
Designing with Deception: ML- and Covert Gate-Enhanced
Camouflaging to Thwart IC Reverse Engineering

Junling Fan, David Koblah, Domenic Forte
Department of Electrical and Computer Engineering

University of Florida, Gainesville, USA
{fan.j, dkoblah}@ufl.edu, dforte@ece.ufl.edu

Abstract—Integrated circuits (ICs) are essential to electronic systems,
yet they face significant risks from physical reverse engineering (RE)
attacks that compromise intellectual property (IP) and overall system
security. While IC camouflaging has emerged to mitigate these risks,
existing approaches largely focus on localized gate modifications, ne-
glecting comprehensive deception strategies. To address this gap, we
present a machine learning (ML)-driven methodology – IP Camouflage
– that integrates cryptic and mimetic deception principles to enhance IC
security against RE. Our approach leverages a novel And-Inverter Graph
Variational Autoencoder (AIG-VAE) to encode circuit representations,
enabling dual-layered camouflage through functional preservation and
appearance mimicry. By introducing new variants of covert gates – Fake
Inverters, Fake Buffers, and Universal Transmitters – our methodology
achieves robust protection by obscuring circuit functionality while pre-
senting misleading appearances. Experimental results demonstrate the
effectiveness of our strategy in maintaining circuit functionality while
achieving strong resistance to SAT-based attacks with low structural
overhead. Additionally, we validate the robustness of our method against
advanced artificial intelligence (AI)-based RE attacks.

Index Terms—Reverse Engineering, IC Camouflage, Cyber Deception,
Machine Learning, Hardware Security

I. INTRODUCTION

As integrated circuits (ICs) continue to serve as the backbone of
modern electronic systems, the threat of reverse engineering (RE) has
become increasingly consequential. Physical RE enables adversaries
to extract sensitive information from hardware designs, including
intellectual property (IP), underlying algorithms, and security fea-
tures. By physically probing, delayering and imaging, and analyzing
the results, attackers can reconstruct an IC’s gate-level represen-
tation, enabling replication, cloning, vulnerability analysis, and/or
tampering [1]. This poses substantial risks, particularly in critical
domains such as defense, healthcare, and finance, where IP theft or
hardware tampering could have catastrophic consequences to national
security, public health and economic security, respectively. With the
continuous advancement of RE tools and techniques, safeguarding
ICs from these threats has become increasingly challenging [2], [3].

IC camouflaging has emerged as a technique to protect hardware
IPs from RE attacks. This approach leverages fabrication-based tech-
nologies to intentionally obscure the true functionality of the circuit,
deliberately confusing adversaries [4], [5]. Camouflaged sections are
designed to mislead attackers during the IC RE process, resulting
in incorrect or incomplete reconstructions. While this may be the
intention, current methods primarily focus on localized gate layouts
or interconnections, neglecting a holistic camouflage of the overall
circuit’s functionality. This narrow focus limits their ability to achieve
broader, system-level deception, which could significantly hinder
adversarial efforts during RE in real-world applications.

Cyber deception offers a proactive and versatile defense strategy
for addressing these limitations. The taxonomy proposed by Pawlick
et al. [6] categorizes cyber deception into six distinct strategies:
perturbation, moving target defense (MTD), obfuscation, mixing,
honey-x, and attacker engagement. These are classified broadly into

Figure 1: Illustration of mimetic deception for: (a) a Half Adder
(HA), (b) an HA camouflaged deceptively to appear as a Full Adder
(FA) using covert gates [7], and (c) a standard FA. The pink gates are
covert gates that appear as the logic gate under SEM imaging but are
actually buffers or inverters that only operate on the non-dashed input
signal. Dashed lines are dummy inputs unbeknownst to attackers.

two categories: cryptic deception, which obscures the existence or
nature of “assets”, and mimetic deception, which simulates realistic
but misleading appearances [6]. According to this definition, existing
camouflage strategies against IC RE focus on cryptic deception while
mimetic deception remains unexplored.

Our work addresses this through the following contributions:

• Filling the Mimetic Deception Gap: We introduce mimetic de-
ception, complementing cryptic deception by simultaneously hiding
the true functionality of circuits and presenting a misleading outward
appearance. Figure 1 shows a toy example where a camouflaged Half
Adder (HA) looks similar to a Full Adder (FA) in appearance. We
also create new variants of covert gates [7] which would appear as
inverters, buffers, etc. under SEM but may function differently.
• Machine Learning-Based Implementation: We employ an ML-
based strategy using a variational autoencoder (VAE) model to
achieve “dual-layered” camouflage with and-inverter graphs (AIGs);
that is, it ensures efficient and systematic implementation of both
cryptic and mimetic deception, overcoming the limitations of tradi-
tional approaches. Note that the proposed AIG-VAE is also a unique
contribution which can be used in other EDA/CAD applications.
• Demonstrated Robustness Against AI-Enhanced RE Tools:
Through experiments, we demonstrate how our strategy effectively
thwarts advanced RE methods, including those leveraging AI, under-
scoring its practical security improvements.

The remainder of this paper is organized as follows: Section II
offers background on threats against ICs and discusses how they may
be impacted by the proposed camouflaging. In Section III, we provide
background on the main sub-components of the proposed approach:
covert gates, VAEs, and cyber deception. The section concludes
with a few motivational examples, highlighting the vast potential of
hardware security that arises from combining IC camouflaging with
deception principles. The overall methodology (IP Camouflage) and
main contributions are discussed in Section IV. Experimental results
that demonstrate the effectiveness of the AIG-VAE and IC camouflage

ar
X

iv
:2

50
8.

08
46

2v
1

 [
cs

.C
R

]
 1

1
A

ug
 2

02
5

https://arxiv.org/abs/2508.08462v1

are provided in Section V. Finally, Section VI concludes the paper
and highlights directions for future research.

II. ATTACKS AND THREAT MODEL

The landscape of hardware security has rapidly evolved in the last
few decades, driven by the changing nature of attacks and the
corresponding development of countermeasures. The constant theme
in this field is that there is no one-size-fits-all solution for all
adversaries. However, our methodology improves IP security against
a few distinct physical attacks.

A. Reverse Engineering

Reverse Engineering (RE) is a process that involves systematically
analyzing electronic devices to extract design information at the
chip, board, or system levels. It involves dissecting hardware designs
to uncover vulnerabilities or proprietary information [8]. A typical
process of IC RE includes:

1) Remove the chip packaging to expose the die for further analysis.
2) Sequentially remove individual chip layers for examination.
3) Capture high-resolution images of the exposed layers.
4) Annotate the captured images and extract the circuit’s netlist using
hardware assurance tools.

Adversaries can use RE for cloning, counterfeiting, and IP theft.
Techniques like SEM imaging, dry or wet etching, and annotation
tools are employed for accurate extraction and analysis of device de-
signs [1], [2]. Given the complexity of modern hardware, the process
requires significant resources. Although it has utility in security and
assurance applications, such as hardware Trojan detection [9], [10],
it is viewed as an attack in this paper.

