of the trained model to generate class predictions for new, unlabeled instances [62}/63[]. GOOSE messages
in IEC61850 networks can be monitored for anomalies using One-Class SVM. Given GOOSE message features x,
this algorithm learns a decision boundary around normal GOOSE behavior such that the optimization problem is as

Eq. (33):

L, o 1 &
in = L NP 35
min 5wl +Im;§ p (35)

subject to:

wio(xi) > p—& (36)
§& >0

The weight vector w € RY defines the orientation of the separating hyperplane in the feature space, while the offset
parameter p determines the hyperplane’s distance from the origin. The slack variables £; > 0 enable soft-margin
classification by allowing some training points to lie within the margin or on the wrong side of the decision boundary,
providing robustness against outliers. The parameter v € (0, 1] serves as a user-defined regularization constant that
controls the trade-off between maximizing the margin and minimizing the fraction of outliers, effectively determining
the upper bound on the fraction of training errors and the lower bound on the fraction of support vectors. The kernel
function K (x;,x;) computes the similarity between data points in the transformed feature space, with the RBF kernel
parameter v > 0 controlling the influence radius of each support vector; smaller values create smoother decision
boundaries and larger values allow more complex, localized boundaries. Finally, the Lagrange multipliers o; > 0
determine the contribution of each training sample to the final decision function, with non-zero values identifying the
support vectors that define the decision boundary. Using an RBF kernel K (x;,x;) = exp(—7||x; —x;||?), the decision
function becomes as Eq. . For a new GOOSE message, if f(x) < 0, it is classified as an anomaly.

f(x) =sgn <Z o K(x;,%x) — p) 37

3.2.4 GenAl-based ADSs

leverage self-attention mechanisms to capture complex temporal dependencies in GOOSE message sequences. Given a
sequence of GOOSE messages X = {x1,..., Xy}, the model learns normal communication patterns through attention-
based reconstruction [[15}|64]]. The architecture consists of an encoder-decoder transformer with positional encoding.
The multi-head self-attention mechanism computes as Eq. (38):

Attention(Q, K, V') = softmax (QKT) |4 (38)
o Vi

where queries (), keys K, and values V' are linear projections of the GOOSE features. For the AD process, the
reconstruction loss can be expressed as Eq. (39):

N H
1 o112
Lroe = ~ z_; % — %q||> + A }; Entropy(Ay,) (39)
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where X; is the reconstructed GOOSE message and Ay, represents attention weights from head, h. The entropy term
encourages focused attention patterns. The anomaly score combines reconstruction error and attention anomaly that is
represented in Eq. (40):

A(x) = afx — 5<||2 +(1—-a) m}?XKL(AhHAZOTm“l) (40)

This approach excels at detecting temporal anomalies (i.e., unusual message sequences), contextual anomalies (messages
inconsistent with historical patterns), and attention-based anomalies where the model’s attention deviates from learned
normal patterns, providing interpretable detection through attention visualization. The next section shows the results
and discussion according to the proposed framework.

4 Results and Discussion

This section presents the results and discussion considering the different layers of the proposed framework, along with
the performance evaluation of the ADSs based on a comparison of the proposed methodology with other ML-based
methods. Further, three advanced performance evaluation metrics (i.e., informedness, Markedness, and Matthews
correlation coefficient - MCC) are provided for a comparison of ADSs in power system applications in addition to
standard metrics.

4.1 Validation of Proposed AATM Methodology for GOOSE Data Generation

The empirical assessment of the proposed AATM methodology demonstrates significant advancements in the capabilities
for generating synthetic data when contrasted with the CGAN method. Figure ] provides an extensive visualization of
class distributions spanning three scenarios: the original GOOSE dataset, samples synthesized via the CGAN method,
and data generated by the AATM technique. As can be seen, the original dataset exhibits significant class imbalance,
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Figure 4: A representation of classes’ distributions of GOOSE datasets considering different classes, (a) real data, (b)
CGAN synthesized data, and (c) AATM synthesized data.

