
A Comparative Analysis of Lightweight Hash
Functions Using AVR ATXMega128 and

ChipWhisperer

Mohsin Khan1⋆, Dag Johansen1, and Håvard Dagenborg1

UiT: The Arctic University of Norway, Tromsø, Norway
{mohsin.khan, havard.dagenborg, dag.johansen}@uit.no

Abstract. Lightweight hash functions have become important building
blocks for security in embedded and IoT systems. A plethora of algo-
rithms have been proposed and standardized, providing a wide range of
performance trade-off options for developers to choose from. This paper
presents a comparative analysis of 22 key software-based lightweight hash
functions, including the finalist from the SHA-3 competition. We use a
novel benchmark methodology that combines an AVR ATXMega128 mi-
crocontroller with the ChipWhisperer cryptanalysis platform and eval-
uate and compare the various hash functions along several dimensions,
including execution speed, memory footprint, and energy consumption.
Using the composite E-RANK metric, we provide new insight into the
various trade-offs each hash function offers to system developers.

Keywords: Lightweight Hash Functions · NIST Cryptographic Algo-
rithms · ISO Standardized Lightweight Hash Functions · Software Bench-
marking · Performance Analysis · AVR Microcontroller.

1 Introduction

Hash functions are vital building blocks for many security mechanisms, like dig-
ital signatures, message authentication codes, and file checksums. Traditional
hash functions are effective on devices with ample computational resources, but
may fall short on resource-constrained devices with limited computational ca-
pacity, such as 8-bit AVR and PIC family of microcontrollers. In some compu-
tational environments, like IoT and embedded systems, devices might also be
battery-powered and require energy-efficient algorithms.

DM-PRESENT [15], to our knowledge, was among the first hash functions de-
veloped specifically for devices with limited resources. From 2007 to 2012, NIST
ran the SHA-3 competition to find a more lightweight and secure alternative to
SHA-2. Keccak [12] won this competition, with BLAKE as one of the finalists.
Both of these hash functions are actively used in cryptographic libraries today,
such as OpenSSL and Python’s hashlib. Additionally, Keccak is specifically uti-
lized in blockchain technology and smart contracts. In 2016, ISO standardized
⋆ Corresponding author: Mohsin Khan, email: mohsin.khan@uit.no

ar
X

iv
:2

50
8.

07
84

0v
1 

 [
cs

.C
R

] 
 1

1 
A

ug
 2

02
5

https://arxiv.org/abs/2508.07840v1


2 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

Fig. 1. ChipWhisperer hardware overview

PHOTON, SPONGENT [14], and Lesamnta-LW under ISO/IEC 29192-5:2016.
Then, in 2019, NIST began the standardization of lightweight cryptographic al-
gorithms and received 57 submissions, some of which included lightweight hash
functions. After three rounds of evaluation and rigorous analysis of security and
benchmarking results, ASCON [23] was announced as the winner in 2023. Con-
sequently, a plethora of hashing functions have been proposed and developed,
providing a wide range of performance and security trade-offs. However, few
works exist that analyze and compare a larger selection of these hash functions.

This paper benchmarks and compares 22 key lightweight hash functions,
including those submitted to NIST [38], those standardized by ISO [28], including
PHOTON and Lesamnta-LW, along with the SHA-3 competition [18] finalist,
BLAKE [2] and its latest variant, BLAKE3 [35], due to its wide usability in
various well-known applications.

For each hash function, we measure several performance metrics, includ-
ing Cycles per Byte (CPB), energy consumption, RAM usage, and ROM using
a novel benchmark environment comprised of the AVR ATmega128 microcon-
troller in combination with the ChipWhisperer [34] cryptanalysis tool. We also
calculate the composite E-RANK metric [29] to compare provide a more com-
prehensive overview of the performance trade-offs of each hash function.

2 ChipWhisperer

Our measurements were performed using the ChipWhisperer Level 2 Starter
Kit from NewAE Technology, a toolkit originally designed for learning about
side-channel attacks on embedded devices by analyzing power consumption. Its
modular design allows for the integration of specialized modules, enabling precise
measurements and advanced testing of cryptographic systems. ChipWhisperer



A Comparative Analysis of Lightweight Hash Functions 3

Define Compilation
Flags

(CFLAGS)

LWHF_name
LWHF_variant
microcontroller
stack usage

Compilation

object(.o)
 stack usage(.su)

Linking .o files

Executable (.elf)
mem map (.map)

Converting .elf for
flashing 

hexadecimal(.hex)

Initialize Scope
(scope = cw.scope)

Select Programmer
(prog = cw.programmers.XMEGAProgrammer)

Configure Scope
(Amp_gain)
(samples)

(clock Freq)
(ADC_mode)

(ADC_source)
(Trigger)

...
Flash Firmware

(cw.program_target(scope, prog, hex file))
Verify and Debug

Flashed
ATmega128

Fig. 2. Process flow for firmware build and deployment to target device.

comprises a capture board and a target board, connected via a serial connection,
and an oscilloscope probe, as shown in Figure 1.

The ChipWhisperer capture board includes an FPGA microcontroller, an
Analog-to-Digital Converter (ADC), and a Low-Noise Amplifier (LNA). The
FPGA microcontroller serves as the central processing unit, managing commu-
nication, timing, and data acquisition processes. The LNA amplifies weak power
signals to reduce noise and enhance the accuracy of the power analysis obtained
from the target board. These amplified signals are then captured by the ADC
for conversion into digital signals. The target board is mounted on a Univer-
sal Feature Observation (UFO) Board, which provides a standardized interface
for power, clock, and data connections to the target board. Data is transferred
between ChipWhisperer and the target board over a serial port, while the oscillo-
scope probe collects voltage traces as the target board executes specific processes
triggered by this communication.

The ChipWhisperer Python API allows interaction with the ChipWhisperer
FPGA, enabling programming of the target board, configuring clock settings,
and triggering the target board to start and stop cryptographic operations. It
also facilitates the capturing and transferring of power traces. Also, the Python
API enables the configuration of ADC and LNA parameters, such as sampling
rate and trigger settings, as well as adjustments to gain for capturing power
traces and amplifying weak power signals.

The target board is programmed by uploading firmware, which is developed
in the C language. This firmware includes a base C program designed to man-
age simple serial communication with the ChipWhisperer Python API. The base
program handles trigger signals from the Python API and incorporates macros.
These macros are used for the hash function and its variants, with the imple-
mentations of these hash functions sourced from their original publications. The
firmware is compiled using AVR-GCC, including specific compiler flags for ob-
ject files and macros that define the hash function name and variant. During the
compilation process, the C implementations of the selected hash functions are



4 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

TARGET (Flashed ATxmega128)

Initialize Scope
(scope = cw.scope)

Configure
Scope

Initialize Target
(target = cw.target(scope, ser))

Setup UART Communication
(ser = cw.targets.SimpleSerial)

Measurement
metric?