B. SAT-based Attack

The SAT problem asks whether a given Boolean formula
F (x1, x2, x3, . . . , xn) is satisfiable, i.e., whether there exists an as-
signment of variables xi ∀ i that makes F evaluate to true. While SAT
is NP-complete, modern SAT solvers are highly efficient and have
been successfully applied in various domains such as equivalence
checking, formal verification, and automatic test pattern generation
(ATPG) [11], [12]. By leveraging the power of SAT solvers [13]–[15],
circuit obfuscation, including logic locking and camouflaged circuits
has been broken. Such attacks assume that a locked/camouflaged
netlist is available along with a functional/unlocked chip (oracle).
Then, the following iterative process occurs:

1) Identify a distinguishing input pattern (DIP) using the SAT solver.
This is an input that differentiates between the outputs produced by
two or more candidate keys1.
2) Apply the DIP to oracle (unlocked chip) and observe the correct
output response.
3) Rule out incorrect key assignments by adding constraints to the
SAT solver that eliminate keys producing outputs inconsistent with
the oracle’s response.
4) Repeat the above steps until no further DIPs can be found. At this
point, the correct key (de-camouflaged design) is uniquely identified.

The basis of the proposed approach is covert gates (see Section III-A)
which SAT and VLSI-test based attacks do no scale well against [7].
Further, our ground-up approach that extends camouflaging to the IP
level should also prevent the success of these attacks.

1For IC camouflaging, the netlist can be translated to one with keys where
the correct key bits identify the correct function of the camouflaged cells.

C. Threat Model in This Work

This work addresses a threat model where an adversary, such as an
IC reverse engineer, seeks to exploit ICs to compromise their security
and functionality. The adversary’s primary objectives are:

1) Uncovering IC Functionality: Using reverse engineering tech-
niques to extract critical design information from security-focused
IP, such as intrusion detection systems or encryption modules, to
bypass or exploit their functionality. Further, the IP can also be stolen,
replicated, and counterfeited.
2) Tampering with Sensitive Signals: Using the information from #
1 to target critical components or operations through physical attacks,
such as laser fault injection (LFI) or focused ion beam (FIB), to
disrupt normal functionality or manipulate sensitive signals.

We assume that the adversary has access to physical RE equipment,
such as SEM imaging, but optical side channels [16] are counteracted
by sensing techniques, e.g., [17]. Fault injection and non-invasive
side channel analysis, which are underexplored in de-obfuscation,
are considered out of scope and left for future work.

III. RELATED WORKS

A. IC Camouflaging and Covert Gates

IC camouflaging can generally be classified into two categories [7]:
gate and interconnect camouflaging. Gate camouflaging focuses on
replacing individual logic gates within the circuit with ones that could
implement multiple functions depending on fabrication-related secrets
(e.g., dummy contacts [5], threshold voltages [18], or semiconductor
doping [19]). This approach effectively disrupts the ability of the
attacker to identify the specific logic gates from SEM images. On
the other hand, interconnect camouflaging [20] involves altering the
connections between gates, making it difficult for an adversary to
accurately map out the circuit’s wiring or logic flow during IC RE.

The state-of-the-art (SotA) in IC camouflaging is covert gates2,
which effectively combine gate and interconnect variants through
the use of always-on and always-off transistors [7]. The designer
can create logic gates with different functions as well as circuits
with dummy inputs (dummy connections) by altering transistor states
from normal to always-on and always-off. Further, since the transistor
states are not visible to attackers under SEM, the covert gates have the
same appearance as standard CMOS gates, allowing them to achieve
higher scalability against SAT and VLSI test-based attacks compared
to other camouflaged gates. Given these advantages, we adopt the
covert gate methodology as part of our camouflaging strategy.

B. Variational Autoencoder (VAE)

A variational autoencoder (VAE) [21] is a generative model that
encodes data into a latent space and reconstructs it, introducing
a probabilistic framework for generating new samples. In a VAE,
the encoder maps the input x to a latent variable z by learning a
probability distribution z ∼ q(z|x) = N (µ(x), σ(x)2).

The decoder reconstructs x from z by generating p(x|z)x̂ ∼
p(x|z). To ensure meaningful interpolation, the latent space is
regularized with a Gaussian prior p(z) = N (0, I), where I refers
to the identity matrix. The VAE’s objective combines two loss terms:
reconstruction loss, which measures how well x is reconstructed
from z:Lrecon = −Eq(z|x)[log p(x|z)], and KL divergence loss, which
aligns q(z|x) with the prior p(z): LKL = DKL(q(z|x) ∥ p(z)),where

2To our knowledge, circuits implemented with covert gates have never been
successfully broken in the literature. Thus we consider it to be the SotA.

Distribution of “1”

Distribution of “2”

Figure 2: Latent space distribution of the MNIST dataset [22].
Using [23], a visualization shows how interpolation in the latent space
can result in samples that mix features from different inputs.

∥ denotes the divergence between two probability distributions. The
total loss function for the VAE is

LVAE = Lrecon + LKL. (1)

Machine learning models based on VAE enable interpolation
between two latent codes from 2 different samples, allowing the
creation of a new sample with a balanced feature between two
samples as Figure 2 shows. VAEs and such interpolation are the basis
of our camouflaging approach where the two interpolated samples are
the circuit’s desired function and its desired appearance.

C. Cyber Deception: Cryptic and Mimetic Strategies
Cyber deception represents a proactive and innovative defense mech-
anism designed to counter cyber threats by misleading attackers,
complicating their operations, and enhancing overall system security.
Unlike traditional defenses that primarily focus on detection and
prevention, cyber deception actively manipulates the attack surface to
confuse, disorient, and frustrate adversaries. This strategic approach
is rooted in the historical principle of deception used in warfare and
espionage but has been adapted to address the complex challenges
of cybersecurity in the digital era [6], [24].
Cryptic Deception. Cryptic deception aims to obscure the existence
or true nature of assets, thereby hindering attackers from identify-
ing their targets. By hiding critical information, cryptic methods
effectively render the attack surface ambiguous, complicating an
adversary’s reconnaissance efforts and reducing the likelihood of
a successful breach. A prominent example of cryptic deception is
the use of moving target defenses (MTDs), which dynamically alter
system configurations to create uncertainty and unpredictability. This
approach forces attackers to expend significant time and resources
without guaranteeing success. MTD strategies have been effectively
applied to hardware security, as demonstrated in [17], [25], [26],
where hardware configurations are reconfigured at run time to protect
designs and/or on-chip assets from hardware Trojans, impedance-
related side-channel attacks, and optical probing.
Mimetic Deception. Mimetic deception, on the other hand, focuses
on imitation to present misleading but realistic appearances. This
approach seeks to mislead attackers by simulating legitimate sys-
tem behaviors or mimicking the characteristics of valuable targets.
Mimetic techniques include the deployment of honeypots and de-
coys, which imitate operational systems to lure attackers away from
critical assets. These methods also serve as intelligence-gathering
tools, enabling defenders to study attackers’ tactics, techniques, and
procedures (TTPs) in real time [6], [24].
Relevance to Anti-RE and Hardware Security. Our proposed
methodology aligns with the principles of both cryptic and mimetic
deception. By leveraging techniques such as functional preservation
and appearance mimicry, we achieve a dual-layered camouflaging
strategy. The functional integrity of an IP is preserved, ensuring
operational reliability, while the appearance is camouflaged to re-
semble alternate IPs. This hybrid approach effectively misleads RE
adversaries, aligning with cryptic principles by concealing the true

logic of circuits and mimetic principles by presenting a deceptive
outward appearance. This strategy also highlights the evolving role
of cyber deception in modern security paradigms. By combining
cryptic and mimetic deception, our work contributes to the broader
landscape, demonstrating applicability to IP anti-theft as well as
hardware security. Examples of promising new capabilities enabled
by this approach include:

1) Misdirection to Hide Real On-chip Assets. Consider an intrusion
detection and prevention IP that monitors network traffic and detects
potential security threats. Through IC RE, an attacker can gain
an understanding of how this IP works, exploiting the information
to evade detection or inject false alarms in subsequent attacks on
products that use it. Our dual-layered approach could make this
security-focused IP look like something innocuous such as a USB or
memory controller, making it seem less valuable as an attack target.
2) Creation of On-chip Decoys to Attract Physical Attacks.
Consider an IP that detects LFI. Using IC RE, an attacker could
identify the locations of this IP within the chip and thus places
to avoid aiming the laser. Our dual-layered approach could make
this security-focused IP appear to be a target of interest such as a
cryptographic core. When an attacker tries to attack the decoy core,
it would instead trigger data zeroization or chip self-destruction.

