
Differential Privacy for Regulatory Compliance in Cyberattack Detection on
Critical Infrastructure Systems

Paritosh Ramanan, H. M. Mohaimanul Islam, Abhiram Reddy Alugula
School of Industrial Engineering and Management, Oklahoma State University

Stillwater, Oklahoma, USA
{paritosh.ramanan, h m mohaimanul.islam, aalugul}@okstate.edu

Abstract—Industrial control systems are a fundamental com-
ponent of critical infrastructure networks (CIN) such as gas,
water and power. With the growing risk of cyberattacks,
regulatory compliance requirements are also increasing for
large scale critical infrastructure systems comprising multiple
utility stakeholders. The primary goal of regulators is to
ensure overall system stability with recourse to trustworthy
stakeholder attack detection. However, adhering to compliance
requirements requires stakeholders to also disclose sensor and
control data to regulators raising privacy concerns. In this
paper, we present a cyberattack detection framework that uti-
lizes differentially private (DP) hypothesis tests geared towards
enhancing regulatory confidence while alleviating privacy con-
cerns of CIN stakeholders. The hallmark of our approach
is a two phase privacy scheme that protects the privacy of
covariance, as well as the associated sensor driven test statistics
computed as a means to generate alarms. Theoretically, we
show that our method induces a misclassification error rate
comparable to the non-DP cases while delivering robust privacy
guarantees. With the help of real-world datasets, we show the
reliability of our DP-detection outcomes for a wide variety of
attack scenarios for interdependent stakeholders.

Index Terms—Differential Privacy, Industrial Control Systems,
Data-driven attacks, Regulatory Compliance

1. Introduction
Large-scale Critical Infrastructure Networks (CINs) are

characterized by physically interdependent subsystems of
varying network sizes that are operated by a diverse group
of utility stakeholders governed by a regulatory entity. Data-
driven cyberattacks targeting key operational technology
(OT) components, such as industrial control systems (ICS),
of several utilities, have been shown to cause devastating
cascading failures that threaten overall network stability
[1]. In the United States, there have been several attempts
aimed at establishing information-sharing and analysis cen-
ters (ISACs) as a means for detecting network-wide ICS
attacks through secure aggregation of sensor data as well as
local cyber-incident alarms [2]. However, efforts to establish
regulatory compliance initiatives like ISACs have severely
fallen short of expectations primarily due to the tepid re-
sponse from stakeholders [3]. Privacy concerns of utilities as

well as lack of trust and credibility of reported information
form the core set of obstacles that threaten the feasibility
of ISAC-like compliance frameworks. Therefore, in this
paper, we specifically focus on developing a subsystem-
level ICS attack detection frameworks that relies on privacy-
preserving disclosures of underlying datasets by utilities.
Additionally, our proposed framework can be leveraged by
ISAC-like entities to verify compliance of reported detection
outcomes with respect to the disclosed datasets leading to
increased trust and credibility in regulatory outcomes.

Enhancing the cyber resilience of interdependent CINs
in order to limit disruptions from cascading impacts is
a key research priority, as outlined by the Cybersecurity
and Infrastructure Security Agency (CISA) [4]. In such
cases, regulatory entities like ISACs play a critical role
in stemming the impacts of data-driven ICS attacks by
coordinating cyber-incident response [3] accompanied by
timely dissemination of insights. However, the capabilities
of ISACs are only as good as the quality of the alarms and
the associated datasets reported from the utility stakeholders.
In fact, poor quality data collected by ISACs without lack
of sufficient context impedes situational awareness, hampers
decision-making, and increases false positives occasionally
resulting in unnecessary system upgrades [5]. Therefore,
enabling ISACs to verify that the reported alarms comply
with the underlying datasets of the utilities can help pave the
way for improved situational awareness and reduced false
alarm rates across the entire network.

The ability to verify compliance of alarms on the basis of
underlying datasets is challenging due to privacy concerns of
utility stakeholders. Privacy concerns also impede real-time
information sharing among CIN stakeholders [6]. It has been
demonstrated that operational data from CINs can be used to
identify industrial customer demands [7], reveal operational
costs of strategic CIN [8], and identify systemic vulnera-
bilities [9]. There is also considerable trepidation among
stakeholders regarding the perceived misuse of information
obtained from cyber information-sharing programs [6] by
governmental agencies. In some cases CIN stakeholders are
also concerned about risks to their organizational reputation
[10] in the event of data leaks. As a result, the need of
the hour is a private, trustworthy framework for detecting
data-driven ICS attacks [11] while enabling data-driven
compliance verification of the reported alarms.
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Figure 1: Compliance-driven, private ICS attack detection

Conventionally, ICS frameworks capture IoT and sensor
data from assets [12] across each utility. ICS frameworks
utilize state-space models to characterize the operational
aspect of utilities [13] and detect anomalies and deviations
from steady state conditions. A majority of these anomaly
detection frameworks utilize statistical hypothesis tests on
state space residuals computed using sensor data [14]. As a
result, alarms at the utility level are an outcome of anomaly
detection frameworks that is inherently characterized by lo-
cal sensor data as well as the associated covariance matrices.
Statistical analysis of residuals can also yield significant
insights into the nature of detected anomalies such as attack
diagnosis and distinguishing attacks from routine equipment
failure [14]. As a result, statistical methods are widely used
as a first line of defense in identifying potential attack driven
anomalies in ICS frameworks.

In this paper, we consider the interaction between the
utility stakeholders and their regulatory counterparts such as
ISACs. The goal of the utility is to convince an ISAC regard-
ing alarm validity through privacy-preserving disclosures of
the underlying residuals and the detection algorithm used for
alarms. Our proposed approach therefore uses differential
privacy (DP) driven disclosures of data as a means to drive
the transparent validation of the alarms. A schematic of our
proposed approach is depicted in Figure 1. However, two
major bottlenecks arise with this approach. First, statistical
hypothesis tests, commonly used for data-driven ICS attack
detection, require privacy-preserving disclosures of local
covariance matrices to generate alarms [12]. Second, using
differentially private data disclosures can itself severely
affect the alarm outcomes leading to misclassification with
respect to original alarm statistics [15], [16]. Consequently,
ensuring compliance and transparency through data sharing
introduces a high degree of statistical complexity driven by
privacy constraints.

In this paper, we target both these bottlenecks by adopt-
ing a two phase DP mechanism to introduce transparency
and regulatory compliance for ICS based attack detection.
In the first phase, we focus on DP based disclosures of
covariance matrices in order to characterize the utility-level
detection framework. The second phase involves privacy-
preserving disclosures of temporal state-space residual val-

ues by leveraging Gaussian differential privacy frameworks.
We derive (ϵ, δ) differential privacy guarantees on data-
driven ICS attack detection frameworks. Our contributions
can be summarized as follows:

• We develop an algorithmic framework for privacy-
preserving hypothesis tests that are compatible with DP
disclosures of covariance and state-space residuals.

• We develop two distinct implementation modes that
enable regulatory bodies like ISACs to independently
verify utility detection outcomes using DP disclosures
of high-dimensional ICS data.

• We derive strong privacy guarantees governing resid-
ual and covariance disclosures in order to obtain DP
equivalent levels of significance and test statistic dis-
tributions for the corresponding hypothesis tests.

• We theoretically characterize the impact of DP on
detection quality by analyzing the DP-induced levels
of significance and associated test statistics.

Our proposed framework is evaluated using a generalizable
state-space modeling framework that utilizes a non-linear
Kalman Filter based approach. Our experimental results
are demonstrated using real-world ICS data [17] consist-
ing of diverse attack scenarios on several heterogenous
subsystems. The key takeaway of our research is that DP
based disclosures offer a viable alternative for establishing
regulatory compliance standards, help achieve higher degree
of situational awareness, trust and credibility in CINs while
providing strong privacy guarantees for utility stakeholders.

2. Related Work
Attacks like DoS, DDoS, phishing, which specifically

taget IT systems can often be effectively detected and
isolated by monitoring network traffic [18], [19], [20]. On
the other hand, data-driven attacks form a more significant
threat to ICSs due to their ability to impact information,
communication, and the underlying physical systems [21]
leading to significant damage to critical infrastructure. In
these attacks, sensor data is manipulated in order to effect
damage through malicious control actions and incorrect state
estimations leading to degraded asset performance.

Several model-based detection mechanisms have been
proposed for ICS attacks involving data manipulation [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]. A popular state-space estimation modeling framework
used for ICS attack detection is the Kalman Filter based
technique [13], [12], [35], [36], [14]. The Kalman Filter
based detection algorithms rely on residuals computed on
the basis of the estimated (or predicted) and observed mea-
surements or states followed by a statistical testing proce-
dure [37], [38]. Due to the presence of robust physics-based
models in industrial IoT, the Kalman Filter based methods
form a powerful class of techniques for anomaly detection.
Using a Kalman Filter based state space estimation, one can
conduct attack diagnosis [14], distinguish between routine
faults and attacks using degradation models [35] and use
decentralized methodologies to raise network-wide alarms
[36].



On the other hand, recent works have investigated the
use of DP as a means to circumvent the privacy-related im-
pediments to enable data sharing in CINs [9]. DP is a widely
used method to protect the privacy of data sets intended to
be communicated through public domains [39], [40]. DP-
driven approaches involve injecting a randomized noise in
order to obfuscate the real underlying data record [41], [42].
The injected randomized noise can be designed so as to
facilitate theoretical guarantees bounding the loss of privacy
[39]. DP thereby ensures that the probability of extracting
the real value from a noisy data set by any external entity
remains remarkably low. Most DP approaches applied in
the context of CINs are geared toward the public release
of operational data for benchmarking purposes [43], [44],
[45], [7], [9], [46], [47]. The use of DP for protecting the
input signals in a Kalman Filter based state space modeling
framework has also received considerable attention as well
[48], [49], [50].