ROM Profiler
(program code(.text)+constants(.rodata))

RAM Profiler
(init(.data) + uninit(.bss) + stack

Cycles per Byte Profiler
(target.simpleserial_write(c, LWHF)

Energy Profiler
(target.simpleserial_write(p, LWHF)

mem map(.map)mem map (.map)
stack usage(.su)

c

P

Received
command?

Configure System Timer
(TCC0.CTRLA = TC_CLKSEL_DIV1_gc;

Reset and Start the System Timer
(TCC0.CNT = 0)

Executing Compliled LWHF

Stop the System Timer
(TCC0.CTRLA = TC_CLKSEL_OFF_gc;

Set Trigger High 
(TCC0.CTRLA = TC_CLKSEL_DIV1_gc;

high

low Check
Trigger

Capture Voltage Traces

Calculate Instantaneous Current
and Power Traces using Ohm law

Calculate RMS power 

Calculate Energy

Set Trigger High 
(trigger.high())

Executing Compliled LWHF

Set Trigger Low 
(trigger.low())

Capture Power Trace (ADC values)
(raw_adc_val = scope.capture())

Send Cycles per Byte
(simpleserial_put(r, CpB);)

Calculate Cycles per Byte (CpB)

rReceived
command?

Energy (nJ)

Cycles per Byte

ROM (bytes)RAM (bytes)

Fig. 3. Benchmarking framework.

converted into object files, and a corresponding .su file is generated to provide
stack usage information. These object files are then linked together to create
.elf and .map files. The .elf file is subsequently converted into a .hex file,
which is used to flash the target device. The flashing is performed using the
ChipWhisperer Python API, where the scope is initialized, and settings for am-
plifier gain, sampling rate, trigger conditions, and clock sources are configured.
After flashing, the firmware is verified and debugged. The process for building
firmware and deploying it on the target device using ChipWhisperer is illustrated
in Figure 2.



A Comparative Analysis of Lightweight Hash Functions 5

3 Benchmarking Framework

We have opted for the AVR ATXMega128D4 microcontroller [32] as our target
board for benchmarking the selected lightweight hash functions. ATXMega128D4
is a low-power 8-bit RISC microcontroller with 128KB of flash memory, 8KB
of SRAM, 2KB of EEPROM, a clock frequency of 32 MHz, and an operating
voltage range of 1.6 to 3.6 V. These resource constraint specifications are suffi-
cient to implement all the lightweight hash functions in this study and conduct
performance tests. This setup also allows precise control over code execution and
simplifies optimization at the assembly level.

Benchmarking begins by initializing the scope and configuring its settings. A
5 dB gain is applied to amplify low-amplitude power signals to minimize distor-
tion, allowing clear capture of signal variations during hash function operations.
A high-to-low trigger edge synchronizes the capture window with the start and
the end of the hash function execution, and a sampling rate of 5 samples dur-
ing the capture window offers moderate resolution for accurate trace alignment.
The clock frequency is set to 7.3728MHz using the ATXMega128D4’s internal
clock. Simultaneously, a simple serial communication is established using UART.
After setting up the simple serial interface and the scope, the target device is
initialized. Once the target initialization is complete, specific measurement met-
rics are selected for execution time, memory footprint, and energy profiling, as
illustrated in the workflow of the benchmarking framework in Figure 3.

3.1 Execution Time Profiling

We measure execution time in terms of the number of processing cycles required
to hash each byte of data, commonly known as Cycles per Byte (CPB). Our
CPB profiler utilizes a control register associated with the timer/counter on
the ATXMega128D4 target board. According to the hardware specifications for
the ATXMega128D4 microcontroller, the TCC0.CTRLA register is responsible for
configuring the clock source and pre-scaler settings. When CPB measurement is
selected, the TCC0.CTRLA register is initialized and set to zero at the beginning
of the hashing process.

Once the hashing process has completed processing the input data, the con-
trol register is stopped and the total number of cycles used is retrieved from the
register. The resulting value is divided by the total number of input bytes pro-
cessed to compute the final CPB value, before being transmitted to the host sys-
tem. Note that the pre-scaler is set to CLK_DIV1, meaning that the timer/counter
operates at the system clock frequency without any division.

3.2 Memory Footprint Profiling

In sponge constructions [13], the internal state is divided into two parts: rate and
capacity. The rate indicates the number of bits of the state that can be directly
read or written during the absorption and squeezing phases, determining the
throughput of the function. The capacity is the portion of the state that remains



6 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

hidden from input and output, providing security against cryptanalytic attacks.
Merkle–Damgård constructions [21] [31] do not explicitly separate the state into
rate and capacity. Instead, the internal state is represented by the chaining value,
while the rate is equal to the message block size. The overall state is updated
by a compression function, and security is ensured through the design of that
function and the padding scheme, rather than through a reserved hidden portion
of the state.

For our purpose, we assess the memory footprint of each hash function by
measuring its RAM and ROM consumption, which involves evaluating the size
of the various memory segments used and summing up the total byte count. For
RAM, we include the sizes of both initialized and uninitialized global and static
variables, along with both dynamic and static stack usage, as shown below.

RAM = .data+ .bss+ .su (1)

The initialized .data segment and the uninitialized .bss segment are extracted
from the .map file that was generated by the AVR-GCC compiler during the
linking stage. Both dynamic and static stack usage data are obtained from the
.su files created during the compilation of individual object files, providing a
comprehensive breakdown of memory allocation. Heap memory allocated via
malloc and calloc calls are excluded because dynamic memory allocation is
not utilized in the C implementations of the selected hash functions.

For ROM, we sum the memory occupied by the program code .text segment
and constant data in the .rodata segment, as shown below.

ROM = .text+ .rodata (2)

The generated .map file provides a detailed memory map of the program code
and constant data, allowing precise measurement of the total ROM footprint.

3.3 Energy Profiling

To profile energy consumption, we use the cw.capture_trace API function
of the ChipWhisperer toolkit. The API call returns an array of instantaneous
voltage samples collected by the ADC, normalized to the range -0.5 to +0.5.
The voltage samples are measured when a high-to-low trigger signal is detected
from the target device via serial communication.