The deception concept combined with anti-RE is unique to this paper
and opens up many promising directions in hardware security.

IV. PROPOSED METHODOLOGY: IP CAMOUFLAGE

A. Overview

Existing camouflaging approaches are localized, primarily residing at
the gate-level where a gate’s function can be one of several functions
that the attacker needs to determine. Here, we propose IP Camouflage
to create a camouflaged IP that preserves an IP’s function while
mimicking the appearance of a different IP, misleading RE adversaries
as described above. We refer to the IP with the desired functionality
as the “functional circuit”. The IP whose appearance we want the
product to resemble is called the “appearance circuit”. The process
begins by converting both circuits into And-Inverter Graphs (AIGs),
which are then encoded into latent representations using the encoder
of our Variational Autoencoder (VAE)-based model, the AIG-VAE
(described in Section IV-B).

The encoder generates probabilistic distributions for each circuit,
represented by a mean (µ) and standard deviation (σ) that follow
a normal distribution. From these distributions, two latent space
codes are sampled: ZF , representing the functional circuit, and ZA,
representing the appearance circuit. These codes are interpolated
using a proportion factor p, resulting in an intermediate latent code
ZG′ , which combines the characteristics of the functional circuit and
the appearance circuit: ZG′ = (1− p)ZF + pZA.

The decoder then reconstructs the circuit G′ from ZG′ , followed
by a threshold-based filter to refine the output, ensuring clear and
interpretable connections:

filter(x, Th) =

{
0, x ≤ Th

1, x > Th
(2)

The generated circuit Ĝ is further refined with a Functional Preser-
vation to align its function with F , producing ĜF . After this, Appear-
ance Mimicking is applied to ensure the produced circuit resembles A.
The final result, denoted as ĜFA, achieves both functional alignment
with the functional circuit and visual similarity to the appearance
circuit. The process is shown in Figure 3.

Appearance
Circuit

Functional
Circuit

𝐴𝐴

𝐹𝐹

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

μ𝐴𝐴

σ𝐴𝐴 Sample

μ𝐹𝐹

σ𝐹𝐹
Sample

𝕫𝕫𝐹𝐹 𝕫𝕫𝐴𝐴

Interpolation

𝕫𝕫𝐺𝐺′

𝑝𝑝

filter

𝑓𝑓 𝑥𝑥 = �1, 𝑥𝑥 > 𝑇𝑇𝑇
0, 𝑥𝑥 ≤ 𝑇𝑇𝑇

�𝐺𝐺
Functional

Preservation

�𝐺𝐺𝐹𝐹
Appearance

Mimicking

�𝐺𝐺𝐹𝐹𝐹𝐹

Generated
Camouflaged
Circuit

PO

PI

AND 𝕫𝕫 ~𝑁𝑁(μ, σ2)

𝐺𝐺𝐺

AIG-VAE

0 1

Figure 3: High-level Diagram of IP Camouflage. A functional circuit
F and appearance circuit A are taken as inputs. After AIG-VAE and
post-processing fixes, the final output is a camouflaged circuit ĜFA

in AIG format that matches F ’s function but appears as A.

Novelty. Unlike existing approaches that focus solely on localized
camouflage, IP Camouflage leverages a machine learning model
(AIG-VAE) to achieve holistic, system-level camouflage and decep-
tion. Note, however, that camouflaged gates are still utilized and
present in our circuits. To be more specific, by integrating newly
designed covert gates – Fake Inverters (FI), Fake Buffers (FB), and
Universal Transmitters (UT), introduced in Section IV-D1 – during
Functional Preservation and Appearance Mimicking, we enhance the
robustness of the camouflage against adversaries. The subsequent
sections provide detailed explanations of these processes.

B. Machine Learning Model: AIG-VAE
To effectively camouflage a circuit, our model must first under-
stand the circuit’s structure and function. Previous works, such as
FGNN [27] and ABGNN [28], excel at learning functional representa-
tions of circuits by using asynchronous message-passing mechanisms,
allowing the model to interpret the intricate relationships within
circuit netlists. However, these models lack the generative capabilities
needed to produce new circuits. This is where models like VGAE and
D-VAE [29], [30] are important. These VAE-based models enable
graph generation, allowing circuits to be generated from informative
embeddings derived from circuit representation learning.

Building on this foundation, we propose our machine learning
model, the And-Inverter Graph Variational Autoencoder (AIG-VAE),
specifically designed for encoding and decoding circuits represented
as AIGs. As shown in Figure 4, similar to Section III-B, the model
consists of two core components: Encoder and Decoder.

1) Encoder
The encoder processes an input AIG X and maps it to a latent

representation ZX = E(X), capturing both structural and func-
tional features of the circuit. Our encoder employs an asynchronous
message-passing mechanism across the AIG, allowing messages to
propagate throughout the graph while preserving circuit hierarchy and
dependencies. This model is designed for AIGs with a single primary
output (PO), multiple primary inputs (PIs), and various AND gates.
To initialize the process, each PI is encoded manually using one-hot
encoding. The message-passing follows a breadth-first search (BFS)
order, meaning each node does not receive or update its message until
all its precedent nodes have been traversed. The message-passing and
update process for each node v can be formalized as follows:
• Message Aggregation: For each AND node, we aggregate mes-
sages from its two preceding nodes u1 and u2. If an edge between a
node and a predecessor includes an inverter, the incoming embedding
from that predecessor is negated. The aggregated message mv for

Asynchronous Message Passing𝑋𝑋

𝑧𝑧 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

μ

σ

Encoder

a0.

ℎnow
b.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇now

…
c.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

… d.

? ?
? ?

? ?
? ?

e.
f.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼

ℎ

GRU

g. (an.)

