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Abstract

The security of LLM-based multi-agent systems (MAS) is
critically threatened by propagation vulnerability, where ma-
licious agents can distort collective decision-making through
inter-agent message interactions. While existing supervised
defense methods demonstrate promising performance, they
may be impractical in real-world scenarios due to their heavy
reliance on labeled malicious agents to train a supervised
malicious detection model. To enable practical and general-
izable MAS defenses, in this paper, we propose BlindGuard,
an unsupervised defense method that learns without requir-
ing any attack-specific labels or prior knowledge of malicious
behaviors. To this end, we establish a hierarchical agent en-
coder to capture individual, neighborhood, and global inter-
action patterns of each agent, providing a comprehensive un-
derstanding for malicious agent detection. Meanwhile, we
design a corruption-guided detector that consists of directional
noise injection and contrastive learning, allowing effective
detection model training solely on normal agent behaviors.
Extensive experiments show that BlindGuard effectively de-
tects diverse attack types (i.e., prompt injection, memory poi-
soning, and tool attack) across MAS with various commu-
nication patterns while maintaining superior generalizability
compared to supervised baselines. The code is available at:
https://github.com/MR9812/BlindGuard.

Introduction

Rapid advancements in large language models (LLMs) have
significantly improved their performance in various domains,
including task planning (Kannan, Venkatesh, and Min 2024),
mathematical reasoning (Lei et al. 2024), and scientific simu-
lations (Zheng et al. 2023). By incorporating modular exten-
sions such as memory (Zhang et al. 2024), tool usage (Mas-
terman et al. 2024), and role-playing capabilities (Kim et al.
2024), LLM-based autonomous agents have expanded their
applicability, enabling more dynamic and interactive func-
tionalities (Li et al. 2024b). Building upon these advances,
multi-agent systems (MAS) further amplify these benefits
by facilitating collaborative interactions among specialized
agents (Guo et al. 2024). Recent studies have shown that
MAS outperform individual agents in more complex tasks
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Figure 1: Comparison of supervised vs. unsupervised graph
anomaly detection-based defense paradigms in MAS.
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such as problem solving (Li et al. 2025b), embodied ac-
tions (Zhao et al. 2024), and social simulations (Zhao et al.
2023). However, the increased reliance on inter-agent commu-
nication introduces additional risks in security and controlla-
bility, necessitating robust frameworks to safeguard sensitive
data and regulate information flow.

Security studies (Andriushchenko et al. 2025; Gan et al.
2024; He et al. 2025) have identified significant vulnerabil-
ities in external components of LLM-based agents, includ-
ing tool interfaces (Zhan et al. 2024a) and memory mod-
ules (Chen et al. 2024). Beyond these risks at the single-agent
level, the transition to MAS brings additional vulnerabilities
caused by inter-agent interactions (Yu et al. 2025). Specifi-
cally, the misleading message generated by a few malicious
agents can propagate through collaborative reasoning, nega-
tively affecting how agents make collective decisions. Such
propagation vulnerability makes MAS susceptible to at-
tacks such as prompt injection through compromised agents,
misinformation propagation, and emergent malicious coordi-
nation (Yu et al. 2024; Wang et al. 2025).

Aiming to mitigate the propagation vulnerability, graph-
based defense provides a promising solution against adver-
sarial attacks in MAS (Zhang et al. 2025b). As a semantically
structured data format, graphs can naturally model both the
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functional roles of individual agents and their inter-agent
interactions in MAS (Shen et al. 2025; Liu et al. 2025; Li
et al. 2025a). Building upon the graph-based MAS formula-
tion, G-Safeguard (Wang et al. 2025) integrates a detection-
remediation framework to effectively safeguard MAS. As
demonstrated in Figure la, G-Safeguard employs a super-
vised graph anomaly detection (GAD) model as its core
component to identify malicious agents, afterwards applies
an edge pruning-based remediation strategy to isolate and
suppress the influence of compromised agents.

Despite its impressive defensive performance, G-
Safeguard, or other supervised GAD-based approaches, may
be impractical in real-world scenarios due to their heavy
reliance on labeled malicious agents. Specifically, the super-
vised paradigm requires labeled instances of actual malicious
agents associated with a particular attack type to train a type-
specific binary GAD model, which limits its availability and
generalizability. On the one hand, adversarial attack behav-
iors in real-world scenarios are sparse and often purposefully
camouflaged, making it difficult to obtain well-annotated ma-
licious agents for supervised training. This inaccessibility
of labeled data significantly undermines the availability of
supervised GAD-based methods in real-world MAS deploy-
ments. On the other hand, real-world MAS face diverse and
evolving adversarial attacks, while conventional binary GAD
models are typically trained to detect a specific type of ma-
licious behavior (Wang et al. 2025). Such a single-purpose
design limits their generalizability and makes them ineffec-
tive for detecting novel or unseen attack patterns in complex
environments. These limitations raise a critical research ques-
tion: Can we design a defense framework for MAS without
relying on labeled attack agents?

