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Abstract

Advancement of machine learning techniques, combined
with the availability of large-scale datasets, has signifi-
cantly improved the accuracy and efficiency of facial recog-
nition. Modern facial recognition systems are trained us-
ing large face datasets collected from diverse individuals or
public repositories. However, for training, these datasets
are often replicated and stored in multiple workstations,
resulting in data replication, which complicates database
management and oversight. Currently, once a user submits
their face for dataset preparation, they lose control over
how their data is used, raising significant privacy and eth-
ical concerns. This paper introduces VOIDFace, a novel
framework for facial recognition systems that addresses two
major issues. First, it eliminates the need of data replica-
tion and improves data control to securely store training
face data by using visual secret sharing. Second, it pro-
poses a patch-based multi-training network that uses this
novel training data storage mechanism to develop a robust,
privacy-preserving facial recognition system. By integrat-
ing these advancements, VOIDFace aims to improve the pri-
vacy, security, and efficiency of facial recognition training,
while ensuring greater control over sensitive personal face
data. VOIDFace also enables users to exercise their Right-
To-Be-Forgotten property to control their personal data.
Experimental evaluations on the VGGFace2 dataset show
that VOIDFace provides Right-To-Be-Forgotten, improved
data control, security, and privacy while maintaining com-
petitive facial recognition performance. Code is available
at: https://github.com/ajnasmuhammed89/
VOIDFace

1. Introduction

Facial Recognition (FR) uses facial patterns to automat-
ically identify or verify an individual. In the era of Artifi-
cial Intelligence (AI), rapid advancement of various learn-
ing models, hardware, and large dataset availability signifi-
cantly enhances FR accuracy and performance. Due to this,
FR has become an integral part of a wide range of secu-

rity applications, ranging from smartphone unlocking [27]
to immigration and border checks [13].

With widespread popularity, a significant concern com-
ing out is the protection of highly sensitive face data. Differ-
ent regulatory bodies such as the Al act [8] and EU General
Data Protection Regulation (EU-GDPR) [31], USA’s Cal-
ifornia Consumer Privacy Act (CCPA) [28], China’s Per-
sonal Information Protection Law (PIPL) [9], among others,
call for high demand on safe FR to eliminate the misuse and
leakage of facial data. These legal bodies make an effort to
ascertain that the face appearances are both visually hidden
from unauthorized viewing, and challenging for malicious
attackers to retrieve at different phases of FR.

Table 1. popular public face datasets.

Average
Dataset Images T(_)tal image
size R
size
VGGFace2 [3] 3.3 1M images of 9,131 ~35GB  10-20KB
people
500K+ images of celebrities
%I])B'WIKI from IMDDb and Wikipedia, ~100GB  ~200 KB
. labeled with age and gender
MS-Celeb-1M ~10M images of 100,000 ~100 GB 50-150KB
[11] celebrities
Google’s Open Part of a larger Open Images
Images Face dataset with millions of label- ~20GB 50-200 KB
Subset [1] ed objects
Asian Face . ) e A
Dataset (AFD) ;651( images of East Asian ~23GB ~15KB
[38] aces
CASIA-WebFace SOOK images of 10,575 ~2.8GB 510 KB
[22] individuals
FaceScrub [24] 100K images of 530 actors ~1.5GB ~15 KB
200K+ celebrity images with
CelebA [41] 40 attribute labels ~1.4 GB 50-100 KB
WIDERFACE 32,203 images and 393,703
[39] labeled faces. ~L5GB  50-150KB
LFW [17] 13K+ images of 5,749 people ~200 MB 50-100 KB

The increasing adoption of FRS has led to the creation
of large facial datasets, and the availability of these datasets
reciprocally enhances the performance and scalability of
FR algorithms. Table 1 delineates information regarding
various prominent public face datasets, including their esti-
mated sizes. Most of the time, dataset development adher-
ing to established regulations and standards are challenging
[12]. Even with datasets constructed in adherence to le-
gal and ethical standards, the user’s inherent right to control
their personal data, remains challenging to enforce.

A notable challenge in the facial datasets is their exten-
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sive replication. Replication happens when different or-
ganizations seek to train the FR models, each necessitat-
ing an independent copy of the substantial datasets present
in their respective repositories. The growth of these large
datasets, along with their replication across various work-
stations, not only consumes considerable storage resources,
but also presents extreme difficulties in maintaining user
control over their own personal data.

Currently, when individuals contribute with their facial
data, they relinquish control on how their information is uti-
lized. There is no mechanism to enforce the Right-To-Be-
Forgotten (RTBF) property, which allow users to withdraw
consent and prevent their face from being used in future
training, even when current regulations, data protection and
treatment policies are obliged to include rules for the dele-
tion of personal data once a person withdraws their consent.
Now, once the data has been incorporated into a dataset,
any attempt to enforce this property is impossible. Due to
this, the individual’s ability to manage their personal infor-
mation is undermined, and they are left with no recourse to
ensure that their data is not perpetuated or utilized in ways
that they may no longer approve of. As a consequence, the
ethical and legal challenges associated with data ownership
and user consent have not been resolved, which highlights
a significant gap in the existing frameworks.