�𝑋𝑋

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,
𝐼𝐼𝐼𝐼𝐼𝐼,
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

[n]

Decoder

PO
Initial/Traversed

AND
PI

��𝑤𝑤𝑤𝑤 + 𝑏𝑏

MLP

��𝑤𝑤𝑤𝑤 + 𝑏𝑏

��𝑤𝑤𝑤𝑤 + 𝑏𝑏

Tensor

Figure 4: AIG-VAE Overview. The encoder uses asynchronous mes-
sage passing to encode the input graph X into a latent representation
in z-space. The decoder reconstructs the graph X̂ as follows: (a0)
Sample a latent vector and initialize the first hidden state via an MLP;
(b) Predict the node type (PI, PO, or AND) and assign PI to the first
node; (c) Add the node type to the global tensor Type; (d) Add the
hidden state to the global tensor h; (e) Predict connection edges with
an MLP and store them in Conn; (f) Predict inverters with an MLP
and store them in Inv (g, an); Update the hidden state for the next
node using a GRU and repeat until all nodes are processed. The final
AIG is reconstructed from Conn, Inv, and Type.

node v is given by: mv =
∑2

i=1 sign(ei) ·hui , where hui represents
the embedding of the i-th preceding node, and sign(ei) is −1 if there
is an inverter on the edge, +1 otherwise.
• Node Update with GRU: The aggregated message mv , combined
with the node type tv (indicating whether it’s a PI, PO, or AND),
is fed into a Gated Recurrent Unit (GRU) [31] to update the node
embedding. The GRU is a recurrent network cell designed to capture
sequential and structural dependencies through gating mechanisms.
Specifically, the GRU computes the next node embedding hv in the
following steps:
1) Update Gate (zv): Determines how much of the previous em-
bedding to retain in the updated embedding: zv = sigmoid(Wzmv +
Uztv + bz).
2) Reset Gate (rv): Controls how much of the previous embedding
to forget: rv = sigmoid(Wrmv + Urtv + br).
3) Candidate Embedding (h̃v): Computes the potential updated
embedding: h̃v = tanh(Wh(rv ⊙ hv−1) + Uhtv + bh).
4) Final Node Embedding (hv): Combines the previous embedding
hv−1 and the candidate embedding h̃v , weighted by the update gate
zv: hv = (1− zv)⊙ hv−1 + zv ⊙ h̃v .

The notation used includes the sigmoid activation function, defined
as sigmoid(x) = 1

1+e−x , and tanh, the hyperbolic tangent activation

function defined as tanh(x) = ex−e−x

ex+e−x . The symbol ⊙ represents
element-wise multiplication. The weight matrices Wz,Wr,Wh are
for the aggregated message mv , while Uz, Ur, Uh represent the
weight matrices for the node type tv . bz, br, bh denote bias terms.
This allows the model to differentiate between node types while
capturing both structural and functional dependencies of the graph.
The node embedding hv is computed as: hv = GRUe(mv, tv).

The embedding obtained from the final GRU update at the PO node
is processed further to obtain the latent space representation. Specifi-
cally, this embedding, denoted as hPO, is passed through two separate
Multi-Layer Perceptrons (MLPs) to produce the mean µ and standard

deviation σ for the VAE’s latent distribution: µ = MLPµ(hPO),
σ = MLPσ(hPO). These parameters µ and σ define the Gaussian
distribution q(z|X) = N (µ, σ2) from which the latent variable z is
sampled. This approach enables the encoder to capture a probabilistic
latent representation.

2) Decoder
The decoder reconstructs an AIG from the latent code ZX , generat-

ing an output X̂ = D(ZX) that preserves the essential characteristics
of the original circuit while allowing for controlled variation3. A
sample is drawn from the latent space using the mean µ and standard
deviation σ derived during encoding. During training, σ is used to
augment data by adding stochasticity. However, during evaluation,
only the mean µ is used for consistency: z ∼ N (µ, σ2)

To initialize the node embeddings, z is passed through a fully
connected linear layer followed by a tanh activation to produce the
first node embedding h1: h1 = tanh(Linear(ZX)). The decoding
process then unfolds as follows:

• Node Type Prediction: Using a MLP called addNode, the type
of the node is determined from h. This MLP classifies the node as
either a Primary Input (PI), Primary Output (PO), or an AND gate:
Typei = MLPaddNode(hi)
• Connection and Inverter Determination: For each node, two
additional MLPs predict the connections to all previous nodes and
whether there are inverters on these connections: Connectioni,j =
MLPconnect(hi, hj) and Inverteri,j = MLPinv(hi, hj), where hi (hj)
represent the embeddings of current (previous) nodes.
• Next Node Embedding: To determine the embedding of the next
node, the decoder uses a GRU specifically for decoding, denoted
as GRUd. The GRU takes the current embedding h and the node
type as inputs, producing the embedding for the next node: hi+1 =
GRUd(hi, T ypei).

This process continues iteratively, building the entire AIG by adding
nodes and determining connections, until the number of nodes
matches that of the input circuit X from which the latent space code
encoded from.

3) Loss Function
When calculating the loss function, the AIG structure is represented

by three primary tensors that capture essential circuit information:
Type (which defines each node’s type, such as PI, PO, or AND
gate), Connection (an adjacency matrix indicating the presence of
connections between nodes), and Inverter (indicating if an inverter
is present on each edge). These tensors are calculated for the original
circuit X and the reconstructed circuit X̂ , denoted as TypeX and
TypeX̂ , ConnectionX and ConnectionX̂ , and InverterX and
InverterX̂ , respectively.

For each tensor, we use the mean squared error (MSE) to
compute the discrepancy between the original and reconstructed
values. Here, N denotes the total number of nodes in the graph:
LType = 1

N·3Σ
N
i=1Σ

3
j=1(TypeX,i,j − TypeX̂,i,j)

2, LConnection =
1

N2Σ
N
i=1Σ

N
j=1(ConnectionX,i,j − ConnectionX̂,i,j)

2, LInverter =
1

N2Σ
N
i=1Σ

N
j=1(InverterX,i,j − InverterX̂,i,j)

2.
The KL divergence loss LKL regularizes the latent space

by measuring the divergence between the encoded distribution
q(z|X) = N (µ, σ2) and a prior Gaussian distribution p(z) =
N (0, I). It is computed as: LKL = DKL(q(z|X) ∥ p(z)) =
1
2

∑d
i=1

(
σ2
i + µ2

i − log(σ2
i)− 1

)
, where d is the dimensionality of

3Controlled variation refers to the ability to introduce slight variations
during decoding by sampling nearby latent codes within the distribution in
latent space, enabling exploration of similar but not identical representations.

𝑝𝑝
0(�𝐹𝐹) 1(𝐴̂𝐴)0.2 0.4 0.6 0.8

�𝐺𝐺:

1

magnitude

Threshold Filter

𝑇𝑇𝑇 = 0.1 𝑇𝑇𝑇 = 0.5 𝑇𝑇𝑇 = 0.9

Figure 5: Interpolation between F̂ and Â and impact of threshold
values on binary decision-making. The intensity of the color indicates
the magnitude.

the latent space, and µ and σ are the mean and standard deviation
vectors from the encoder.

The overall loss function L is then defined as a weighted sum
of these individual components, along with the KL divergence loss
(LKL) to regularize the latent space: L = α · LType + β · LConnection +
γ · LInverter + δ · LKL. Here, α, β, γ, and δ are hyperparameters that
control the relative contribution of each loss component to the overall
objective. This loss function ensures that the reconstructed circuit
retains the original structure and functionality while adhering to the
latent space’s constraints. For our implementation, we set α = 0.3,
β = 0.3, γ = 0.3, and δ = 0.1 to balance the contributions of each
component in the loss function.

C. Interpolation between Function and Appearance
In Section IV-A, we briefly introduced the concept of interpolating
between the latent space representations of a functional circuit and
the appearance circuit, enabling us to examine the intermediate states
between the two. In this section, we will discuss this in greater detail.

The interpolation process blends the functional circuit F and
appearance circuit A by leveraging their respective latent space
representations, encoded as ZF and ZA. These latent representa-
tions are interpolated based on a proportion factor p, defined :
ZG = (1 − p)ZF + pZA, where ZG balances between the latent
representations of the functional and appearance circuits. The decoder
then reconstructs a circuit Ĝ from ZG. Here, p ∈ [0, 1] determines
the interpolation factor. When p = 0, ZG focuses entirely on the
characteristics of the functional circuit, retaining the function and
appearance of F . When p = 1, ZG is dominated by the characteristics
of the appearance circuit. For intermediate values of p, the generated
circuit shows a blend of function and appearance of functional and
appearance circuits, as illustrated in Figure 5.