While normalization ensures consistency across different hardware configu-
rations, it requires us to convert the samples back to actual voltages. For this,
let V̂ be the normalized ADC voltage sample, Vref the reference voltage of the
ADC, which is in our case is 1V, and G the gain of the amplifier applied to the
signal before digitization, which in our case is 5 dB, then the actual voltage V is
given by

V =
Vref

G
× V̂ = 0.2V̂ (3)

Furthermore, for the ATXMega128D4 microcontroller, we have the shunt re-
sistance Rshunt = 49.9Ω and the supply voltage Vsup = 3.3V. The instantaneous



A Comparative Analysis of Lightweight Hash Functions 7

current I of a sample V̂ is then given by Ohm’s law as follows

I =
V

Rshunt
=

V

49.9
=

0.2V̂

49.9
= 4.0× 10−3V̂ (4)

This gives us the instantaneous power P for sample V̂ as follows.

P = I × Vsup = 4.0× 10−3V̂ × 3.3 = 1.3× 10−2V̂ (5)

The values in the trace array can sometimes be negative due to signal oscilla-
tions present in the original voltage trace. To obtain accurate power and energy
calculations, we therefore calculate the Root Mean Square (RMS) of the trace.
Given a trace [V̂1, V̂2, . . . , V̂N ] of N samples, the RMS power Prms is given as
follows.

Prms =

√√√√ 1

N

N∑
i=1

P 2
i =

√√√√1.7× 10−4

N

N∑
i=1

V̂ 2
i (6)

To calculate an accurate energy estimation, execution time needs to be con-
sidered, which represents the total duration the microcontroller spends executing
the hash function. The execution time is determined using Equation 7, where
Texec denotes the execution period, C is the total number of processing cy-
cles used during the hash function’s execution, and fclk indicates the micro-
controller’s clock frequency, which in our case is set to 7.3728MHz. Once the
execution period has been measured, the energy consumption can be calculated
using Equation 8.

Texec =
C

fclk
=

C

7.3728MHz
(7)

E = Texec × Prms =
C

7.3728MHz
×

√√√√1.7× 10−4

N

N∑
i=1

V̂ 2
i (8)

3.4 Performance Comparison and Ranking

While single-dimensional metrics, such as throughput, CPB, and energy con-
sumption, are useful when comparing hash functions with similar optimization
goals, they are not suitable for evaluating tradeoff between various performance
dimensions. For hardware implementations, Figure of Merit (FOM) [3] is com-
monly used as compound metric that measures performance as the ratio of
throughput to the square number of logical gates (i.e., GE). FOM also cap-
tures energy requirements, as power consumption is proportional to the number
of logic gates, represented by the Gate Equivalent (GE) factor. Later variants
of FOM also normalize to the hardware clock frequency [26], as shown in Equa-
tion 9.

FoM =
throughput
clk × GE2 (9)



8 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

20
4

81
1

84
5

90
7 11
16

12
07 16

04

16
33 21

58

22
56 24
50

25
31

25
33

25
45

33
92

34
49

35
16

36
43

36
57

37
22

37
28

37
62 39
53

40
65

0
500

1000
1500
2000
2500
3000
3500
4000
4500

SK
IN
N
Y-

tk
2

SI
V-

Ri
jn
da

el

PH
O
TO

N

Co
ra
l

CL
X

O
RA

N
G
-

IS
H

Le
sa
m
nt
a-

LW

ES
CH

PH
O
TO

N
-

Be
et
le

G
im

li

Xo
od

ya
k

AS
CO

N

SN
EI
KH

A

BL
AK

E3

SI
V-
TE
M
-

PH
O
TO

N

Sa
tu
rn
in

BL
AK

E2
s

SH
AM

AS

TR
IA
D

G
AG

E

AC
E-
H

KN
O
T

IS
AP

Su
bt
er
-

ra
ne

an

Cy
cl

es
 p

er
 B

yt
e 

(C
PB

)

Lightweight Hash Functions

256-bitHash Size:

Fig. 4. Execution time (CPB) of lightweight hash functions.

In our case, for software implementations, the RANK metric [8] is commonly
used to measure the tradeoff between execution efficiency, CPB, relative to mem-
ory usage (i.e., RAM and ROM). However, unlike FOM, the included memory
footprint of RANK does not offer any insights into power dissipation. To mitigate
this limitation, we instead use the more recent E-RANK metric [29], as defined
in Equation 10, which incorporates energy consumption E for more detailed and
accurate metric.

E-RANK =
109/cpb

(ROM + 2× RAM)× E
(10)

4 Results and Analysis

In this section, we present the results of our benchmarking and performance
analysis of the selected hash functions. The list of all benchmarked hash functions
is provided in Table 1, including an overview of their internal parameters and
structure. State refers to the total amount of internal memory allocated for use
during the hash function’s operation.

The experimental results are visualized using graphs arranged in ascending
order for execution time (CPB), memory footprint (both RAM and ROM), and
energy consumption, while the composite E-RANK metric is presented in de-
scending order. This arrangement places the most efficient hash function at the
top, allowing for quick identification of optimal candidates. Performance values
are analyzed in each results’ subsection across defined intervals or ranges, en-
abling a more detailed comparison. By segmenting the data this way, the analysis
highlights which hash function perform best within each operational range.

4.1 Execution Time Analysis

The execution time is quantified using the CPB metric. A lower CPB value in-
dicates higher computational efficiency and faster throughput, whereas a higher
CPB corresponds to slower processing and lower throughput. Figure 4 illustrates
that SKINNY-tk2 exhibits the lowest CPB value, making it the most efficient



A Comparative Analysis of Lightweight Hash Functions 9

Table 1. Overview of selected lightweight hash function

Name Rate
(bits)

Capacity
(bits)

State
(bits) Structure Internal

Primitive Rounds

PHOTON-256 [25] 32 256 288 Extended
Sponge

AES-like
permutation 12

Lesamnta-LW [27] 128 — 256 Merkle–Damgård
(MD)

AES-based block cipher
(LW1 mode) 64

BLAKE2s [2] 512 — 256 HAIFA
(MD variant) ChaCha-inspired G function 10

BLAKE3 [35] 512 — 256 Binary Tree BLAKE2s compression function 7

ASCON [23] 64 256 320 Sponge Bit-sliced permutation 12/8

PHOTON-Beetle [5] 32 224 256 Sponge PHOTON-256 permutation 12

Xoodyak [19] 128 256 320 Duplex
(Cyclist mode)