Additionally, there have been several approaches that
have focused on differential privacy in the context of statisti-
cal hypothesis tests [15], [51]. Such methods have typically
relied on developing DP versions of popular statistical hy-
pothesis tests such as Wilcoxon-signed test [15], goodness-
of-fit tests[51], [16], [52], F-test for linear regression signif-
icance [53]. However, a majority of them target categorical
datasets [16], [52] or are nonparametric in nature [15].
Therefore, while most of these methods provide strong
methodological foundations, they are not geared towards
temporal datasets that result from state-space modeling ap-
proaches such as Kalman Filter. As a result, there exists a
critical methodological gap for DP based approaches that
can specifically cater to anomaly detection for temporal
state-space models.

3. State Space Modeling for ICS
Operational modeling of utility stakeholder level ICS is

the preliminary step for building a robust detection frame-
work that can be ultimately leveraged for regulatory compli-
ance. In that regard, an exceptional operational model must
possess two critical estimation capabilities. First, operational
models of utility ICS must incorporate transition functions
that can help estimate the future state of the system based
on existing sensor data. Second, such models must also
be capable of yielding stable and accurate estimations of
process and sensor noise distributions which are critical in
helping make future state estimations more robust. The core
idea is that an exceptional operational model can be utilized
to statistically distinguish between normal and anomalous
ICS behavior enabling accurate local attack detection which
will in turn drive regulatory compliance.

3.1. Non-Linear State Space Formulation
For instituting a local ICS attack detection framework,

we begin by discussing a generalizable state-space modeling
framework for characterizing utility level ICS operations
that are non-linear in nature. Our generalizable state-space
model considers a sensor-driven non-linear system at time
t, where xt ∈ Rm represents the latent space embedding,

ut ∈ Rm represents the control action and yt ∈ Rd

represents noisy sensor measurements from asset sensors.

xt+1 = g(xt−1, ut−1) + vt, (1)
yt = h(xt) + wt, (2)

In Equations (1), (2), g,h are the state transition and
observation functions respectively. Collectively, g,h the
represents the relationship between the measurements yt
and the state xt. The process and measurement noises at
time t are denoted by vt ∈ Rm, and wt ∈ Rm respec-
tively. The process and measurement noises follow multi-
variate normal distributions with zero mean implying that
vt ∼ N(0, Qt), wt ∼ N(0, Rt), where Qt, Rt represent the
covariance matrices respectively. Such a type of modeling
framework has also been used extensively in prior art [54],
[28], [24]. A Non Linear Kalman Filter can be used to model
the state space of the stakeholder ICS as represented by
Equations (1) and (2).

3.2. Non-linear Kalman Filter Estimation
In the non-linear model given in Equations (1), (2), an

extended Kalman Filer based model denoted by K can be
formulated using the following equations.

x̂t|t−1 = g(x̂t−1|t−1, ut−1), (3)
rt = yt − h(x̂t|t−1), (4)

Pt|t−1 = GtPt|t−1G
T
t +Qt−1, (5)

St = (HtPt|t−1H
T
t +Rt)

−1, (6)

Kt = Pt|t−1H
T
t St (7)

x̂t|t = x̂t|t−1 +Ktrt (8)
Pt|t = (I −KtHt)Pt|t−1 (9)

In Equations (5),(7), Pt|t−1, Pt|t represents the predicted and
the updated covariance estimates respectively, while St rep-
resents the residual covariance at t. The state transition and
the observation matrices at t given by Ft, Ht respectively
are computed using the Jacobians of g, h as denoted by the
following equations.

Gt =
∂g

∂x

∣∣∣∣
xt−1|t−1,ut

and Ht =
∂h

∂x

∣∣∣∣
xt|t−1

(10)

3.3. Learning the Non Linear Kalman Filter
The stakeholder level ICS system can be modeled as the

Non Linear Kalman Filter (NLKF) described in Section 3.2.
The NLKF model requires a generalizable framework that
is known a priori and can characterize the stakeholder level
ICS system dynamics including the estimation of process
and measurement noise covariance estimation based on cur-
rent and historic sensor measurements and state estimates.

However, constructing a generalizable framework that
efficiently captures ICS system dynamics is challeng-
ing due to the tedious nature of estimating and fitting
parametrized probability distributions to process and mea-
surement noise with covariance Qt, Rt respectively. With-
out accurate knowledge of these covariance matrices, the
Kalman gain cannot be computed precisely resulting in



erroneous posteriori state estimates predictions which can
compromise the detection quality for data driven attacks.

Therefore, we utilize a machine learning framework
comprising of Long and Short Term Memory (LSTM) based
recurrent neural networks complemented by feed-forward
layers that attempt to cast the ICS process towards a Non
Linear Kalman Filter based setting. More precisely, the Non
Linear Kalman Filter based LSTM (NLKF) design involves
the posteriori state estimates of the prior time step x̂t|t in
addition to the observed sensor measurements yt to predict
the process and measurement noise covariance Qt, Rt.

Non Linear Kalman Filter Update

autograd.jacobian(                )
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Figure 2: Framework for learning Non Linear Kalman Filter
Figure 2 depicts the NLKF framework that is used

for learning the state space model. The NLKF framework
consists of three LSTM (LSTMg, LSTMQ and LSTMR)
and one feed-forward Linear layers (Linearh) that are
collectively used to learn the non-linear interdependencies
between the sensor measurements yt, and the priori and pos-
teriori state estimates x̂t|t−1 and x̂t|t. Specifically, LSTMg

learns the relationship between the current state estimate x̂t|t
and the a priori state estimate x̂t|t+1. LSTMQ and LSTMR

predict the state and measurement covariance matrices based
on x̂t|t and yt respectively. We use Linearh to map the
lower dimensional a priori state estimates to the high dimen-
sional sensor data space in order to predict ypredt such that
residual rt = yt − ypredt can be computed. Using the auto-
grad functionality in machine learning frameworks like Py-
Torch, we compute the Jacobians Ht and Gt for the LSTMg

and Linearh respectively. Finally, the estimated Jacobians,
sensor noise, state noise and state covariance matrices enable
us to calculate the extended Kalman gain matrix Kt and the
posterior state covariance Pt+1|t+1 according to Equations
(5)-(7). Therefore, the NLKF framework provides us with

the fundamental ability to generate residual rt estimates
along with temporally sound predictions of the covariance
matrices Qt, Rt, St as well.

3.4. Hypothesis Tests for Anomaly Detection
Estimation of covariance matrices enables us to imple-

ment statistical hypothesis tests on the corresponding co-
variates themselves. As a result, we can leverage the NLKF
framework, for orchestrating the χ2 hypothesis tests, that
can detect covert attacks [12] using St and rt. Additionally,
the same methodology can also be used for detecting false
data injection attacks using sensor data measurements yt and
covariance Rt[13].

To establish the theoretical underpinnings of the χ2

hypothesis test, we consider without any loss of general-
ity, the predicted residual covariance matrix St and the
residual rt at time t. St is symmetric, which means that
St = VtΛtV

T
t , where Vt is describes the set of orthonor-

mal eigenvectors and Λt is a diagonal matrix represent-
ing a set of eigenvalues. As a result, we can obtain the
principal component decomposition of St. We know that
(St)

−1/2 = (V Λ−1
t V T

t )1/2 = VtΛ
−1/2
t . Given a residual

vector rt ∼ N(0, St), we can realize τt = (St)
−1/2(rt) =

StΛ
−1/2
t (rt) such that τt ∼ N(0, I) [12], [55]. Therefore,

to detect attacks, the utility stakeholder level χ2-hypothesis
test can be formulated as follows:

H0 : Sr
t = St (11)

HA : Sr
t ̸= Strue

t (12)

The null hypothesis H0 represents the condition that the
covariance of the reported residual vector rt denoted by
Sr
t is equal to the expected covariance St predicted by

the NLKF framework. In other words, the null hypothesis
tests whether the residual vector rt indeed follows the
parametrized distribution N(0, St). The underlying insight
behind H0 is that perturbations due to abnormal sensor
readings or faulty computation of state estimates, will result
in residual vectors that adhere to a covariance matrix that is
statistically different from the one predicted by the NLKF
framework. Further, we can also state that if H0 holds, then
the standardized vector of principal component (PC) scores
is given by τt implies that ||τt||22∼ χ2

p, where p < d is the
degrees of freedom corresponding to the number of principal
components used [55].

ρ =

{
1, if Tχ2,t = ∥τt∥22> χ2

m,α,

0, otherwise.
(13)

Based on Equation (13), an alarm ρ = 1 is triggered when
the test statistic Tχ2,t = ||τt||22> χ2

m,α, where α is the level
of significance, while ρ = 0 otherwise [13].

4. Privacy Preserving Detection Scheme
Detecting attacks requires continuous monitoring of the

residual vector. However, the alarms might need to be pub-
licly validated by a third party (such as a nodal authority or
overseer agency) due to regulatory and compliance reasons.
As a result, residual vectors and the covariance matrices



need to be disclosed to facilitate public validation of alarm
values so as to meet regulatory compliance. However, a
critical challenge arises in the inability to provide strong
guarantees regarding the privacy loss stemming from the
public disclosure of these data.

4.1. Privacy Scope and Objectives
We focus on a utility based subsystems and its associated

state-space model as detailed in Section 3. Our privacy
scope particularly focuses on the disclosure of the St and rt
resulting from NLKF framework as a means to validate the
alarm value ρt. Our objective is to bound the privacy loss
that results from the public disclosure of St and rt while
simultaneously bounding the miss-classification probability
of alarms as a direct consequence of ensuring privacy.

4.2. Differential Privacy Primer
We provide a brief summary of the following useful

concepts pertaining to differential privacy.