Once the interpolated latent vector ZG is obtained, it is decoded
using the decoder to produce the new circuit Ĝ = D(ZG). Due to
the interpolation process, the rebuilt Ĝ varies as different proportion
values are selected. In Figure 5, the lighter color in the figure indicates
that the blended values decrease in magnitude. These decreased
values do not directly indicate clear node connections or inverters.
Therefore, a threshold value Th is applied to convert these values
into binary decisions using a threshold filter, as shown in Equation 2.
This filtering process ensures that the generated circuit has clear,
interpretable connections and maintains structural integrity, even
when blending between functional circuit and appearance circuit.

The final circuit, after applying thresholding, achieves the desired
balance between functionality and appearance. By adjusting the
interpolation factor p and the threshold Th, designers can fine-tune
the generated circuit to better meet specific requirements.

D. Functional Preserve and Appearance Mimicking

The generated AIG Ĝ, derived from the latent space distribution
between the functional circuit F and the appearance circuit A,
exhibits differences in both functionality and appearance compared
to F and A. To reconcile these differences, we employ two fixes:
Functional Preserve, which restores the functional behavior of F in

M1

M2

FI (Logic1) FI(Logic0)

M1

M2

M1

M2

M3

M4

M1

M2

M3

M4

FB(Logic1) FB(Logic0)

Always-off transistors

Always-on transistors

Figure 6: CMOS circuits of Fake Inverter (FI) and Fake Buffer (FB).

M3

M4

M5 M6

A

A

Y

UT-A

Always-off transistors

Always-on transistors

Y

M3

M4

M5 M6

A

A

UT-B

BB

Figure 7: CMOS circuits of Universal Transmitter (UT). From left to
right: UT-A, UT-B.

Ĝ, and Appearance Mimicking, which further adjusts Ĝ to closely
resemble A.

1) New Covert Gates
To implement these fixes, we introduce specialized components

designed using the covert gate methodology. These camouflaged
components leverage a unique manufacturing technology that enables
transistors to remain in an always-on or always-off state [7]. This
capability allows the creation of gates that deceive reverse engineers
by emitting misleading SEM images while preserving the circuit’s
true functionality.

We have developed three types of components based on covert
gates: the Fake Inverter (FI), Fake Buffer (FB), and Universal
Transmitter (UT). These components would be strategically incor-
porated during the Functional Preserve and Appearance Mimicking
stages to obscure the circuit’s true logic while presenting a deceptive
external appearance. As shown in Figure 6, fake components, the FI
and FB, are functionally distinct from the corresponding real compo-
nent, but they maintain the same external appearance. The Universal
Transmitter (UT), depicted in Figure 7, has two variations (UT-A
and UT-B), having contrasting functions but the same appearance.

As shown in Table I, the various types of Fake Inverters (FI),
Fake Buffers (FB), and Universal Transmitters (UT) provide distinct
functionalities while maintaining consistent external appearances.
These components are specifically designed to camouflage individual
signals, effectively concealing their true functions from their outward
appearance. For FI and FB, a signal can be made to appear inverted
or non-inverted while functionally being logic1/logic0. For UT, the
two inputs can be selected like in a MUX, while maintaining the
appearance of a NAND gate. When used in the fix step, UT can
choose between a signal and its negation, effectively functioning as
a buffer or inverter – both sharing the same appearance. Like FI and
FB, UT can also be configured to output constant logic1/logic0.

2) Functional Preservation and Appearance Mimicking
Building on the introduction of these covert gates – Fake Inverters

(FI), Fake Buffers (FB), and Universal Transmitters (UT) – this
section explains their integration into the processes of Functional
Preservation and Appearance Mimicking.

The Functional Preservation process ensures that the generated
circuit Ĝ functions identically to the original functional circuit F ,
while effectively camouflaging its true purpose. This is achieved by
comparing the structure and behavior of Ĝ to F and making the
necessary corrections. The process begins by equalizing the size of
Ĝ and F by adding dummy nodes, ensuring that both circuits have

Table I: Function and Appearance of FI, FB, and UT

Component Function Appearance

FI logic1 / logic0 1 Inverter
FB logic1 / logic0 2 Inverters

UT-A Buffer / logic 1 / logic 0 1 NAND
UT-B Inverter / logic 1/ logic 0 1 NAND

Table II: Fix Steps for Functional Preservation and Appearance
Mimicking

Functionality Preservation Appearance Mimicking
Ĝ Reference F Fix Step ĜF Reference A Fix Step

00/01 00/01 N/A 00/01 00/01 N/A
00/01 10 Connect 00/01 10 FB
00/01 11 Insert INV 00/01 11 FI

10 00/01 FB 10 00/01 N/A
10 10 N/A 10 10 N/A
10 11 UT-B 10 11 UT-A
11 00/01 FI 11 00/01 N/A
11 10 UT-A 11 10 UT-B
11 11 N/A 11 11 N/A

the same number of gates and nodes across all three types of nodes
(PI, PO and AND). Subsequently, the connections and logic of each
node in Ĝ are compared with those in F , and any discrepancies in
logic or connections are identified and corrected. To address these
discrepancies, Fake Inverter (FI), Fake Buffer (FB), and Universal
Transmitter (UT) components are applied. These components enable
the adjustments required to make Ĝ functionally equivalent to F
while maintaining its camouflaged appearance.

With each corrective step applied to a signal in Ĝ, Table II
compares the generated circuit Ĝ with the functional circuit F ,
detailing the fix operations and their effects. The values 00/01,
10, and 11 represent the states of connections and inversions: the
first bit indicates the presence of a connection (0 for none, 1 for a
connection), and the second bit indicates inversion (0 for no inversion,
1 for inversion). The “Fix Step” column outlines the actions taken,
such as adding connections or applying FI, FB, or UT components.
“Connect” and “Insert INV” means we have to restore the function
with no covert gate applicable in this situation. “N/A” indicates that
no fix is necessary.

Following the Functional Preservation is the Appearance Mimick-
ing. ĜF , the output of Functional Preservation, and A are padded to
the same size. Their edges are then compared, and the necessary fix
steps are applied, treating A as the desired appearance and ĜF as the
desired function. The final circuit ĜF,A is produced after Appearance
Mimicking, which retains the functionality of the functional circuit
while presenting an appearance similar to the appearance circuit.

V. EXPERIMENTAL RESULTS

This section provides a comprehensive evaluation of IP Camouflage.
Note that all the circuits produced by IP Camouflage successfully pass
formal verification with the original circuit design. The experiments
address three objectives:
1) Validate Functional Understanding of the Model: In Sec-
tion V-A, we evaluate how well the AIG-VAE model captures
the functional characteristics of circuits by correlating latent space
distances with structural differences.
2) SAT-Attack Resilience Analysis: In Section V-B, we analyze
the effectiveness of IP camouflage applying covert gate components
against SAT-based attacks, which are widely acknowledged as a
powerful and practical threat model in hardware security.
3) Demonstrated Robustness Against AI-Enhanced Reverse En-
gineering Tools: In Section V-C, we evaluate the robustness of our

Table III: Dataset Summary for Training and Testing

Dataset Subset Number of Graphs Total Number of Nodes

Training Dataset 1,482 63,091
Testing Dataset 371 14,515

Total 1,853 77,606

camouflaged circuits against advanced RE techniques by applying
Graph Neural Networks (GNNs) [32] to classify circuit nodes.

