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Abstract
Decentralized min-max optimization allows multi-agent systems to

collaboratively solve global min-max optimization problems by fa-

cilitating the exchange of model updates among neighboring agents,

eliminating the need for a central server. However, sharing model

updates in such systems carry a risk of exposing sensitive data to

inference attacks, raising significant privacy concerns. To mitigate

these privacy risks, differential privacy (DP) has become a widely

adopted technique for safeguarding individual data. Despite its ad-

vantages, implementing DP in decentralized min-max optimization

poses challenges, as the added noise can hinder convergence, par-

ticularly in non-convex scenarios with complex agent interactions

in min-max optimization problems. In this work, we propose an

algorithm called DPMixSGD (Differential Private Minmax Hybrid

Stochastic Gradient Descent), a novel privacy-preserving algorithm

specifically designed for non-convex decentralized min-max opti-

mization. Our method builds on the state-of-the-art STORM-based

algorithm, one of the fastest decentralized min-max solutions. We

rigorously prove that the noise added to local gradients does not

significantly compromise convergence performance, and we pro-

vide theoretical bounds to ensure privacy guarantees. To validate

our theoretical findings, we conduct extensive experiments across

various tasks and models, demonstrating the effectiveness of our

approach.
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1 Introduction
Min-max optimization has been widely applied in various machine

learning (ML) domains, such as in-context learning [43, 47], gen-

erative adversarial networks (GANs) [29, 30, 50], and adversarial

reinforcement learning [32, 34, 69]. Traditionally, ML models have

been trained using high-performance clusters within large data

centers. However, the growing range of ML applications has led

to an increasing shift toward deploying models on edge comput-

ing networks. This change is driven by the need to process data

from geographically distributed sources (e.g., smart devices, ve-

hicles, and sensors) and the high costs or impracticality of trans-

mitting raw training data to centralized cloud servers due to com-

munication bandwidth limitations or privacy concerns [48, 58].

This paradigm is particularly beneficial in scenarios such as multi-

agent pretraining and fine-tuning of large language models (LLMs)

[11, 22, 23, 33, 53, 60], where collaborative efforts are needed due

to the sensitivity of fine-tuning data. It also benefits decentralized

min-max optimization applications, such as decentralized AUCmax-

imization [26], multi-agent meta-learning [53, 61], and multi-agent

reinforcement learning [54, 83], as the decentralized framework

reduces communication overhead and mitigates privacy risks by

limiting direct data sharing among agents.

Despite the perceived privacy advantages of decentralized learn-

ing, which limit direct data sharing among agents, recent research

has shown that it remains vulnerable to privacy breaches due to

indirect leakage through model updates or gradient information

[31, 41, 62, 78]. An attacker can exploit shared model updates to

infer sensitive information from agents, and in some cases, even re-

construct the original training data [24, 35, 57]. These vulnerabilities

introduce substantial privacy risks, compromising the anticipated

benefits of decentralized systems. To mitigate these challenges, re-

searchers have employed differential privacy (DP) [7, 15, 17, 51], a

method that strengthens privacy by adding strategically designed

noise to local updates before sharing, thereby offering increased

protection against data breaches. While existing works primarily

focus on incorporating DP into centralized learning or standard

decentralized frameworks such as federated learning, applying DP

to decentralized stochastic min-max optimization remains largely

unexplored and presents unique challenges:
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• Adding noise for differential privacy in decentralized min-max

optimization introduces randomness that degrades gradient ac-

curacy, slowing convergence and destabilizing the optimization.

In such problems, even slight noise can disrupt the delicate min-

max balance and cause oscillations near saddle points. Privacy

noise thus poses unique challenges by destabilizing complex

saddle-point dynamics, complicating convergence in decentral-

ized, privacy-preserving settings.

• Decentralized min-max optimization faces additional difficulty

due to non-IID data across agents, causing local gradients to di-

verge and hindering consensus on saddle points. Adding privacy

noise worsens this by obscuring useful signals. The heterogene-

ity of non-IID data intensifies coordination challenges while

preserving privacy.

• Privacy analysis is especially challenging in decentralized min-

max setups because each agent adds noise locally and commu-

nicates iteratively, complicating cumulative privacy accounting.

Ensuring rigorous differential privacy without harming conver-

gence remains difficult.

In this paper, we bridge a critical gap by introducing DPMixSGD,
an innovative and efficient algorithm for differentially private decen-

tralized min-max optimization. Our method leverages the STORM

framework [16] to reduce gradient variance, crucial for control-

ling noise under differential privacy. Its single-loop design eases

implementation and privacy analysis. Unlike prior non-private

decentralized min-max uses [74], we adapt STORM with privacy-

preserving updates and a noise-aware convergence proof. The core

mechanism of DPMixSGD involves each agent perturbing its gra-

dients with carefully calibrated noise to ensure differential privacy.

These perturbed gradients are then shared with neighboring agents,

enabling decentralized collaboration while maintaining privacy. To

demonstrate the effectiveness of our DPMixSGD, we conduct a

thorough convergence analysis and assess the privacy guarantees

of DPMixSGD under practical and reasonable assumptions.

Our key contributions are as follows:

• We introduce DPMixSGD, a new algorithm that guarantees dif-

ferential privacy in non-convex-strongly-concave decentralized

min-max optimization. DPMixSGD is built upon STORM-based

algorithms tailored for min-max problems, providing robust pri-

vacy protection while maintaining high optimization perfor-

mance.

• We establish rigorous theoretical convergence guarantee and

privacy guarantees for our proposed algorithm, DPMixSGD. Our
proof shows that even with Gaussian noise added to the commu-

nication process of local gradients, DPMixSGD can still maintain

strict convergence. Meanwhile, by strategically designing the

noise added to the communication of local gradients in decentral-

ized min-max optimization framework, we achieve DP without

significantly degrading the algorithm’s performance. This ap-

proach effectively balances privacy preservation with strong

optimization results.

• We empirically evaluate the DPMixSGD algorithm on logistic

regression and AUROC min-max optimization tasks. To assess

its performance, we compare DPMixSGD with several state-of-

the-art methods, including DM-HSGD [74], SGDA [6], and DP-

SGDA [79]. The results show that DPMixSGD performs robustly,

naturally preserving privacy while achieving results on par with

other methods. Moreover, we conduct a comparative experiment

between our algorithm and DM-HSGD to demonstrate that our

method significantly improves privacy robustness against Deep

Leakage from Gradients (DLG) attacks.

2 Related works
2.1 Decentralized min-max optimization
Numerous methods have been proposed to address min-max op-

timization problems, including gradient descent techniques [77],

momentum-based approaches [3, 37], mirror descent ascent meth-

ods [38], and stochastic gradient methods [14, 25, 55]. Building upon

these foundational techniques, various algorithms have been de-

veloped specifically for decentralized min-max optimization, such

as those in [44, 52, 56, 68]. Our approach draws primarily from

the decentralized min-max hybrid stochastic gradient descent (DM-

HSGD) algorithm [74], which achieves a stochastic first-order oracle

(SFO) complexity of O(𝜅3𝜖−3). Here, 𝜅 = 𝐿
𝜇 denotes the condition

number of the problem, defined as the ratio between the smoothness

constant 𝐿 and the strong convexity constant 𝜇, and 𝜖 represents

the target accuracy level for the optimization error. These devel-

opments have significantly expanded the applications of min-max

optimization, especially in the context of machine learning.

2.2 Differential privacy (DP)
Differential Privacy (DP) [19] is a rigorous mathematical frame-

work that ensures strong privacy guarantees when analyzing and

sharing data. Many algorithms have been designed to provide these

guarantees for minimization problems [13, 70, 72, 82], and some

have been further adapted to handle min-max problems [39, 80].

Several recent works have explored differential privacy (DP) in

the context of variational inequalities and saddle point problems.

Boob et al. [8] investigated DP stochastic variational inequalities

and saddle point problems, achieving optimal weak gap guaran-

tees; González et al. [28] proposed DP mirror descent methods with

nearly dimension-independent utility guarantees for stochastic

saddle-point problems. However, their analysis is primarily limited

to centralized settings and does not extend to decentralized regime.

Bassily et al. [4] refined strong gap analysis using recursive regu-

larization techniques, but their methods require strong convexity

and are not directly applicable to min-max formulations in decen-

tralized environments. Zhou et al. [86] addressed worst-group risk

minimization through a stability-based lens, but did not consider

interactive or game-theoretic settings such as saddle-point opti-

mization. In the nonconvex-strongly-concave case, Zhao et al. [84]

introduced a DP temporal difference learning algorithm; nonethe-

less, their focus lies in reinforcement learning rather than generic

decentralized optimization. Our algorithm focuses on addressing

the current limitations of these prior works.