3×32-bit slices,
XOR/rotate/shift 12

KNOT [44] 32 224 256 Sponge/
Duplex

SPN-style substitution
and diffusion 68

ORANGISH [17] 128 128 256 Sponge
(JH mode) PHOTON256 permutation 12

SHAMAS [36] 64 256 320 Sponge/
Duplex

Bit-sliced permutation,
linear matrix mixing,
byte-wise rotations

12

SIV-Rijndael [6] 32 224 256 Modified
Sponge Rijndael256 permutation 14

SIV-TEM-PHOTON [7] 32 224 256 Modified
Sponge PHOTON-256 permutation 20

SKINNY-tk2 [10] 32 224 256 Sponge SKINNY-128-256 TK Cipher 48

SNEIKHA [37] 256 256 512 Sponge
(BLNK2)

SNEIK f512 ARX
Permutation 8

TRIAD [4] 32 224 256 Extended
Sponge Triad-P permutation 1024

Coral [33] 32 224 256 Sponge πI permutation 10

Gimli [11] 128 256 384 Sponge Gimli permutation 24

CLX [43] 32 256 288 Sponge P ′
288,n NLFSR permutation var

ACE-H [1] 64 256 320 Sponge
(sLiSCP-light)

ACE Permutation
(Simeck-style) 48

ESCH [9] 128 256 384 Modified
Sponge ARX-based Sparkle384 var

Subterranean [20] 32 (out)
9 (in) 224 257 Flat Sponge

(Duplex) Bitwise round function 1

Saturnin [16] 256 — 256 MD construction Saturnin Block Cipher 32

ISAP [22] 144 256 320 /
400 Sponge Keccak-p[400] and Ascon-p var

GAGE [24] 8 224 232 Sponge Custom SPN permutation 32



10 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

57 12
8

14
4

15
3

17
7

22
1

25
0

26
3

26
8

34
3

34
5

39
0

39
0

39
6

42
3

47
2

55
9

58
8

60
2

63
4

64
7

14
17

21
09

38
27

0
500

1000
1500
2000
2500
3000
3500
4000
4500

CL
X

G
im

li

AC
E-
H

AS
CO

N

G
AG

E

O
RA

N
G
-

IS
H IS
AP

PH
O
TO

N
-

Be
et
le

Co
ra
l

SI
V-
TE
M
-

PH
O
TO

N

SN
EI
KH

A

KN
O
T

Xo
od

ya
k

ES
CH

TR
IA
D

Le
sa
m
nt
a-

LW SK
IN
N
Y-

tk
2

PH
O
TO

N

SH
AM

AS

Sa
tu
rn
in

BL
AK

E2
s

SI
V-

Ri
jn
da

el

Su
bt
er
-

ra
ne

an

BL
AK

E3

RA
M

 (b
yt

es
)

Lightweight Hash Functions

256-bitHash Size:

Fig. 5. RAM usage of the lightweight hash function.

63
0

14
68

14
71

19
36

19
70

20
76

21
64

23
22

26
48

27
02

27
08

28
04

31
06

36
12

37
32

38
40

39
90

40
40 62
66

68
06

79
54 10
47

8

28
70

4

48
07

2

0

10000

20000

30000

40000

50000

60000

CL
X

G
IM

LI

G
AG

E

PH
O
TO

N
-

Be
et
le

SI
V-

Ri
jn
da

el

AC
E-
H

TR
IA
D

SI
V-
TE
M
-

PH
O
TO

N

AS
CO

N

O
RA

N
G
-

IS
H

PH
O
TO

N

Xo
od

ya
k

KN
O
T

Co
ra
l

Sa
tu
rn
in

Le
sa
m
nt
a-

LW

ES
CH

IS
AP

SN
EI
KH

A

SK
IN
N
Y-

tk
2

SH
AM

AS

Su
bt
er
-

ra
ne

an

BL
AK

E2
s

BL
AK

E3

RO
M

 (b
yt

es
)

Lightweight Hash Functions

256-bitHash Size:

Fig. 6. ROM usage of the lightweight hash functions.

hash function regarding execution speed. It is followed by SIV-Rijndael, which
also demonstrates a highly optimized execution time. Within the ≤ 1000 CPB
range, the ISO-standardized PHOTON-256 also appears just after SIV-Rijndael
with a slight margin. In the 1000–2000 CPB range, the NIST-submitted candi-
dates, including CLX and ORANGISH, appear first, while Lesamnta-LW, fol-
lowed by another ISO-standardized hash function, Lesamnta-LW, with a signif-
icant margin. In the 2000–3000 CPB segment, the execution time increases,
with PHOTON-Beetle, Gimli, and Xoodyak preceding ASCON, followed by
BLAKE3 with a slightly higher margin. In the 3000–4000 CPB range, SIV-TEM-
PHOTON appears first, followed by Saturnin, then the SHA-3 competition fi-
nalist BLAKE2s. Toward the upper limit, KNOT and ISAP exhibit higher CPB.
Finally, Subterranean shows the highest CPB, indicating the lowest execution
efficiency among the evaluated lightweight hash functions.

4.2 Memory Footprint Analysis

The memory footprint provides an estimate of the resource consumption of each
hash function, evaluated in terms of RAM and ROM requirements.

RAM Consumption: Figure 5 demonstrates that CLX, Gimli, and ACE-H ex-
hibit the lowest RAM usage, making them highly suitable for devices with
tight memory constraints. Within the ≤ 500 byte range, the ISO-standardized



A Comparative Analysis of Lightweight Hash Functions 11

83
.8
7 34

3.
67

36
3.
6

39
6.
28

47
6.
28

53
5.
02 70
9.
21

71
9.
05 95
0.
55

98
5.
88

10
58

.7
2

10
99

.3

11
03

.1
4

11
28

.0
6 14
69

.3
9

15
52

.0
9

15
59

.5
3

15
61

.9
8

15
74

.2
4

15
99

.8
3

16
07

.1
2

16
13

.8
7

17
14

.8
4

17
59

.5
9

0
200
400
600
800

1000
1200
1400
1600
1800
2000

SK
IN
N
Y-

tk
2

SI
V-

Ri
jn
da

el

PH
O
TO

N

Co
ra
l

CL
X

O
RA

N
G
-

IS
H

Le
sa
m
nt
a-

LW

ES
CH

PH
O
TO

N
-

Be
et
le

G
im

li

Xo
od

ya
k

AS
CO

N

SN
EI
KH

A

BL
AK

E3

SI
V-
TE
M
-

PH
O
TO

N

BL
AK

E2
s

Sa
tu
rn
in

SH
AM

AS

TR
IA
D

G
AG

E

AC
E-
H

KN
O
T

IS
AP

Su
bt
er
-

ra
ne

an

En
er

gy
 (n

J )

Lightweight Hash Functions

256-bitHash Size:

Fig. 7. Energy consumption of selected lightweight hash function.