Another challenge in FR arises from Model Inversion
(MI) attacks. MI attacks are first coined in [10], and are
less examined in FR domain. MI attacks present a substan-
tial risk to the security and privacy of FRS by exploiting
weaknesses in ML models to reconstruct facial images uti-
lized in training [7]. These attacks utilize the model’s out-
put, including confidence scores or embeddings, to reverse-
engineer and approximate the original input data. The via-
bility of such reconstructions presents significant privacy is-
sues, as it may reveal sensitive facial information. Attackers
may exploit this vulnerability to obtain private face images
used in a FR model training. MI attacks pose challenges to
compliance with data protection regulations, including the
GDPR [31]. The absence of strong protections against MI
attacks reveals a significant deficiency in the technical and
regulatory frameworks overseeing FR technologies, requir-
ing immediate actions to address these vulnerabilities.

Considering all these, this paper introduces a novel
framework called VOIDFace, with secure training data stor-
age and a distributed patch-based training mechanism with
the help of Visual Secret Sharing (VSS) [23]. Here, VOID-
Face framework is divided into two parts, the former pro-
poses a novel mechanism to store training data, and the lat-
ter shows a secure distributed training framework using the
stored data. Thus, the VOIDFace presents a four-fold con-
tribution:

1. VOIDFace is the first method which tries to solve the
problem of training data replication issue.

2. VOIDFace is also the first method which introduces
the property called RTBF, which allows users to decide
whether their face can be used for further training and
provide ultimate control over their data.

3. VOIDFace introduces a privacy preserving patch based
distributed training mechanism which can efficiently
use the proposed storage framework.

4. VOIDFace uses training with secret shares instead of
whole face image, making the FR training safer and
secure against MI attacks.

Section 2 briefly explains different related works. De-
tailed explanation of different phases in VOIDFace is ex-
plained in section 3. The experiments results and discus-
sion are explained in section 4, followed by conclusion in
section 5.

2. Related works
2.1. Privacy preserving FR

Privacy-preserving FR techniques aim to authenticate or
identify individuals while protecting their facial data from
misuse. These methods often employ encryption, such as
homomorphic encryption [40], which allows computations
on encrypted data without decryption, ensuring sensitive fa-
cial features remain secure. Another approach is federated
learning [36], where models are trained across decentral-
ized devices without sharing raw data, thus minimizing pri-
vacy risks. Techniques like Secure Multi-Party Computa-
tion (SMPC) also enable collaborative face matching with-
out exposing biometric templates [33]. Additionally, differ-
ential privacy [4] can be applied to add noise to datasets,
preventing the re-identification of individuals while main-
taining recognition accuracy.

2.2. Federated learning

Federated learning is a decentralized machine learning
framework that enables multiple entities or devices to col-
laboratively train a shared model while keeping data lo-
calized. This approach is particularly valuable in scenar-
ios where data privacy, security, and regulatory compliance
are paramount, such as in healthcare, finance, biometrics,
etc. By storing data locally and sharing only model updates,
federated learning minimizes the risk of data breaches, en-
hances privacy and security, and ensures compliance with
regulations like the EU-GDPR [31]. Adhering to the prin-
ciples defended by different regulations such as the EU-
GDPR, is critical for any technology handling personal
data, including federated learning systems. Several studies
have explored how FL can be designed to meet these reg-
ulatory requirements [34]. Additionally, federated learning
reduces the need for large-scale data transfers, conserving
bandwidth and computational resources.



2.3. Visual Secret Sharing

Visual Secret Sharing (VSS) is a cryptographic method
that partitions visual information into multiple shares, each
of which appears as independent random noise images,
yet collectively discloses the original image when superim-
posed [16]. The primary benefits of VSS include: 1. im-
proved security, since individual shares disclose no infor-
mation, 2. ease of reconstruction without intricate calcula-
tions, merely stacking the shares, 3. avoid use of key for
both encryption and decryption, and 4. versatility, as it is
compatible with both digital and printed formats, rendering
it exceptionally adaptable for secure communication. Thus,
VSS is extensively used in different state-of-the-art appli-
cations, such as medical data security [20], resource con-
strained applications [2] and many more [29].

In VSS, the access structure defines the rules to de-
termine the qualified and forbidden sets required for col-
laborative reconstruction of the hidden images [32]. In a
(k,n)VSS, where n represents the total number of shares,
and k is the minimum number of shares needed for recon-
struction, any subset of shares with size > k£ is considered
as a qualified set and otherwise forbidden set. For a multiple
image VSS, the access structure is defined as follows:

Access structure: Let S represent a finite set of shares,
with m € N (where N denotes the set of natural numbers)
hidden images. For i € {1,2,...,m}, let Q° and F* be
subsets of the power set 2°, such that @ N F¥ = NULL.
The access structure I'* = {(Q*, F?) }Zl for m hidden
images (secrets) is valid if monotonicity (Eq. 1) holds for
Q" and F*.