To answer the above question, unsupervised GAD offers
a promising solution, where GAD models learn to identify
irregular patterns without the supervision of labeled anoma-
lous instances (Ding et al. 2019; Ma et al. 2022; Qiao and
Pang 2023). As illustrated in Figure 1b, based on unsuper-
vised GAD techniques, we can train a detector to identify
malicious agents associated with multiple attack types us-
ing only normal MAS interaction data, thereby alleviating
the limitations in availability and generalizability. Neverthe-
less, directly applying existing unsupervised GAD methods,
which are not specifically designed for MAS scenarios, may
lead to suboptimal performance due to the following gaps.
Gap 1 - Limited multi-level contextual awareness: 1dentify-
ing malicious agents in MAS requires integrating informa-
tion across multiple levels, including individual behaviors,
local neighborhoods, and global system dynamics. However,
most existing GAD methods (Qiao and Pang 2023; Liu et al.
2021; Pan et al. 2023) primarily focus on local properties
(e.g., local affinity and ego-neighbor similarity), lacking the
system-level understanding needed for multi-agent interac-
tion networks. Gap 2 - Misalignment of Anomalous Behav-
ior Assumptions: Most unsupervised GAD methods assume
anomalies manifest through structural deviations (e.g., low
homophily (Qiao and Pang 2023) or rare connectivity pat-
terns (Liu et al. 2021)). In contrast, malicious agents in MAS
often exhibit semantic anomalies (such as deceptive intent
or information poisoning (Yu et al. 2024)) that do not well

match these assumptions.

To fill the gaps, in this paper, we propose a novel defense
method for MAS, termed BlindGuard, that can be trained
without any labeled malicious data or prior knowledge of
attack strategies. In BlindGuard, we design a MAS-specific
unsupervised GAD model for malicious agent identification,
followed by an edge pruning-based remediation module to
suppress adversarial propagation. To bridge Gap 1, we intro-
duce a hierarchical agent encoder to incorporate the informa-
tion of individual agent features, local neighborhood aggre-
gation, and global system context simultaneously. As a result,
the encoder captures comprehensive representations of agents
to support accurate malicious agent detection. To mitigate
Gap 2, we propose a corruption-guided attack detector for
agent abnormality estimation. To train the detector, we sim-
ulate the malicious behaviors via semantic-level corruption,
which is utilized to optimize the detector via a supervised
contrastive learning objective. The training of BlindGuard
only requires a small amount of normal MAS interaction
data, and the learned model can generalize to various types
of attacks.

To sum up, the contributions of this paper are three-fold:

* Scenario. We investigate the scenario of MAS safeguard-
ing without relying on labeled attack data or prior knowl-
edge of attacks, which is more practical and applicable to
real-world MAS with limited supervision.

* Method. We propose BlindGuard, an unsupervised de-
fense method designed to address the critical challenge
of safeguarding MAS against entirely unknown attacks,
without requiring any prior knowledge of attack patterns
or malicious agent behaviors.

* Experiments. We extensively evaluate BlindGuard un-
der rigorous real-world conditions with different types
of attack. Through comprehensive testing on 4 MAS in-
teraction patterns with 3 attack strategies, BlindGuard
demonstrates competitive defense capability.

Preliminary

MAS as Graphs Multi-agent systems (MAS) can be for-
mulated as a directed graph G = (V,€), where V =
{v1,...,vN} denotes a set of LLM-based agents intercon-
nected through directed edges £ C V x V. Each agent v; is
characterized by a tuple (Role;, State;, Mem;, Plugin, ), en-
capsulating its functional role, dynamic interaction state,
memory module for historical data, and external tools for
extended capabilities. The communication topology is en-
coded by an adjacency matrix A € {0,1}V*N | with
A;; = 1 indicating a directed message-passing channel
from agent v; to v;. Agents operate by processing query
@ and responses R; of its neighbors to generate response
R; = LLM (QU {R; | e;; € £}), following an execution
sequence o = [Ug,,Us,, " , Vg, | Of agents generated by
an ordering function from G. After multiple rounds of in-
teraction, the MAS outputs the final output R for the query

Q.

MAS Attack In this paper, we focus on three types of
primary attack modalities against MAS, i.e., prompt injec-



tion, memory poisoning, and tool exploitation (Wang et al.
2025). @ Prompt injection attacks manipulate agent outputs
by corrupting either the system prompt Pgys or user inputs
Pusr» inducing malicious responses through carefully crafted
textual perturbations. @ Memory poisoning targets the Mem;
component by injecting fabricated interaction histories or
poisoning external knowledge bases, thereby distorting the
contextual understanding of the agent. ® Tool exploitation
leverages vulnerabilities in external plugins (Plugin,) to ex-
ecute harmful operations such as unauthorized data access
or privilege escalation. These attacks collectively transform
the original system G into a compromised state G, where a
subset of agents V,q C V exhibit adversarial behaviors while
maintaining superficial operational normality.

Supervised Defense Paradigm Supervised defense ap-
proaches leverage known attack patterns and labeled ma-
licious samples to train detection models. Given a set of
attacked MAS (with role and interaction description) where
each MAS G has labeled agents V = VyormUVima Where Viorm
denotes normal agents and Vi, represents known malicious
ones, the objective function typically minimizes:

Loww =D |vi-fo(Gv) + (1 =9 - (1= fo(G,v))]

v; €V

ey
where y; € {0, 1} indicates ground-truth labels (0 represents
normal and 1 represents malicious) and f : R? — [0,1] is a
classifier-based supervised GAD model parameterized by 6.
After training, the predicted anomaly scores of a given MAS
are used to identify malicious agents V, for subsequent
remediation, such as isolating malicious nodes or pruning
suspicious communication links within the MAS.

A summary of related works is given in Appendix A.