A. AIG-VAE Model Training and Evaluation

Our dataset comprises combinational circuits from the ISCAS85 [33]
and EPFL [34] benchmarks, converted into AIGs for uniform input
representation suitable for the AIG-VAE model. Note that the former
benchmarks were originally utilized for an RE case study. Output
signals and their preceding signals are decomposed into tree graphs,
which serve as model inputs. To manage complexity, trees exceeding
a maximum node limit are excluded. The dataset is split into training
and testing subsets (80-20 split). Table III summarizes the dataset
with details on the number of graphs and nodes. Graph processing is
facilitated by the Deep Graph Library (DGL) [35], which integrates
seamlessly with PyTorch and handles graphs as directed acyclic
graphs (DAGs).

The AIG-VAE model, implemented in PyTorch (version 2.3.1)
[36], was trained on an NVIDIA A100 GPU with 80 GB memory.
Using the Adam optimizer with a learning rate of 0.0001 and batch
size of 1, training aimed to minimize a combined loss function (recon-
struction loss, structural consistency, and latent space regularization;
see Section IV-B3). The model was trained for 100 epochs with
early stopping based on validation loss. Key training hyperparameters
include a latent space dimension of 512, a KL divergence weight (δ)
of 0.1, and reconstruction loss weights (α/β/γ) of 0.3 each.

We evaluate the AIG-VAE model’s ability to encode and capture
the structural and functional characteristics of circuits by analyzing
the relationship between graph edit distance (GED) and latent space
distance (LSD) for all pairwise combinations of graphs in the testing
dataset. GED, computed using the Networkx library [37], measures
structural similarity as the minimum number of edit operations (node
insertion, deletion, or substitution) required to transform one graph
into another. LSD is the Euclidean distance between the latent
representations of two graphs produced by the AIG-VAE encoder.

Given the computational cost of GED, a timeout was applied,
and data points exceeding the limit were discarded. Following
this, we gathered 136,445 valid data points. To better interpret the
relationship between GED and LSD, we use a binned analysis,
dividing LSDs into 20 bins and computing the mean GED and
standard deviation for each bin. The results, shown in Figure 8,
reveal a strong positive correlation: larger LSDs correspond to greater
GED values, as indicated by the trend and a Pearson correlation
coefficient of r = 0.98, with some errors. This analysis demonstrates
that the AIG-VAE effectively encodes features into the latent space,
capturing both structural differences and functional characteristics.
These latent representations provide a meaningful and continuous
basis for downstream tasks.

B. Evaluating Resistance to SAT-Guided Reverse Engineering

SAT-based attacks pose a major threat to logic locking (LL) and
camouflaging by exploiting oracle access and iterative SAT solving
to recover circuit functionality. To evaluate SAT resilience, we model
covert gates – Fake Inverter (FI), Fake Buffer (FB), and Universal
Transmitter (UT) – as key-programmable elements, each controlled
by two keys to select logic-1, logic-0, or normal behavior. Gates

Figure 8: Binned plot of latent space distance (LSD) vs. mean graph
edit distance (GED) for all pairwise combinations of graphs in the
testing dataset.

Table IV: Circuit Pairs Used for SAT-Guided Reverse Engineering
Evaluation

Pair Circuit A #Nodes Circuit F #Nodes

0 c5315 N7705 132 c432 N421 166
1 c5315 N7504 144 i2c po061 53
2 banyan 8 out 5 125 c3540 N4589 122
3 c2670 N3809 154 memctrl po0198 149

with the same appearance as covert gates are also treated as potential
targets, greatly expanding the key space.

We tested four circuit pairs (Table IV), each combining a functional
and an appearance circuit. For each, we generated multiple IP
Camouflage configurations with varying thresholds and compared
them to logic-locked versions with matched area overhead. As shown
in Table V, IP Camouflage consistently produces significantly more
keys under similar area, power, and delay overheads – enhancing
resistance due to the exponential nature of SAT solving.

To assess solver run time, we ran SAT attacks on configurations
with maximum and minimum key counts per pair. As reported in
Table V, IP Camouflage circuits often caused timeouts or memory ex-
haustion on a 100 GB RAM, AMD EPYC 7702 64-core server using
the Glucose SAT solver, while LL equivalents were typically solved
within milliseconds. These results confirm the practical strength of
IP Camouflage against SAT-guided RE.

C. GNN-RE Analysis for Post-Camouflage Node Classification
To evaluate the effectiveness of the proposed IP Camouflage method-
ology, we employed GNN-RE [32], which uses state-of-the-art node
classification based on GraphSAINT [38]. The dataset includes eight
benchmark circuits from ISCAS85 [33] and EPFL [34], with a fixed
training set across all experiments as shown in Table VI. For each
group, the test set includes camouflaged signals (functional) and their
deceptive counterparts (appearance). The proportional parameter p
was varied across {0.1, 0.3, 0.5, 0.7, 0.9}, and three F1-scores were
computed:
• F1Valid: Real-label classification accuracy on the validation set.
• F1Cryptic: Test classification accuracy for functional circuit label.
• F1Mimetic: Test classification accuracy for appearance circuit label.

Cryptic camouflage is achieved when F1Cryptic < F1Valid, indicat-
ing reduced recognition of functional nodes. Mimetic camouflage is
considered successful when F1Mimetic significantly exceeds random
guess and is high enough to be distinguishable. To further highlight
the improvement, we compare our method to the random covert gate
insertion strategy proposed in [7], using two baselines: (1) random
insertion with area overhead matched to ours and (2) 5% gate-level
random insertion originally used in [7].

The results in Table VII demonstrate that our proposed IP Camou-
flage achieves both significantly lower F1Cryptic and higher F1Mimetic

Table V: IP Camouflage vs. Logic Locking for number of keys and overhead across Pairs 0–3. Note: Only edge-case configurations were
considered. P: Pair index. Th: Threshold parameter for IP Camouflage. A, Pwr, Dly:Area, Power, and Delay Overhead from IP Camouflage.
#K: Key count from IP Camouflage. #Keq / A: Number of keys required for logic locking to match the area overhead. TOurs: SAT Attack
Time of IP Camouflage. TLL: SAT Attack Time of Logic Locking. TO: Time out for 24-hour limit. OoM: Out of memory for 100 GB limit.