Ae@Q" AN ACB = BeQ'

) ; 1
BeF* N ACB = AcF*®

forall A, BC Sandi€{1,2,...,m}, and uniqueness (Eq.
2),

i#j= (Q),N(F),=NULL ()
for all 4, j € {1,2,...,m}, and (Qi)o, (Fj)o represents
the minimal element of Q and F7, respectively. Here, Q°
and IV represent the qualified and forbidden set of i*" and
jt" secret, respectively. In an access structure, if every sub-
set of the shares are included in either () or F, then it is
called perfect access structure. A perfect access structure
can be represented using the qualified set Q (F = 2° — Q).
Generally, the qualified set is represented using its minimal
elements (Q),.

3. System design

This section provides a comprehensive overview of
VOIDFace storage and training system design. VOIDFace
is the first work that tries to solve the problem of training
data replication, provide data control with RTBF property,
and with secure privacy preserving training. Hence, the sys-
tem is built on the following assumptions,

Assumption: Only front faces are considered.

Justi fication: Front facing images are common in the
case of numerous verification and identification applica-
tions such as, immigration, ID verification, and many more.
Front facing images provide a clear, unobstructed view of
the face, which is essential for the FR model to learn key
facial landmarks such as the eyes, nose, mouth, and overall
facial structure. Moreover, these key facial landmarks have
a significant contribution in VOIDFace framework.

Assumption: Presence of a trusted third party.

Justi fication: Conventional privacy preserving FR fo-
cuses on security of FR models. Whereas, VOIDFace fo-
cuses on both secrecy of training data and privacy preserv-
ing training. Hence, a preprocessing phase is mandatory to
safeguard and store the training data after the acquisition.
The presence of an entity is mandatory to initiate such pre-
processing phase. Therefore, the inclusion of a trusted third
party or server is essential in this design.

Assumption: Availability of N data storage units and
N, training nodes.

Justi fication: As VOIDFace uses distributed mecha-
nism (like federated learning) for secure training data stor-
age and patch based training, N data storage units and N,
training workstations are needed. The values of N and N,
are selected according to the number of available storage
unit, and number of extracted landmarks from a face image,
respectively.

Figure 1 presents the block diagram of VOIDFace, with
one block depicting the training data preparation and stor-
age, and another illustrating the multi-network training. De-
tailed explanation of these stages are as follows.

3.1. Training data preparation and storage

In conventional FR, the training begins after face acqui-
sition and alignment. However, in VOIDFace, as the secu-
rity of training images forms a significant contribution, a
preprocessing step is performed before training. A trusted
third party is responsible for the entire data preparation and
storage phase. This phase is divided into three steps, patch
extraction, share generation, and share distribution. A de-
tailed description of these steps are as follows.

Patch extraction: The first step in VOIDFace training
data preparation and storage phase involves detecting and
segmenting the front facial region acquired from the user.
By isolating the face from the background and other irrele-
vant areas, the system focuses exclusively on facial features
essential for recognition. This minimizes exposure to the
full facial image, enhancing privacy.

In VOIDFace, once the facial region is extracted, the
second step involves identifying and extracting [V,, specific
privacy-preserving landmarks or patches. These patches
are meticulously selected to contain sufficient distinguish-
ing information for accurate recognition, while avoiding re-
liance on the entire facial image. After patch extraction,
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Figure 1. The block diagram of VOIDFace framework with patch identification, extraction, share generation and distribution is illustrated
in privacy preserving training data preparation and storage (left), and node section, patch training and aggregator is illustrated in privacy

preserving training network (right).

the full face image is permanently deleted and never recon-
structed at any stage within the VOIDFace framework. By
relying on the extracted IV,, patches, the system achieves re-
liable FR without storing or processing the complete face.

Share generation: After extracting all N, privacy-
preserving facial patches, these patches are resized uni-
formly and processed through the VSS module for share
generation. Since each user has IV, patches, a multiple
patch secret sharing scheme is adapted to include all IV,
patches for share generation.

In VOIDFace, each user has N, equally sized patches,
which are treated as IV, multiple secrets for share genera-
tion. Initially, a 1-out-of-N, patch (denoted as P) is en-
crypted into two random grids using a random number gen-
erator function. One of these random grids serves as the
private share (P.S7) for Py, while the other serves as the au-
thentication share (AS). Thus, for ¢ € {2,3,...,N,}, the
private share P.S; is generated as follows:

PS; =P, ® AS 3)

where AS represents the authentication (common)
share, each P; corresponds to the i** patch, with i €
{2,3,..., Np}, and & denotes the logical XOR operation.

VOIDFace framework uses a perfect access structure
with single set in qualified set ), generally known as min-
imally refined perfect access structure. The VOIDFace ac-

N .
cess structure I'Ve = {(Q’, Fz) }i=p1 for IV,, patches is for-
mulated as,

(@), = {{AS, PSi}}
(Fi)o =25 (Ql)o

Share distribution: Once the AS and private shares are
generated for each individual, the AS is stored with a
trusted third party to support the user’s RTBF property. Pri-
vate shares are distributed across various institutions to en-
able security and distributed storage mechanism. As pri-
vate shares are stored in institutions instead of complete
faces, VOIDFace eliminates the data replication problem
and introduces additional security and privacy [5], and also
mitigates the risk of single-point attacks. Consequently,
each storage location holds only one or a limited number
of shares, and thereby increasing the security.

Here, a situation can arise in which the number of private
shares (/V,s) and number of available storage institutions
(N) are different. In VOIDFace, this situation is handled as
follows,

Case 1: N,, > N, In this case, VOIDFace randomly
chooses [V private shares for further processing.