Methodology

While the defense approaches following the supervised
paradigm show promising performance under controlled con-
ditions, their reliance on labeled malicious agents hinders
their applicability in real-world and MAS. To fill the gap, we
propose a more practical unsupervised defense paradigm to
extend the applicability of MAS safeguarding against any
unknown attack. Based on the new paradigm, we proposed
a novel approach, BlindGuard, which incorporates a specif-
ically designed unsupervised GAD model that detects ma-
licious agents without requiring any labeled data or prior
knowledge of attack types as shown in Figure 2. In this sec-
tion, we first formulate the unsupervised defense paradigm,
and then introduce the core components of BlindGuard, i.e.,
hierarchical agent encoder, corruption-guided attack detector,
and pruning-based remediation.

Unsupervised Defense Paradigm

In contrast to its supervised counterpart that requires attacked
MAS data with labeled malicious agents, the unsupervised
defense paradigm assumes access to only normal multi-agent
interaction data, without any annotations of malicious behav-
iors or prior knowledge of attack patterns.

Formally, given a set of unattacked MAS interaction graphs
{G1,Ga,...,GN}, where each G; consists solely of benign
agent behaviors, the goal is to train a detection model fy(-, -)
that can later identify malicious agents when deployed in
attacked MAS environments. The well-trained fy(-,-) can
then predict the anomaly score (indicating the malicious de-
gree) of each agent within an attacked MAS G. Then, the
agents with high anomaly scores can be isolated with an
edge-pruning algorithm.

While other components in the unsupervised paradigm are
similar to the supervised one, the central challenge is the ar-
chitecture design and training strategy of the unsupervised de-
tection model fp(-, -). Although existing unsupervised graph
anomaly detection (GAD) methods (Pan et al. 2025, 2023;
Ding et al. 2019; Qiao and Pang 2023; Liu et al. 2021; Li
et al. 2024a) may serve as potential candidates, they are in-
sufficient for the malicious agent identification task in MAS
due to their limited capacity to capture multi-level agent inter-
actions and their reliance on misaligned assumptions about
anomaly patterns. Therefore, in BlindGuard, we introduce a
specially designed unsupervised GAD model for malicious
agent detection in MAS, with detailed descriptions provided
in the following subsections.

Hierarchical Agent Encoder

To build a powerful unsupervised GAD model for malicious
agent detection, a crucial step is to construct comprehen-
sive agent representations that capture both local interactions
and global system-level context. In BlindGuard, we real-
ize this via a hierarchical agent encoder, which comprises
two sub-components: agent node feature construction, which
captures semantic attributes of individual agents; and hier-
archical graph encoding, which integrates ego information,
local neighborhood structures, and global MAS context to
generate informative agent representations.

Agent Node Feature Construction To process MAS with
graph learning models, a key step is to convert the agent-
level textual responses into node features. Given an agent
v;, the textual response R; is encoded into a pre-trained
SentenceBERT (Reimers and Gurevych 2019) to map the
response text to a dense vector X;:

x; = SentenceBERT (R;) € R”, 2)

where D is the dimension of feature vectors. In this way,
the compact vectors can serve as node-level features of the
input of graph neural network (GNN)-based GAD models.
Note that the SentenceBERT encoder is kept frozen during
the entire training process, which significantly reduces the
training cost and avoids the need for large-scale language
model fine-tuning.

Hierarchical Graph Encoding After acquiring the agent
node features, we establish a GNN model in BlindGuard
to learn expressive agent representations, which are subse-
quently used for malicious agent classification. While con-
ventional GNNs (Wu et al. 2020; Kipf and Welling 2017)
and GAD models (Qiao et al. 2024) are typically based on lo-
cal neighborhood aggregation, they may overlook the global
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Figure 2: The designing workflow of our proposed BlindGuard.

interaction patterns of the whole graph. Such global pat-
terns, however, are essential for accurately detecting mali-
cious agents in MAS, since malicious agents may coordinate
their actions or influence others indirectly, requiring a system-
level view to uncover these threats.

To bridge the gap, in BlindGuard, we design a hierar-
chical graph encoder that explicitly constructs the agent-
level representations by incorporating information from three
levels: @ Agent level, which captures individual semantic
features of each agent derived from its textual response;
® Neighbor level, which aggregates contextual information
from directly connected agents to model local interactions;
and © System level, which integrates global information
across the entire MAS graph to capture long-range depen-
dencies and collective behavior patterns. To implement this,
we design a “summarization-transformation” architecture for
multi-scale information fusion, similar to the “propagation-
transformation” architecture of some lightweight GNNs (Wu
etal. 2019; Zhang et al. 2022). Different from the propagation
operations that only aggregate the 1-hop neighbors, in our
summarization step, we integrate three complementary per-
spectives: ego-level features h¥® to capture information of

individual agent, neighbor-level features h?“" to model local

contexts, and global-level features h¥™" to expose system-
wide contexts. After the integration, we use a unified trans-
formation to learn the compact representation for each agent.
Formally, the representation z; of agent v; can be calculated
by:
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where V(i) denotes the set of neighbors of agent i, A repre-
sents the normalized adjacency matrix, [V indicates the total

number of agents in MAS, || is the concatenation operation,
and gy (-) is a multilayer perceptron (MLP) parameterized by
0. Using the comprehensive representations, BlindGuard can
detect both isolated attackers through neighborhood diver-
gence analysis and coordinated attack groups through global
behavioral divergence, thereby providing robust protection
against potential MAS threats.

Corruption-Guided Attack Detector

Following the agent encoder, our corruption-guided attack
detector aims to identify the malicious agents without any
prior knowledge. Since ground-truth responses from attacked
agents are unavailable during the training phase, we adopt a
corruption-based strategy to simulate the semantic perturba-
tions induced by adversarial attacks. Based on the simulated
samples, we leverage a supervised contrastive learning objec-
tive to train the detection model, and then use a contextual
similarity measurement to evaluate the abnormality of agents
during inference.