P Th A Pwr Dly #K #Keq / AO TOurs TLL P Th A Pwr Dly #K #Keq / AO TOurs TLL

0 0.01 1.40× 1.37× 1.00× 332 68 / 1.41× TO 670 ms 2 0.01 1.34× 1.33× 1.00× 244 44 / 1.34× TO 89 ms
0 0.02 1.38× 1.34× 1.00× 318 64 / 1.39× - - 2 0.02 1.32× 1.31× 1.00× 238 44 / 1.34× - -
0 0.03 1.37× 1.32× 1.00× 314 60 / 1.36× - - 2 0.03 1.29× 1.29× 1.00× 232 36 / 1.28× - -
0 0.04 1.34× 1.25× 1.00× 288 56 / 1.34× - - 2 0.04 1.24× 1.24× 1.00× 216 32 / 1.24× - -
0 0.05 1.32× 1.18× 1.05× 268 52 / 1.30× - - 2 0.05 1.20× 1.20× 1.00× 204 28 / 1.22× - -
0 0.06 1.26× 1.12× 1.21× 248 44 / 1.27× - - 2 0.06 1.17× 1.17× 1.00× 196 24 / 1.18× - -
0 0.07 1.26× 1.12× 1.21× 248 40 / 1.25× - - 2 0.07 1.17× 1.17× 1.00× 196 24 / 1.18× - -
0 0.08 1.12× 1.05× 1.21× 218 20 / 1.12× - - 2 0.08 1.16× 1.16× 1.00× 192 20 / 1.15× - -
0 0.09 1.08× 1.04× 1.21× 212 12 / 1.08× 3525 s 35 ms 2 0.09 1.16× 1.15× 1.00× 190 20 / 1.15× 10370 s 48 ms

1 0.01 1.18× 1.18× 1.00× 104 20 / 1.20× 156 s 14 ms 3 0.01 1.30× 1.30× 1.00× 262 44 / 1.30× OoM 73 ms
1 0.02 1.15× 1.15× 1.00× 98 16 / 1.16× - - 3 0.02 1.28× 1.29× 1.00× 256 40 / 1.27× - -
1 0.03 1.14× 1.14× 1.00× 94 16 / 1.16× - - 3 0.03 1.26× 1.26× 1.00× 248 40 / 1.27× - -
1 0.04 1.14× 1.13× 1.00× 92 16 / 1.16× - - 3 0.04 1.24× 1.25× 1.00× 242 36 / 1.25× - -
1 0.05 1.12× 1.11× 1.00× 88 12 / 1.12× - - 3 0.05 1.21× 1.21× 1.00× 230 32 / 1.22× - -
1 0.06 1.12× 1.10× 1.00× 86 12 / 1.12× - - 3 0.06 1.21× 1.21× 1.00× 228 28 / 1.19× - -
1 0.07 1.12× 1.10× 1.00× 86 12 / 1.12× - - 3 0.07 1.21× 1.20× 1.00× 226 32 / 1.22× - -
1 0.08 1.11× 1.10× 1.00× 84 12 / 1.12× - - 3 0.08 1.16× 1.14× 1.00× 204 24 / 1.16× - -
1 0.09 1.10× 1.09× 1.00× 82 12 / 1.12× 247 s 14 ms 3 0.09 1.08× 1.08× 1.00× 182 12 / 1.08× OoM 16 ms

Table VI: GNN-RE Dataset Configuration. A shared training set
is used for all groups. Test pairs indicate functional (green) vs.
appearance (red) circuits.

Split Circuits (Signal)

Training banyan (8 out 5), memctrl (po0501), c2670 (N3809), c3540 (N4589),
i2c (po061), c5315 (N7504), c7552 (N10351), c432 (N421)

Group 1 Val: memctrl (po0198), c5315 (N7705)
Test: memctrl/c5315 (po0198 / N7504), c5315/c432 (N7705 / N421)

Group 2 Val: i2c (po059), c432 (N430)
Test: i2c/c2670 (po059 / N3809), c432/memctrl (N430 / po0472)

Group 3 Val: c7552 (N10110), c5315 (N7705)
Test: c7552/i2c (N10110 / po061), c5315/memctrl (N7705 / po0501)

Group 4 Val: c7552 (N10110), c432 (N430)
Test: c7552/memctrl (N10110 / po0501), c432/c5315 (N430 / N7504)

scores compared to the baseline of random covert gate insertion.
This dual effect indicates not only reduced classification accuracy
of functional (true) circuits, but also increased misclassification as
appearance (decoy) circuits. Such performance highlights the effec-
tiveness of our structured, model-guided camouflage methodology
in misleading GNN-based reverse engineering. Compared to the 5%
random insertion scheme proposed in [7], our approach provides
a stronger functional concealment and adversarial deception, under
similar or lower area overhead.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a novel IC camouflaging methodology that
integrates ML-driven approaches and covert gates to promote hard-
ware security and anti-reverse engineering. By bridging cryptic and
mimetic cyber deception strategies, our approach achieved dual-
layered camouflage, not only concealing the IP’s functionality but
also mimicking the appearance of the camouflaged IP as another
misleading design. Experimental validation demonstrated the effec-
tiveness of the proposed method in achieving SAT resistance with
low structural and performance overhead. Additionally, the method-
ology proved more resilient against AI-enhanced reverse engineering
attacks than existing approaches. These findings represent a signif-
icant advancement, setting a new standard for IC camouflaging by
incorporating cyber deception principles. Besides the exploration of
promising new applications, our future work will focus on expanding
the proposed methodology to generic process design kits or PDKs

Table VII: GNN-RE F1-score comparison across four groups and
five p values. F1Val: Validation accuracy. F1Cryptic (lower = better),
F1Mimetic (higher = better). Superscripts: Ours = IP Camouflage,
Rand5% = 5% CG insertion from [7], RandAM = area-matched
random insertion. The F1-score for random guess is 0.125.

Group Metric p = .1 p = .3 p = .5 p = .7 p = .9

1 F1Val 0.59 0.58 0.59 0.58 0.58

F1Cryptic Ours 0.50 0.54 0.52 0.46 0.48
Rand5% 0.58 0.58 0.58 0.58 0.58
RandAM 0.52 0.53 0.53 0.52 0.53

F1Mimetic Ours 0.28 0.26 0.28 0.42 0.39
Rand5% 0.12 0.12 0.12 0.12 0.12
RandAM 0.18 0.14 0.18 0.11 0.18

2 F1Val 0.57 0.55 0.57 0.55 0.57

F1Cryptic Ours 0.41 0.38 0.35 0.33 0.34
Rand5% 0.56 0.56 0.56 0.56 0.56
RandAM 0.33 0.33 0.33 0.33 0.34

F1Mimetic Ours 0.27 0.25 0.24 0.23 0.20
Rand5% 0.12 0.12 0.12 0.12 0.12
RandAM 0.23 0.16 0.16 0.16 0.16

3 F1Val 0.52 0.51 0.51 0.53 0.51

F1Cryptic Ours 0.35 0.33 0.36 0.30 0.27
Rand5% 0.50 0.50 0.50 0.50 0.50
RandAM 0.27 0.27 0.27 0.27 0.27

F1Mimetic Ours 0.26 0.23 0.38 0.33 0.31
Rand5% 0.12 0.12 0.12 0.12 0.12
RandAM 0.21 0.21 0.21 0.21 0.21

4 F1Val 0.51 0.51 0.51 0.54 0.52

F1Cryptic Ours 0.30 0.38 0.37 0.41 0.34
Rand5% 0.51 0.51 0.51 0.51 0.51
RandAM 0.41 0.41 0.41 0.41 0.41

F1Mimetic Ours 0.30 0.21 0.33 0.33 0.32
Rand5% 0.12 0.12 0.12 0.12 0.12
RandAM 0.27 0.27 0.27 0.27 0.27

(as opposed to AIGs), investigating alternative AI techniques, and
evaluating the effectiveness of fault and side-channel attacks.

ACKNOWLEDGMENTS

The authors would like to thank Charles Kamhoua, Frederica Nelson,
and Gregory Shearer of the Army Research Lab (ARL) for their
encouragement and inspiration for this research. Also, this work has
been supported in part by the US Army Research Office (ARO)
under award # W911NF-19-1-0102 and in part by the Department
of Defense through the Science, Mathematics, and Research for
Transformation (SMART) Scholarship-for-Service Program.