Case 2: Nps < N, In this case, first calculate j = N —
Nps, if j < Nps, then randomly selected j private shares
are encrypted into two random grids. Similarly if j > N,
then randomly selected j private shares are encrypted into
multiple random grids to make total N random grids. In
such a scenario, the private shares of P; consist of all the
random grids generated from the associated private share
PS;. This expansion supports on-demand scalability of the

“)



VOIDFace framework to accommodate the participation of
more institutions.

3.2. Privacy preserving training

After securing the training data, the privacy-preserved
distributed data is now ready for model training. This pri-
vacy preserving training is inspired on federated learning
[35]. In VOIDFace, different stages in privacy preserving
training include, node selection and dropping, patch recon-
struction, patch training, and aggregation.

Node selection and dropping: During node selection,
a set of institutions/workstations are selected for patch re-
construction and training. Even though there are differ-
ent strategies of node selection such as, random, resource
based, correlation based, energy-aware, noise-aware, and
many more, we choose a resource based selection called
FedCS [26] for VOIDFace. The main reason for this se-
lection is due to its resource aware selection, where the
client selection is based on their resource conditions, such
as computational power, bandwidth, and energy availabil-
ity. FedCS is designed to handle dynamic scenarios where
client resources may fluctuate. This is particularly useful in
a distributed environment, where participating institutions
may have varying levels of availability and performance as
in VOIDFace. FedCS aims to minimize communication
overhead by selecting clients that can complete the train-
ing tasks within a reasonable time frame. This is crucial
for VOIDFace, which require frequent communication be-
tween storage facilities. FedCS is scalable and can handle
a large number of clients, making it suitable for environ-
ments where facial data is distributed across multiple stor-
age locations. VOIDFace also uses node removal strategy
introduced by Huang et al. [15] called E3CS. In VOIDFace,
when some nodes may become unavailable or slow, E3CS
can dynamically adjust by removing these nodes from the
training process, with faster convergence, ensuring fairness
and robustness.

Patch reconstruction: In VOIDFace, when FR training
is requested, the requester must first communicate with a
trusted third party. Before validating the request, the trusted
third party verifies user authorization to access the user’s
facial data by checking the authentication shares. Once
the authentication shares are validated, the training request
and authentication shares are sent to /V,, independent, non-
communicating selected training workstations (77 to T'y,,).
Each workstation T} collects the 7*" private share from the
relevant counterpart. After receiving these private shares,
the corresponding patches are reconstructed on each of the
N, independent, non-communicating, workstations using,

P, = AS; & PS; ©)
where P;, AS;, and PS; are the i*" reconstructed patch, i'"

authentication share which is active, and " private share,
(or shares) respectively. Here, X (P;, AS;, and P.S;) rep-

resents the value of X during training. Ideally, X and X
would be same. Here, we represented X instead of X, as all
the original images are removed after the patch extraction
during the privacy preserving data preparation and storage
phase, which is independent from the training phase.

Patch training and aggregation: After reconstruction,
the patches are processed by a deep learning-based FR
patch based multi-network for training. VOIDFace privacy-
preserving training framework includes two types of net-
works: Patch Training Network (PTN) and Aggregator.
Since each user has N, distinct patches, VOIDFace utilizes
N, individual PTN. Each PTN comprises parallel back-
bone CNNs designed to extract feature embeddings from
the corresponding reconstructed patches. The Aggregator
integrates the outputs from the PTN and can be structured
in various configurations. In VOIDFace, the output of the
Aggregator is an N-dimensional feature vector derived from
the PTN outputs, predicting the face embedding based on
the input set of face image patches. In VOIDFace, each
PTN component employs MobileNet, while the Aggregator
is implemented as a fully connected layer that consolidates
these outputs into a final global feature vector.

4. Experiment Results and Discussion

4.1. Experimental setup
Table 2. VGGFace?2 dataset details.

# Classes # Average Images

Filtering # images

per Class
None 3074k 8631 356
FRR=0.05 1158K 8628 134
# - Number of

Datasets: Data preparation and storage is an integral
part of the VOIDFace framework. Currently, preparing
new data from scratch is challenging due to different is-
sues like, privacy and consent, bias and diversity limita-
tions, high volume requirements, and regulatory compli-
ance. Therefore, we currently rely on an existing dataset,
VGGFace?2 [3]. Since VOIDFace uses only front facing im-
ages (see assumptions in section 3), and experiments are
conducted on an existing dataset instead of a proprietary
dataset, a filtering mechanism is adopted to select only front
facing images. As VGGFace2 is an uncontrolled and ex-
tensive dataset, front facing images are selected through a
quality-driven filtering approach presented in [19]. This fil-
tering uses low False Rejection Rate (FRR) of 0.05 to se-
lect front facing high-quality images. A low FRR threshold
reduces the exclusion of genuine images by emphasizing
clear, straightforward, front facing poses. Further details
regarding the dataset is given in Table 2.