Corruption-based Attack Simulation In our unsuper-
vised defense scenario, the absence of labeled abnormal
agents poses a significant challenge in the pattern under-
standing and training objective design. To address this issue,
a practical solution is to synthesize pseudo-abnormal agents
through data corruption of normal agent features. Follow-
ing the basic assumption that attacked agents may produce
significantly deviated responses that differ from the normal
semantic patterns of MAS, we propose to model such devia-
tions at the semantic level. However, directly manipulating
the raw text is both difficult and costly due to the complexity
of language structure and semantics. Hence, in BlindGuard,
we alternatively simulate corruption in the embedding space,
i.e., the feature vectors produced by SentenceBERT. In this
continuous and compact embedding space, we can directly
inject random noise instead of manipulating discrete text.



Specifically, we randomly select a subset of agents in the
MAS as abnormal samples. For selected agents, we synthe-
size realistic abnormal features by applying a magnitude-
scaled directional corruption function to their output repre-
sentations. The noise is directionally uniform after normaliza-
tion and scaled according to the original feature magnitude of
each agent. Formally, given the output representation of the
agent x;, the corruption function generates abnormal features
as: .

ii:X¢+a||Xi||2~7l, EiNN(O,I), (5)
—— leill2
magnitude
direction

where « is a scaling hyperparameter controlling the corrup-
tion intensity.

Training: Supervised Contrastive Learning By system-
atically injecting directional noise into the representations
of normal agent outputs, we create ample abnormal samples
that can provide supervision signals for training. A straight-
forward strategy to leverage them is to train a binary classifi-
cation model with these pseudo labels. Nevertheless, the gap
between synthetic samples and real-world malicious agents
may limit the test-time generalizability of the classifier.

Instead of using a binary classifier, in BlindGuard, we
employ a supervised contrastive learning strategy to utilize
the synthetic anomalies for model training. Our core idea
is to maximize the similarity among normal agents, and
minimize the similarity between normal and malicious ones.
This explicit optimization creates clearer decision boundaries
between the normal agents and the corrupted ones, while
avoiding overfitting to specific synthetic corruption patterns.
Mathematically, the supervised contrastive learning loss is
defined as:

11 eSi/T
L=—-—) —= log | — — |
W s ()

JER;

(6)
where s; ; =z z;/(||zi]|||z;||) denotes the cosine similarity
between normalized representations of agents v; and v;, and
P, ={j | yj = vi,J # i} defines the positive sample set con-
taining all agents sharing the same anomaly label as v; (with
y; = 0 for normal agents and y; = 1 for corrupted agents).
Through this training process, BlindGuard clusters agents
with similar behavioral patterns in adjacent regions of the
embedding space while isolating potential malicious agents,
thereby establishing the foundation for test-time anomaly
detection.

Inference: Contextual Similarity Measurement After
the regularization of supervised contrastive learning loss, the
representations z of normal agents can be similar to each
other, while those of anomalous agents remain distant in
the representation space. Leveraging this property, during
inference, we measure the anomaly score s(-) of each agent
by calculating the negative average similarity between the
target agent and all other agents:

| X
s(v;) = *NZSim(ZuZ]‘)~ @)
j=1

The anomaly score of agent v; increases proportionally with
its deviation from the global representation pattern of the
MAS in the embedding space.

Pruning-based Remediation

Upon detecting anomalous agents Végc C V at timestep t,
our method dynamically isolates them through bidirectional
edge pruning, redefining the interaction topology as:

ED) = {e; € €D v ¢ VL. (8)
This intervention severs all adversarial communication path-
ways by removing edges incident to/from anomalies while
preserving legitimate interactions among normal agents.
Given the remediated edge set £, each agent v; updates

its state by exclusively integrating messages from its trusted
neighbors in the pruned topology:

R = 1iM(QU{RY ey € €}). )

This combination of detection and remediation mech-
anisms positions BlindGuard as an unsupervised defense
method for real-world MAS deployments, particularly in ad-
versarial environments where traditional defense methods
fail to adapt to evolving and unknown attack strategies. An
algorithmic description of BlindGuard is in Appendix B.

Experiments

In this section, we try to answer the following research ques-
tions (RQs) via empirical studies: RQ1: How does Blind-
Guard compare with state-of-the-art defense methods under
different attack types? RQ2: Can BlindGuard maintain ro-
bust defense capabilities across diverse LLM and topologies?
RQ3: Can BlindGuard maintain consistent defense perfor-
mance when scaling to larger MAS? RQ4: What is the rela-
tive contribution of key components in BlindGuard?

Experimental Setups

Datasets Following G-Safeguard (Wang et al. 2025), we
evaluate the defense capabilities of BlindGuard against
three attack strategies: (1) direct prompt attacks using
adversarial samples from CSQA (Talmor et al. 2018),
MMLU (Hendrycks et al. 2021) and GSMS8K (Cobbe et al.
2021); (2) tool attacks constructed from the InjecAgent
dataset (Zhan et al. 2024b); and (3) memory attacks con-
figured according to PoisonRAG (Nazary, Deldjoo, and Noia
2025) and CSQA (Talmor et al. 2018).

Baselines We compare our approach with the following
anomalous agent detection methods. G-Safeguard (Wang
et al. 2025) is a graph-based defense framework that formu-
lates malicious agent detection as a supervised classification
task using GNNs. Note that G-Safeguard serves as an upper
bound in our experiments, since it uses extra ground-truth
attacked agent data for supervised model training. For un-
supervised methods, we take representative GAD methods
for comparisons, including: DOMINANT (Ding et al. 2019),
a generation-based method; PREM (Pan et al. 2023), a con-
trastive learning-based method; and TAM (Qiao and Pang
2023), an affinity-driven method.