Privacy concerns are particularly prominent in distributed sys-

tems, such as federated learning [2, 36, 67, 73] and multi-party

computation, where nodes often need to exchange sensitive in-

formation. The main challenge in these scenarios is to safeguard
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individual data privacy while ensuring effective model training

and robust performance, especially in the face of potential threats

from malicious actors that could compromise the integrity of the

learning process. Unlike centralized settings, decentralized opti-

mization lacks a trusted central authority and requires nodes to

frequently communicate gradients or model updates over untrusted

networks, significantly increasing privacy risks. For instance, ad-

versaries can reconstruct training data from shared gradients, as

demonstrated in [87], making privacy preservation even more chal-

lenging in decentralized settings. To address this, it is crucial to

ensure differential privacy (DP) at each node. While existing work

such as DP-SGDA [79] has explored DP in centralized min-max

optimization, the decentralized case remains largely unaddressed.

In this paper, we propose a novel approach that enhances privacy

by injecting noise directly into local gradients at each node in a

decentralized setting. While DP-SGDA [79] ensures privacy in cen-

tralized min-max optimization through gradient perturbation, it is

not directly applicable to decentralized scenarios due to its reliance

on centralized data access and coordination. In contrast, our method

introduces noise locally in a distributed network, eliminating the

need for central coordination and enabling efficient and privacy-

preserving updates even in multi-agent systems. This design is

naturally compatible with decentralized architectures and leads

to improved scalability and communication efficiency. Following

the strategy in [18], our algorithm operates by exchanging model

variables x𝑡 and y𝑡 , which depend on gradients. However, instead of
perturbing the variables themselves, we perturb the local gradients

to preserve privacy while maintaining optimization performance.

This design makes our method particularly suitable for privacy-

sensitive decentralized applications, such as federated adversarial

training [64, 88]. We provide the Table 1 to intuitively illustrate

the differences between our algorithm and the baselines we use

in our paper. Our work thus takes a critical step toward bridging

the gap between differential privacy and decentralized min-max

optimization.

Table 1: Comparison of DPMixSGD with baselines.
Method DP Guarantee Variance Reduction Min-Max Setting
DM-HSGD × ✓(STORM) ✓
SGDA × × ✓
DP-SGDA ✓ × ✓
DPMixSGD (ours) ✓ ✓(STORM) ✓

3 Problem Formulation and Motivation
3.1 Problem Formulation
Before presenting our problem formulation, we first introduce the

mixing matrixW, which represents the averaging weights in the

communication network. The matrixW =
{
w𝑖 𝑗

}
∈ R𝑚×𝑚

is dou-

bly stochastic and satisfies the following conditions:

W1 = W⊤1 = 1 (1)

where 1 is an all-ones matrix, and W⊤
is the transpose of W. Note

that in this paper W is required to be symmetric, allowing the

communication network to represent undirected graphs.

Decentralized min-max problems are typically formulated in

a multi-agent environment, where each agent has access only to

its local data and collaborates with other agents via limited com-

munication to optimize a non-convex strongly concave min-max

objective function. The mathematical form of a decentralized min-

max problem can be expressed as follows:

min

x∈X
max

y∈Y
𝑓 (x, y) = 1

𝑚

𝑚∑︁
𝑖=1

𝑓𝑖 (x, y),

𝑓𝑖 (x, y) := Ez(𝑖 )∼𝐷𝑖
𝐹𝑖

(
x, y; z(𝑖 )

) (2)

where 𝑚 is the total number of agents; X ⊆ R𝑑1
and Y ⊆ R𝑑2

represent the decision spaces for x and y, respectively; The local
objective function 𝐹𝑖 (x, y; z(𝑖 ) ) is 𝐿-smooth, non-convex with re-

spect to x, and strongly concave with respect to y; 𝐷𝑖 denotes the

data distribution on the 𝑖-th agent; z(𝑖 ) is a random vector sampled

from the local dataset Z.

In order to simplify the min-max problem, we often introduce

Φ(x) = maxy∈Y 𝑓 (x, y), reducing the problem to one that involves

optimizing only over x:

min

x∈X
Φ(x) = min

x∈X
max

y∈Y
𝑓 (x, y) . (3)

Additionally, we introduce noise to the local gradients. To establish

the privacy guarantees of our algorithm, we now present the defini-

tion of differential privacy in the context of stochastic decentralized

min-max problems.

Definition 1. [Differential Privacy [20]] An algorithm A :

Z𝑛 → R𝑑1 ×R𝑑2
is said to be (𝜃,𝛾)-differentially private if, for any

adjacent datasets z(𝑖 ) ∼ z(𝑖 )′ (on the 𝑖-th agent) and for all output

events 𝑂 ⊆ range(A), the following holds:

P
[
A

(
z(𝑖 )

)
∈ 𝑂

]
≤ 𝑒𝜃P

[
A

(
z(𝑖 )′

)
∈ 𝑂

]
+ 𝛾, (4)

where A
(
z(𝑖 )

)
is the output of the decentralized algorithm based

on 𝑖-th agent datasets z(𝑖 ) . P denotes the probability of the algo-

rithm’s output in the corresponding event. Note that two datasets

are said to be adjacent if they differ in at most one data sample.

Empirical risk plays a crucial role in differential privacy. By

optimizing the empirical risk across all agents, the algorithm can

effectively train a global model while protecting individual data

privacy. Furthermore, empirical risk minimization helps evaluate

the impact of privacy-preserving mechanisms on the overall system,

ensuring that the algorithm can still converge correctly and produce

a meaningful model even after the addition of noise. By combining

STORM with gradient tracking, our algorithm effectively mitigates

consensus errors and ensures convergence in decentralized settings

with non-identical data. This makes it more robust and suitable for

complex distributed scenarios. In this paper, we define the average

empirical risk as the mean of the local gradients estimators ḡ𝑡 across
all agents, expressed as follows:

∇x 𝑓𝑆 (x̄, ȳ) = ḡ𝑡 =
1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
+ (1 − 𝛽x)

(
ḡ𝑡−1 −

1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

)) (5)
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The empirical risk is constructed by 𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

)
, which is

the local loss functions across all𝑚 agents, where z(𝑖 ) denotes the
data of the 𝑖-th agent.

3.2 Motivating Applications
Our motivation stems from concerns about privacy leaks in the

real-world applications of decentralized learning. Here, we present

two motivating applications to illustrate the practical relevance of

our work:

• Decentralized Min-Max Learning in Healthcare: Decentral-
ized learning is widely used in healthcare to enable collaborative

model training across institutions without sharing sensitive pa-

tient data [41, 46, 65, 66]. Each hospital trains a model locally

using its own records and communicates model updates—such

as gradients—with its neighbors. However, this process intro-

duces privacy risks, as shared updates may leak confidential

information. Beyond privacy, healthcare itself presents intrin-

sic min-max structures: resource allocation problems—such as

distributing ICU beds, vaccines, or staff—often aim to optimize

system-wide performance under limited capacity by minimizing

the worst-case delay or maximizing the earliest service avail-

ability [59]. Motivated by this, we propose a decentralized min-

max optimization framework, where each hospital solves a local

min-max problem that captures both learning objectives and

operational constraints inherent to healthcare. To ensure patient

confidentiality during collaboration, we incorporate DP by inject-

ing calibrated noise into local updates. This mechanism prevents

sensitive information from being inferred from shared gradients,

enabling secure and privacy-preserving model training across

institutions.

• Decentralized Min-Max Learning for Financial Systems:
In financial systems [63, 85], institutions often need to collabo-

ratively train models—for tasks like risk assessment or market

forecasting—without sharing sensitive data. Many of these prob-

lems naturally follow a min-max structure, as each agent seeks

to minimize risk or loss under worst-case scenarios or regulatory

constraints. Since financial data is highly sensitive and regulated,

differential privacy (DP) is critical to prevent leakage of propri-

etary or customer information through shared model updates.

By introducing noise into local computations, DP enables in-

stitutions to collaborate securely without compromising data

confidentiality.

4 Solution Approach
In this section, we first outline the necessary preparations for the

algorithm and then proceed to present the algorithm along with

detailed explanations.

4.1 Preliminaries
Before detailing the proposed algorithms, we define the notations

and key concepts used throughout this paper. Let x(𝑖 )𝑡 and y(𝑖 )𝑡 repre-

sent the column vector parameters on the 𝑖-th agent at 𝑡-th iteration.