Lesamnta-LW has the highest RAM usage. In the 500–1000 byte range, the NIST-
submitted SKINNY-tk2 and the ISO-standardized PHOTON exhibit moder-
ate RAM requirements, with BLAKE2s near the upper bound of this range
and slightly higher than Saturnin. The most memory-intensive functions are
BLAKE3, Subterranean, and SIV-Rijndael, which show significantly higher RAM
consumption than the rest, with clear separation in their memory requirements.

ROM Consumption: Figure 6 demonstrates that CLX and Gimli lead with the
lowest ROM consumption as well. Within the ≤ 2000byte range, SIV-Rijndael
exhibits the highest ROM utilization, followed closely by PHOTON-Beetle. In
the 2000–4000 byte range, TRIAD and SIV-TEM-PHOTON consume the least,
whereas ESCH and the Lesamnta-LW consume the most in this interval. PHO-
TON lies approximately at the midpoint of this range. Due to fewer candidates
beyond this, the next interval spans 4000–10000 byte, where ISAP and SNEIKHA
show relatively modest ROM usage. In contrast, SHAMAS exhibits the highest
usage in this range. Beyond 10 000byte, Subterranean has ROM consumption
lower than both BLAKE2s and BLAKE3. Both variants of BLAKE are the most
resource-intensive in terms of ROM.

These results demonstrate that CLX and Gimli offer highly optimized mem-
ory footprints, while BLAKE3 is the most memory-demanding in both RAM
and ROM.

4.3 Energy Consumption Analysis

Figure 7 plots the measured energy consumption of the evaluated hash functions,
arranged in ascending order. Each data point is the mean of 10 runs; error bars
indicate variability across executions. The figure reflects the total energy required
to process a fixed-length input and is particularly relevant for battery-powered
or energy-constrained embedded systems.

The lowest energy consumption we observed is for SKINNY-tk2, followed
by SIV-Rijndael. While both are among the most energy-efficient, SKINNY-tk2
shows a notable margin of efficiency over SIV-Rijndael. In the ≤ 500 nJ range,



12 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

7.
38

2.
53

0.
84

0.
75

0.
67

0.
49

0.
26

0.
2

0.
18

0.
18

0.
12

0.
11

0.
09

2

0.
07

0.
07

0.
06

0.
05

0.
04

0.
03

7

0.
03

2

0.
02

0.
01

0.
00

63

0.
00

61

0.001

0.01

0.1

1

10

SK
IN
N
Y-

tk
2 CL
X

PH
O
TO

N

SI
V-

Ri
jn
da

el

CO
RA

L

O
RA

N
G
-

IS
H G
im

li

PH
O
TO

N
-

Be
et
le

ES
CH

Le
sa
m
nt
a-

LW AS
CO

N

Xo
od

ya
k

G
AG

E

AC
E-
H

SI
V-
TE
M
-

PH
O
TO

N

TR
IA
D

SN
EI
KH

A

KN
O
T

Sa
tu
rn
in

IS
AP

SH
AM

AS

Su
bt
er
-

ra
ne

an

BL
AK

E3

BL
AK

E2
s

E-
RA

N
K

Lightweight Hash Functions

256-bitHash Size:

Fig. 8. E-RANK of the studied lightweight hash functions.

CLX and Coral appear at the higher end, whereas PHOTON-256 demonstrates
moderate energy consumption, occupying a middle position within this range.
Within the 500–1000 nJ range, ORANGISH and Lesamnta-LW exhibit lower en-
ergy usage, whereas Gimli and PHOTON-Beetle consume the most energy. In
the 1000–1500 nJ interval, Xoodyak and ASCON are positioned as the most ef-
ficient, whereas SIV-TEM-PHOTON consumes the highest energy in this range.
For hash functions consuming more than 1500 nJ, BLAKE2s and Saturnin are
positioned at the lower end of this high-energy group. In contrast, Subterranean
and ISAP exhibit the highest energy consumption across all evaluated candi-
dates.

4.4 E-RANK Analysis

Figure 8 presents the E-RANK of the evaluated hash functions. The analysis re-
veals that SKINNY-tk2 achieves the highest E-RANK by a substantial margin.
It is followed by CLX, which also attains an E-RANK greater than 1, demon-
strating similarly strong efficiency characteristics. All remaining hash functions
fall within the sub-unitary range (E-RANK < 1). Among these, PHOTON-256
exhibits the highest E-RANK, closely followed by SIV-Rijndael, both reflect-
ing favorable trade-offs under constrained-resource settings. Lesamnta-LW and
ASCON achieve moderate E-RANK values, suggesting a reasonable balance,
although not as optimized as the leading candidates. At the lower end of the
spectrum, the BLAKE variants, specifically BLAKE2s, and BLAKE3, record
the lowest E-RANK values among all evaluated hash functions.

4.5 Comparative Analysis

Next, we present a comparative analysis of the benchmarked hash functions
using a heatmap, which visually represents the efficiency of each metric. For
this, we first normalize memory, execution time, and energy consumption to a
range between 0 and 1, using the min-max normalization method below, where
the value x is a single measurement and X the set of measurements.



A Comparative Analysis of Lightweight Hash Functions 13

CpB RAM ROM Energy E-RANK
Metrics

PHOTON

Lesamnta-LW

BLAKE2s

BLAKE3

ASCON

PHOTON-Beetle

Xoodyak

KNOT

ORANGISH

SHAMAS

SIV-Rijndael

SIV-TEM-PHOTON

SKINNY-tk2

SNEIKHA

TRIAD

Coral

Gimli

CLX

ACE-H

ESCH

Subterranean

Saturnin

ISAP

GAGE

Li
gh

tw
ei

gh
t 

H
as

h 
Fu

nc
ti

on
s

0.83 0.86 0.96 0.83 0.69

0.64 0.89 0.93 0.63 0.48

0.14 0.84 0.41 0.12 0.00

0.39 0.00 0.00 0.38 0.00

0.40 0.97 0.96 0.39 0.42

0.49 0.95 0.97 0.48 0.49

0.42 0.91 0.95 0.42 0.41

0.08 0.91 0.95 0.09 0.26

0.74 0.96 0.96 0.73 0.62

0.11 0.86 0.85 0.12 0.17

0.84 0.64 0.97 0.84 0.68

0.17 0.92 0.96 0.17 0.34

1.00 0.87 0.87 1.00 1.00

0.40 0.92 0.88 0.39 0.30

0.11 0.90 0.97 0.11 0.32

0.82 0.94 0.94 0.81 0.66

0.47 0.98 0.98 0.46 0.53

0.76 1.00 1.00 0.77 0.85

0.09 0.98 0.97 0.09 0.34

0.63 0.91 0.93 0.62 0.48

0.00 0.46 0.79 0.00 0.07

0.16 0.85 0.93 0.12 0.25

0.03 0.95 0.93 0.03 0.23

0.09 0.97 0.98 0.10 0.38
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 9. Normalized Heatmap of selected lightweight hash functions (Higher = Better).