Definition 1. [39] : A randomized mechanism M : Rn →
Rk is said to preserve (ϵ, δ)- differential privacy with respect
for all points x1, x2 ∈ Rn, the following holds

P(M(x1) ∈ O) ≤ eϵP(M(x2) ∈ O) + δ

In other words, Definition 1 ensures that for any two points
x1, x2 in domain Rn, the probability that mechanism M(x1)
leads to an output in the set O ⊆ Rk is upper bounded by
the probability that mechanism M(x2) leads to an output
in the set O ⊆ Rk scaled by exponentiation of the privacy
loss ϵ > 0 with an addition of δ > 0.

For DP mechanisms, we characterize the concept of
adjacency with respect to a multi-variate function f : Rd →
Rd. Any two elements x1, x2 ∈ Rd are deemed to be adja-
cent, if they differ in at most 1 element. Consequently, the
sensitivity of a function depends on the maximum difference
in function values caused by adjacent elements. Definition
2 formalizes the concept of sensitivity.

Definition 2. : The lk-sensitivity of a d dimensional function
f : Rd → Rd is defined as ∆kf = max

x,y
||f(x) − f(y)||k,

where x and y are adjacent elements.

Most common DP formulations utilize k = {1, 2} de-
noting l1 or l2 sensitivity assumptions respectively. In this
paper, we adopt a two phase approach towards differential
privacy wherein each phase is applied sequentially and per-
tains to protecting the privacy of the covariance matrix and
residual vectors respectively. More specifically, we leverage
a DP-based method [56] for privacy preserving covariance
matrix factorization while employing a Gaussian Differential
Privacy (GDP) approach for residual vectors.

Definition 3. [39] A mechanism is deemed to follow Gaus-
sian Differential Privacy (GDP) if it injects independent
noise ei ∼ N (0, σ2), where σ > 0 is the noise scale, to
each component of p dimensional function f : Rp → Rp.

The GDP mechanism provides (ϵ, γr)-DP when ϵ ∈
(0, 1), c2 > 2ln(1.25/γr) and σ ≥ c∆2/ϵ. As a result, we
have Equations (14) and (15). Since the l2 sensitivity ∆2 is

used in the context of GDP of residuals, we use ∆2 = ∆r

for notational clarity.

σ >
∆r

ϵ

√
2ln(

1.25

γr
) (14)

P
(∣∣∣ p∑

i=1

ei,t

∣∣∣ ≥ θr

)
≤ γr , θr =

σ2ϵ

∆r
− p∆r

2
(15)

4.3. Privacy Preserving Covariance Disclosures
We utilize the Laplacian noise based DP method [56]

that factorizes St to yield a DP driven perturbed matrix
Ŝt as given in Equation (16). However, instead of directly
perturbing St, we compute its square root factorization
S̃t = VtΛ

−1
2

t V T
t . Next we perturb eigenvalues of S̃t as

specified in [56] so as to compute Ŝt = V̂tΛ̂
−1
2

t V̂t
T

. Con-
sequently, we obtain Ŝ

−1
2

t = V̂tΛ̂
−1
2 . Using Ŝ

−1
2

t , we can
also obtain a perturbed lower dimensional residual τ̂ covt and
its corresponding test statistic T̂ cov

χ2,t denoted by Equations
(17) and (18) respectively. Using Laplacian noise to perturb
eigenvalues as described in [56] ensures (ϵcov, γcov)-DP for
all λi, i ∈ {1, d} such that λ̂i = λi + Lap(∆l/ϵcov).

Ŝt = V̂tΛ̂tV̂t
T

(16)

τ̂ covt = (Ŝt)
−1/2rt (17)

T̂ cov
χ2,t = (τ̂ cov)Tt τ̂

cov
t = ||τ̂ covt ||22 (18)

Further, we note that the perturbed test statistic T̂ cov
χ2,t is

computed using a DP-induced covariance matrix Ŝt and an
unperturbed residual vector rt. Consequently, we can state
the relations defined by Equations (19) and (20) as stated in
[56].

El = ||Λ− Λ̂||1= max
i

|λ̂i − λi| (19)

P
(
El ≤

∆l

ϵcov
log

( d

γcov

))
≥ 1− γcov (20)

Equation (20) ensures that the maximum absolute Laplacian
noise value given by El as defined in Equation (19) is
less than ∆l

ϵcov
log

(
d

γcov

)
with probability at least 1 − γcov.

Analyzing the effect of DP-induced covariance matrices
helps us establish Lemma 4.1.

Lemma 4.1. The original and the perturbed test statistics
T̂ cov
χ2,t, Tχ2,t satisfy the following relation for p ≤ d:

P
[
|T̂ cov

χ2,t − Tχ2,t|≤ Rtθl

]
≥ 1− γcov

where Rt =
p∑

i=1

(rit)
2 and θl =

(
∆l

ϵcov
log

(
d

γcov

))
Proof of Lemma 4.1 has been presented in Appendix A.
Lemma 4.1 enables us to probabilistically bound the ob-
served difference in test statistic value, only when DP is
applied on the covariance matrix. However, in the interest
of full compliance, it is also important to reveal the reduced
residual values, such that the regulator can carry out the



entire hypothesis test workflow represented in Equations
(11) - (13). Doing so, would require privacy protections on
residuals as well, which we explore in the following section.

4.4. Privacy Preserving Residual Disclosure
We consider the unperturbed low dimensional residual

representation τt = (St)
−1/2(rt) where τt ∈ Rp as defined

in Section 3.4. We use the GDP mechanism presented in
Definition 3 to perturb τt according to Equation (21).

τ̂ rest = τt + et, et ∼ N(0, σ2I) (21)

T̂ res
χ2,t = (τ̂ rest )T τ̂ rest = ||τ̂ rest ||22 (22)

T̂ res
χ2,t in Equation (22) represents the test statistic obtained

purely through the GDP perturbation of τt. Generating T̂ res
χ2,t

is especially useful in enabling implementation flexibilities
for compliance verification methods as discussed in Section
5. The GDP perturbation leads us to Lemma 4.2 which
provides probabilistic bounds on the GDP noise vector et.

Lemma 4.2. Under conditions of GDP, for a given value
of γr, ϵ, the following condition must hold

P
[
||et||22≤

θ2r
p

]
≥ (1− γr)

p

Proof of Lemma 4.2 has been presented in Appendix A.
Lemma 4.2 is vital towards deriving the overall privacy
implications when the covariance as well as residual per-
turbations are integrated and presented to the regulator for
compliance verification.

We now turn our attention towards characterizing the
probability distribution of the GDP induced test statistic
T̂ res
χ2,t. As a result, we consider the non-central χ2 distribu-

tion with non-centrality parameter µ and k degrees of free-
dom denoted by χ2(k, µ). Further, we denote F τt

χ2,p(x) as
the CDF of χ2(p, ||τt||22). Consequently, we derive Lemma
4.3 which establishes the probability distribution of the vari-
ance scaled test statistic (T̂ res

χ2,t/σ
2) under GDP provisions.

Lemma 4.3. Under GDP, (
T̂ res
χ2,t

σ2 ) ∼ χ2(p,
||τt||22
σ2 )

Proof of Lemma 4.3 has been presented in Appendix A.
Lemma 4.3 provides a distributional characterization of
the perturbed residual test statistic under GDP conditions.
Therefore, it serves as a precursor to Theorems 4.1 help-
ing establish probabilistic bounds between perturbed and
original low dimensional residual representations. Lemma
4.3 also proves to be an important enabler for computing
DP-informed level of significance for carrying out the χ2

hypothesis test at the regulator as represented in Theorem
4.2.

Theorem 4.1. For an (ϵ, δ)-DP Gaussian mechanism on a
given τt, the following result holds

P
[
L ≤ (T̂ res

χ2,t − Tχ2,t) ≤ U
∣∣∣||et||22≤ θ2r

p

]
≥ (F τt

χ2,p(U)− F τt
χ2,p(L))(1− γr)

p

with L = θr
σ2p

(
θr−2

p∑
i=1

τi,t

)
and U = θr

σ2p

(
θr+2

p∑
i=1

τi,t

)
Proof of Theorem 4.1 has been presented in Appendix A.
The main contribution of Theorem 4.1 lies in its ability to
link the perturbed test statistic T̂ res

χ2,t as a function of the
non-central χ2 CDF with p degrees of freedom centered
on the original test statistic Tχ2,t. As a consequence of
Theorem 4.1, we can derive lower and upper bounds on
the difference between original and perturbed tests statistics
purely as a function of GDP parameters and the unperturbed
low dimensional residual representation τt.

4.5. Integrating Covariance and Residual Privacy
Lemma 4.1 deals with aspects of privacy when only

the covariance undergoes DP, Theorem 4.1 applies to a
scenario wherein GDP is applied only to lower dimen-
sional residual representations. However, integrating both
of these individual DP steps is important so as to enable
the disclosures of both covariance and residuals separately
by the utility. Separate disclosures are vital to recreate
the hypothesis test workflow at the regulator level to help
satisfy compliance while preserving privacy of utility level
operations. In this section, we address two issues which arise
as a consequence of separate disclosures. First, introduction
of DP noise across the covariance and residual steps might
provide different test results at the regulator compared those
of the original test at the utility level. Second, minimizing
these miss-classifications at the regulator level requires an
alternate version of the test characterized by a level of sig-
nificance customized for DP noise injected at the covariance
and residual levels. Lastly, regulator level tests that consider
separate disclosures covariance and residuals require strong
privacy bounds that can help inform the implementation
modalities.

We consider Tχ2,t, T̂ cov
χ2,t and T̂ res

χ2,t corresponding to τt,
τ̂ covt and τ̂ rest = τ̂ covt +et respectively. Further, we consider

Πt = {rt, γcov, γres, ϵcov, ϵl, ϵr,∆l,∆r} (23)

In Equation (23), Πt denotes the set of observed residuals
and DP parameters at time t. We let ρ̂t, ρt denote the alarms
raised with and without differential privacy respectively. We
first establish Lemma 3 as a means to determine the upper
bound the reduced dimensional DP residual τ given the
distributional knowledge of the perturbed test statistic.