The matrices 𝑋𝑡 and 𝑌𝑡 are defined by stacking the vectors x
(𝑖 )
𝑡 and

y(𝑖 )𝑡 across all 𝑚 agents, i.e., 𝑋𝑡 =

[
x(1)𝑡 , x(2)𝑡 , . . . , x(𝑚)

𝑡

]
, 𝑌𝑡 =

[
y(1)𝑡 , y(2)𝑡 , . . . , y(𝑚)

𝑡

]
. The gradient estimators g(𝑖 )𝑡 and h(𝑖 )𝑡 are

the local gradient estimators for x and y at the 𝑖-th agent, respec-

tively, while v(𝑖 )𝑡 and u(𝑖 )𝑡 denote their aggregated counterparts

across the network. The matrices𝐺𝑡 , 𝐻𝑡 ,𝑉𝑡 , and𝑈𝑡 are constructed

by stacking the corresponding column vectors g(𝑖 )𝑡 , h(𝑖 )𝑡 , v(𝑖 )𝑡 , and

u(𝑖 )𝑡 from all agents. Additionally, the matrices𝐺∗
𝑡 and𝐻

∗
𝑡 represent

the gradient estimators with noise components included in g(𝑖 )𝑡

and h(𝑖 )𝑡 , respectively.

For the mean vectors, we denote the lower-case variable with

a bar to represent it, and the upper-case variables with a bar to

represent matrices where each column is the corresponding mean

vector. Specifically, the mean of x(𝑖 )𝑡 is given by x̄𝑡 = 1

𝑚

∑𝑚
𝑖=1

x(𝑖 )𝑡 ,

and the matrix 𝑋𝑡 is defined as 𝑋𝑡 = [x̄𝑡 , x̄𝑡 , . . . , x̄𝑡 ] . Meanwhile,

the added noise terms 𝑛
(𝑖 )
x,𝑡 ∼ N(0, 𝜎2

x𝐼𝑑1
) and 𝑛

(𝑖 )
y,𝑡 ∼ N(0, 𝜎2

y𝐼𝑑2
)

for ∀𝑖 are applied to the respective gradients. We define their mean

values as follows:

Nx,𝑡 =

∑𝑚
𝑖=1

𝑛
(𝑖 )
x,𝑡

𝑚
, Ny,𝑡 =

∑𝑚
𝑖=1

𝑛
(𝑖 )
y,𝑡

𝑚
. (6)

Next, we define the optimal solution for y as:

y∗ (·) = arg max

y∈Y
𝑓 (·, y), ŷ𝑡 = arg max

y∈Y
𝑓 (x̄𝑡 , y) , (7)

where, under the condition that 𝑓 is strongly concave in y, ŷ𝑡 is
unique. We further define the deviation as

𝛿𝑡 = ∥ŷ𝑡 − ȳ𝑡 ∥2 . (8)

The vectors 0 and 1 denote𝑚 × 1 column vectors of all zeros and

ones, respectively. The frobenius norm is denoted by ∥ · ∥𝐹 , and the
spectral norm by ∥ · ∥2. Partial derivatives with respect to x and y
are represented by ∇x and ∇y.

4.2 DP in decentralized min-max problem
In this subsection, we will explain our new algorithm step by step.

The overall procedure is similar to the STORM-based algorithm,

however, it is important to note that we introduce gradient pertur-

bation in the algorithm to ensure privacy protection.

The original values of the parameters at all agents are set to be

identical, that is, x(𝑖 )
0

= x0 and y(𝑖 )
0

= y0 for every agent 𝑖 . The

quantities g(𝑖 )𝑡 and h(𝑖 )𝑡 represent the gradient estimators at the

𝑖-th agent with respect to x and y, respectively. These estimators

are computed following the STORM [16] method used on DM-

HSGD [74]. Specifically, at 𝑡 = 0, a large batch size of 𝑏0 is used to

estimate the stochastic gradient (see Initialize in Algorithm 1). For

𝑡 > 0, the gradient estimators can be computed using either a single

data point or a mini-batch (refer to lines 2 and 3 in Algorithm 1).

The update rule for the gradient estimator g(𝑖 )𝑡 across all agents

can be expressed as follows:

ḡ𝑡 =
1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 , z(𝑖 )𝑡

)
+ (1 − 𝛽x)

(
ḡ𝑡−1 −

1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

, z(𝑖 )𝑡

)) (9)

where the mean gradient ḡ𝑡 is updated by combining the current

and previous gradients weighted by 𝛽x.
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Algorithm 1 DPMixSGD on the 𝑖-th agent.

Initialize: Mixing matrix W, initial value x(𝑖 )
0

= x0, y
(𝑖 )
0

=

y0, v
(𝑖 )
−1

= g(𝑖 )∗−1
= 0, u(𝑖 )−1

= h(𝑖 )∗−1
= 0, when the

algorithm can reach the optimal solution with 0 itera-

tion. We set g(𝑖 )
0

= ∇x𝐹𝑖

(
x(𝑖 )

0
, y(𝑖 )

0
; z(𝑖 )

0

)
and h(𝑖 )

0
=

∇y𝐹𝑖

(
x(𝑖 )

0
, y(𝑖 )

0
; z(𝑖 )

0

)
,

���z(𝑖 )
0

��� = 𝑏0.

Parameter: Privacy budgets𝜃,𝛾 , learning rate𝜂x, 𝜂y, weight 𝛽x, 𝛽y,
batch size 𝑏0, epoch 𝑇 .

Output: 𝑥𝜁 , where 𝜁 is chosen randomly from {1, 2, · · · ,𝑇 }
1: for each 𝑡 = 1, . . . ,𝑇 − 1 do

2:

g(𝑖 )𝑡 = (1 − 𝛽x)
(
g(𝑖 )
𝑡−1

− ∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

))
+

∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
3:

h(𝑖 )𝑡 =
(
1 − 𝛽y

) (
h(𝑖 )
𝑡−1

− ∇y𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

))
+

∇y𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
4: //Encrypt gradients when communicating with other agents.

5: Sample noise 𝑛
(𝑖 )
x,𝑡 ∼ N(0, 𝜎2

x𝐼𝑑1
) and 𝑛 (𝑖 )y,𝑡 ∼ N(0, 𝜎2

y𝐼𝑑2
).

6: g(𝑖 )∗𝑡 = g(𝑖 )𝑡 + 𝑛 (𝑖 )x,𝑡

7: h(𝑖 )∗𝑡 = h(𝑖 )𝑡 + 𝑛 (𝑖 )y,𝑡
8: //At the 𝑖-th agent, the encrypted gradient is received and

calculated.

9: v(𝑖 )𝑡 =
∑𝑚

𝑗=1
𝑤𝑖 𝑗

(
v( 𝑗 )
𝑡−1

+ g( 𝑗 )∗𝑡 − g( 𝑗 )∗
𝑡−1

)
10: u(𝑖 )𝑡 =

∑𝑚
𝑗=1

𝑤𝑖 𝑗

(
u( 𝑗 )
𝑡−1

+ h( 𝑗 )∗𝑡 − h( 𝑗 )∗
𝑡−1

)
11: //Send the computation result to the respective agent and

perform the mixed information calculation at that agent.

12: x(𝑖 )
𝑡+1

=
∑𝑚

𝑗=1
𝑤𝑖 𝑗

(
x( 𝑗 )𝑡 − 𝜂xv

( 𝑗 )
𝑡

)
13: y(𝑖 )

𝑡+1
=

∑𝑚
𝑗=1

𝑤𝑖 𝑗

(
y( 𝑗 )𝑡 + 𝜂yu( 𝑗 )𝑡

)
14: end for

Similarly, the computation for h(𝑖 )𝑡 follows the same procedure

as for g(𝑖 )𝑡 . Once the local gradient estimators g(𝑖 )𝑡 and h(𝑖 )𝑡 are

computed, each agent communicates with its neighboring agents to

aggregate the estimates and compute the new gradient estimators

u(𝑖 )𝑡 and v(𝑖 )𝑡 . To ensure differential privacy, noise is added to the

local gradients during communication with neighboring agents

(see lines 5 to 7 in Algorithm 1). This guarantees that our algo-

rithm meets privacy requirements. To mitigate the consensus error,

gradient tracking is employed (see lines 9 and 10 in Algorithm 1).

After obtaining the updated gradient estimators u(𝑖 )𝑡 and v(𝑖 )𝑡 , each

agent communicates with its neighbors again to update the model

parameters x and y.