where prevalent categories such as “Normal” traffic (approximately 20%) and data injection (“DI”) attacks (17%)
significantly outweigh minority classes, notably “SP-dataset” errors which constitute merely 4% of the total samples.
Such distributional disparities present fundamental challenges for developing robust ADSs capable of recognizing
diverse attack/error patterns with equal effectiveness. The horizontal axis of the figure shows different classes including
the attacks/errors which these classes are enumerated in Table [3] An examination of the synthetic data produced
by the CGAN indicates an unforeseen intensification of the existing class imbalance within the original dataset. As
demonstrated in Table [3] the CGAN model generates 19.2% of “Normal” class instances, whereas it only produces
2.2% of “SP-time” samples, thereby intensifying the distributional imbalance instead of alleviating it. This occurrence
can be attributed to the inherent bias in CGAN models, where the generator network tends to replicate patterns that are
dominant in majority classes due to their statistical prominence during the training phase. The “DOS” and “DI” attack
classes also exhibit disproportionate representation at 15.8% and 14.2%, respectively, while essential minority classes
such as “SP-dataset” and “Zero-day” attacks remain markedly underrepresented at 3.9% and 3.2%, respectively.

On the other hand, the AATM technique demonstrates exceptional capacity for generating synthetically balanced
data distributions. The proposed method achieves remarkable uniformity across all 13 classes, with representation
percentages restricted within a range of 6.5% to 10.8%. This balanced generation paradigm is particularly evident
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Table 3: A distribution of different classes for CGAN- and AATM-generated GOOSE datasets.

Jl Class CGAN Count | CGAN % | AATM Count | AATM %
1 Normal 961 19.2% 350 7.0%
2 DI 712 14.2% 401 8.0%
3 DOS 789 15.8% 419 8.4%
4 RE 403 8.1% 396 7.9 %
5 SP-time 111 2.2% 334 6.7 %
6 SP-DM 277 5.5% 348 7.0%
7 SP-SM 311 6.2% 325 6.5%
8 SP-type 233 4.7% 430 8.6%
9 | SP-appid 424 8.5% 349 7.0%
10 | SP-dataset 193 3.9% 348 7.0%
11 SP-goid 219 4.4% 428 8.6 %
12 | Packet Loss 206 4.1% 331 6.6%
13 Zero-day 161 3.2% 541 10.8%

! Total 5000 100.0% 5000 100.0%

in the transformation of traditionally infrequent categories: “SP-time” classes increase from 2.2% under CGAN to
6.7% with the AATM method, while “Zero-day” attacks experience a substantial enhancement from 3.2% to 10.8%.
Simultaneously, overly dominant classes undergo appropriate reduction, with “Normal” traffic decreasing from 19.2%
to 7.0%, thereby contributing to overall distributional balance. These distribution percentages show that the CGAN
technique generated more “Normal” classes as it could not get all the correct patterns for this class. Also, some of the
attacks/errors were mistakenly generated as they could be the “Zero-day” attacks. The quantitative assessment presented
in Fig. ] further validates the superiority of the AATM methodology through two critical metrics. The BR, an index that

Performance Metrics: CGAN vs AATM
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Figure 5: The BR and RR of CGAN- and proposed AATM-generated datasets.

quantifies the distributional uniformity across generated samples, demonstrates a notable increase from 0.454 in CGAN
to 0.877 in AATM, reflecting a 93% enhancement in class balance. This substantial improvement underscores the
AATM’s effectiveness in addressing the core challenge of generating representative samples across all classes, including
attacks/errors and normal data, regardless of their frequency in the training dataset. Furthermore, RR, which evaluates
the credibility and quality of synthesized samples, shows an advancement from 0.718 to 0.849, signifying an 18%
enhancement in the fidelity of generated data. This simultaneous progress in both BR and RR underscores the AATM’s
capability in producing high-quality synthetic samples while preserving class balance. The implications of these
findings reach far beyond simple enhancements in statistical metrics, providing substantial advantages for real-world
cybersecurity implementations. ADSs that are trained on datasets with unbalanced distributions often demonstrate
a reduced ability to accurately identify rare yet possibly disastrous attack paths. By generating balanced synthetic
datasets, the AATM technique facilitates the creation of detection models that maintain an equitable performance
across a wide array of threat signatures, achieving similar levels of detection accuracy. This characteristic proves
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particularly valuable for zero-day attack detection, where AATM’s generation of 10.8% samples compared to CGAN’s
3.2% provides sufficient training instances for models to develop robust recognition capabilities for these critical yet
infrequent threats. Despite these findings, it is important to evaluate certain limitations in the context of interpreting the
results. The observed residual variation in class percentages produced by the AATM algorithm, which varies between
6.5% and 10.8%, illustrates that achieving an entirely uniform distribution remains an ongoing challenge yet to be
completely resolved. Future research could investigate the scalability attributes of the AATM technique when applied
to datasets with an expanded number of classes. Additionally, these studies might assess the feasibility of integrating
constraints specific to particular domains to not only enhance the realism of samples but also to ensure a balanced
distribution across the dataset.