Lemma 4.4. Given T̂ res
χ2,t(τ) = ||τ + e||22, e ∼ N(0, σ2I),

argmax
τ

P
[
T̂ res
χ2,t > σ2ϕ

]
= argmax

τ
(||τ ||2)

where ϕ belongs to the support of distribution χ2(p,
||τ ||22
σ2 )

Proof of Lemma 4.4 has been presented in Appendix A.
We now consider the integration of DP driven covariance

matrix structure defined in Section 4.3 and the GDP induced
residuals discussed in Section 4.4. In order to do so, we
consider the sequential application of DP on the covariance
matrix followed by the GDP phase on the residual. Adopting
a sequential approach enables a seamless framework of the-



oretical analysis that can be used to derive privacy oriented
miss-classification rates, alternate levels of significance as
well as efficient and customizable implementation strategies.
As a result, we have Equations (24)-(25) that represent the
sequential privacy scheme.

τ̂ covt = (Ŝt)
−1/2rt (24)

τ̂ rest = τ̂ covt + et, et ∼ N(0, σ2I) (25)

Next we consider χ2,NC
α̂ which denotes the α̂ level up-

per quantile of the non-central χ2 distribution given by
χ2(p, T̂ cov

χ2,t), where T̂ cov
χ2,t = ||τ̂ covt ||22 forms the covariance

privacy induced test statistic defined in Equation (18). We
also note that χ2,NC

α̂ denotes the α̂ level upper quantile
representing the level of significance for the hypothesis test
carried out with DP measures. Similarly, χ2

α represents the
α level of significance for the non-DP hypothesis test. We
obtain Theorem 4.2 which considers a scenario wherein a
regulator tries to recreate the hypothesis test on the basis
of utility stakeholder disclosures that follow the sequential
privacy scheme.

Theorem 4.2. Under the sequential privacy scheme, the
Type-I error rate of the DP hypothesis test with α̂ level
of significance is upper bounded by Emax

I (α̂), where

Emax
I (α̂) ≤

[
1− F gamma

rmax
(Rtθl)

][
1− F

τ̂cov
t

χ2,p

(
σ2χ2,NC

α̂

)]
+
[
F ex(θl)

]p[
1− F

τ̂cov
max,t

χ2,p

(
σ2χ2,NC

α̂

)]
where F ex(.), F gamma

rmax
(.) are the CDFs of Exp( ϵcov∆l

) and
Gamma(p, ϵcov

∆lr2max
) respectively.

Proof of Theorem 4.2 has been presented in Appendix A.
Theorem 4.2 helps characterize the Type-I error rate EI(α̂)
of the hypothesis test with α̂ level of significance carried
out at the regulator. We can see that EI(α̂) is dependent on
θl which consists of the covariance DP parameter γcov, co-
variance DP induced low dimensional residual τ̂ covt , its cor-
responding maxima τ̂ covmax,t computed according to Lemma
4.4 as well as their CDFs F τ̂cov

t , F τ̂cov
max,t respectively. Ad-

ditionally, we note that Emax
I (α̂) also incorporates the GDP

variance parameter σ as well. Therefore, Theorem 4.2 lays
the foundation for computing the Type 1-error rate of the
sequential privacy scheme that is collectively influenced by
the privacy measures at the covariance and residual steps.
We specifically derive a Gamma function dependent upper
bound in Theorem 4.2 since it is known to provide tighter
bounds when attempting to characterize tail-probabilities
[57], [58].

A fundamental implication of Theorem 4.2 is that it
helps guide the choice for α̂ depending on the privacy
parameters chosen by the stakeholders which also influence
their privacy loss. Usually, stakeholders have an established
level of significance α depending on local detection bench-
marks and domain expertise. Therefore, estimating the func-
tion (Emax

I )−1(α) = α̂ provides an equivalent DP level of
significance as a function of a pre-existing α. The inverse
function estimation ensures that the Type-I error of the DP

hypothesis test is upper bounded by the non-DP test.
As a consequence, stakeholders can choose a perturbed

level of significance α̂ such that α = Emax
I (α̂) which can

be shared with the regulator. This choice of α̂ ensures
that the regulator can reconstruct the hypothesis testing
workflow using privacy-preserving disclosures of covariance
and residuals, while still maintaining a worst-case Type I
error rate that does not exceed that of the unperturbed χ2

test at the stakeholder level. In our framework, given a fixed
stakeholder level α, we use the Monte-Carlo simulation
method to estimate α̂.

We extend Theorem 4.2 to determine bounds on miss-
classification rates of the hypothesis tests conducted with
and without DP which is presented in Theorem 4.3.

Theorem 4.3. Given τ̂ covt , τ̂ rest , α̂, the miss-classification
rates can be given as

P[ρ̂t = 0|ρt = 1] ≤ ω1

[
1−F

τ̂cov
t

χ2,p

(
T̂t

)]
+ω2

[
1−F

τ̂cov
max,t

χ2,p

(
T̂t

)]
P[ρ̂t = 1|ρt = 0] ≤ F

τ̂cov
t

χ2,p

(
T̂t

)[
ω1 + ω2

]
where,
ω1 =

[
1− F gamma

rmax,ϵcov,∆l
(Rtθl)

]
, ω2 =

[
F ex
∆l,ϵcov

(θl)
]p

and

T̂t = Tχ2,t + σ2χ2,NC
α̂ − χ2

α

Proof of Theorem 4.2 has been presented in Appendix A.
Theorem 4.3 formally states the miss-classification rates
that can occur with respect to the stakeholder and regu-
lator purely on account of privacy preserving disclosures
of covariance and residuals as part of the sequential pri-
vacy scheme. Using Theorem 4.3, we can see that when
Gamma CDF values decrease and are more sensitive when
Rt is small, resulting in tighter bounds on miss-classification
rates. On the other hand, with larger Rt values, Gamma CDF
increases culminating in lower miss-classification rates.

In addition to Theorem 4.3, we introduce a GDP noise
calibration factor µt = ||τ̂ covmax,t||22/χ

2,NC
α̂ to adjust the GDP

noise variance σ2
t = µt.σ

min. The calibration factor is de-
signed to incentivize more targeted application of noise for
computing residual disclosures. This is particularly useful
in high residual cases (such as during an attack window)
where the DP threshold χ2,NC

α̂ might fail to deliver a good
detection rate. As a result, we leverage µt to improve the
power of the test in a dynamic, DP friendly fashion.

5. Privacy Preserving Algorithmic Framework
We delineate our proposed algorithmic framework into

two distinct components pertaining to the regulatory bodies
and the utility stakeholders. For the utility level component,
we focus on the development of a detection framework as
well as relevant data disclosures based on residuals observed
from the non-linear Kalman Filter model. On the other hand,
the regulatory component purely focuses on the verification
aspects based on disclosed data. Specifically, we consider a
set of j ∈ J utilities, where |J |= J . We divide the time
horizon into discrete time steps denoted by t that yield a
distinct observation of sensor measurements as well as its



associated residual at each utility. Further, we group these
time steps into sets of evaluation epochs w, with each epoch
consisting of W consecutive, discrete time steps.

As a consequence of the guarantees derived in Section
3, we can derive two distinct implementation modes of our
algorithmic framework pertaining to critical region based
compliance and p-value driven verification. It is important
to note that both these implementation modalities are mu-
tually exclusive and must be pre-determined with consensus
among utilities and regulators. We present the algorithmic
framework for each implementation mode.

5.1. Critical Region Based Verification
For the critical region (CR) compliance verification, we

assume that the sole regulatory objective is to verify alarms
with respect to differentially private disclosures of residuals
and covariance from utilities. Alarm verification can be done
by the disclosure of the test statistic by the utility followed
by the critical region threshold.
5.1.1. CR based Utility Level Detection

The CR based utility level detection framework can be
described on the basis of Algorithm 1. In Algorithm 1, at
each time step the utility observes residual values rt and
Ct. This is followed by the computation of the aggregated
residual rw and covariance matrix Sw and the epoch alarm
ρw for the evaluation epoch w. Based on these quantities,
the utility can compute DP driven disclosures of τ̂ resw and
(Ŝw)

−1/2. Finally, the utility transmits an information tuple
Πw consisting of the perturbed covariance matrix (Ŝw) as
well as the transformed DP perturbed residual τ̂ rgw , the
critical region threshold χ2,NC

α̂ and the detected alarm ρw
with the regulator. In addition, using the concept of post-
processing immunity and composition [39], we can state that
the disclosure of τ̂ rgw preserves (ϵ, δ) privacy as well.

Algorithm 1 Utility Level CR Verification Algorithm

for w=0,1,2,. . . do
for t=0,1,2,. . . W do

observe rt and Ct using NLKF model K
end for
compute rw =

W∑
t=0

rt and Sw =
W∑
t=0

St

compute ρw based on Equations (13)
compute (Ŝw)

−1/2 using Equation (16)
compute τ̂ cov using Equation (17)
compute τ̂ resw = τ̂ covw + ew using Equation (21)
compute τ̂ rgw = rw + (Ŝw)

1/2ew using τ̂ resw

compute α̂, χ2,NC
α̂ using Theorem 4.2.

transmit Πw =
[
Ŝw, τ̂

rg
w , χ2,NC

α̂ , ρw

]
with regulator.

end for

5.1.2. CR based Regulatory Level Verification
Algorithm 2 captures the sequence of steps taken by

a regulator for critical region based verification. At the
regulatory level, we consider the set of utilities given by
J . The regulator receives DP-based information tuple Πj

w

for each utility j ∈ J at each evaluation epoch. Using

information contained in Πj
w, the regulator can compute the

factorization of the DP based covariance matrix Ĉ−1/2 as
well as obtain an estimate of the DP-driven test statistic
T̂ j,res
w . The regulator can compute an alarm depending on

the value of the test statistic T̂ j,res
w and the value of the CR

threshold χj,2,NC
α̂ based on the conditions given by (26).