x̂ = 1− x−min(X)

max(X)−min(X)
(11)

For E-RANK, values spans several orders of magnitude with many hash func-
tions clustered closely together around the lower end of the scale. To avoid having
these values skewed and compressed by min-max normalization, making them
hard to visualize in a heatmap, we here apply a logarithmic transformation using
the normalization formula below. The resulting heatmap is shown in Figure 9.

x̄ =
log (x×min(X))

log (max(X)/min(X))
(12)

In terms of CPB and energy consumption, the evaluated hash functions
SKINNY-tk2, SIV-Rijndael, PHOTON, and Coral exhibit the lowest CPB and
energy usage. CPB is directly proportional to energy consumption. These hash
functions utilize byte-aligned sponge constructions with fixed and non-branching
permutations. They avoid runtime key scheduling, and the round functions con-
sist of lightweight operations, such as 4-bit or 8-bit S-boxes, simple XORs, and
linear diffusion layers. In contrast, ISAP, KNOT, and Subterranean have the
lowest execution speeds and the highest energy consumption. This is primarily
because these designs depend on bit-sliced or bit-level permutations, which con-
sist of complex permutation structures. While these strategies enhance security
and hardware optimization, they result in a higher CPB in software, illustrating
the trade-off between security and efficiency on constrained devices.



14 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

In terms of memory footprint, CLX and Gimli have the least memory usage.
This is because these hash functions eliminate the need for dynamic memory al-
location by utilizing fixed-size, byte-aligned sponge states, and their permutation
cores rely on components such as XOR, rotations, and Boolean logic instead of
large S-boxes, lookup tables, or modular arithmetic. In contrast, the hash func-
tions with the highest memory footprints, including BLAKE3, BLAKE2s, and
Subterranean 2.0, exhibit structural complexity. BLAKE3 and BLAKE2s utilize
complex compression schedules involving numerous constants and key-dependent
initialization values, along with tree-based or parallel chunk processing and ex-
tendable output. Meanwhile, Subterranean employs bitwise transformations and
supports multiple operational wrappers, all of which contribute to high memory
requirements.

Some hash functions such as SKINNY-tk2, CLX, PHOTON, and SIV-Rijndael
achieve high E-RANK scores due to their low CPB, ROM, RAM, and energy con-
sumption. Note that SKINNY-tk2, SIV-Rijndael, and PHOTON benefit specifi-
cally from low CPB and energy usage. In contrast, CLX does not have the fastest
execution speed but has the lowest memory footprint among these functions.

Other hash functions, like BLAKE3, BLAKE2s, and Subterranean, show very
low E-RANK scores due to their large memory footprints and high energy con-
sumption. For example, the ROM and RAM requirements of BLAKE3 contribute
to its lower E-RANK, while Subterranean suffers from poor CPB and energy ef-
ficiency combined with high RAM usage, which further reduces its E-RANK.
These findings emphasize that overall balanced performance is not determined
only by execution speed, but rather by a balanced integration of processing rate,
memory, and power metrics. This also suggests that faster execution generally
necessitates more memory.

5 Related Work

Few studies focus on benchmarking of software-based lightweight hash functions,
other than the status reports published by NIST. There is a particular lack of
comparative analysis with other standardized lightweight hash functions such
as PHOTON, Lesamnta-LW, or BLAKE. To our knowledge, no other studies
provide a quantitative evaluation or analytical assessment of the performance-
to-cost tradeoff.

Khan et al. [30] performed benchmarking emphasizing hardware implemen-
tations. The study evaluates the throughput-to-area (TP/A) ratio, hardware
area utilization, and execution time but does not provide insights into the power
analysis or software implementations. Windarta et al. [42] provide a detailed
comparative study of NIST submitted hash functions, but the study concludes
the results of multiple sources, such as previous research papers and internal
evaluations by NIST. However, as a comparative study, it lacks a unified bench-
marking approach to standardize performance comparisons.

The NIST status reports on lightweight cryptographic algorithms present
software implementation results for NIST lightweight hash functions in detail,



A Comparative Analysis of Lightweight Hash Functions 15

Table 2. Performance metrics calculated values of lightweight hash function.

LWHF CPB RAM
(B)

ROM
(B)

Energy
(nJ) E-RANK

PHOTON 845 588 2708 363.6 0.84
Lesamnta-LW 1604 472 3840 709.21 0.18
BLAKE2s 3516 647 28704 1552.09 0.0061
BLAKE3 2545 3827 48072 1128.06 0.0063
ASCON 2531 153 2648 1099.3 0.12
PHOTON-Beetle 2158 263 1936 950.55 0.2
Xoodyak 2450 390 2804 1058.72 0.11
KNOT 3762 390 3106 1613.87 0.04
ORANGISH 1207 221 2702 535.02 0.49
SHAMAS 3643 602 7954 1561.98 0.02
SIV-Rijndael 811 1417 1970 343.67 0.75
SIV-TEM-PHOTON 3392 343 2322 1469.39 0.07
SKINNY-tk2 204 559 6806 83.87 7.38
SNEIKHA 2533 345 6266 1103.14 0.05
TRIAD 3657 423 2164 1574.24 0.06
Coral 907 268 3612 396.28 0.67
Gimli 2256 128 1468 985.88 0.26
CLX 1116 57 630 476.28 2.53
ACE-H 3728 144 2076 1607.12 0.07
ESCH 1633 396 3990 719.05 0.18
Subterranean 4065 2109 10478 1759.59 0.01
Saturnin 3449 634 3732 1559.53 0.037
ISAP 3953 250 4040 1714.84 0.032
GAGE 3722 177 1471 1599.83 0.092

evaluating execution time, memory footprint, and power consumption on ARM
Cortex-M4, ESP32, and AVR ATmega328P [40, 41, 39]. However, these bench-
marking results lack fine-grained power profiling, tradeoff analysis between per-
formance and cost, and performance tuning for specific embedded platforms.

6 Conclusions

This study presents a detailed methodology for conducting software benchmark-
ing of lightweight hash functions on an AVR microcontroller using the Chip-
Whisperer platform. The experimental setup is designed to obtain precise mea-
surements of key performance metrics. CPB are accurately captured by read-
ing the on-chip hardware cycle counter. The memory footprint is derived from
post-compilation analysis using the AVR-GCC toolchain. Energy consumption is
measured using a power measurement probe connected to the ChipWhisperer’s
integrated oscilloscope.