4.2 Performance Evaluation Metrics in an AD Process

In this section, a comparative analysis is conducted to assess the performance and effectiveness of the proposed
GenAl-based ToD framework over ML-based ADSs. Fig. [6] shows the different descriptions and formulations for
standard and advanced evaluation metrics to make a comparison between these frameworks. These metrics represent

Performance Evaluation Metrics for ADS Frameworks

g Predicted
=) TPR FPR FNR
< N TP FP FN
g Positive L Liy TP + FN FP + TN FN + TP
= E
s True Positive Rate False Positive Rate False Negative Rate
? Negative< FN TN
k) Precision Accuracy F1-Score
E Tp TP + TN 5, Prec x TPR
= Positive Negative TP + FP TP + TN + FP + FN Prec + TPR
=
= Basic Classification Outcomes
5 Markedness MCC
- —_— TN 1 Informedness TP x TN — FP x FEN
@ —_— —
z recision + TN T FN TPR +TNR — 1 /(TP + FP)(TP + FN)(TN + FP)(IN + FN)
2

Legend: TP = True Positives (anomalies detected), TN = True Negatives (normal classified correctly),
FP = False Positives (false anomalies), FN = False Negatives (missed anomalies)

Figure 6: Performance evaluation metrics and their mathematical formulations for assessing ADS frameworks. The
confusion matrix (left) shows basic classification outcomes, which are used to derive rate metrics (blue boxes) and
advanced evaluation metrics (red boxes).

essential evaluation criteria for ADSs implementing security monitoring of GOOSE messages. The fundamental
classification metrics include the true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
indicators. In this context, these primary metrics quantify correctly identified anomalies, properly classified normal
traffic, incorrectly flagged normal communications, and undetected anomalous events, respectively. The true positive
rate (TPR), calculated as TPZ%, quantifies the system’s sensitivity in detecting actual anomalies. Conversely, the false

positive rate (FPR), expressed as %, measures the likelihood of false alarms, while the false negative rate (FNR),
determined by TPIZ_%, evaluates detection failures, a particularly critical metric for security applications in industrial

control systems. The Precision, formulated as TPZ_%, indicates the reliability of positive predictions, while accuracy,

TP+TN

calculated as TPITNIFPIFN’

assesses overall classification correctness across the entire messages collection. The
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F1-Score, expressed as 2 x %ﬁﬂ?g, provides a harmonic mean of precision and TPR, offering a balanced

assessment when both false alarms and missed detections possess significant operational implications in substations.

Within this work, advanced metrics such as Markedness, Informedness, and the MCC are utilized to evaluate the
consistency, decision-making precision, and classification quality, ranging from —1 to 1. These metrics prove beneficial
in the AD process to assess the efficiency and applicability of frameworks. Specifically, in the context of AD applied to
GOOSE datasets, Markedness is indispensable for measuring the model’s capability to reduce both false positives (FPs)
and false negatives (FNs). A high Markedness value signifies a robust AD framework that minimizes erroneous alerts,
thereby ensuring stability and optimal performance at substations by decreasing unnecessary disruptions. Meanwhile,
Informedness measures the model’s proficiency in recognizing dataset pattern variations that indicate anomalies.
Particularly for AD scenarios using GenAl models — where real anomalies may occur infrequently — MCC is
advantageous as it ensures the model’s performance reflects its true efficacy and is not excessively affected by a larger
class size [|65]].