5 Theoretical Analysis
In this section, we present the convergence analysis and discuss

the privacy guarantees of our DPMixSGD algorithm under certain

mild assumptions. All relevant proofs are provided in Appendix.

We begin by reviewing some essential assumptions and definitions.

5.1 Convergence analysis
In our proposed DPMixSGD, each agent introduces noise to the lo-

cal gradients to ensure privacy during agent communication. There-

fore, before presenting the privacy guarantees, we first provide a

rigorous proof of convergence to demonstrate that the added noise

does not affect the original algorithm’s convergence. To support

this proof, we introduce several mild assumptions.

Assumption 1. (Lipschitz continuity of the gradient) Each local

function 𝐹𝑖

(
x, y; z(𝑖 )

)
is lipschitz smooth, meaning there exists a

constant 𝐿 such that for any two pairs (x, y) and (x′, y′), we have:


∇𝐹𝑖 (x, y; z(𝑖 ) ) − ∇𝐹𝑖
(
x′, y′; z(𝑖 )

)


2

≤ 𝐿2

(

x − x′


2 +



y − y′


2

)
.

(10)

Assumption 2. (Bounded gradient variance) The gradient of each

local function 𝐹𝑖

(
x, y; z(𝑖 )

)
is an unbiased estimate of ∇𝑓𝑖 (x, y) and

has bounded variance, i.e.,

E



∇𝐹𝑖 (x, y; z(𝑖 ) ) − ∇𝑓𝑖 (x, y)




2

≤ 𝜎 < +∞. (11)

Assumption 3. (Lower bound of the objective) The global objective
function Φ(·) is lower bounded, i.e., infx Φ(x) = Φ∗ > −∞.

Remark. All the aforementioned assumptions are standard as-
sumptions in optimization analysis [16, 21, 40, 42, 81].

Assumption 4. (Spectral gap of the mixing matrix) The doubly
stochastic mixing matrixW satisfies the following spectral gap con-
dition:




W − 11⊤
𝑛





2

= 𝜆 ∈ [0, 1).

Remark. The spectral gap assumption plays a crucial role in en-
suring effective information transfer across the network, allowing
each agent to achieve global convergence by communicating with its
neighboring agents, as highlighted in prior works [72, 76]. A typical
spectral gap assumption requires the mixing matrix W to be sym-
metric and doubly stochastic, with eigenvalues 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛
such that |𝜆2 | < 1 and |𝜆𝑛 | < 1. This condition guarantees that the
communication graph remains connected, preventing both excessive
diffusion and slow propagation of information within the system.

We adopt this symmetric and doubly stochastic matrix setting
because undirected graphs are standard and widely adopted in decen-
tralized learning. In many practical scenarios, such as decentralized
federated learning over peer-to-peer networks [5], sensor networks [27],
or cooperative robotics systems [9], communication between agents is
naturally bidirectional—each agent can both send and receive infor-
mation from its neighbors. This symmetric communication structure
simplifies the design and analysis of algorithms and has been shown
to yield stable and efficient convergence in numerous studies. Further-
more, undirected graphs with symmetric weight matrices allow for
well-established consensus-based protocols and spectral methods to be
employed, making them a natural choice for studying theoretical prop-
erties such as convergence and privacy guarantees in decentralized
settings.

Assumption 5. (Strong concavity) The function 𝑓𝑖 (x, y) is 𝜇-strongly
concave in y. That is, there exists a constant 𝜇 > 0 such that for any
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x, y and y′, we have:

𝑓𝑖 (x, y) ≤ 𝑓𝑖
(
x, y′

)
+

〈
∇y 𝑓𝑖

(
x, y′

)
, y − y′

〉
− 𝜇

2



y − y′


2

. (12)

Remark. The assumption of strong concavity in y is crucial for
ensuring the well-posedness of the min-max problem. Specifically,
𝜇-strong concavity ensures the uniqueness of the solution during the y-
update step, thereby preventing ambiguity in the optimization process.
This assumption is standard in the analysis of min-max optimization
problems and is essential for deriving theoretical guarantees related
to convergence rates and stability. Many previous works in the field
of decentralized min-max optimization [14] adopt this assumption to
enhance their algorithms’ convergence, stability, and efficiency.

Similar to standard nonconvex-strongly-concave problems, we

continue to use the 𝜖-stationary point as the convergence crite-

rion, i.e., ∥∇Φ(x)∥ ≤ 𝜖 . From the Lemma 4.3 in [49], it is estab-

lished that the function Φ(x) is differentiable and satisfies the

(𝐿 + 𝜅𝐿)-smoothness condition. And it also mention that y∗ (·) is
𝜅-Lipschitz continuous, meaning for any x1, x2 ∈ R𝑑1

, the inequal-

ity ∥y∗ (x1) − y∗ (x2)∥ ≤ 𝜅 ∥x1 − x2∥ holds. This indicates that the
variation of y(·) is bounded by 𝜅. Consequently, we have:

∇Φ (x̄𝑡 ) = ∇x 𝑓 (x̄𝑡 , ŷ𝑡 ) + ∇y 𝑓 (x̄𝑡 , ŷ𝑡 ) · 𝜕y∗ (x̄𝑡 ) , (13)

where we use ∇y 𝑓 (x̄𝑡 , ŷ𝑡 ) = 0 as defined earlier. Thus we have

∇Φ (x̄𝑡 ) = ∇x 𝑓 (x̄𝑡 , ŷ𝑡 ). With this, we now present the main theo-

rem that show our algorithm maintains convergence despite the

added noise for privacy preservation.

Theorem 1. Let Assumptions 1 to 5 hold, our Algorithm 1 satisfies

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2 = O
(
𝜖2

)
+ O

(
𝑚𝜖2

)
+ O

(
𝜎2

x𝑑1 + 𝜎2

y𝑑2

)
,

when we set 𝑇 = 1500𝜅3

(1−𝜆)2𝜖𝛽x
and the other parameters satisfy 𝛽y =

𝛽x
25𝜅2

, 𝜂x =
(1−𝜆)2𝛽x
750𝜅3𝐿𝜖

, 𝜂y =
(1−𝜆)2𝛽x

75𝜅𝐿𝜖
, 𝑏0 = 20𝜅𝜖

𝛽x
, 𝛽𝑥 =

𝜖 min{1,𝑚𝜖 }
20

.
And we have,

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2 = O
(

1

(𝑚𝑇0)2/3

)
+ O

(
1

𝑇0

)
+ O

(
𝑚1/3

𝑇
2/3

0

)
+ O

(
𝜎2

x𝑑1 + 𝜎2

y𝑑2

)
,

(14)

when we set 𝑇 =
30000𝜅3𝑇0

(1−𝜆)2
, and the other parameters satisfy 𝛽y =

𝛽x
25𝜅2

, 𝜂x =
(1−𝜆)2𝛽x
750𝜅3𝐿𝜖

, 𝜂y =
(1−𝜆)2𝛽x

75𝜅𝐿𝜖
, 𝑏0 = 20𝜅𝜖

𝛽x
, 𝑇0 ≥ 10𝑚2, and

𝛽𝑥 = 𝑚1/3

20𝑇
2/3

0

.

Remark. We build upon the convergence analysis from Xian’s
work [74], however, by introducing noise into the local gradients dur-
ing communication with neighboring agents, additional terms, namely
𝑛
(𝑖 )
x,𝑡 and 𝑛 (𝑖 )y,𝑡 , are introduced into g𝑡 in our analysis. These additional

terms are amplified during the proof process and require adjustments
to the entire proof. As a result, we recalculated the bounds for all the-
orems and lemmas involved. To simplify our results, we applied novel
scaling and bounding techniques. (e.g., for 1

𝑇

∑𝑇−1

𝑡=0
E ∥∇Φ (x̄𝑡 )∥2, we

adopt a similar approach and found that our results, including the ad-
ditional terms, are no greater than twice the original results in Xian’s

work. Since this already provides a tight bound, we opt to double some
constants in the related terms for simplicity.) From our results, we
conclude that the added noise does not impact the SFO complexity
of the DM-HSGD algorithm. Specifically, when 𝑇 is determined by
𝜖 which is shown in Eq. (14), if 𝑚 ≤ 𝑂

(
𝜖−1

)
, the SFO complexity

of Algorithm 1 is 𝑂
(
𝜅3𝜖−3

)
. For𝑚 > 𝑂

(
𝜖−1

)
, the SFO complexity

is 𝑂
(
𝜅3𝑚𝜖−2

)
. When 𝑇 is independent of 𝜖 as we show in Eq. (14),

the leading term in the convergence rate remains 𝑂
(

1

(𝑚𝑇0 )2/3

)
, thus

preserving the linear speedup characteristic of the original algorithm.
Detailed proof of Theorem 1 is provided in Appendix A.