ρ̂jw =

{
1, if T̂ j,res

w > χj,2,NC
α̂ ,

0, otherwise.
(26)

As a consequence of Algorithm 2, the regulator indepen-

Algorithm 2 Regulator Level CR Verification Algorithm

for w=0,1,2,. . . do
for j=0,1,2 . . . J do

receive Πj
w from utility stakeholder j

factorize Ŝj
w = V̂ j

wλ̂
j
w(V̂

j
w)

T compute (Ŝj
w)

−1/2

compute τ̂ j,resw = (Ŝj
w)

−1/2τ̂ j,rgw

compute T̂ j,res
w = ||τ̂ j,resw ||22

compute ρ̂jw based on Equation (26)
verify if ρ̂jw = ρjw

end for
end for

dently obtains an estimate of ρ̂jw which can be compared
with the reported alarm ρjw. The miss-classification rates
pertaining to ρ̂jw and ρjw is provided using Theorem 4.3.
Additionally, we provide a probabilistic bound on the worst
case privacy loss incurred as a consequence of the CR
based verification mode captured in Algorithms 2 and 1 in
Theorem 5.1.

Theorem 5.1. The disclosure of τ̂ rgw incurs a worst case
privacy loss ϵ′ with the following probabilistic bounds

P
[
ϵ′ ≥ L(∆r, σ

2, Ŝw)
]
≤ 1− (1− γr)

p

where L(∆r, σ
2, Ŝw) =

∆r

σ2 (1
T Ŝ−1

w 1)2
(

θ2
r

p + 1
2.1T Ŝ−1

w 1

)
Theorem 5.1 tells us that if GDP failure risk is low, as

indicated by γr → 0, the likelihood of the overall privacy
loss exceeding L(∆r, σ

2, Ŝw) will be negligible. Addition-
ally, lower values of l2 sensitivity of residuals (denoted by
∆r) and high GDP noise (denoted by variance σ2) minimize
the lower bound on the worst case privacy loss. Lastly,
1T Ŝ−1

w 1 can be viewed as a scaled Rayleigh quotient for
Ŝ−1
w computed using the vector 1. We can observe generally

that increasing covariance privacy noise, characterized by
increasing ∆l/ϵcov, leads to a diminished value of the scaled
Rayleigh quotient implying a lower worst case privacy loss.

5.2. P-value Based Compliance
For the P-value (PV) compliance verification, the regu-

latory objective is to ensure that alarms have been computed
with the correct p-value at the utility level. In this case, the
utility discloses the test statistic distribution parameters as
well as the DP-equivalent level of significance for verifica-
tion of alarms at the regulator level.



5.2.1. PV based Utility Level Detection
To facilitate PV compliance, the utility level detec-

tion algorithm is represented by Algorithm 3. Similar
to a CR driven setting, the utility computes the val-
ues of τ̂ covw , τ̂ resw , α̂ and generates an alarm ρw. It dis-
closes the information tuple Πw consisting of the values
T̂ res
w , T̂ cov

w , α̂w, ρw to the regulator.

Algorithm 3 Utility Level PV Verification Algorithm

for w=0,1,2,. . . do
for t=0,1,2,. . . W do

observe rt and Ct using NLKF model K
end for
compute rw =

W∑
t=0

rt and Sw =
W∑
t=0

Ct

compute ρw based on Equations (13)
compute (Ŝw)

−1/2 using Equation (16)
compute τ̂ covw using Equation (17)
compute τ̂ resw = τ̂ covw + ew using Equation (21)
compute T̂ res

w = ||τ̂ resw /σ||22 and T̂ cov
w = ||τ̂ covw /σ||22

transmit Πw =
[
T̂ res
w , T̂ cov

w , α̂w, ρw

]
to regulator.

end for

5.2.2. PV based Regulator Level Detection
The regulator level algorithm for PV compliance ver-

ification is given in Algorithm 4. The objective of the
regulator in this case is to estimate the non-central chi-
square distribution using T̂ j,cov

w as the centrality parameter
according to 4.3 which can be used to estimate χj,2,NC

α̂w
. On

the basis of the alarm condition represented by Equation
(26), the regulator can independently obtain and validate
the alarm ρ̂jw with respect to ρjw for each utility. In the

Algorithm 4 Regulator Level PV Verification Algorithm

for w=0,1,2,. . . do
for j=0,1,2 . . . J do

receive Πj
w from utility stakeholder j

obtain α̂w, T̂ j,res
w and T̂ j,cov

w from Πj
w

use T̂ j,cov
w to compute χj,2,NC

α̂w
using Theorem 4.2.

compute ρ̂jw based on Equation (26)
verify if ρ̂jw = ρjw

end for
end for

PV implementation mode the regulator has access to the
parametrized probability distribution of the DP test statistic
T̂ j,res
w denoted by the non-central chi-squared distribution

with centrality parameter T̂ j,cov
w . This enables the regulator

to obtain p-value of the DP test statistic based on the
perturbed level of significance α̂ divulged by the utility.
Additionally, we can derive bounds on the privacy loss
incurred through the disclosure of T̂ j,cov

w in Theorem 5.2.

Theorem 5.2. The disclosure of T̂ cov
w results in an (ϵ′, δ′)

DP mechanism where

ϵ′ ≥ϵcov +
∆T

r C
−1∆r

2σ2

δ′ ≤Φ
(σ2(ϵ′ − ϵcov)

||∆T
r C

−1||
− ∆T

r C
−1∆r

2||∆T
r C

−1||

)
−Φ

(
− σ2(ϵ′ − ϵcov)

||∆T
r C

−1||
+

∆T
r C

−1∆r

2||∆T
r C

−1||

) (27)

where Φ denotes the CDF of N(0,∆T
r C

−1∆r)

Theorem 5.2 provides several insights into the privacy
implications regarding the disclosure of T̂ cov

w . First, we
observe that with higher GDP covariance (σ2) and lower
sensitivity (∆r) individually contribute to ϵ′ making it closer
to ϵcov. Additionally, as lower bound on ϵ′ approaches ϵcov,
we can also observe that the privacy failure probability
δ′ also tends towards 0. These observations imply that a
higher GDP noise covariance and lower sensitivities while
disclosing T̂ cov

w increasingly tends towards an (ϵcov, γcov)-
DP paradigm.

6. Experimental Results
Dataset and Detection Models: For our experiments, we
primarily leverage the HAI Security dataset [17], as well as
the ORNL power system (ORNL-PS) attack dataset [33],
[59]. For both datasets, we trained an NLKF model as
described in Section 3.2 using the corresponding state and
sensor variables pertaining to each dataset. In order to yield
a well-formed non-linear, extended Kalman Filter model
for the HAI dataset, we utilized the multi-level LSTM
framework provided in [60]. Our experimental strategy re-
volves around evaluating the variations pertaining to DP
failure probabilities γcov, γr, the privacy budgets ϵcov, ϵr
respectively.
System Implementation Details: All experiments were
carried out on a virtual machine (VM) running Ubuntu
24.04 with 100GB of RAM and 16 vCPUs using Python
3.11 with the detection model inference using PyTorch
2.7.1. For evaluating diverse aspects of our proposed
framework, we utilized a native as well as a container based
execution environment. The native setup was primarily used
for evaluating the performance of our framework under
various scenarios of differential privacy. The container based
execution environment was used to evaluate the distinct
implementation modes pertaining to Critical Region Veri-
fication (CRV) and the P-Value Compliance (PVC). Specif-
ically, we generated container images representative of the
regulator and the utility that replays snippets of the HAI
and ORNL-PS datasets under scenarios of attack. In order
to evaluate system performance of CRV and PVC mode, we
created container images representative of the regulator and
the utility that replays attack scenarios of HAI and ORNL-
PS datasets. The regulator container service hosts a REST
API developed using Flask that receives DP-driven dis-
closures from the corresponding utility container service for
each implementation mode and executes the corresponding
compliance steps as provided in Algorithms 2 and 4. Con-



(a) ϵcov (b) ϵr (c) γcov (d) γr

Figure 3: HAI Dataset: P-Value trends for varying DP parameter values

(a) ϵcov (b) ϵr (c) γcov (d) γr

Figure 4: ORNL-PS Dataset: P-Value trends for varying DP parameter values

sequently, we measure the system performance in terms of
the CPU utilization and memory consumption of both utility
and regulator services under both implementation modes.
Docker based quick start scripts and the associated code
have been provided as part of the accompanying artifacts to
our paper.

DP parameter choice: In our experiments ∆l

ϵcov
denotes

the scale value for the Laplacian distribution used for co-
variance disclosures. For all our experiments we utilize

σ = ∆r

ϵr

√
2.ln

(
1.25
γr

)
. For the HAI and the ORNL-PS

datasets, we used ∆r = 50, and ∆l = 0.1. These values
were chosen based on rigorous empirical analysis of the
maximum 2-norm residual values observed as well as the



(a) ϵcov (b) ϵr (c) γcov (d) γr

Figure 5: HAI Dataset: Test statistic trends for varying DP parameter values

(a) ϵcov (b) ϵr (c) γcov (d) γr

Figure 6: ORNL-PS Dataset: Test statistic trends for varying DP parameter values

maximum eigenvalue square roots observed in the covari-
ance matrices.
Visualization strategy: We present graphs depicting trends
that include a min-max band comprising the minimum and
maximum values of the desired quantity observed over
five consecutive runs. The min-max encapsulate the median
values observed across five independent runs for each exper-

iment. To accommodate the non-linear nature of the model
and complexities in the HAI data, we consider a 40 minute
window pertaining to the ap_05 attack scenario. In order
to account for the nonlinear nature of the detection model,
we designate the first 800 secs from the start ap_05 as
the attack window for the HAI dataset. Since the attack
duration in the ORNL-PS datasets exceeds 800 seconds,



TABLE 1: HAI Dataset: Alignment of DP and Non-DP Detection Within Attack Window.