4.3 A Comparative Analysis of the GenAI-based and ML-based ADSs

This section presents a comparative analysis of four ADSs considering GOOSE datasets generated using the proposed
AATM technique. The comparison includes three ML algorithms — FNN, RNN, SVM, in addition to a GenAlI-based
ADS. The empirical results provide robust evidence of the superior effectiveness exhibited by the GenAl-based ADS,
especially when evaluated against ML models. It is presented in Table 4] that the proposed GenAl approach achieves an
outstanding classification accuracy rate of 97.9%. This table demonstrates a significant enhancement in performance

Table 4: A comparison of GenAl- and ML-based ADSs using AATM-generated GOOSE datasets.

Algorithms FNN RNN SVM | Anthropic Claude Pro (GenAl-based ADS)

Standard Metrics

TPR 79% 87.9% | 79.1% 97.9%

FPR 0% 10.6% 0% 3.2%

FNR 21% 12.08% | 20.9% 2.1%

Precision 100% | 92.5% | 100% 97.9%

Accuracy 87.4% | 88.5% | 87.4% 97.5%

FI-Score 88.3% | 90.2% | 88.3% 97.9%
Advanced Metrics

Markedness 0.76 0.756 0.761 0.947

Informedness 0.79 0.773 0.791 0.947

mccC 0.775 0.764 0.776 0.945

metrics compared to ML models, such as FNN, which achieves an accuracy rate of 87.4%, RNN achieving 88.5%, and
SVM, also at 87.4%. The observed improvement (approximately a 10 percentage point increase in the accuracy metric)
represents a significant advancement in the domain of GOOSE messages monitoring. Further, this proposed framework
showed better performance in almost all other metrics. A thorough analysis of the confusion matrices demonstrated
in Figs. [7]—[12] offers a comprehensive understanding of the classification features displayed by different approaches.
The GenAl framework’s confusion matrices, i.e., Figs. [[0]—[I2]demonstrate prominent diagonal concentration with
negligible inter-class confusion, reflecting robust differentiating capabilities. Notably remarkable is the normalized
confusion matrix of the GenAI implementation (Fig. [TT), which showcases near-unity values along the diagonal for
the majority of classes, contrasting markedly with the substantial class overlap observed in ML approaches, especially
when distinguishing between structurally similar class signatures.

The performance metric analysis indicates that although the SVM algorithm achieves a comparable FPR of 3.2% to the
GenAl model, the latter distinguishes itself by simultaneously maintaining the minimal FNR of 2.1%, substantially
lower than the 21%, 12.08%, and 20.9% observed for FNN, RNN, and SVM approaches, respectively. Such balanced
error characteristics prove essential for practical deployment scenarios where both false alarms and undetected threats
must be minimized. Additional performance metrics meticulously confirm the superiority of the GenAl framework.
This system achieves Markedness and Informedness values reaching 0.947, a notable advancement well beyond the ML
benchmarks typically observed between 0.76 and 0.791. Furthermore, it performs well in accurately classifying classes,
effectively distinguishing between situations indicative of attack and those that are non-malicious, thereby demonstrating
a high degree of precision in its operation. Furthermore, the MCC, recording at 0.945, provides additional validity to the
comprehensive effectiveness of the model. This coefficient reflects an enhancement of approximately 20% compared to
standard baseline methodologies, confirming GenAI’s advanced capabilities and distinguished performance.
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Figure 7: Confusion matrices of an FNN-based ADS, trained by the proposed AATM-generated GOOSE datasets, (a)
normalized ratios (b) counts.
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Figure 8: Confusion matrices of an RNN-based ADS, trained by the proposed AATM-generated GOOSE datasets, (a)
normalized ratios (b) counts.