Topology Method

PI (CSQA)

PI (MMLU)

PI (GSMSK)

TA (InjecAgent) MA (PosionRAG)

MA (CSQA)

AUC ASR@3 AUC ASR@3 AUC ASR@3

AUC ASR@3 AUC ASR@3 AUC ASR@3

No Defense - 38.33 - 34.67 - 9.83 - 48.00 - 22.33 - 26.00
G-Safeguard 100.00 19.67 98.22 17.00 98.22 440 100.00 10.24 100.00 6.00 94.67 5.67
Chain DOMINANT 4222 28.00 53.78 24.67 67.56 847 88.00 1498 64.44 14.00 2756 35.33
PREM 51.56 2633 48.00 2633 6222 879 89.33 15.17 61.33 16.33 5778 17.33
TAM 26.67 5778 49.33 25.00 51.56 8.84 61.33  30.04 50.67 17.67 53.78 18.67
BlindGuard  79.11 25.00 84.89 21.33 69.33 847 86.22 1638  81.33 15.67 74.67 12.33
No Defense - 33.33 - 33.33 - 10.20 - 45.05 - 20.33 - 20.33
G-Safeguard 100.00 18.33 99.11 1833 99.11 7.80 100.00 4.76 99.56 8.00 90.67  9.00
Tree DOMINANT 47.11 25.67 5644 20.67 6844 6.78 88.44 1533 6444 11.00  29.78 22.67
PREM 5244  25.67 4178 2156 5333 847 85.78 16.21 56.89 11.67 5822 18.67
TAM 56.89 25.00 54.67 2133 5467 8.14 61.33 3201 5822 12.33 55.56 17.33
BlindGuard  75.56  20.67 79.56 20.33 59.55 847 85.78 12.50 76.44 10.00 77.33 13.33
No Defense - 46.33 - 42.33 - 12.89 - 43.57 - 23.33 - 24.67
G-Safeguard 100.00 18.33 99.11 18.00 98.22 6.10 100.00 6.87 100.00 7.33 95.11 5.67
Star DOMINANT 47.56 30.33 55.11 24.67 69.78 7.80 89.33 1433  62.67 14.67 27.56 35.33
PREM 51.56 32.67 4533 2733 59.56 10.51 93.78 1468 62.22 12.67 5644 25.33
TAM 60.00 28.00 64.89 2533 6844 8.14 71.11  26.57 62.67 20.00 59.56 18.00
BlindGuard  82.67 24.00 8533 21.33 70.22 6.78 93.78 12.59 85.33 12.00 74.67 12.33
No Defense - 35.67 - 48.33 - 14.48 - 39.78 - 26.21 - 31.33
G-Safeguard  98.22 18.67 99.56 19.33 99.11 3.79 98.22 5.14 97.70 10.34 9156  7.67
Random Dominant 4489 3367 60.00 31.00 69.78 10.51 84.63 1493  61.33 18.33 25.78 35.33
PREM 53.33  31.67 4085 33.09 69.78 10.51 86.22 1449 61.33 12.33 57.78 25.33
TAM 47.11 36.67 47.56 38.00 4622 1491 52.00 3578 48.44 25.33 51.11 26.33
BlindGuard  76.89  23.67 84.00 24.67 75.56 6.44 79.56  17.69  82.22 9.67 74.67 16.00

Table 1: AUC and ASR@3 of different defense methods with GPT-40-mini serving as the backbone LLM. Following G-
safeguard (Wang et al. 2025), we consider three types of attack: Prompt injection (PI), tool attack (TA), and memory attack (MA).
We showcase results after round 3 communications (ASR@3), and the additional results are placed in Appendix D.
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Implementation We evaluate the defensive capabilities of
BlindGuard through comprehensive experiments spanning
multiple attack types, topological structures, and LLM back-
bones. Following G-Safeguard, our testing framework em-
ploys three primary attack methods: direct prompt, tool attack,
and memory poisoning. For network topologies, we exam-
ine four distinct MAS structures - chain, tree, star, and ran-
dom - to validate generalization across communication pat-
terns. The experiments incorporate both open-source LLMs

(Qwen3-30B-A3B (Yang et al. 2025), Deepseek-v3 (Liu et al.
2024)) and commercial LLMs (GPT-40-mini) as agent back-
bones. Critical performance metrics include Attack Success
Rate after three communication rounds (ASR@3) and Area
Under Curve (AUC) of malicious agent detection. To ensure
fairness and practicality, we set a budget to identify the top
three agents with the highest risk in the MAS as the predicted
malicious agents. More experimental setups can be found in
Appendix C.