Preprocessing: Preprocessing is an essential part in
VOIDFace training data preparation and storage. During
VOIDFace preprocessing, the user’s face is detected and
segmented to isolate relevant regions. We have used His-
togram of Oriented Gradients (HOG)-based method com-
bined with linear classifier to detect and segment frontal



face images. This technique offers high accuracy and ef-
ficiency for real-time applications without requiring an ad-
ditional model. For the experimentation, six patches (V=
6) are used including both eyes, both eyebrows, nose, and
mouth. Thus, during preprocessing, the frontal images and
six patches are extracted using a pre-trained model'.

Models: VOIDFace training phase combines two types
of networks for privacy-preserving training: Patch Training
Network (PTN), and Aggregator. PTN is built on a Mo-
bileNet backbone and concludes with an output dense patch
feature layer. Features extracted from different patches are
concatenated and fed into the Aggregator. Here, PTN is
optimized using the SGD optimizer with a momentum of
0.5, and an initial learning rate of 0.01, which follows a
Cosine Annealing schedule (1 = 0.01, Nmin = le-7) over
20 epochs. Training uses a batch size of 10 and processes
96x96 RGB images of all the six facial patches (two eye-
brows, two eyes, nose, and mouth). Images are normal-
ized by subtracting [0.5, 0.5, 0.5] and scaling by 1/255. We
employ categorical cross-entropy loss with equal weights
of 1.0 for all patches, trained on a dataset of 8628 classes.
Key architecture parameters include an alpha of 1.4 (width
multiplier) and an ArcFace margin of 0.5. Similarly, the
Aggregator consists of a simple fully connected layer that
consolidates the concatenated patch feature outputs into a
global feature vector as final output.

Additionally, we also explored a modified version of
PTN, incorporating extra classification supervision at the
patch level, transforming the problem into a multitask learn-
ing approach where both PTN and Aggregator perform the
same classification task. This approach enhances patch-
level supervision and offers greater flexibility in patch se-
lection and augmentation. In further experiments, we call
the model without supervision - V1 and the model with su-
pervision - V2.

4.2. Training dataset analysis

(2-a) - 3

Figure 2. A sample face image, six face patches and corresponding
shares.

In VOIDFace, as each institution gets only a secret share
generated from an extracted patch, getting any informa-
tion about the original face or even the corresponding patch
is impossible for the participating institutions. Figure 2
presents a sample face image (Figure 2(1-a)), the extracted

https://www.kaggle.com/code/zeyadkhalid/face-
landmarks—detection-and-alignment-dlib

patches (Figures 2(1-b) to 2(1-g)) and the generated secret
shares (row 2). Here, Figures 2(2-b) to 2(2-g) show the
private shares corresponding to Figures 2(1-b) to 2(1-g), re-
spectively. Figure 2(2-a) shows the authentication share,
which is common to all patches. All of these shares are
meaningless and provide no visual information about the
original face image or the corresponding patch. More de-
tails on information content within the share is presented
in supplementary material (Section 1.1). Hence, VOIDFace
protects the privacy of the individuals while preparing the
training data.

Training data replication is another challenge in existing
FR systems. Currently, if two institutions want to train a
FR system using the same dataset, a replica of the whole
dataset needs to be stored in each institution. This situa-
tion increases the storage requirement, increases the com-
plexity in managing data, and violates privacy and security
principles. In VOIDFace, since each institution gets only
shares generated from a patch instead of entire image, there
is considerable reduction in the storage requirement. The
average image size of popular public face datasets (com-
pressed version) varies from 50-200kB (see Table 1). Un-
compressed or high quality face datasets may contain bigger
size images, even with average image size in Mega Bytes
(MBs). In these cases, replicating the training data at dif-
ferent institution needs large storage requirement. Whereas
in VOIDFace, each share are sized <10kB, which shows a
huge reduction in storage requirement. Hence, this experi-
ment shows that the VOIDFace framework stores face im-
age visually concealed (as secret shares) with less storage
requirements and solves data replication problem.

The RTBF, also known as the right to erasure, is a critical
data protection principle enshrined in several major privacy
regulations. Article 17 of th EU-GDPR states that individ-
uals have the right to request the deletion of their personal
data when the data is no longer necessary for its original
purpose, or the individual withdraws consent, or the data
was unlawfully processed, or to comply with a legal obli-
gation. Existing FR systems can technically comply with
the RTBF, but they require manual intervention and human
decision-making, making the process inefficient and incon-
sistent. Additionally, when a dataset is replicated in sev-
eral institutions, which is very common, the need to request
these institutions to delete the withdraw data implies a very
high risk of these institutions disregard the deletion request.
VOIDFace automates this procedure, offering a first prac-
tical and scalable solution to effectively enforce the RTBF
property by allowing individuals to remove their face infor-
mation from further training. In VOIDFace, this property is
fulfilled with the help of a trusted third party and authenti-
cation share (AS). The trusted third party validates the AS
to confirm the activation of user’s participation in VOID-
Face training. Any user who wish to not participate in fur-
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ther training can request trusted third party to remove the
corresponding AS. Without AS, none of the face patches
corresponding to the particular subject can be used for fur-
ther FR training. This provides the user RTBF property to
control their own face data. Since the deletion of AS can
be done immediately upon getting the request, the RTBF
operation is computationally efficient.