5.2 Privacy analysis
Assumption 6. [39] For the min-max problem, we say 𝑓 is 𝜌-

strongly-convex-strongly-concave ( 𝜌 − 𝑆𝐶 − 𝑆𝐶 ) if for each fixed
y ∈ Y, the function 𝑓𝑖 (x, y; ·) is 𝜌-strongly-convex in x for all 𝑖 . And
for each fixed x ∈ X, the function 𝑓𝑖 (x, y; ·) is 𝜌-strongly-concave in
y for all 𝑖 . In this paper, we focus on the 𝜌 − 𝑆𝐶 − 𝑆𝐶 problem.

Remark. While this assumption may appear restrictive, it captures
a number of important practical scenarios where strong convexity can
be induced through regularization. Examples include robust federated
learning, adversarial training, and resource allocation. We will clarify
this in the revised version and explicitly mention it as a key direction
for future work, to either relax this assumption or extend our analysis
to broader settings.

Assumption 7 (Bounded Gradient). There exists a constant
𝐿𝑔 > 0 such that, for any x, y and z,

∥∇x𝐹𝑖 (x, y; z)∥
2
≤ 𝐿𝑔,



∇y𝐹𝑖 (x, y; z)




2
≤ 𝐿𝑔 . (15)

Now let’s review the proof for convergence part (Appendix

A), we have already known that v̄𝑡 = ḡ𝑡 = (1 − 𝛽x)
(
ḡ𝑡−1 − 1

𝑚∑𝑚
𝑖=1

∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

, z(𝑖 )𝑡

))
+ 1

𝑚

∑𝑚
𝑖=1

∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 , z(𝑖 )𝑡

)
. And

by the definition of g(𝑖 )𝑡 , we can obtain this recursively:

ḡ𝑡 =
1

𝑚

𝑚∑︁
𝑗=1

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘

)
−∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

) )
.

(16)

From the definition of x̄𝑡 , we know x̄𝑡+1 = x̄𝑡 −𝜂xv̄𝑡 , so we have:
x̄𝑡+1 = x̄𝑡 − 𝜂x

(
ḡ𝑡 + Nx,𝑡

)
, (17)

where Nx,𝑡 ∼ N
(
0,

𝜎2

x
𝑚 𝐼𝑑1

)
.

Lemma 1. [71] In single parameter DP-GD paradigm whose model
updates as x̄𝑡+1 = x̄𝑡 − 𝜂x

(
ḡ𝑡 + Nx,𝑡

)
, meanwhile the loss function

is 𝐺-lipschitz, for 𝜃,𝛾 > 0, for some constant 𝑐 , it is (𝜃,𝛾)-DP if the
random noise is zero mean gaussian noise, i.e., Nx,𝑡 ∼ N

(
0,

𝜎2

x
𝑚 𝐼𝑑1

)
,

and 𝜎2

x = 𝑐
𝐺2𝑇 log(1/𝛾 )

𝑚𝜃 2
.

However, we use a momentum gradient descent method, so the

parameter updates involve ḡ𝑡 instead of just ∇x𝐹𝑖 (·, ·; ·), according
to Assumption 6, since each gradient term ∇x𝐹𝑖 (·, ·; ·) is 𝐿-lipschitz,
the weighted sum operation does not change the lipschitz con-

stant. Therefore, g𝑡 is 𝐺-lipschitz where 𝐺 is derived from 𝐿, we
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Table 2: AUROC score of each algorithm over epochs during the robust logistic regression experiments on ‘a8a’, ‘a9a’ and
CIFAR-10 datasets.

(a) Impact of total number of agents𝑚.

𝑚 𝑚 = 5 𝑚 = 10 𝑚 = 15 𝑚 = 20

Method a8a a9a CIFAR-10 a8a a9a CIFAR-10 a8a a9a CIFAR-10 a8a a9a CIFAR-10

SGDA 0.7590 0.7164 0.6648 0.7801 0.7029 0.6705 0.7626 0.6968 0.6762 0.7625 0.6887 0.6778

DP-SGDA 0.7383 0.7037 0.5910 0.7417 0.7047 0.6041 0.7453 0.7453 0.6161 0.7302 0.6945 0.6332

DM-HSGD 0.7519 0.6708 0.6644 0.7420 0.7169 0.6695 0.7853 0.7053 0.6767 0.7702 0.6977 0.6772

DPMixSGD 0.8094 0.7003 0.5927 0.7392 0.6692 0.6099 0.7751 0.6970 0.6259 0.7457 0.6926 0.6367

(b) Impact of sparsity level 𝑝 .

𝑝 𝑡 = 0.2 𝑝 = 0.5 𝑝 = 0.8 𝑝 = 1

Method a8a a9a CIFAR-10 a8a a9a CIFAR-10 a8a a9a CIFAR-10 a8a a9a CIFAR-10

SGDA 0.7388 0.6778 0.6624 0.7270 0.6357 0.6648 0.7373 0.6965 0.6612 0.7276 0.6971 0.6601

DP-SGDA 0.7500 0.6582 0.5914 0.7374 0.6591 0.5910 0.7181 0.7096 0.5937 0.7380 0.7178 0.5969

DM-HSGD 0.7674 0.6588 0.6632 0.7018 0.7059 0.6644 0.7247 0.6753 0.6622 0.6888 0.6716 0.6619

DPMixSGD 0.7272 0.5971 0.5987 0.7825 0.7039 0.5927 0.7696 0.6504 0.5910 0.7666 0.6758 0.5906

(c) Impact of 𝜃 .

𝜃 𝜃 = 0.005 𝜃 = 0.01 𝜃 = 0.05 𝜃 = 0.1

Method a8a a9a CIFAR-10 a8a a9a CIFAR-10 a8a a9a CIFAR-10 a8a a9a CIFAR-10

SGDA 0.7719 0.6957 0.6648 0.7719 0.6957 0.6648 0.7719 0.6957 0.6648 0.7719 0.6957 0.6648

DP-SGDA 0.7595 0.6691 0.5918 0.7555 0.6673 0.5910 0.7257 0.6778 0.5965 0.7321 0.6750 0.6127

DM-HSGD 0.7941 0.7142 0.6644 0.7941 0.7142 0.6644 0.7941 0.7142 0.6644 0.7941 0.7142 0.6644

DPMixSGD 0.6653 0.5644 0.5932 0.6991 0.6026 0.5927 0.7651 0.7011 0.6000 0.7658 0.6170 0.5978

(d) Impact of 𝛾 .

𝛾 𝛾 = 1/60000 𝛾 = 1/30000 𝛾 = 1/5000 𝛾 = 1/1000

Method a8a a9a CIFAR-10 a8a a9a CIFAR-10 a8a a9a CIFAR-10 a8a a9a CIFAR-10

SGDA 0.7719 0.6957 0.6644 0.7719 0.6957 0.6644 0.7719 0.6957 0.6644 0.7719 0.6957 0.6644

DP-SGDA 0.7325 0.6507 0.5922 0.7564 0.7112 0.5910 0.7383 0.6990 0.6168 0.7757 0.7102 0.6007

DM-HSGD 0.7941 0.7142 0.6644 0.7941 0.7142 0.6644 0.7941 0.7142 0.6644 0.7941 0.7142 0.6644

DPMixSGD 0.7741 0.6927 0.5962 0.7979 0.6692 0.5927 0.7444 0.7023 0.5948 0.7719 0.6859 0.5927

clarify that the Lipschitz constant𝐺 follows from the 𝐿-Lipschitz

continuity of ∇𝐹 and the structure of Eq. (9), where 𝑔𝑡 is a linear

combination of Lipschitz-smooth gradients. Using the recursion

𝐺 ≤ 𝐿 + (1 − 𝛽x)𝐺 , we get 𝐺 ≤ 𝐿
𝛽x
.

The authors in [71] provide a tight noise bound for differen-

tially private gradient descent under a single-parameter condition.

However, in the min-max paradigm, privacy leakage also arises

from the gradient information, regardless of whether it is used for

minimization or maximization. Since the updates for y share the

same structure as those for x, the noise variance derived in [71] can

be symmetrically applied to y. Notably, the privacy cost is indepen-

dent of whether the process involves minimization or maximization.