Experimental Results

Performance Comparison (RQ1) We evaluate the effec-
tiveness of BlindGuard on GPT-40-mini backbone in four
topologies against three attack types. We list the comparison
results in Table 1 and Figure 3, which lead to the following
observations. @ BlindGuard significantly outperforms other
unsupervised methods in defense capability. Compared to
other GAD-based solutions, BlindGuard achieves competi-
tive defense performance consistently against all attack types.
In contrast, the baselines sometimes fail in several scenarios,
such as TAM and PREM on PI (CSQA) and DOMINANT
on PI (MMLU). The superior performance demonstrates the
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Figure 4: ASR @3 with DeepSeek-V3 and Qwen3-30B-A3B as backbone LLMs on the CSQA and PoisonRAG datasets.

significance of designing a specific model for unsupervised
malicious agent detection. @ BlindGuard shows competitive
performance compared to supervised upper bound. While
G-Safeguard, which relies on labeled attacked data for train-
ing, achieves the best overall defense performance, Blind-
Guard shows comparable effectiveness in most cases, with an
AUC> 80%. This illustrates the feasibility of training an ef-
fective and universal defense model for MAS without relying
on annotated data. ® BlindGuard effectively improves re-
sponse accuracy of MAS under adversarial attack. As shown
in Figure 3 (more can be found in Appendix D), the response
accuracy of MAS exhibits a clear downward trend as dia-
logue turns increase across all topologies without defense.
While all implemented defense methods show improvements,
BlindGuard demonstrates superior and consistent defense
capabilities compared to existing unsupervised defense meth-
ods.

Universal Generalization (RQ2) To investigate the gen-
eralizability of BlindGuard, we conducted additional exper-
iments using DeepSeek-V3 and Qwen3-30B-A3B as back-
bone LLMs on the CSQA and PoisonRAG datasets, as
shown in Figure 4 (more can be found in Appendix D).
Through experiments, we make the following observations.
O BlindGuard obtains robust defense performance when
deployed with diverse LLM and topologies. As shown in
Figure 4, BlindGuard maintains robust defense performance
in ASR@3 and AUC across different LLM backbones and
topological structures. This stable performance confirms that
BlindGuard effectively captures universal adversarial patterns
rather than overfitting to specific LLM or topologies. & Blind-
Guard successfully generalizes to different attack types on the
same dataset using one universal trained model. As shown in
Table 1, while supervised defense methods like G-Safeguard
require training specialized models for different attack types
on the same dataset (e.g., CSQA), BlindGuard achieves de-
fense using a single model for both attack types (i.e., PI and
MA). This property shows the potential of BlindGuard to be
a universal defense model against different unseen attacks.

Scalability (RQ3) To investigate the scalability of Blind-
Guard to larger-scale MAS, we report defense performance of
PoisonRAG across systems with 20 and 50 agents, as shown
in Table 2. We observe that @ BlindGuard consistently miti-
gates adversarial impact across all rounds (RI-R3) in larger-
scale MAS. The scalability of BlindGuard is caused by its

Agent

Method R1 R2 R3
Num
20 No Defense 15.89 23.22 29.51
BlindGuard  3.51 4.54 5.57
50 No Defense 5.67 16.31 20.92
BlindGuard 1.81 2.66 3.76

Table 2: ASR@3 on different agent numbers and rounds.

BlindGuard w/o NL w/o GL w/o (NL & GL)

AUROC
Attack Success Rate

Random  Chain Star Tree
Defense Performance (Lower is better)

**“Random _ Chain Star Tree
Detection Performance (Higher is better)

Figure 5: Ablation study on PoisonRAG. NL and GL denote
neighbor-level and global-level features, respectively.

topology-agnostic design, where hierarchical agent encoder
and corruption-guided attack detector eliminate dependen-
cies on fixed agent numbers or interaction patterns, thereby
ensuring consistent performance across diverse scales. This
defense under scaling demonstrates the practicality of Blind-
Guard for real-world large-scale MAS.

Ablation study (RQ4) To study the hierarchical agent en-
coder’s role in BlindGuard is quantified, we conduct an abla-
tion study on the PoisonRAG dataset. As shown in Figure 5,
we observe that @ anomaly detection in MAS requires a com-
bination of both local neighborhood interactions and global
system context. Removing neighborhood and global context
features leads to significant performance degradation, and
their combined absence causes a severe drop, highlighting
the critical role of structural context beyond agent-level fea-
tures. This observation shows the significance of combining
information at multiple levels.

Conclusion

In this paper, we present BlindGuard, an unsupervised de-
fense method for LLM-based MAS that integrates hierar-



chical agent encoder and corruption-guided attack detector.
By fusing agent-level, neighborhood, and global informa-
tion, BlindGuard achieves robust protection without requir-
ing attack-specific training data. Experimental results demon-
strate that BlindGuard effectively mitigates diverse attacks
across various topologies while maintaining scalability. This
work advances the security of MAS by providing a practi-
cal and attack-agnostic defense solution, shedding light on
generalizable defenses for LLM-based MAS.
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A. Related Work
LLM-based Multi-agent System

Recent advances in LLM-based MAS have demonstrated
remarkable capabilities in general task-solving. The perfor-
mance of MAS is predominantly determined by collabora-
tion and communication among agents with diverse roles and
expertise (Tran et al. 2025), where well-structured commu-
nication can improve overall effectiveness. Modern LLM-
based MAS implementations employ varied collaboration
strategies to optimize performance. Sequential reasoning and
debate-based role specialization (Li et al. 2024¢) have proven
particularly effective for knowledge-intensive tasks, while
centralized planning architectures demonstrate superior per-
formance in goal-oriented scenarios. Notable frameworks
include conversational agent networks in AutoGen (Wu et al.
2024), the developer-centric platform in AgentScope (Gao
et al. 2024), and phase-structured software development in
ChatDev (Qian et al. 2023). The effectiveness of LLM-based
MAS has been closely tied to the quality of its communica-
tion topologies. Recent research has explored MAS based on
graph algorithms (Zhang et al. 2025a,b). Despite their effec-
tiveness, these graph-based MAS topologies remain vulnera-
ble to adversarial manipulation, where malicious agents can
exploit the communication structure to inject misinformation,
disrupt coordination, or compromise collective decisions.