Although this strategy is computationally efficient and
improves the control, it also creates a new issue, which is
the existence of abandoned shares. Abandoned shares are
the private shares with no authentication shares, and are
useless. In VOIDFace, this problem is solved using a sim-
ple and effective solution by periodically checking AS, and
discarding the abandoned private shares.

4.3. Security analysis

This section explains the possibility of different attacks
on VOIDFace framework.

Brute-force attack: The security of cryptographic tech-
niques heavily depends on the secrecy of keys. The absence
of keys in VOIDFace is advantageous and enhances secu-
rity. Therefore, brute-force attacks in VOIDFace are esti-
mated based on the ability to guess the VSS share and the
share correlation coefficient in all directions.

In VOIDFace training data storage phase, as shares are
generated using a randomized strategy, each pixel takes a
value 0-255 across three color channels. This results in
a probability of Qéﬁ to guess a pixel. For a share of size
w x h x 3, the probability becomes (555 )**"*3. As in this
experimentation, for a share of size 96x96x3, this proba-
bility would be 9.581622535 x 10766584 a negligible value.
Even with this, an attacker would only be able to guess a
single share. To reconstruct the entire patch, multiple shares
are required, which further increases the complexity expo-
nentially. We also performed an experiment to evaluate en-
cryption strength using correlation coefficient. Details are
available on supplementary material (Sec 2.2). Given this
large sample space and low correlation coefficients, a brute-
force attack on VOIDFace is virtually impossible.

Statistical attack: In any secret sharing based applica-
tion, generating different share each time is essential as it
prevents predictability and brute-force attack, stops cheat-
ing and share usage, and protects from statistical analysis.
Due to randomness in VOIDFace, each time the shares gen-
erated from the same patches are different to each other.
To validate this, we have used a matrix called Number of
Pixel Change Rate (NPCR) to evaluate the pixels change.
NPCR also shows the resiliency towards differential attacks.
Higher values of NPCR shows more resilient whereas lower
shows opposite. More details on NPCR is given in [37].

In this experiment, each patch is encrypted 1,000 times,
and the NPCR is calculated by comparing a randomly se-
lected share with all the remaining 999 shares. Table 3
presents the average NPCR values calculated per patch.

These high values (>98%) show a strong indicator of robust
encryption, demonstrating high sensitivity, uniform diffu-
sion and protection from statistical attacks.

Table 3. NPCR values for 1,000 distinct shares per patch.

Left Right Left Right Nose Mouth
eyebrow  eyebrow eye eye

98.87% 98.88%  98.69%  98.75%  98.54%  98.67%

Model Inversion (MI) attacks: In this section, we ana-
lyzed the resiliency of VOIDFace on MI attacks. We have
used the technique presented in[25] to simulate MI attacks.
We have used VOIDFace aggregator model as the target
model and face.evoLve as the evaluation model trained us-
ing CelebA dataset [41]. Here, the impact of MI attack is
evaluated using attack accuracy (Attack Acc) and K-Nearest
Neighbors Distance (KNN Dist).

Table 4. MI attack results.

Method Attack Ace KNN Dist
ArcFace 82.4% 1247.28
VOIDFace 12.1% 2240.30

Table 4 shows the comparison of VOIDFace with Arc-
face [6] against a black-box MI attack. Under a query-based
attack scenario, the ArcFace model leaks private training
data with 82.4% attack accuracy, and lower KNN Dist.
In contrast, VOIDFace reduces attack accuracy to 12.1%,
and high KNN Dist. These results confirm that in VOID-
Face, the recovered samples deviate significantly from pri-
vate data. These results demonstrate VOIDFace’s effective-
ness in preserving privacy while maintaining model utility.

Protection due to distributed storage: Another impor-
tant property of VOIDFace is the distributed storage. Dis-
tributed storage enhances security by eliminating single
points of failure, and reduces the attacker’s ability to com-
promise data. A key principle is that “an attacker cannot be
omnipresent”—they cannot simultaneously compromise all
nodes in a distributed network. With distributed storage in
VOIDFace, it gets computationally very hard for an attacker
to get both the authentication share and private shares. Di-
viding and distributing private shares to many workstations
again increases the complexity. Let us consider a white-
box attacker who can query the VOIDFace framework and
knows its detailed protection mechanism. This attacker is
generally envisioned as a malicious entity wiretapping the
transmission. Even with this wiretapping, the communica-
tion between the workstations transmit either an authenti-
cation share or some private share. As a subset of private
shares present in the training workstations are never trans-
mitted, this makes the reconstruction impossible.