DP Params
DP & Non-DP

Detection
Only Non-DP

Detection
DP Alignment

Rate
Mean α̂ (Variance)
in 1e− 4 (1e− 10)

200s 400s 600s 200s 400s 600s 200s 400s 600s 200s 400s 600s
ϵcov = 100 11 26 44 39 24 6 0.22 0.52 0.88 2.56 (4.55) 2.56 (4.55) 2.56 (4.55)
ϵr = 1e− 3 13 29 46 37 21 4 0.26 0.58 0.92 2.56 (4.5) 2.56 (4.5) 2.56 (4.5)
γcov = 1e− 2 8 25 44 42 25 6 0.16 0.5 0.88 2.57 (4.6) 2.57 (4.6) 2.57 (4.6)
γr = 1e− 2 11 27 45 39 23 5 0.22 0.54 0.9 2.56 (4.39) 2.56 (4.39) 2.56 (4.39)

TABLE 2: ORNL-PS Dataset: Alignment of DP and Non-DP Detection Within Attack Window

DP Params
DP & Non-DP

Detection
Only Non-DP

Detection
DP Alignment

Rate
Mean α̂ (Variance)
in 1e− 4 (1e− 6)

200s 400s 600s 200s 400s 600s 200s 400s 600s 200s 400s 600s
ϵcov = 100 28 45 48 22 5 2 0.56 0.90 0.96 1.014 (1.0) 1.014 (1.0) 1.014 (1.0)
ϵr = 1e− 3 28 45 47 22 5 3 0.56 0.90 0.94 0.976 (5.8) 0.976 (5.8) 0.976 (5.8)
γcov = 1e− 2 25 42 46 25 8 4 0.5 0.84 0.92 1.014 (1.0) 1.014 (1.0) 1.014 (1.0)
γr = 1e− 2 27 44 47 23 6 3 0.54 0.88 0.94 1.014 (1.0) 1.014 (1.0) 1.014 (1.0)

TABLE 3: DP False Alarm Rates Outside Attack Window

Dataset ϵcov=100 ϵr=1e-3 γcov=1e-2 γr=1e-2
HAI 0.0767 0.0833 0.0783 0.08

ORNL-PS 0.04 0.068 0.053 0.047

we restrict ourselves to results for the first 57 minutes
from the beginning of the dataset. Red vertical lines depict
false alarms with respect to the median obtained from five
independent runs. Green vertical lines reflect the correct
detection of an attack.

6.1. Analyzing DP Covariance Disclosures
We begin by analyzing the effects of differentially pri-

vate disclosures of covariance matrices. Our analysis focuses
on both HAI and ORNL-PS datasets specifically examining
impacts of ϵcov and γcov on the p-value and the test statistic
in comparison to the non-DP scenarios.

6.2. Effect of Privacy Budget
We begin by analyzing the p-values of both datasets un-

der varying covariance privacy budget values. Figures 3(a),
4(a) reflect the p-value trends pertaining to HAI and ORNL-
PS datasets respectively. The corresponding test statistic
trends are depicted in Figures 5(a) and 6(a) respectively.

We note that increasing values of ϵcov correspond to
lower DP noise and a higher privacy budget as well. How-
ever, Figures 3(a), 4(a), 5(a) and 6(a) also indicate that
with higher privacy budget, there is a much higher varia-
tion observed in both p-value and test statistic trends. In
other words, with a higher privacy budget, we can observe
much less variation in detection quality. Additionally, the
consistency of alarms is higher in median terms during the
attack period although this trend also results in some false
alarms from the median as well. In Figure 4(a), we observe
that for ϵcov = 500 the median does not breach the p-value
threshold, although the trends make it clear that the attack
detection is still robust with far lesser variations observed.

6.2.1. Effect of Failure Probability
We turn our attention to the effect of failure probability

observed when disclosing covariance values. Figures 3(c),
4(c) represent trends in the p-value for HAI and ORNL-
PS datasets, while Figures 5(c), 6(c) represent trends in
test statistic. γcov conventionally represents the DP failure
probability for covariance disclosures. Ultimately, a higher
γcov represents a higher likelihood of DP being ineffective
at hiding. From Figures 3(c), 4(c), 5(c) and 6(c), we observe
that with increasing values of γcov, we again see more
variance and in p-value and test statistic trends. However,
we can also observe that the median detection quality results
in consistent alarms during the attack window albeit with a
higher variance. In summary, the framework is capable of
providing attack detection with realistic privacy expectations
even in cases of high γcov values, indicating the usefulness
of our approach.

6.3. Analysis for DP Residual Disclosures
We now analyze the impact of differentially private

residual disclosures in terms of the privacy budget ϵr and
failure probability γr.
6.3.1. Effect of Privacy Budget

We plot the p-value trends for varying values of ϵr for
both datasets in Figures 3(b) and 4(b) respectively. Similarly,
we present test statistic trends for both datasets in 5(b) and
6(b) respectively as well. In general, we see that the spread
of values as indicated by the min-max spread increases
with decreasing values of privacy budget ϵr. This results
in a slight increase in median alarm consistency for higher
values of ϵr as well. Overall, even with a high value of
privacy budget, our framework provides a significant privacy
guarantee.
6.3.2. Effect of Failure Probability

We present the performance of the DP detection frame-
work in terms of the residual disclosure failure probability
γr in terms of the p-value and test statistics. For both
datasets, we can see that the attack detection performance



TABLE 4: Average Memory Usage (MB) and CPU Utilization (%) for varying implementation modes

Dataset Implementation Average Memory (MB) (std dev.) CPU Utilization (%) (std dev.)
Mode Utility Regulator Utility Regulator

ORNL-PS Critical Region Verification 1014.58 (224.85) 128.96 (0.27) 10.27 (12.34) 10.55 (13.61)
P-Value Compliance 1013.86 (223.18) 128.29 (0.08) 10.09 (12.07) 9.91 (11.48)

HAI Critical Region Verification 1093.21 (221.24) 128.80 (0.29) 9.87 (11.15) 9.93 (11.33)
P-Value Compliance 1101.33 (271.88) 128.02 (0.07) 10.97 (13.38) 10.47 (12.29)

remains robust with steady consistency of the median alarm
detection rates as well.

6.4. Analyzing Attack Detection Quality
In this subsection, we analyze the performance of the

combined DP attack detection framework considering the
residual based DP disclosures in conjunction with the DP
based covariance matrices. The combined analysis is meant
to provide vital insights into the latency of attack detection
at the regulator level with respect to the local utility stake-
holder.

Therefore, we examine the ability of the DP based
framework to detect the attack within three distinct intervals
(200s, 400s and 600s) measured from the start of the attack.
The results of these experiments are obtained from five inde-
pendent runs carried out for each DP parameter combination
listed in Tables 1 and 2. We are primarily interested in
tracking the alignment of DP and Non-DP detection at the
discrete interval values of 200s, 400s and 600s. The align-
ment problem can be thought of as run instances wherein
both DP and Non-DP frameworks successfully detected an
attack. Therefore, we present results in terms of alignment
of DP and Non-DP Detection, Non-DP only detection, DP
alignment rates as well as the mean and variance of the α̂.

In Tables 1 and 2 we see a consistent improvement
in the alignment rate with increase in duration from the
beginning of the attack. The alignment rate measured as a
fraction of runs where an attack was detected within the
attack window consistently improves from around 0.5 to
0.95. This is powered by the rising number of DP and
Non-DP detection instances that is naturally accompanied
by falling Non-DP only detection. For both datasets, we see
that the mean α̂ stays relatively stable at 2.56e − 4 and
1.01e− 4 respectively. The associated variance experiences
minor volatility but overall retains stability around 4.55e−10
and 1e− 10 for HAI and ORNL-PS datasets respectively.

In Table 3, we present the false alarm rates of the DP
based detection framework for both datasets captured during
normal operations. We can see that for all the considered
combinations of DP parameters, the false alarm rates stay
consistently low. For the HAI dataset, the stability of false
alarm rates hover around 8%, while for ORNL-PS dataset,
this value exhibits slightly more volatility, ranging from 4%
to around 6.8%. Collectively, Tables 1, 2 and 3 demonstrate
the robustness of the attack detection quality with respect
to the miss-classification and alignment rates of the DP
mechanism.

6.5. Analyzing System Performance of Implemen-
tation Modes

In Table 4, we provide a comparative analysis of system
performance of the CRV and PVC implementation modes
with respect to HAI and ORNL-PS datasets. Average CPU
utilization consistently stays under 11% for all scenarios
with standard deviation ranging from 11.15% to 13.6%.
Similarly, memory usage for utility service ranges between
1014 MB and 1101 MB, while remaining very close to
128 MB for the regulator service. From Table 4, we also
see that the standard deviation values of CRV memory
usage is relatively higher for both datasets. This rise can
be explained on the basis of the need to factorize the DP-
driven covariance matrix by the regulator in the CRV mode
as opposed to a simple compliance check needed in the
PVC mode. Overall, Table 4 demonstrates that the system
performance in terms of both average memory consumption
as well as CPU utilization remain consistent and stable
across both datasets and implementation modes.