Security of LLM-based MAS

Despite the effectiveness of LLM-based MAS, this advance-
ment has introduced novel security risks, particularly threats
that exploit agent memory (Chen et al. 2024) and tool-
handling mechanisms (Zhan et al. 2024a). The most se-
vere threats target message-passing mechanisms (Zhou et al.
2025), enabling malicious attackers to implant prejudiced
content. NetSafe (Yu et al. 2024) pioneers the study of net-
work structure vulnerabilities, identifying bias propagation
patterns in a multi-agent utterance graph. G-Safeguard (Wang
et al. 2025) advances supervised detection of compromised
agents through graph neural networks and topological reme-
diation. A-Trust (He et al. 2025) develops attention-based
trust metrics by analyzing violation patterns across six funda-
mental trust dimensions. While these methods can mitigate
certain security threats, they heavily rely on labeled malicious
agents or prior knowledge of attack patterns, which may not
be available in real-world MAS deployments.

B. Algorithm

For a detailed implementation of our proposed BlindGuard,
please refer to Algorithm 1.

C. Detailed Experimental Setup

We employ the Adam optimizer (Kingma and Ba 2014)
with an initial learning rate of 0.001 and L2 regularization
(weight decay € {5 x 1075,107%,2 x 10~*}). The learning
rate is dynamically adjusted using a cosine annealing sched-
uler (T,.x = 10 cycles and nyin = 107°) to facilitate better
convergence. All models are implemented with a hidden di-
mension of 512 and trained on 4 NVIDIA L40 GPUs.

Algorithm 1: BlindGuard

Input: Normal MAS graphs {G1, ..., Gr, }, Attacked MAS
graphs {G1, . .. ,g}a }, hierarchical agent encoder gy,
Intensity parameter v and Anomaly budget K.
Output: Final responses {R1, ..., Rr, } of all remediated
MAS {G},...,Gr7. }
for each normal MAS G; € {G1,...,Gr,} do
for each agent v; € G; do
x; < SentenceBERT(R,)

1:

2

3

4 // Node feature construction.
5:  end for

6:  Sample subset Veorr C V

7 for each agent v; € Vo do

8

xj ¢ x; + ol |2 - € ~ N(0,)
9: // Feature corruption.
10:  end for
11:  for each agent v; € G; do
12: h!l — x;
13: h;eigh — Zke./\f(j) fljkxk
14: h?raph — % chvzl X
15: z; < go(h!" || HIFE" || RERPY)
16: // Obtain agent representations.
17:  end for

18:  Calculate supervised contrastive loss £

19:  Update 6 via gradient descent /¢ [L]

20: end for

21: for each attacked MAS G/ € {G1,..., G}, } do

22:  for each agent v; € G, do

23: x; < SentenceBERT(R,)
24 Zj < fg(Xj7g£)

25: Sj 4 — Z]kvzl sim(z;, zy,)
26: // Compute anomaly score.
27:  end for

28: Vi < Top-K agents with highest s;

29:  ET «+ {6kj €& | vk & V)

30: // MAS remediation.

31:  for each agent v; € G; do

32: R; < LLM (Q U {Rk | erj € 5+})

33:  end for »

34:  Determine the final answer R; by aggregating all
agent responses (e.g., majority voting)

35: end for _

36: return {Rq,...,Rp,}

D. Additional Experiments

To further validate the effectiveness of our proposed Blind-
Guard, we conduct additional experiments. As shown in Fig-
ure 6, the experiments demonstrate BlindGuard’s consistent
performance advantages, showing superior AUC scores over
Dominant, PREM, and TAM across four topologies with
both DeepSeek-V3 and Qwen3-30B-A3B LLMs on CSQA
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Figure 6: The AUC with DeepSeek-V3 and Qwen3-30B-A3B as backbone LLMs on the CSQA and PoisonRAG datasets.

CSQA (PI) | MMLU (PI) | GSMSK (PI)
Topology  Defense R1 R2 R3 ‘ Topology  Defense R1 R2 R3 ‘ Topology  Defense R1 R2 R3
ND 0.283  0.363  0.383 ND 0.273 0317  0.347 ND 0.064  0.092  0.098
Dom 0.253  0.290  0.280 Dom 0.207  0.230 0.247 Dom 0.071  0.088  0.085
. PREM 0.243 0247  0.263 . PREM 0.237 0257  0.263 . PREM 0.061 0.075  0.088
Chain Chain Chain
TAM 0.247  0.263  0.267 TAM 0220 0.240 0250 TAM 0.064  0.088  0.088
BG 0213 0233  0.250 BG 0.197 0200 0213 BG 0.061 0.085  0.085
GS 0.187  0.193  0.197 GS 0.167 0.160  0.170 GS 0.044  0.044  0.044
ND 0.260  0.337  0.333 ND 0.257 0.327  0.333 ND 0.075  0.082  0.102
Dom 0223 0.253 0257 Dom 0.193  0.203  0.207 Dom 0.061  0.061  0.068
Tree PREM 0.210 0230 0.257 Tree PREM 0.193  0.200  0.200 Tree PREM 0.064  0.075  0.085
TAM 0.230  0.247  0.250 TAM 0210 0.230 0213 TAM 0.071  0.075  0.081
BG 0.213 0210 0.207 BG 0203  0.207  0.203 BG 0.075  0.075  0.085
GS 0.183  0.180  0.183 GS 0.170  0.170  0.183 GS 0.071  0.075  0.078
ND 0.360 0423 0463 ND 0.337 0400 0423 ND 0.071 0.115  0.129
Dom 0260  0.293  0.303 Dom 0213 0.240 0.247 Dom 0.054  0.071  0.078
Star PREM 0.290 0317  0.327 Star PREM 0227 0267 0273 Star PREM 0.068  0.095  0.105
TAM 0.223  0.277  0.280 TAM 0203 0.247 0253 TAM 0.061  0.081  0.081
BG 0.227  0.230  0.240 BG 0.187 0203 0213 BG 0.068  0.068  0.068
GS 0.197 0.193  0.183 GS 0.177  0.180  0.180 GS 0.054  0.064  0.061
ND 0290 0.337 0357 ND 0373 0453 0483 ND 0.059  0.097 0.145
Dom 0293 0357 0337 Dom 0.253 0300 0310 Dom 0.054  0.085 0.105
PREM 0.277 0310  0.317 PREM 0236 0324 0331 PREM 0.037  0.078  0.105
Random Random Random
TAM 0297 0.343 0367 TAM 0297 0360  0.380 TAM 0.047  0.098  0.149
BG 0.230  0.233  0.237 BG 0210 0.233  0.247 BG 0.041 0.054  0.064
GS 0.193  0.183  0.187 GS 0.187  0.190  0.193 GS 0.048  0.038  0.038