4.4. Performance analysis

To demonstrate the practicality of VOIDFace, we con-
ducted a comparison with several conventional methods of
training deep networks for FR. Specifically, we evaluated
our model (V1 and V2) against the standard training of a
single, unified deep network using Softmax loss [18], as
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Figure 3. ROC curves of VOIDFace, Arcface, and Softmax models on various benchmarks.
Table 5. Comparison of VOIDFace with other state-of-the-art techniques.
. Training data . Distributed Patch-based Privac MI
Technique Used Protecgtion Encryption Storage RTBF network Preservi)I,lg Attacks
[40] Homomorphic Encryption No Yes No No No Yes Possible
[36] Federated learning No No Yes No No Yes Possible
4] Differential privacy No No No No No Yes Possible
[18] Softmax loss No No No No No No Possible
[6] ArcFace loss No No No No No No Possible
VOIDFace Arcface with VSS Yes Yes Yes Yes Yes Yes Challenging

well as its marginal modification - ArcFace [6]. We trained
both the regular Softmax and ArcFace models on the se-
lected dataset used in the VOIDFace framework, and then
tested on well-known benchmarks, including LFW [14],
CALFW [42], and AgeDB-30 [21]. These benchmarks
were chosen as they do not include extreme pose varia-
tions, making a better fit for VOIDFace, which is sensitive
to such factors. This comparison highlights the strengths of
our method in handling typical variations, while maintain-
ing competitive performance against traditional approaches.

The backbone for both Softmax and ArcFace (Resnet50)
was selected to ensure that the number of parameters ap-
proximately matches VOIDFace to provide a fair compari-
son. All models were initiated with ImageNet weights and
trained for 20 epochs. We utilized SGD optimizer with the
learning rate linearly decaying from 0.01 to 0.00001.

Our results obtained on the chosen data subset demon-
strate (Figure 5) that VOIDFace is effective across diverse
benchmarks, proving its suitability for FR tasks. In ma-
jority of the benchmarks, V2 model (with multitask patch
supervision) demonstrate better performance than V1. Ar-
cFace provides a solid improvement in more challenging
benchmarks (like CALFW and AgeDB-30) over the stan-
dard Softmax, but does not reach the robustness of VOID-
Face. This comparison highlights that the patch-based ap-
proach utilized by VOIDFace contributes positively to its
performance.

4.5. Comparison with existing techniques

In this section, we have compared VOIDFace qualita-
tively with other SOTA techniques. Here, the comparison
evaluates different features such as training data protection,
use of encryption, distributed storage, RTBF, use of patches,
privacy preservation, and possibility of MI attacks. Table 5
shows the qualitative comparison of VOIDFace with SOTA
techniques. Presence of all the mentioned features and chal-

lenge in MI attacks show the VOIDFace transformative po-
tential, bridging critical gaps in data storage and training of
FRS by addressing many longstanding challenges.

5. Conclusion

Along with the popularity, FR systems face significant
privacy and security challenges due to the sensitive nature of
facial data. Some of the unexplored areas in FR includes se-
crecy of training data and protection from MI attacks, train-
ing data replication, and lack of user control. Hence, we
introduce VOIDFace, a novel solution leveraging VSS to
securely store and process training facial data in distributed
patches, eliminating the need for full image reconstruc-
tion. This approach addresses data replication by decentral-
izing storage across institutions while maintaining privacy
through cryptographic shares. A trusted third party man-
ages user authorization, enabling Right-To-Be-Forgotten by
controlling access to the shares. VOIDFace also mitigates
MI attacks by ensuring facial data is never stored or pro-
cessed in complete form. Distributed patch-based train-
ing enhances scalability and reduces computational burdens
across systems. VOIDFace’s contributions include resolv-
ing replication issues, enforcing RTBF, enabling privacy-
preserving distributed training, and preventing reconstruc-
tion attacks. By combining VSS with distributed learn-
ing, it offers improved security, regulatory compliance, and
user autonomy. Experimental results demonstrate its effec-
tiveness in maintaining FR accuracy while enhancing pri-
vacy protections. Future work could explore optimization
for real-time systems with better storage requirements, and
broader adversarial robustness. We plan to collect and store
an entire dataset using VOIDFace. VOIDFace represents a
significant advancement in ethical FR development, balanc-
ing performance with stringent privacy safeguards.
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Supplementary Material — “VOIDFace: Towards an effective face training data
storage and protection with Right to be Forgotten Property”

This supplementary material contains additional details
on multi-patch training network, followed by additional
experiments that provides information contents with the
shares, correlation analysis and patch exclusion analysis.
These experiments are conducted to reinforce the effective-
ness of VOIDFace framework.

Additional description on multi-patch training
network

The VOIDFace multi-patch-network framework is de-
signed around two primary components: the Patch Training
Network and the Aggregator. This framework distributes
the face recognition training task on localized facial re-
gions (patches) further integrating their learned represen-
tations into a holistic embedding. The framework utilizes
N, distinct facial patches (in our experiments, we employ
Ns; = 6). Accordingly, VOIDFace includes six indepen-
dent Patch Training Network, each specialized to process a
specific facial region. Each Patch Training Network com-
prises a dedicated MobileNet backbone CNN that extracts
discriminative feature embeddings from the input recon-
structed patch. These CNNs operate in parallel, enabling
the model to independently learn region-specific facial fea-
tures.

The outputs of the six Patch Training Networks (512-
dimensional feature vectors) are then forwarded to the Ag-
gregator network. The Aggregator is implemented as a
simple fully connected layer, whose role is to integrate the
patch-level embeddings into a single global feature repre-
sentation of the entire face. This final embedding, also 512-
dimensional, is intended to capture comprehensive identity-
related information by synthesizing both local and global
facial cues.