REFERENCES

[1] S. E. Quadir, J. Chen, D. Forte, N. Asadizanjani, S. Shahbazmohamadi,
L. Wang, J. Chandy, and M. Tehranipoor, “A survey on chip to
system reverse engineering,” ACM journal on emerging technologies in
computing systems (JETC), vol. 13, no. 1, pp. 1–34, 2016.

[2] R. Torrance and D. James, “The state-of-the-art in semiconductor reverse
engineering,” in Proceedings of the 48th Design Automation Conference,
2011, pp. 333–338.

[3] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin,
“Ip protection and supply chain security through logic obfuscation:
A systematic overview,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 24, no. 6, pp. 1–36, 2019.

[4] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit
camouflage integration for hardware ip protection,” in Proceedings of
the 51st Annual Design Automation Conference, 2014, pp. 1–5.

[5] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis
of integrated circuit camouflaging,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013, pp.
709–720.

[6] J. Pawlick, E. Colbert, and Q. Zhu, “A game-theoretic taxonomy and
survey of defensive deception for cybersecurity and privacy,” ACM
Computing Surveys (CSUR), vol. 52, no. 4, pp. 1–28, 2019.

[7] B. Shakya, H. Shen, M. Tehranipoor, and D. Forte, “Covert gates:
Protecting integrated circuits with undetectable camouflaging,” IACR
transactions on cryptographic hardware and embedded systems, pp. 86–
118, 2019.

[8] M. G. Rekoff, “On reverse engineering,” IEEE Transactions on systems,
man, and cybernetics, no. 2, pp. 244–252, 1985.

[9] C. Bao, D. Forte, and A. Srivastava, “On reverse engineering-based hard-
ware trojan detection,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 35, no. 1, pp. 49–57, 2015.

[10] S. Rajendran and M. L. Regeena, “A novel algorithm for hardware trojan
detection through reverse engineering,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, no. 4, pp.
1154–1166, 2021.

[11] M. Yasin, J. Rajendran, O. Sinanoglu, M. Yasin, J. Rajendran, and
O. Sinanoglu, “The sat attack,” Trustworthy Hardware Design: Com-
binational Logic Locking Techniques, pp. 47–56, 2020.

[12] M. El Massad, S. Garg, and M. V. Tripunitara, “The sat attack on ic
camouflaging: Impact and potential countermeasures,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 8, pp. 1577–1590, 2019.

[13] J. Wang, H. Yang, S. Deng, and X. Li, “Cimsat: Exploiting sat analysis to
attack compute-in-memory architecture defenses,” in Proceedings of the
2024 on ACM SIGSAC Conference on Computer and Communications
Security, 2024, pp. 3436–3450.

[14] H. Zhou, R. Jiang, and S. Kong, “Cycsat: Sat-based attack on cyclic
logic encryptions,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2017, pp. 49–56.

[15] Y. Shen, Y. Li, S. Kong, A. Rezaei, and H. Zhou, “Sigattack: New high-
level sat-based attack on logic encryptions,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
940–943.

[16] M. T. Rahman, S. Tajik, M. S. Rahman, M. Tehranipoor, and
N. Asadizanjani, “The key is left under the mat: On the inappropriate
security assumption of logic locking schemes,” in 2020 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 2020, pp. 262–272.

[17] S. K. Monfared, K. Mitard, A. Cannon, D. Forte, and S. Tajik,
“Laserescape: Detecting and mitigating optical probing attacks,” arXiv
preprint arXiv:2405.03632, 2024.

[18] B. Erbagci, C. Erbagci, N. E. C. Akkaya, and K. Mai, “A secure
camouflaged threshold voltage defined logic family,” in 2016 IEEE In-
ternational symposium on hardware oriented security and trust (HOST).
IEEE, 2016, pp. 229–235.

[19] S. Malik, G. T. Becker, C. Paar, and W. P. Burleson, “Development of a
layout-level hardware obfuscation tool,” in 2015 IEEE computer society
annual symposium on VLSI. IEEE, 2015, pp. 204–209.

[20] C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incremental
sat-based reverse engineering of camouflaged logic circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 10, pp. 1647–1659, 2017.

[21] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[22] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE signal processing magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[23] D. Bertucci and A. Endert, “Vae explainer: Supplement learning
variational autoencoders with interactive visualization,” arXiv preprint
arXiv:2409.09011, 2024.

[24] P. B. López, M. G. Pérez, and P. Nespoli, “Cyber deception: State of
the art, trends and open challenges,” arXiv preprint arXiv:2409.07194,
2024.

[25] Z. Zhang, L. Njilla, C. A. Kamhoua, and Q. Yu, “Thwarting security
threats from malicious fpga tools with novel fpga-oriented moving target
defense,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 3, pp. 665–678, 2018.

[26] S. K. Monfared, D. Forte, and S. Tajik, “Randohm: Mitigating impedance
side-channel attacks using randomized circuit configurations,” arXiv
preprint arXiv:2401.08925, 2024.

[27] Z. Wang, C. Bai, Z. He, G. Zhang, Q. Xu, T.-Y. Ho, B. Yu, and Y. Huang,
“Functionality matters in netlist representation learning,” in Proceedings
of the 59th ACM/IEEE Design Automation Conference, 2022, pp. 61–66.

[28] Z. He, Z. Wang, C. Bai, H. Yang, and B. Yu, “Graph learning-
based arithmetic block identification,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2021, pp. 1–8.

[29] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[30] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-vae: A
variational autoencoder for directed acyclic graphs,” arXiv preprint
arXiv:1904.11088, 2019.

[31] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014. [Online]. Available: https://arxiv.org/abs/1406.
1078

[32] L. Alrahis, A. Sengupta, J. Knechtel, S. Patnaik, H. Saleh, B. Moham-
mad, M. Al-Qutayri, and O. Sinanoglu, “Gnn-re: Graph neural networks
for reverse engineering of gate-level netlists,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 8, pp. 2435–2448, 2022.

[33] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85
benchmarks: A case study in reverse engineering,” IEEE Design & Test
of Computers, vol. 16, no. 3, pp. 72–80, 1999.

[34] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational
benchmark suite,” in Proceedings of the 24th International Workshop on
Logic & Synthesis (IWLS), 2015.

[35] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou,
C. Ma, L. Yu, Y. Gai et al., “Deep graph library: A graph-centric,
highly-performant package for graph neural networks,” arXiv preprint
arXiv:1909.01315, 2019.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[37] A. Hagberg, P. Swart, and D. Chult, “Exploring network structure,
dynamics, and function using networkx,” in Proceedings of the 7th
Python in Science Conference, 2008, pp. 11–15.

[38] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” arXiv preprint
arXiv:1907.04931, 2020.

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1406.1078

	Introduction
	Attacks and Threat Model
	Reverse Engineering
	SAT-based Attack
	Threat Model in This Work

	Related Works
	IC Camouflaging and Covert Gates
	Variational Autoencoder (VAE)
	Cyber Deception: Cryptic and Mimetic Strategies

	Proposed Methodology: IP Camouflage
	Overview
	Machine Learning Model: AIG-VAE
	Encoder
	Decoder
	Loss Function

	Interpolation between Function and Appearance
	Functional Preserve and Appearance Mimicking
	New Covert Gates
	Functional Preservation and Appearance Mimicking

	Experimental Results
	AIG-VAE Model Training and Evaluation
	Evaluating Resistance to SAT-Guided Reverse Engineering
	GNN-RE Analysis for Post-Camouflage Node Classification

	Conclusion and Future Work
	References