Table 3: Attack success rate (ASR@3) comparison of defense methods with GPT-40-mini as backbone LLMs (Part 1). ND = No
Defense, Dom = Dominant, BG = BlindGuard, GS = G-Safeguard. Lower values indicate better defense performance.
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Figure 7: The overall performance of MAS on the CSQA
dataset after each turn of dialogue. We use majority voting as
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the strategy to select the final answer.

and PoisonRAG benchmarks. Figure 7 provides extended
experimental results comparing BlindGuard with baseline
methods (Dominant, PREM, TAM, and G-safeguard) across
multiple dialogue turns, demonstrating consistent accuracy
improvements while maintaining efficient communication in
the CSQA task. As shown in Table 1 and Table 2, additional
experiments provide comprehensive multi-round ASR@3
comparisons (R1-R3) across multiple attack types and net-
work topologies, demonstrating BlindGuard’s superior perfor-
mance over Dominant, PREM, and TAM while approaching
G-Safeguard’s effectiveness throughout progressive dialogue
stages in various attack types.



InjecAgent (TA) | CSQA (MA) | PoisonRAG (MA)

Topology Defense R1 R2 R3 ‘ Topology Defense R1 R2 R3 ‘ Topology Defense R1 R2 R3
ND 0.337 0442 0480 ND 0.150  0.237  0.260 ND 0.127  0.193  0.223
Dom 0.153  0.142  0.150 Dom 0.167  0.187  0.210 Dom 0.093  0.127  0.140
. PREM 0.147  0.152  0.152 . PREM 0.147  0.173  0.173 . PREM 0.090 0.147  0.163
Chain Chain Chain
TAM 0.243  0.293  0.300 TAM 0.140  0.173  0.187 TAM 0.130  0.167  0.177
BG 0.142  0.178  0.164 BG 0.067 0.093  0.123 BG 0.093  0.133  0.157
GS 0.122  0.108  0.102 GS 0.067  0.060  0.057 GS 0.050  0.063  0.060
ND 0289 0428 0451 ND 0.130  0.200  0.203 ND 0.107  0.170  0.203
Dom 0.146  0.149  0.153 Dom 0.150  0.220 0.227 Dom 0.087 0.113  0.110
PREM 0.159 0.182  0.162 PREM 0.157  0.133  0.187 PREM 0.060 0.087 0.116
Tree Tree Tree
TAM 0.231 0.289  0.321 TAM 0.157  0.147  0.173 TAM 0.060 0.117  0.123
BG 0.142  0.143  0.125 BG 0.090 0.103  0.133 BG 0.060  0.090  0.100
GS 0.076  0.061 0.048 GS 0.110  0.070  0.090 GS 0.050  0.067  0.080
ND 0.368 0482 0436 ND 0.127 0213 0.247 ND 0.107 0.187  0.233
Dom 0.130  0.151 0.143 Dom 0.183 0297  0.353 Dom 0.093  0.123  0.147
Star PREM 0.132  0.139  0.147 Star PREM 0.173 0240 0253 Star PREM 0.070  0.103  0.127
TAM 0246  0.266  0.266 TAM 0.120  0.160  0.180 TAM 0.117  0.180  0.200
BG 0.118 0.132  0.126 BG 0.047  0.103  0.123 BG 0.050 0.103  0.120
GS 0.085 0.072  0.069 GS 0.053  0.027  0.057 GS 0.037  0.057 0.073
ND 0336 0409 0398 ND 0.157 0267 0313 ND 0.128 0.210  0.262
Dom 0.144  0.160 0.149 Dom 0.193 0310 0353 Dom 0.100  0.153  0.183
PREM 0.115 0.136  0.145 PREM 0.140  0.230  0.263 PREM 0.067 0.110 0.123
Random Random Random
TAM 0.321 0.383  0.358 TAM 0.147 0220 0.263 TAM 0.153 0237 0.253
BG 0.125  0.173  0.177 BG 0.053  0.110  0.160 BG 0.037  0.067  0.097
GS 0.079  0.066  0.051 GS 0.077  0.080  0.077 GS 0.041 0.090 0.103

Table 4: Attack success rate (ASR@3) comparison of defense methods with GPT-40-mini as backbone LLMs (Part 2). Abbrevia-
tions same as in Table 1.