We investigate two architectural variants of the multi-
patch-network framework (illustrated in Figure 4):

 Version 1 (V1) adopts a traditional single-task learn-
ing approach. In this setup, the model is trained as a
standard classification problem: the Aggregator out-
puts a class prediction corresponding to the identity la-
bel. The Patch Training Networks act purely as feature
extractors, and only the final integrated embedding is
supervised through classification loss.

e Version 2 (V2) redefines the task as a multi-task learn-
ing problem. In this enhanced configuration, addi-
tional classification heads are introduced at the output
of each Patch Training Network. Consequently, both
the Patch Training Networks and the Aggregator are

A, Patch Training Network 1
- e
Patch Training Network 2 Aggregator

Patch Training Network N

(a)

@—‘{ Patch Training Network 1 }-d Class Layer 1
- o=

Patch Training Network 2

Class Layer 2

Ragregarer 1=

"‘/ *’{ Patch Training Network N }-Q Class Layer N

(b)
Figure 4. Multi-Patch Training Network architecture schematics.
a)-V1;b) - V2.

supervised to perform the same identity classification
task. This patch-level supervision reinforces the learn-
ing of discriminative features at the local level and pro-
vides more robust training signals.

Additional Experimentation and Discussion
Information content within the shares

Even though VOIDFace shares are visually protected
(see Figure 2 in the main paper), evaluating the informa-
tion content within these shares is crucial. We have used
entropy as a metric to assess the information content within
the shares. Entropy quantifies the amount of uncertainty or
randomness in an image, measuring the diversity of pixel
values and their distribution. Higher entropy indicates high
randomness, greater complexity and less information con-
tent. In this experiment, we assess the richness of an image,
which is essential for analyzing the information within the
VOIDFace shares. The maximum possible entropy value
for 8-bit (uint8) data is eight. Table 6 shows the average en-
tropy calculated for the selected VGGFace2 (FRR = 0.05)
dataset across different channels. These high values indi-
cate that the shares exhibit significant randomness, reveal-
ing no useful information about the corresponding patch.

Table 6. Average entropy of the shares from different patches.
Patch Color channels Average
R G B
Left eyebrow 7.9802  7.9812  7.9828 7.9814

Right eyebrow ~ 7.9838  7.9838  7.9849 7.9841

Left eye 7.9837  7.9823  7.9805 7.9821
Right eye 79791  7.9829  7.9817 7.9812
Nose 7.9837  7.9825  7.9817 7.9826
Mouth 7.9796 7.979 7.9809 7.9799
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Figure 5. ROC curves of VOIDFace Single-Patch models (V1-a, b, ¢c; V2-d, f, e) on various benchmarks.
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Figure 6. ROC curves of VOIDFace Detach-Patch models (V1-a, b, c; V2-d, f, e) on various benchmarks.

Correlation coefficient

In image processing, correlation coefficient plays a key
role in evaluating encryption strength. A good image en-
cryption algorithm should produce cipher images with a
near-zero correlation between adjacent pixels (horizontally,
vertically, and diagonally). The correlation close to zero
demonstrates the difficulty of predicting adjacent pixels. In
VOIDFace, as the cipher images are shares, we have eval-
uated the correlation coefficient between the patches and
corresponding generated shares in different direction. The
values close to zero in Table 7 emphasize the encryption
strength and near-impossibility of predicting adjacent pixel
values in any direction. Given the large sample space and
low correlation coefficients, a brute-force attack on VOID-

Face is virtually impossible.

Table 7. The average correlation coefficients of the shares.

Horizontal Vertical ~ Diagonal
Left eyebrow -0.006 -0.016 0.029
Right eyebrow 0.007 0.015 -0.027
Left eye -0.017 -0.009 -0.031
Right eye -0.004 0.012 -0.009
Nose 0.009 0.027 -0.029
Mouth -0.031 0.018 -0.026

Patch exclusion analysis - Single Patches

In further experiment, we evaluated the performance of
individual facial patches within the VOIDFace framework.
To assess the contribution of a single patch, all other patches
were left blank prior to inference by the VOIDFace network



(see Figure 5).

Several key observations emerged from our results.
Across all configurations, the “nose” patch consistently
achieved the highest accuracy across benchmarks, high-
lighting the discriminative strength of this region. This
aligns with existing understanding that the nose, being one
of the least deformable facial features, retains stable and
informative characteristics. For images captured in uncon-
strained conditions (e.g., the LFW benchmark), patches cor-
responding to the eyebrows and mouth also proved highly
informative. Notably, under patch supervision (V2) in the
CALFW and AgeDB benchmarks, the mouth patch out-
performed those of the eyebrows and eyes, indicating its
increased discriminative value in these settings. In other
configurations, the various facial regions demonstrated rel-
atively comparable performance.

Patch exclusion analysis - Patches Detach

In an additional experiment, we simulated the removal of
a single facial patch from the input to assess its individual
contribution to overall performance (see Figure 6). Specif-
ically, we repeated the evaluation protocols with one patch
replaced by a blank input. The results of this experiment
align closely with the findings from the single-patch evalua-
tion described above, further confirming the strong discrim-
inative power of the “nose” region. Notably, excluding the
”nose” patch resulted in a significant drop in performance.
In contrast, the exclusion of either eye region typically did
not reduce performance, while the removal of the mouth or
eyebrow patches led to only a minor performance decline.
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