Therefore, by injecting the noise proposed in [71] into both x and

y, the DP guarantee can still be ensured. Since the proof process is

nearly identical (with the only difference being its application to y
as well), we directly adopt the result in our theorem. Therefore, by

Lemma 1 we give the privacy guarantees of DPMixSGD.

Theorem 2. If 𝐹𝑖 (·, ·; ·) satisfies Assumption 6 then for some pri-

vacy budget 𝜃 = Ω

(
𝐿𝑔𝑑

1/2
log(1/𝛾 )1/2

𝑚1/2𝜖4

)
,𝛾 > 0, we get a utility for

DPMixSGD to be (𝜃,𝛾)-DP if

𝜎𝑥 , 𝜎𝑦 = O
©­­­­«
𝐿𝑔

√︂(
8𝑇 (𝑇+1) (2𝑇+1)

3
+ 4𝑇

)
log(1/𝛾)

2𝜃
√
𝑚

ª®®®®¬
. (18)

Remark. While 𝜎𝑥 and 𝜎𝑦 scale with 𝑇 as given in Theorem 2,
the additional noise-induced error remains controlled under an ap-
propriate choice of 𝜃 . Specifically, by ensuring

𝜃 = Ω

(
𝐿𝑔𝑑

1/2
log(1/𝛾)1/2

𝑚1/2𝜖4

)
(19)

we obtain:

𝐿2

𝑔𝑑 log(1/𝛾)
𝜃2𝑚𝜖6

= 𝑂 (𝜖2) (20)

Then we can get an optimization error bound of

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇Φ(x̄𝑡 )∥2 = 𝑂 (𝜖2) (21)

which ensures that our algorithm maintains the desired conver-
gence rate without being dominated by noise.
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6 Experiments
6.1 Robust logistic regression in decentralized

min-max problem
In this section, we conduct the experiment of decentralized robust

logistic regression based on “a8a” [12] ,“a9a” [12], and CIFAR-10 [45]

datasets. In these experiments, we compare the DPMixSGD, DM-

HSGD [74], SGDA [6], and DP-SGDA [79] algorithms. We partition

the given dataset as {(𝑎𝑖 , 𝑏𝑖 )}𝑚𝑖=1
, where each feature vector 𝑎𝑖 ∈ R𝑑

and each label 𝑏𝑖 ∈ {−1, 1}. Robust logistic regression is formulated

as the following min-max problem:

min

x∈R𝑑
max

y∈Δ𝑚

𝑓 (x, y) =
𝑚∑︁
𝑖=1

y𝑖𝑙𝑖 (x) −𝑉 (y) + 𝑔(x), (22)

where𝑚 is the total number of agents, y𝑖 represents the 𝑖-th com-

ponent of the variable y. The logistic loss function is defined by

𝑙𝑖 (x) = log

(
1 + exp

(
−𝑏𝑖𝑎⊤𝑖 x

) )
. The divergence measure 𝑉 (y) is

given by 𝑉 (y) = 1

2
𝜆1∥𝑚y − 1∥2 . The simplex Δ𝑚 in R𝑚 is de-

fined as Δ𝑚 =
{
y ∈ R𝑚

��
0 ≤ y𝑖 ≤ 1 for all 𝑖,

∑𝑚
𝑖=1

y𝑖 = 1

}
. Addi-

tionally, the nonconvex regularization term 𝑔(x) is formulated as

𝑔(x) = 𝜆2

∑𝑑
𝑖=1

𝛼x2

𝑖

1+𝛼x2

𝑖

. Following the experimental configurations

outlined here, we set the parameters to 𝜆1 = 1

𝑚2
, 𝜆2 = 0.001, and

𝛼 = 10 in our experiments.

For the evaluation of the DPMixSGD, DM-HSGD, SGDA, and

DP-SGDA algorithms, we show the results of our experiment in

Table 2. Regarding the optimization parameters within the neural

network, the learning rates for the model parameters x and their

dual variables y are selected from the set {1.0, 0.1, 0.01, 0.001}. The
mini-batch size is fixed at 20. Specifically for the DPMixSGD and

DM-HSGD algorithms, the batch size for the initial iteration is

set to 𝑏0 = 10,000. Additionally, the gradient weight adjustment

parameters 𝛽𝑥 and 𝛽𝑦 are chosen from the set {0.5, 0.1, 0.01}.

Remark. It is worth noting that our experiments did not apply
gradient clipping, although gradient clipping is common in differential
privacy (DP) training but not strictly required. In our case, the DP
noise level is moderate, and a well-tuned learning rate ensures stable
convergence without clipping. Experimental results show no signs of
instability. Additional experiment on gradient clipping is provided in
Appendix C, showing similar trends.

In the experiment, the communication topology among agents

is modeled using an Erdős–Rényi random graph G(𝑚, 𝑝) , where
𝑚 is the number of agents and 𝑝 ∈ [0, 1] denotes the sparsity level,

i.e., the probability that an edge exists between any two agents. A

higher 𝑝 implies a denser communication network. Formally, each

edge is included in the graph independently with probability:

P[(𝑖, 𝑗) ∈ E] = 𝑝, ∀𝑖 ≠ 𝑗, (23)

where E denotes the edge set of the communication graph. The

expected degree of each node is (𝑚 − 1)𝑝 , and the total expected

number of edges is
𝑝𝑚 (𝑚−1)

2
. Therefore, we have the definition of

sparsity level 𝑝:

𝑝 =
2|E |

𝑚(𝑚 − 1) , (24)

where |E | is the total number of edges or links in the system.

We conduct control group experiments on robust logistic re-

gression, examined the impact of several factors. These include

the number of agents in the network, the sparsity level 𝑝 of the

connectivity matrix, and the adding noise is affected by 𝜃 and 𝛾 .

Table 2 illustrates the AUROC score of each algorithm over epochs

during the robust logistic regression experiments.

From the Table 2, we observe that our algorithm performs better

with a small number of agents. This can be attributed to the injection

of noise into the local gradients before the model updates. How-

ever, as the communication frequency increases, the performance

inevitably declines. Furthermore, in the experiments regarding spar-

sity levels, our algorithm exhibits superior performance compared

to other algorithms under high sparsity conditions. The experimen-

tal data on the two parameters affecting noise show that our algo-

rithm demonstrates greater stability when adding noise at different

levels. Therefore, this indicates that its theoretical design is effective

in practical applications, outperforming existing methods such as

DP-SGDA, and in certain cases, approaching or even surpassing

non-private mechanisms like SGDA and DM-HSGD. To further

assess the applicability of our algorithm in non-convex deep learn-

ing settings, we also conduct experiments on image classification

tasks using a multilayer perceptron (MLP) with the Fashion-MNIST

dataset. These results, which demonstrate consistent advantages of

our method over baselines, are provided in Appendix C.

6.2 Robustness to DLG Attacks
To further evaluate the privacy protection capabilities of our pro-

posed DPMixSGD algorithm, we conduct additional experiments

on the MNIST and Fashion-MNIST datasets using a multi-layer per-

ceptron (MLP) model. These experiments focus on the algorithm’s

robustness against Deep Leakage fromGradients (DLG) attacks [87],

a gradient inversion method that can potentially recover private

training data from shared gradients. We assess the reconstruction

quality of the DLG attack under a given noise level 𝜎 = 1. The re-

sults shown in Figure 1 demonstrate that our differentially private

algorithm effectively mitigates the risk of visual identity recovery,

significantly enhancing privacy robustness. For transparency and

reproducibility, the experimental settings are specified as follows:

the learning rate is set to 0.01 for the primal variable x and 0.001 for
the dual variable y, and the mini-batch size is fixed at 128. The eval-

uation confirms that DPMixSGD not only maintains strong privacy

guarantees but also resists gradient leakage attacks in practical

decentralized learning scenarios.