7. Conclusion
In this paper, we present a differentially private algorith-

mic framework geared towards regulatory compliance for
detecting data-driven attacks in industrial control systems
for critical infrastructure networks. Our proposed method
leverages statistical tests on residuals arising out of state
space modeling at the utility stakeholder level to raise attack
alarms. We focus on cases wherein utilities are interested
in convincing regulatory bodies regarding the veracity of
their respective alarms by disclosing differential privacy
induced covariance matrices and residual values. As a re-
sult, our proposed framework revolves around a two phase
privacy scheme that sequentially perturbs covariance using
Laplacian noise followed by a Gaussian differential privacy
scheme for residuals. We derive strong privacy guarantees
pertaining to the test of residuals in addition to providing
tight bounds on the miss-classification rates of alarms as
well as equivalent levels of significance. We specifically ex-
plore two significant modalities of implementation concern-
ing critical region and p-value based compliance schemes.
Additionally, we theoretically characterize the privacy im-
plications of each of the modalities. Using real-world ICS
datasets, we characterize the performance of our algorithm
with respect to varying privacy parameters under diverse
attack scenarios. The experimental results demonstrate that
our framework is capable of matching the performance of
the non-DP versions in almost all cases while preserving the
privacy of utility stakeholders.
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Appendix
Proof of Lemma4.1
Proof. We begin by stating Equation (28) which results
from the orthonormal factorization of the real and perturbed
covariance matrices St and Ŝt respectively as defined in
Section 3.4.

|τTt τt − (τ̂ cov)Tt τ̂
cov
t |= |rTt (Λt − Λ̂t)rt| (28)

We know that Equation (29) holds when λ̂PCA, λPCA de-
note the diagonal matrices of eigenvalues corresponding to
the top p ≤ d principal components with and without DP
respectively

|rTt (Λ− Λ̂)rt|=
∣∣∣ p∑
i=1

(rit)
2(λi − λ̂i)

∣∣∣ ≤ El

∣∣∣ p∑
i=1

(rit)
2
∣∣∣
(29)

We know that Equation (30) holds with a probability of at
least 1− γcov

El

∣∣∣ p∑
i=1

(rit)
2
∣∣∣ ≤ ∣∣∣ p∑

i=1

(rit)
2
∣∣∣[ ∆l

ϵcov
log

( d

γcov

)]
(30)

By combining Equations (29), (30) with Equation (19), we
get Equation (31) which holds with probability of at least
1− γcov completing the proof.

(31)|T̂ cov
χ2,t − Tχ2,t|≤

∣∣∣ p∑
i=1

(rit)
2
∣∣∣[ ∆l

ϵcov
log

( d

γcov

)]

Proof of Lemma 4.2
Proof. As a result of Definition 3, we obtain an (ϵ, γr)-DP
mechanism such that Equation (32) applies.

P
(∣∣∣ p∑

i=1

ei,t

∣∣∣ ≥ θr

)
≤ γr, where, θr =

σ2ϵ

∆
− p∆

2
(32)



Since
p∑

i=1

|ei,t|≥ |
p∑

i=1

ei,t|, we can also derive the follow-

ing relations

P
(
Er ≤ θr

p

)
≥ 1− γr, where, Er = max

0≤i≤p
|ei,t| (33)

Equation (33) ensures that the probability of the maximum
absolute value of Gaussian noise being less than θr/p is at
least 1−γr. Using Equation (33) we can bound E2

r as well.

P
(
0 ≤ E2

r ≤ θ2r
p2

)
≥ 1− γr (34)

Since each of the elements of et are independently and
identically distributed Equation (35) holds

P
(
0 ≤

p∑
i=1

e2i,t ≤ p.E2
r ≤ θ2r

p

)
≥ (1− γr)

p (35)

Setting ||et||22=
p∑

i=1

e2i,t in Equation (35) completes the

proof.

Proof of Lemma 4.3

Proof. We know that, T̂ res
χ2,t =

p∑
i=1

(ei,t + τi,t)
2. From GDP

conditions, (ei,t + τi,t) ∼ N(τi,t, σ
2). As a result, [(ei,t +

τi,t)
2/σ2] ∼ χ2(1, τ2i,t/σ

2) which implies that the variance
scaled perturbed test statistic T̂ res

χ2,t/σ
2 ∼ χ2(p, ||τt||22/σ2).

Proof of Theorem 4.1

Proof. We reformulate each element of T̂ res
χ2,t − Tχ2,t as

T̂ res
χ2,t − Tχ2,t =

p∑
i=1

ei,t(ei,t + 2τi,t)

= 2

p∑
i=1

(ei,tτi,t) +

p∑
i=1

(ei,t)
2

(36)

Using Lemma 1, we can assert that ei,t ≤ Er ≤ θr
p and

p∑
i=1

(ei,t)
2 ≤ θ2

r

p with a probability of at least (1 − γr)
p.

Therefore, combining Equation (36) with Lemma 1, we get

2

p∑
i=1

(ei,tτi,t) +

p∑
i=1

(ei,t)
2 ≤ θr

p

(
θr + 2

p∑
i=1

τi,t

)
(37)

2

p∑
i=1

(ei,tτi,t) +

p∑
i=1

(ei,t)
2 ≥ θr

p

(
θr − 2

p∑
i=1

τi,t

)
(38)

Using Lemma 2, for U ′ = θr
p

(
θr+2

p∑
i=1

τi,t

)
, L′ = θr

p

(
θr−

2
p∑

i=1

τi,t

)
we can also assert that

P
[ 1

σ2
(T̂ res

χ2,t − Tχ2,t) ≤
U ′

σ2

∣∣∣||et||22≤ θ2r
p

]
= F τt

χ2,p(
U ′

σ2
)

(39)

P
[ 1

σ2
(T̂ res

χ2,t − Tχ2,t) ≥
L′

σ2

∣∣∣||et||22≤ θ2r
p

]
= 1− F τt

χ2,p(
L′

σ2
)

(40)

Computing joint probability using Lemma 1 and setting U =
U ′/σ2 and L = L′/σ2 completes the proof

P
[
L ≤ (T̂ res

χ2,t − Tχ2,t) ≤ U
∣∣∣||et||22≤ θ2r

p

]
≥ (F τt

χ2,p(U)− F τt
χ2,p(L))(1− γr)

p

Proof of Lemma 4.4
Proof. We know that

P
[
T̂ res
χ2,t > ϕ

]
= 1− F τ

χ2,p(ϕ) (41)

The CDF of χ2(k, µ) can be stated as F τt
χ2,p(ϕ) = 1 −

Q k
2
(
√
µ,

√
ϕ) where Qa(b, c) is the generalized Marcum

Q-function. The generalized Marcum Q-function is strictly
increasing in µ [61]. As a result,

max
τ

(1− F τ
χ2,p(ϕ)) = max

τ
Q p

2

( ||τ ||2
σ

,
√

ϕ
)

(42)

As a result, given τmin = argmin
τ

(||τ ||2) and τmax =

argmax
τ

(||τ ||2)

τmax = argmax
τ

(1− F τ
χ2,p(ϕ)) (43)

Proof of Theorem 4.2
Proof. We consider two cases
Case1: When |T̂ cov

χ2,t − Tχ2,t|≥ Rtθl, we know that

P
[
T̂ res
χ2,t > σ2χ2,NC

α̂ , |T̂ cov
χ2,t − Tχ2,t|≥ Rtθl

]
=

P
[
|T̂ cov

χ2,t − Tχ2,t|≥ Rtθl

][
1− F

τ̂cov
t

χ2,p

(
σ2χ2,NC

α̂

)] (44)

Using Lemma 4.1, we can state that

P
[
|T̂ cov

χ2,t − Tχ2,t|≥ Rtθl

]
= P

[
|rTt (λt,i − λ̂t,i)rt|≥ Rtθl

]
(45)

We note that using Lemma 4.1, we can know that since
|T̂ cov

χ2,t − Tχ2,t|= |rTt (Λt − Λ̂t)rt|, we can state that using



rmax = argmax
r

||r||

|rTt (Λt − Λ̂t)rt|≤ |
p∑

i=1

(λt − λ̂t,i)r
2
t,i| (46)

|
p∑

i=1

(λt − λ̂t,i)r
2
t,i|≤

p∑
i=1

|(λt − λ̂t,i)|||rmax||22 (47)

As a result, we know that (λt− λ̂t,i) ∼ Lap(0, ∆l

ϵcov
), which

implies that r2max|(λt − λ̂t,i)|∼ Exp( ϵcov
∆lr2max

) leading to[∑
p

|(λt,i − λ̂t,i)|
]
||rmax||22∼ Gamma(p,

ϵcov
∆lr2max

) (48)

Since, we know that |rTt (Λt − Λ̂t)rt|= |T̂ cov
χ2,t − Tχ2,t|, we

can state that,
[∑

p
|(λt,i−λ̂t,i)|

]
||rmax||22≥ |rTt (Λt−Λ̂t)rt|.

Probabilistically, this leads us to,

P
[(∑

p

|(λt,i − λ̂t,i)|
)
||rmax||22 ≥ |T̂ cov

χ2,t − Tχ2,t|≥ Rtθl

]
≤ 1− F gamma

rmax,ϵcov,∆l
(Rtθl)

(49)

Therefore we get Equation (44), where F gamma
rmax,ϵcov,∆l

(.)
represents the CDF of Gamma(p, ϵcov

∆lr2max
)

P
[
T̂ res
χ2,t > σ2χ2,NC

α̂ , |T̂ cov
χ2,t − Tχ2,t|≥ Rtθl

]
≤[

1− F gamma
rmax,ϵcov,∆l

(Rtθl)
][
1− F

τ̂cov
t

χ2,p

(
σ2χ2,NC

α̂

)] (50)

Case2: For the case when |T̂ cov
χ2,t − T |≤ Rtθl Using

Lemma 4.1, we can state that

P
[
|T̂ cov

χ2,t − Tχ2,t|≤ Rtθl

]
= P

[
|rTt (λt,i − λ̂t,i)rt|≤ Rtθl

]
(51)

We note that |rTt (λt,i−λ̂t,i)rt|≤ Rtθl = rTt diag(θl)rt holds
for all r. This implies that |(λt,i−λ̂t,i)|≤ θl, and as a result,

P
[
|rTt (Λt − Λ̂t)rt|≤ Rtθl

]
= P

[
|Λt − Λ̂t|≤ θl

]
(52)