Analysis of the multi-class confusion matrix (i.e., Fig.[T2) clarifies the GenAl framework’s classification capabilities
across diverse attack/error categories. The system demonstrates remarkable competence in distinguishing subtle attack
variations including DI, DOS, temporal anomalies (i.e., SP-time), feature-based manipulations (SP-[feature]), and RE
attacks, with negligible inter-category confusion. This refined detection resolution originates from the framework’s
inherent capacity for semantic interpretation of message dynamics, as illustrated in the diagnostic output where specific
message deviations and contextual anomalies are clearly identified. The GenAl model possesses an advanced capacity
for semantic understanding, which facilitates its detection of complex attack/error patterns that are often missed by
traditional statistical approaches. This performance is quantitatively supported by its Markedness and Informedness
scores, both achieving a value of 0.947. The model’s advantage in this domain stems from its context-based reasoning
abilities concerning message violations, differing markedly from methods that depend solely on numerical pattern
recognition. According to this concept, a textual portion of the “Response” for GenAl-based ADS in Anthropic Claude
Pro is presented in the following box for more clarification.

21



Zaboli et al., “Generative Al for Critical Infrastructure in Smart Grids”

SVM: Normalized Confusion Matrix (Ratios)

10

SVM: Confusion Matrix (Counts)

800

E 0.000 0.000 0.000 0.000 0000  0.000 0.000 0.000 0.000 0.000 H 0 °
5- 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0 o 700
o8
5104 | oo 0000 0000 0000 0000 0000 0000 0000 0000 2. o 0
e 600
1 - o e IIHI m o @ oo £ .
N N s00
21 0456 | 0.000 0000 0000 0000 0000 0000 0000 0000  0.000 06 £ 0 0
L2 L
Sz ° Sz z
o7 0000 0000 0000 0000 0000 0000 0000 0000 0000 2 o3 3 0 Fa00 §
L & L 3
2 2
= =
5 040 0000 0000 0000 0000 0000 0000 0000 0000  0.000 L os 3. 0 0
o 2 - 300
E oow oo oo  oom  oxo 00w 0000 - 9 ) o 0 9 o B o 0 0
= = 200
S- 0000 0000 0000 0000 0000 0000 0000 5. o 0 o 3 3 0 0 3 100 3 3
& 02 %
£ oo oo oom oo owo 00w oo S S T T T T B -
£- 0000 0000 0000 0000 0000 0000 0000 £ 0 ) 0 0 o 0 0 ) 0 ) 60
L " g g 00 5 ) 5 . ] g g g 0 " 0
& > 3 © . 2 N o N » » > S &
« R &S N DR G S R S o
E & « E < & « 4 LS ) Ea
3

Predicted Class Predicted Class

() (b)

Figure 9: Confusion matrices of an SVM-based ADS, trained by the proposed AATM-generated GOOSE datasets, (a)
normalized ratios (b) counts.
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Figure 10: A normalized confusion matrix of the GenAl-based ADS, trained by the proposed AATM-generated GOOSE
datasets considering the normal and anomalous classes.

Response

1. Semantic Pattern Understanding Phase
I would analyze each dataset by:
* Reading the temporal flow of messages within each dataset
¢ Understanding the protocol semantics - recognizing that GOOSE messages follow specific
IEC61850 patterns
* Contextual interpretation of field relationships (DM/SM pairs, stNum/sqNum)
2. Rule-Based Reasoning with Contextual Intelligence
Unlike rigid rule engines, I would apply the 8 rules with contextual understanding:
Rule Application Strategy:
* Rule 1 & 3: Track sqNum progression and stNum monotonicity within DM/SM contexts
* Rule 2 & 8: Understand the semantic relationship between data changes and sqNum
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Figure 11: A normalized confusion matrix of the GenAl-based ADS, trained by the proposed AATM-generated GOOSE
datasets for all classes.