(a) MNIST dataset (b) Fashion-MNIST dataset
Figure 1: DLG Attack Reconstruction Results.
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7 Conclusion
In this paper, we addressed the challenges of privacy protection

in decentralized min-max learning problem by proposing a novel

DPMixSGD algorithm. Our theoretical analysis proves that DP-
MixSGD ensures rigorous privacy guarantees while maintaining

provable convergence.Empirical results demonstrate that out pro-

posed method DPMixSGD not only upholds strong privacy guar-

antees but also effectively resists gradient leakage in practical de-

centralized learning scenarios. This work contributes to advancing

decentralized learning by effectively balancing the need for pri-

vacy and efficient communication in distributed systems, providing

a robust framework for future applications in privacy-sensitive

domains.
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A Proof of convergence
From the algorithm, we obtain that:

ḡ∗𝑡 = ḡ𝑡 +
1

𝑚

𝑚∑︁
𝑖=1

𝑛
(𝑖 )
x,𝑡

=
1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 , z(𝑖 )𝑡

)
+ (1 − 𝛽x)

(
ḡ𝑡−1 −

1

𝑚

𝑚∑︁
𝑖=1

∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

, z(𝑖 )𝑡

))
+ Nx,𝑡

(25)

Where Nx,𝑡 =
∑𝑚

𝑖=1
𝑛
(𝑖 )
x,𝑡

𝑚

A.1 Basic Lemmas and Important Conclusions
First, we introduce following basic lemmas, which are broadly used in the convergence analysis of optimization algorithms.

Lemma 2. Let vector 𝑋 be a stochastic variable. Then we have

0 ≤ E∥𝑋 − E𝑋 ∥2 = E∥𝑋 ∥2 − ∥E𝑋 ∥2 ≤ E∥𝑋 ∥2
(26)

Lemma 3. Let 𝑋1, 𝑋2, · · · , 𝑋𝑛 be𝑚 independent stochastic variables of which the means are 0. Then we have

E






 𝑚∑︁
𝑖=1

𝑋𝑖






2

=

𝑚∑︁
𝑖=1

E ∥𝑋𝑖 ∥2
(27)

Lemma 4. Suppose 𝐴 and 𝐵 are two matrices. Then it satisfies

∥𝐴𝐵∥𝐹 ≤ ∥𝐴∥2∥𝐵∥𝐹 (28)

Lemma 5. (Lemma 4.3 from [49]) Φ(x) is (𝐿 + 𝜅𝐿)-smooth and y∗ (·) is 𝜅-Lipschitz, which means ∥y∗ (x1) − y∗ (x2)∥ ≤ 𝜅 ∥x1 − x2∥ for any
x1, x2 ∈ R𝑑1

.

Lemma 6. When 𝜂y ≤ 1

5𝐿
we have following estimation for 𝛿𝑡 .

𝑇−1∑︁
𝑡=0

𝛿𝑡 ≤ 4𝜅

𝐿𝜂y
𝛿0 +

10𝜂y

𝜇

𝑇−1∑︁
𝑡=1

(
1 −

𝜇𝜂y

4

)𝑇−𝑡−1
𝑡−1∑︁
𝑠=0






ū𝑠 − 1

𝑚

𝑚∑︁
𝑖=1

∇𝑓𝑖
(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)




2

+ 40𝜅2

𝑚

𝑇−1∑︁
𝑡=0(

𝑋𝑡 − 𝑋𝑡



2

𝐹
+



𝑌𝑡 − 𝑌𝑡


2

𝐹

)
+ 20𝜅4𝜂2

x

𝐿2𝜂2

y

𝑇−1∑︁
𝑡=0

∥v̄𝑡 ∥2 −
14𝜂y

5𝜇

𝑇−1∑︁
𝑡=0

(
1 −

(
1 −

𝜇𝜂y

4

)𝑇−𝑡 )
∥ū𝑡 ∥2

(29)

Proof: As we defined before, ŷ𝑡 = arg maxy∈Y 𝑓 (x̄𝑡 , y), we obatin:

∥ȳ𝑡+1 − ŷ𝑡 ∥2 =


ȳ𝑡 + 𝜂yū𝑡 − ŷ𝑡



2

= ∥ȳ𝑡 − ŷ𝑡 ∥2 + 𝜂2

y ∥ū𝑡 ∥2 + 2𝜂y ⟨ȳ𝑡 − ŷ𝑡 , ū𝑡 ⟩ (30)

As function 𝑓 is strongly-concave in y, we get:

𝑓 (x̄𝑡 , ŷ𝑡 ) ≤ 𝑓 (x̄𝑡 , ȳ𝑡 ) +
〈
∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) , ŷ𝑡 − ȳ𝑡

〉
− 𝜇

2

∥ŷ𝑡 − ȳ𝑡 ∥2

= 𝑓 (x̄𝑡 , ȳ𝑡 ) −
𝜇

2

∥ŷ𝑡 − ȳ𝑡 ∥2 + ⟨ū𝑡 , ŷ𝑡 − ȳ𝑡+1⟩ +
〈
∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡 , ŷ𝑡 − ȳ𝑡+1

〉
+

〈
∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) , ȳ𝑡+1 − ȳ𝑡

〉 (31)

From assumption 1, and let 𝐿𝜂y ≤ 1

5
we know:

− 1

10𝜂y
∥ȳ𝑡+1 − ȳ𝑡 ∥2 ≤ −𝐿

2

∥ȳ𝑡+1 − ȳ𝑡 ∥2

≤ 𝑓 (x̄𝑡 , y𝑡+1) − 𝑓 (x̄𝑡 , ȳ𝑡 ) −
〈
∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) , ȳ𝑡+1 − ȳ𝑡

〉 (32)
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Adding Eq.(31) and (32) together, and from the algorithm, we know that ȳ𝑡+1 − ȳ𝑡 = u𝑡 .

𝑓 (x̄𝑡 , ŷ𝑡 ) − 𝑓 (x̄𝑡 , y𝑡+1) +
𝜇

2

∥ŷ𝑡 − ȳ𝑡 ∥2

≤ ⟨ū𝑡 , ŷ𝑡 − ȳ𝑡+1⟩ +
〈
∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡 , ŷ𝑡 − ȳ𝑡+1

〉
+ 1

10𝜂y
∥ȳ𝑡+1 − ȳ𝑡 ∥2

= ⟨ū𝑡 , ȳ𝑡 − ȳ𝑡 ⟩ + ⟨ū𝑡 , ŷ𝑡 − ȳ𝑡+1⟩ +
〈
∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡 , ŷ𝑡 − ȳ𝑡+1

〉
+
𝜂y

10

∥ū𝑡 ∥2

= ⟨ū𝑡 , ŷ𝑡 − ȳ𝑡 ⟩ − 𝜂y ∥ū𝑡 ∥2 +
〈
∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡 , ŷ𝑡 − ȳ𝑡+1

〉
+
𝜂y

10

∥ū𝑡 ∥2

= ⟨ū𝑡 , ŷ𝑡 − ȳ𝑡 ⟩ +
〈
∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡 , ŷ𝑡 − ȳ𝑡+1

〉
−

9𝜂y

10

∥ū𝑡 ∥2

≤ ⟨ū𝑡 , ŷ𝑡 − ȳ𝑡 ⟩ +
2

𝜇



∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡


2 + 𝜇

8

∥ŷ𝑡 − ȳ𝑡+1∥2 −
9𝜂y

10

∥ū𝑡 ∥2

≤ ⟨ū𝑡 , ŷ𝑡 − ȳ𝑡 ⟩ +
2

𝜇



∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡


2 + 𝜇

4

∥ŷ𝑡 − ȳ𝑡 ∥2 + 𝜇

4

∥ȳ𝑡 − ȳ𝑡+1∥2 −
9𝜂y

10

∥ū𝑡 ∥2

= ⟨ū𝑡 , ŷ𝑡 − ȳ𝑡 ⟩ +
2

𝜇



∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡


2 + 𝜇

4

∥ŷ𝑡 − ȳ𝑡 ∥2 −
(

9𝜂y

10

−
𝜇𝜂2

y

4

)
∥ū𝑡 ∥2

(33)

Where in the second inequality, we use Young’s inequality, and in the last inequality we use Cauchy-Schwartz inequality. As we defined ŷ𝑡 ,
so 𝑓 (x̄𝑡 , ŷ𝑡 ) ≥ 𝑓 (x̄𝑡 , ȳ𝑡+1).