We also know that |Λt−Λ̂t|∼ Exp( ϵcov∆l
), Therefore P

[
|Λt−

Λ̂t|≤ θl

]
= [F ex

∆l,ϵcov
(θl)]

p, where F ex
∆l,ϵcov

(.) is the CDF of
the exponential distribution. Therefore, we can state that,

P
[
T̂ res
χ2,t > σ2χ2,NC

α̂ , |T̂ cov
χ2,t − Tχ2,t|≤ Rtθl

]
=[

F ex
∆l,ϵcov

(θl)
]p[

1− F
τ̂cov
t

χ2,p

(
σ2χ2,NC

α̂

)] (53)

Using Lemma 4.4, we get

P
[
T̂ res
χ2,t > σ2χ2,NC

α̂ , |T̂ cov
χ2,t − Tχ2,t|≤ Rtθl

]
≤[

F ex
∆l,ϵcov

(θl)
]p[

1− F
τ̂cov
max,t

χ2,p

(
σ2χ2,NC

α̂

)] (54)

Proof of Theorem 4.3

Proof. We know that ρ̂t = 1 is triggered when T̂ res
χ,t >

σ2χ2,NC
α̂ , and ρt = 0 when Tχ2,t < χ2

α. Therefore,

T̂ res
χ2,t − Tχ2,t > σ2χ2,NC

α̂ − χ2
α (55)

T̂ res
χ2,t > Tχ2,t + σ2χ2,NC

α̂ − χ2
α (56)

As a result, we can state that

P[ρ̂t = 1|ρt = 0, τ̂ covχ2,t] = P[T̂ res
χ2,t > Tχ2,t + σ2χ2,NC

α̂ − χ2
α]

(57)

P[ρ̂t = 1|ρt = 0, τ̂ covχ2,t] = 1− F
τ̂cov
t

χ2,p

(
Tχ2,t + σ2χ2,NC

α̂ − χ2
α

)
(58)

We can use the same technique for upper bounding as
employed in Cases 1 and 2 in Theorem 4.2 in Equations
(44) and (53) for the event T̂ res

χ2,t > Tχ2,t + σ2χ2,NC
α̂ − χ2

α.
This leads us to Equations (59) and (60).

P
[
T̂ res
χ2,t > Tχ2,t + σ2χ2,NC

α̂ − χ2
α,|T̂ cov

χ2,t − Tχ2,t|≥ Rtθl

]
≤

[
1− F gamma

rmax,ϵcov,∆l
(Rtθl)

]
[
1− F

τ̂cov
t

χ2,p

(
Tχ2,t + σ2χ2,NC

α̂ − χ2
α

)]
(59)

P
[
T̂ res
χ2,t > Tχ2,t + σ2χ2,NC

α̂ − χ2
α,|T̂ cov

χ2,t − Tχ2,t|≤ Rtθl

]
≤

[
F ex
∆l,ϵcov

(θl)
]p[

1− F
τ̂cov
max,t

χ2,p

(
Tχ2,t + σ2χ2,NC

α̂ − χ2
α

)]
(60)

Summing up Equations (59) and (60) leads us to the fol-
lowing where T̂t = Tχ2,t + σ2χ2,NC

α̂ − χ2
α

P[ρ̂t = 1|ρt = 0] ≤[
1− F gamma

rmax,ϵcov,∆l
(Rtθl)

][
1− F

τ̂cov
t

χ2,p

(
T̂t

)]
+
[
F ex
∆l,ϵcov

(θl)
]p[

1− F
τ̂cov
max,t

χ2,p

(
T̂t

)]
(61)

Similarly, ρ̂t = 0 when T̂ res
χ,t < σ2χ2,NC

α̂ , and ρt = 1 when
Tχ2,t > χ2

α. Therefore,

T̂ res
χ2,t − Tχ2,t < σ2χ2,NC

α̂ − χ2
α (62)

T̂ res
χ2,t < Tχ2,t + σ2χ2,NC

α̂ − χ2
α (63)

In a similar fashion as Case 1, we can obtain,

P[ρ̂t = 0|ρt = 1] = P[T̂ res
χ2,t < T̂t] = F

τ̂cov
t

χ2,p

(
T̂t

)
(64)

Therefore, we obtain Equations (65) and (66)

P
[
T̂ res
χ2,t < T̂t, |T̂ cov

χ2,t − Tχ2,t|≤ Rtθl

]
≤[

F ex
∆l,ϵcov

(θl)
]p
F

τ̂cov
t

χ2,p

(
T̂t

) (65)

P
[
T̂ res
χ2,t < T̂t, |T̂ cov

χ2,t − Tχ2,t|≥ Rtθl

]
≤[

1− F gamma
rmax,ϵcov,∆l

(Rtθl)
]
F

τ̂cov
t

χ2,p

(
T̂t

) (66)



Combining both equations leads us to

P[ρ̂t = 0|ρt = 1] = P
[
T̂ res
χ2,t < T̂t

]
≤

F
τ̂cov
t

χ2,p

(
T̂t

)([
1− F gamma

rmax,ϵcov,∆l
(Rtθl)

]
+
[
F ex
∆l,ϵcov

(θl)
]p)
(67)

Proof of Theorem 5.1
Proof. Based on the definition of ϵ-DP, we know that the
effective residual noise is given by Ĉ

1/2
w ew ∼ N(0, σ2Ŝw)∣∣∣ln[ exp[− eTwĈ

−1
w ew/(2σ

2)]

exp[− (ew +∆r)T Ĉ
−1
w (ew +∆r)/(2σ2)]

]∣∣∣ ≤ ϵ′

(68)

Consolidating terms we obtain∣∣∣∆r(2.1
T V̂ T

w Λ̂wV̂wew +∆r1
T Ŝw1)

2σ2

∣∣∣ ≤ ϵ′ (69)

∣∣∣1T V̂ T
w Λ̂wV̂wew +

∆r1
T Ŝw1

2

∣∣∣ ≤ σ2ϵ′

∆r
(70)

Examining the LHS of Equation (70), we can see that

|1T V̂ T
w Λ̂wV̂wew|≤ ||1T V̂ T

w Λ̂w||22||V̂wew||22≤
(1T Ĉ−1

w 1)2||ew||2
(71)

This implies that∣∣∣1T V̂ T
w Λ̂wV̂wew+

∆r1
T Ŝw1

2

∣∣∣ ≤
|1T V̂ T

w Λ̂wV̂wew|+
∆r1

T Ĉ−1
w 1

2

(72)

From Equation (72), we obtain,

|1T V̂ T
w Λ̂wV̂wew|+

∆r1
T Ĉ−1

w 1

2
≤

(1T Ĉ−1
w 1)2

(
||ew||2+

1

2.1T Ĉ−1
w 1

)
(73)

Characterizing the worst case (maximizing) ϵ′ results in
obtaining the upper bound

σ2ϵ′

∆r
≥ (1T Ĉ−1

w 1)2
(
||ew||2+

1

2.1T Ĉ−1
w 1

)
(74)

=⇒ ϵ′ ≥ ∆r

σ2
(1T Ĉ−1

w 1)2
(
||ew||2+

1

2.1T Ĉ−1
w 1

)
(75)

Using Lemma 2, we know that the probability that ||ew||22≥
θ2
r

p occurs is at most 1 − (1 − γr)
p. Therefore, under con-

ditions of Lemma 2, we can see that further maximizing ϵ′

leads to a probabilistic lower bound of

P
[
ϵ′ ≥ ∆r

σ2
(1T Ĉ−1

w 1)2
(θ2r
p

+
1

2.1T Ĉ−1
w 1

)]
≤

1− (1− γr)
p

(76)

Proof of Theorem 5.2
Proof. We consider the probability that T cov

w is obtained
with a residual r1w and DP-based eigenvalue matrix given by
Λ1
w. To establish differential privacy, we must now consider

the probability of obtaining T cov
w when r2w is realized and

Λ2
w is the corresponding DP-based eigenvalue matrix. Using

the definitions of DP, under conditions that r1w, r2w and Λ1
w,

Λ2
w are adjacent pairs of realizations. Therefore without loss

of generality we can state that:

ln
∣∣∣ exp(−rTC−1r

2 ).P(Λ1
w)

exp(−(r+∆)TC−1(r+∆)
2 ).P(Λ2

w))

∣∣∣ ≤ ϵ′ (77)

Equation (77) results in the following relationships∣∣∣ln(exp[−2∆TC−1r +∆TC−1∆

2σ2

]
.exp(ϵ)

)∣∣∣ ≤ ϵ′ (78)∣∣∣−2∆TC−1r +∆TC−1∆

2σ2
+ ϵ

∣∣∣ ≤ ϵ′ (79)

We can now use ϵ′ to bound the RHS such that the following
holds

||r||≤ σ2(ϵ′ − ϵ)

||∆TC−1||
− ∆TC−1∆

2||∆TC−1||
(80)

Since r ∼ N(0, C), we can state that ∆TC−1r ∼
N(0,∆TC−1∆). As a consequence we obtain the following
relationship where Φ is the CDF for N(0,∆TC−1∆)

P
[
||r||≤ σ2(ϵ′ − ϵ)

||∆TC−1||
− ∆TC−1∆

2||∆TC−1||

]
=

Φ
( σ2(ϵ′ − ϵ)

||∆TC−1||
− ∆TC−1∆

2||∆TC−1||

)
−Φ

(
− σ2(ϵ′ − ϵ)

||∆TC−1||
+

∆TC−1∆

2||∆TC−1||

) (81)

To ensure that privacy loss associated with disclosure of
T̂ cov
w is bounded by ϵ′ we would need a δ′ such that

δ′ ≤ Φ
( σ2(ϵ′ − ϵ)

||∆TC−1||
− ∆TC−1∆

2||∆TC−1||

)
−Φ

(
− σ2(ϵ′ − ϵ)

||∆TC−1||
+

∆TC−1∆

2||∆TC−1||

)
(82)
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