¢ Rule 4: Detect configuration changes in categorical fields
* Rule 5-7: Analyze temporal patterns for DOS and timing anomalies
3. Multi-Level Anomaly Classification Process
Level 1 - Pattern Recognition:
For each dataset:
1. Identify message sequence patterns
2. Detect temporal anomalies (ms-level for DOS, second-level for SP-time)
3. Recognize protocol violations
Level 2 - Semantic Classification:
* Normal: All rules satisfied, expected GOOSE behavior
e DI: StNum changes without proper data correlation
DOS: > 10 messages within 10 microseconds
e SP-time: >10 second gaps between messages
SP-[feature]: Unexpected changes in specific fields
* RE: Repeated sequence patterns

Level 3 - Contextual Validation:

* Cross-reference patterns with known GOOSE protocol behavior

* Apply semantic understanding of industrial control system operations
Example Analysis Output:
Dataset #1: ANOMALY (DI Class)
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GenAl-Based Anomaly Detection: Multi-Class Confusion Matrix
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Figure 12: A confusion matrix (counts) of the GenAl-based ADS, trained by the proposed AATM-generated GOOSE
datasets for all classes.

Reasoning: Detected stNum change from 27 to 28 at row 5 without corresponding
datal/data2 change. This violates the expected GOOSE protocol behavior where
stNum changes should correlate with data modifications.

Dataset #2: NORMAL

Reasoning: All sequences follow expected patterns. sgNum increments properly
(150—151—152), stNum remains constant at 27, no timing anomalies detected.

Dataset #3: ANOMALY (DOS Class)

Reasoning: Identified 12 messages within 8 microseconds (rows 3-14),
indicating a DOS pattern with abnormally rapid message transmission.

As can be observed, it can follow the provided rules in addition to the patterns in the datasets to provide a suitable
reason according to each class. Some examples of outputs based on three datasets are represented at the end of the box.

5 Conclusions and Future Work

This section generally presents the AATM technique for balanced and realistic data generation, novel GenAl-based
ADSs, and an enhanced performance of GenAl-based ADSs over ML-based ADSs. Initially, because there are
insufficient datasets of IEC61850-based communications as well as the generation of realistic zero-day attacks, this
research proposes a novel pre-processing technique known as AATM for data generation which is perturbation- and
mutation-based to enhance the RR and BR of the generated synthesized datasets, which show enhancements over another
pre-processing technique. Secondly, a GenAl-based ToD ADS is presented in IEC61850-based communication messages
in digital substations which rather outperforms the traditional ML-based ADSs in terms of no necessity for the re-
training process, less effort, and the ability of analysis of categorical features in multi-cast messages. Then, considering
the generated datasets and suggested GenAl-based ADS, the performance of this ADS is assessed based on standard
and advanced performance metrics. According to the results, it demonstrates that the GenAl-based ToD framework
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implemented by Anthropic Claude Pro has superior performance compared with other ML models. Finally, the
system’s capacity for semantic comprehension, demonstrated through its proficiency in contextualizing message/pattern
anomalies and detecting sophisticated attack/error signatures undetected by solely quantitative approaches, represents
a qualitative evolution beyond traditional pattern recognition models. The framework’s consistent high performance
across diverse normal/threat vectors, including data manipulation, operational issues, temporal attacks, and message RE
scenarios, in combination with its inherent scalability and sustainability features, validates its suitability for production
deployment. These findings position GenAl as a crucial technology in securing critical infrastructure, providing a
resilient, explainable, and evolutionary security solution capable of addressing emergent threats within digital substation
environments while preserving the rigorous reliability requirements fundamental to electrical grid operations.

The development of security frameworks for substations opens up numerous promising future pathways. Present
detection techniques must evolve to include the entire suite of IEC61850 communication protocols. This extension
effort results in a comprehensive monitoring ecosystem, surpassing the constraints associated with single-protocol
analysis. Tailored intelligent systems can be deployed within utility-managed infrastructure using community-developed
language models. These deployments establish self-contained operational environments that satisfy rigorous regulatory
compliance requirements. Power system physics-aware computational models facilitate instantaneous threat identifica-
tion within these frameworks. This architectural approach naturally extends toward interconnected substation networks.
Mechanisms for cryptographically protected information exchange facilitate joint threat evaluation among installations
spread over various geographic locations while maintaining the self-governance of each facility. The system’s intelligent
pattern recognition abilities allow for the dynamic fine-tuning of detection criteria, accommodating evolving threat
scenarios. Thus, these adaptive frameworks significantly reduce the need for human intervention while preserving
visibility, which is crucial for securing critical infrastructure.
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