A comprehensive comparison between ISO-standardized lightweight hash func-
tions, such as PHOTON and Lesamnta-LW, and NIST-submitted lightweight
hash functions, including SHA competition finalists from the BLAKE family, re-
veals several trends. The hash functions from the ISO and NIST-LWC portfolios
show that faster execution generally requires more memory (e.g., SKINNY-tk2),



16 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

while designs that focus on security tend to execute more slowly (e.g., ISAP).
ISO-standardized designs like PHOTON and Lesamnta-LW were initially cre-
ated with hardware implementation in mind, but the results show that these
hash functions are well-suited for software implementation on 8-bit platforms.
Also, many NIST-LWC submissions, such as SKINNY, CLX, and SIV-Rijndael,
strike a strong balance across performance metrics. The BLAKE2s and BLAKE3
variants of the BLAKE family have a strong structure for security but tend to
perform poorly on AVR-constrained platforms due to their high memory re-
quirements and considerable amount of execution speed and energy consump-
tion. Thus, there is currently no single optimal lightweight hash function for all
scenarios; the best choice depends on specific application requirements and the
architecture of different microcontrollers for real-world deployments.

References

1. Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit, R.: Ace: An authenticated
encryption and hash algorithm. Submission document, NIST Lightweight Cryp-
tography Project (Mar 2019), https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/ace-spec.pdf,
round 1 Submission for NIST Lightweight Cryptography Standardization Process

2. Aumasson, J.P., Meier, W., Phan, R.C.W., Henzen, L.: BLAKE2,
pp. 165–183. Springer Berlin Heidelberg, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44757-4_9, https://doi.org/10.1007/
978-3-662-44757-4_9

3. Badel, S., Dağtekin, N., Nakahara Jr, J., Ouafi, K., Reffé, N., Sepehrdad, P., Sušil,
P., Vaudenay, S.: Armadillo: a multi-purpose cryptographic primitive dedicated to
hardware. In: International Workshop on Cryptographic Hardware and Embedded
Systems. pp. 398–412. Springer (2010)

4. Banik, S., Isobe, T., Meier, W., Todo, Y., Zhang, B.: Triad v1 – a
lightweight aead and hash function based on stream cipher. Submis-
sion document, NIST Lightweight Cryptography Project (Mar 2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/TRIAD-spec.pdf, round 1 Submission for NIST
Lightweight Cryptography Standardization Process

5. Bao, Z., Chakraborti, A., Datta, N., Guo, J., Nandi, M., Peyrin, T., Yasuda, K.:
Photon-beetle authenticated encryption and hash family (2020). Submission to the
NIST Lightweight Competition (2021)

6. Bao, Z., Guo, J., Iwata, T., Song, L.: Siv-rijndael256: Authenticated
encryption and hash family. Submission document, NIST Lightweight
Cryptography Project (Feb 2019), https://csrc.nist.gov/CSRC/media/
Projects/Lightweight-Cryptography/documents/round-1/spec-doc/
SIV-Rijndael256-Spec.pdf, round 1 Submission for NIST Lightweight Cryptog-
raphy Standardization Process

7. Bao, Z., Guo, J., Iwata, T., Song, L.: Siv-tem-photon: Authenticated
encryption and hash family. Submission document, NIST Lightweight
Cryptography Project (Feb 2019), https://csrc.nist.gov/CSRC/media/
Projects/Lightweight-Cryptography/documents/round-1/spec-doc/
SIV-TEM-PHOTON-Spec.pdf, round 1 Submission for NIST Lightweight Cryptog-
raphy Standardization Process



A Comparative Analysis of Lightweight Hash Functions 17

8. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
Simon and Speck block ciphers on AVR 8-bit microcontrollers. In: Eisenbarth, T.,
Öztürk, E. (eds.) Lightweight Cryptography for Security and Privacy. pp. 3–20.
Springer International Publishing, Cham (2015)

9. Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin, L.,
Udovenko, A., Velichkov, V., Wang, Q.: Schwaemm and esch: Lightweight
authenticated encryption and hashing using the sparkle permutation family.
Submission document, NIST Lightweight Cryptography Project (Mar 2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/SPARKLE-spec.pdf, round 1 Submission for NIST
Lightweight Cryptography Standardization Process

10. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: Skinny-aead and skinny-hash: Authenticated encryption and
hashing using the skinny block cipher. Submission document, NIST Lightweight
Cryptography Project (2019), https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/SKINNY-spec.pdf,
round 1 Submission for NIST Lightweight Cryptography Standardization Process

11. Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz,
K., Schneider, T., Schwabe, P., Standaert, F.X., Todo, Y., Viguier, B.: Gimli:
A cross-platform permutation for hashing and authenticated encryption.
Submission document, NIST Lightweight Cryptography Project (Mar 2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/gimli-spec.pdf, round 1 Submission for NIST
Lightweight Cryptography Standardization Process

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT 2013. pp. 313–314.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

13. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: ECRYPT
Hash Workshop (2007), https://keccak.team/files/SpongeFunctions.pdf

14. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: A lightweight hash function. In: Preneel, B., Takagi, T. (eds.) Crypto-
graphic Hardware and Embedded Systems – CHES 2011. pp. 312–325. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

15. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.:
Hash functions and rfid tags: Mind the gap. In: Oswald, E., Rohatgi, P. (eds.) Cryp-
tographic Hardware and Embedded Systems – CHES 2008. pp. 283–299. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008)

16. Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin,
T., Schrottenloher, A.: Saturnin: A suite of lightweight symmetric algorithms
for post-quantum security. Submission document, NIST Lightweight Cryptog-
raphy Project (Mar 2019), https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/SATURNIN-spec.
pdf, round 1 Submission for NIST Lightweight Cryptography Standardization
Process

17. Chakraborty, B., Nandi, M.: ORANGE: Algorithm specifications and sup-
porting document. Submission document, NIST Lightweight Cryptogra-
phy Project (Mar 2019), https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/orange-spec.pdf,
round 1 Submission for NIST Lightweight Cryptography Standardization Process



18 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

18. Chang, S.j., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham,
L.E.: Third-round report of the sha-3 cryptographic hash algorithm competition.
NIST Interagency Report 7896, 121 (2012)

19. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a
lightweight cryptographic scheme. IACR Transactions on Symmetric Cryptology
pp. 60–87 (2020)

20. Daemen, J., Massolino, P.M.C., Rotella, Y.: The subterranean 2.0 cipher suite.
Submission document, NIST Lightweight Cryptography Project (Mar 2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/subterranean-spec.pdf, round 1 Submission for
NIST Lightweight Cryptography Standardization Process

21. Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) Ad-
vances in Cryptology — CRYPTO’ 89 Proceedings. pp. 416–427. Springer New
York, New York, NY (1990)

22. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Primas,
R., Unterluggauer, T.: Isap v2.0: Submission to the nist lightweight cryptography
standardization process. Submission document, NIST Lightweight Cryptog-
raphy Project (Mar 2019), https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf,
round 1 Submission for NIST Lightweight Cryptography Standardization Process

23. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2: Lightweight
authenticated encryption and hashing. Journal of Cryptology 34, 1–42 (2021)

24. Gligoroski, D., Mihajloska, H., Otte, D.: Gage and ingage v1.0: Submis-
sion to the nist lightweight cryptography standardization process. Sub-
mission document, NIST Lightweight Cryptography Project (Mar 2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/GAGEandInGAGE-spec.pdf, round 1 Submission
for NIST Lightweight Cryptography Standardization Process

25. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) Advances in Cryptology – CRYPTO 2011. pp.
222–239. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

26. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and Embedded Systems –
CHES 2011. pp. 326–341. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

27. Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: A
lightweight 256-bit hash function for hardware and low-end devices: Lesamnta-lw.
In: Rhee, K.H., Nyang, D. (eds.) Information Security and Cryptology - ICISC
2010. pp. 151–168. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

28. International Organization for Standardization: Iso/iec 29192-5:2016 information
technology — security techniques — lightweight cryptography — part 5: Hash-
functions (2016), https://www.iso.org/standard/67173.html, accessed: 2024-10-
22

29. Khan, M., Johansen, D., Dagenborg, H.: Performance evaluation of lightweight
cryptographic ciphers on ARM processor for IoT deployments. In: Zhao, J., Meng,
W. (eds.) Science of Cyber Security. pp. 254–272. Springer Nature Singapore, Sin-
gapore (2025)

30. Khan, S., Lee, W.K., Karmakar, A., Mera, J.M.B., Majeed, A., Hwang, S.O.:
Area–time efficient implementation of nist lightweight hash functions target-
ing iot applications. IEEE Internet of Things Journal 10(9), 8083–8095 (2023).
https://doi.org/10.1109/JIOT.2022.3229516



A Comparative Analysis of Lightweight Hash Functions 19

31. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) Advances in
Cryptology — CRYPTO’ 89 Proceedings. pp. 218–238. Springer New York, New
York, NY (1990)

32. Microchip Technology Inc.: ATxmega16D4/32D4/64D4/128D4 8/16-
bit AVR Microcontroller Datasheet. Atmel Corporation (Jun
2014), https://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-8135-8-and-16-bit-AVR-microcontroller-ATxmega16D4-32D4-64D4-128D4_
datasheet.pdf, document No. Atmel-8135, Revision H

33. Montes, M., Penazzi, D.: Yarará and coral v1: Lightweight authenticated en-
cryption and hash function algorithms. Submission document, NIST Lightweight
Cryptography Project (Mar 2019), https://csrc.nist.gov/CSRC/media/
Projects/Lightweight-Cryptography/documents/round-1/spec-doc/yarara_
and_coral-spec.pdf, round 1 Submission for NIST Lightweight Cryptography
Standardization Process

34. NewAE Technology Inc.: Newae hardware product documentation (2025), https:
//rtfm.newae.com/, accessed: 2025-03-03

35. O’Connor, J., Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z.: BLAKE3: one func-
tion, fast everywhere. https://github.com/BLAKE3-team/BLAKE3-specs/blob/
master/blake3.pdf (Jan 2020), accessed: 2025-03-24

36. Penazzi, D., Montes, M.: SHAMASH & SHAMASHASH: Lightweight au-
thenticated encryption and hash function algorithms. Submission document,
NIST Lightweight Cryptography Project (2019), https://csrc.nist.gov/CSRC/
media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/
ShamashAndShamashash-spec.pdf, round 1 Submission for NIST Lightweight
Cryptography Standardization Process

37. Saarinen, M.J.O.: Sneiken and sneikha: Authenticated encryption and cryp-
tographic hashing. Submission document, NIST Lightweight Cryptogra-
phy Project (Mar 2019), https://csrc.nist.gov/CSRC/media/Projects/
Lightweight-Cryptography/documents/round-1/spec-doc/sneik-spec.pdf,
round 1 Submission for NIST Lightweight Cryptography Standardization Process

38. of Standards, N.I., Technology: Lightweight cryptography project. https://csrc.
nist.gov/projects/lightweight-cryptography (nd), accessed: 2024-10-22

39. Turan, M.S., McKay, K.A., Çalik, Ç., Chang, D., Bassham, L., et al.: Status re-
port on the first round of the nist lightweight cryptography standardization pro-
cess. National Institute of Standards and Technology, Gaithersburg, MD, NIST
Interagency/Internal Rep.(NISTIR) 108 (2019)

40. Turan, M.S., Turan, M.S., McKay, K., Chang, D., Bassham, L.E., Kang, J., Waller,
N.D., Kelsey, J.M., Hong, D.: Status report on the final round of the NIST
lightweight cryptography standardization process. US Department of Commerce,
National Institute of Standards and Technology (2023)

41. Turan, M.S., Turan, M.S., McKay, K., Chang, D., Calik, C., Bassham, L., Kang, J.,
Kelsey, J.: Status report on the second round of the nist lightweight cryptography
standardization process (2021)

42. Windarta, S., Suryadi, S., Ramli, K., Pranggono, B., Gunawan, T.S.:
Lightweight cryptographic hash functions: Design trends, comparative
study, and future directions. IEEE Access 10, 82272–82294 (2022).
https://doi.org/10.1109/ACCESS.2022.3195572

43. Wu, H., Huang, T.: Clx: A family of lightweight authenticated encryp-
tion algorithms. Submission document, NIST Lightweight Cryptogra-
phy Project (Mar 2019), https://csrc.nist.gov/CSRC/media/Projects/



20 Mohsin Khan, Dag Johansen, and Håvard Dagenborg

Lightweight-Cryptography/documents/round-1/spec-doc/CLX-spec.pdf,
round 1 Submission for NIST Lightweight Cryptography Standardization Process

44. Zhang, W., Ding, T., Yang, B., Bao, Z., Xiang, Z., Ji, F., Zhao,
X.: KNOT: Algorithm specifications and supporting document. Sub-
mission document, NIST Lightweight Cryptography Project (2019),
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/KNOT-spec.pdf, round 1 Submission for NIST
Lightweight Cryptography Standardization Process