𝜇𝜂y

2

∥ŷ𝑡 − ȳ𝑡 ∥2 ≤ 2𝜂y ⟨ū𝑡 , ŷ𝑡 − ȳ𝑡 ⟩ +
4𝜂y

𝜇



∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡


2 −

(
9𝜂y2

5

−
𝜇𝜂3

y

2

)
∥ū𝑡 ∥2

(34)

Combining Eq.(30) and (34), and we set 𝜇𝜂y ≤ 𝐿𝜂y ≤ 1

5
we can get:

∥ȳ𝑡+1 − ŷ𝑡 ∥2 ≤
(
1 −

𝜇𝜂y

2

)
∥ŷ𝑡 − ȳ𝑡 ∥2 +

4𝜂y

𝜇



∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡


2 −

7𝜂2

y

10

∥ū𝑡 ∥2
(35)

By Young’s inequality we have:

∥ȳ𝑡+1 − ŷ𝑡+1∥2

≤
(
1 +

𝜇𝜂y

4

)
∥ȳ𝑡+1 − ŷ𝑡 ∥2 +

(
1 + 4

𝜇𝜂y

)
∥ŷ𝑡+1 − ŷ𝑡 ∥2

≤
(
1 −

𝜇𝜂y

4

−
𝜇2𝜂2

y

8

)
∥ȳ𝑡 − ŷ𝑡 ∥2 +

(
4𝜂y

𝜇
+ 𝜂2

y

) 

∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡


2

+
𝜇𝜂y + 4

𝜇𝜂y
∥ŷ𝑡+1 − ŷ𝑡 ∥2 −

(
1 +

𝜇𝜂y

4

) 7𝜂2

y

10

∥ū𝑡 ∥2

≤
(
1 −

𝜇𝜂y

4

)
∥ȳ𝑡 − ŷ𝑡 ∥2 +

5𝜂y

𝜇



∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡


2 + 5𝜅3𝜂2

x
𝐿𝜂y

∥v̄𝑡 ∥2 −
7𝜂y

10

2

∥ū𝑡 ∥2

(36)

Using Eq. (35) and the fact that 𝐿𝜂y ≤ 1

5
in the calculation of the second inequality, we obtain − 𝜇2𝜂2

y
8

≥ 0. Additionally,

4𝜂y
𝜇 + 𝜂2

y ≤
4𝜂y
𝜇 + 1𝜂y

5𝜇 ≤ 5𝜂y
𝜇 , and −

(
1 + 𝜇𝜂y

4

)
≤ −1. We simplify the inequality using an approximation method, and the last inequality holds because

the function y∗ (·) is 𝜅-Lipschitz, therefore, we have ∥ŷ𝑡+1 − ŷ𝑡 ∥2 ≤ 𝜅2𝜂2

x


v̄2

𝑡




In combination with the previously provided conditions, we

have

𝜇𝜂y+4

𝜇𝜂y
≤ 5

𝜇𝜂y
= 5𝜅

𝐿𝜂y
. By the Cauchy-Schwarz inequality and Assumption 1, we also have:



∇y 𝑓 (x̄𝑡 , ȳ𝑡 ) − ū𝑡


2 ≤ 2






ū𝑡 − 1

𝑚

𝑚∑︁
𝑖=1

∇𝑓𝑖
(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)




2

+ 2𝐿2

𝑚

(

𝑋𝑡 − 𝑋𝑡



2

𝐹
+



𝑌𝑡 − 𝑌𝑡


2

𝐹

)
(37)

By definition of 𝛿𝑡 and the recursion in Eq.(36) we obtain:

𝛿𝑡 ≤
(
1 −

𝜇𝜂y

4

)𝑡
𝛿0 +

5𝜂y

𝜇

𝑡−1∑︁
𝑠=0

(
1 −

𝜇𝜂y

4

)𝑡−𝑠−1 

ū𝑠 − ∇y 𝑓 (x̄𝑡 , ȳ𝑡 )


2

+ 5𝜅3𝜂2

x
𝐿𝜂y

𝑡−1∑︁
𝑠=0

(
1 −

𝜇𝜂y

4

)𝑡−𝑠−1

∥v̄𝑠 ∥2 −
7𝜂2

y

10

𝑡−1∑︁
𝑠=0

(
1 −

𝜇𝜂y

4

)𝑡−𝑠−1

∥ū𝑠 ∥2

(38)
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Using Eq.(37) to sum above equation we have:

𝑇−1∑︁
𝑡=0

𝛿𝑡 ≤ 4𝜅

𝐿𝜂y
𝛿0 +

10𝜂y

𝜇

𝑇−1∑︁
𝑡=1

(
1 −

𝜇𝜂y

4

)𝑇−𝑡−1
𝑡−1∑︁
𝑠=0






ū𝑠 − 1

𝑚

𝑚∑︁
𝑖=1

∇𝑓𝑖
(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)




2

+ 40𝜅2

𝑚

𝑇−1∑︁
𝑡=0(

𝑋𝑡 − 𝑋𝑡



2

𝐹
+



𝑌𝑡 − 𝑌𝑡


2

𝐹

)
+ 20𝜅4𝜂2

x

𝐿2𝜂2

y

𝑇−1∑︁
𝑡=0

∥v̄𝑡 ∥2 −
14𝜂y

5𝜇

𝑇−1∑︁
𝑡=0

(
1 −

(
1 −

𝜇𝜂y

4

)𝑇−𝑡 )
∥ū𝑡 ∥2

(39)

Lemma 7. For all 𝑡 ∈ {0, 1, · · · ,𝑇 } we have v̄𝑡 = ḡ∗𝑡 and ū𝑡 = ¯h∗𝑡 .
Proof: As matrix W is doubly stochastic, we have:

v̄𝑡 = v̄𝑡−1 + ḡ∗𝑡 − ḡ∗𝑡−1
(40)

which is equivalent to v̄𝑡 − ḡ∗𝑡 = v̄𝑡−1 − ḡ∗
𝑡−1

. Additionally, v̄−1 = ḡ∗−1
, so v̄𝑡 = ḡ∗𝑡 . Thus, from the above: v̄𝑡 = ḡ𝑡 + Nx,𝑡 .

Lemma 8. Let 𝐴𝑡 , 𝐵𝑡 be positive sequences satisfying

𝐴𝑡+1 ≤ (1 − 𝑐)𝐴𝑡 + 𝐵𝑡 (41)

for some constant 𝑐 ∈ (0, 1). Then for any positive integer 𝑇 we have

𝑇∑︁
𝑡=0

𝐴𝑡 ≤ 1

𝑐
𝐴0 +

1

𝑐

𝑇−1∑︁
𝑡=0

𝐵𝑡 (42)

Proof : Using recursion on Eq.(41) we can obtain

𝐴𝑡 ≤ (1 − 𝑐)𝑡𝐴0 +
𝑡−1∑︁
𝑠=0

(1 − 𝑐)𝑡−𝑠−1𝐵𝑠 (43)

for ∀𝑡 ≥ 0. Sum above inequality and we achieve the desired conclusion Eq.(42), where we use the condtion 𝐴𝑡 , 𝐵𝑡 are positive and the fact

that

∑∞
𝑡=0

(1 − 𝑐)𝑡 = 1

𝑐 .

Lemma 9. We can prove the following bound for gradient estimator v̄𝑡 and ū𝑡 .
𝑡−1∑︁
𝑠=0

E






v̄𝑠 − 1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)




2

≤ 2𝜎2

𝑚𝑏0𝛽x
+ 2𝛽x𝜎

2𝑡

𝑚
+ 12𝐿2

𝑚2𝛽x

𝑡−1∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 6𝐿2

𝑚𝛽x

𝑡−2∑︁
𝑠=0(

𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+ 2

𝑡−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2

𝑡−1∑︁
𝑠=0

E






ū𝑠 − 1

𝑚

𝑚∑︁
𝑖=1

∇y 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)




2

≤ 2𝜎2

𝑚𝑏0𝛽y
+

2𝛽y𝜎
2𝑡

𝑚
+ 12𝐿2

𝑚2𝛽y

𝑡−1∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 6𝐿2

𝑚𝛽y

𝑡−2∑︁
𝑠=0(

𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+ 2

𝑡−1∑︁
𝑠=0

E


Ny,𝑠 − Ny,𝑠−1



2

(44)

for all 𝑡 ∈ {1, 2, · · · ,𝑇 }.

Proof: By the definition of g(𝑖 )𝑡 and Lemma 7, now we have

v̄𝑡 − Nx,𝑡 −
1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)
= (1 − 𝛽x)

(
v̄𝑡−1 − Nx,𝑡−1 −

1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

))
+ 𝛽x
𝑚

𝑚∑︁
𝑖=1

(
∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
−∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

))
+ (1 − 𝛽x)

1

𝑚

𝑚∑︁
𝑖=1

(
∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

)
+∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

))
(45)
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Taking expectation

(
z(𝑖 )𝑡

)
, the last two terms of Equation above are 0. Therefore, By using Cauchy-Schwarz inequality, we obtain:

E






v̄𝑡 − 1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)




2

≤ E





(1 − 𝛽x)

(
v̄𝑡−1 −

1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

))
+ Nx,𝑡 − (1 − 𝛽x) Nx,𝑡−1






2

+ E




 𝛽x𝑚 𝑚∑︁

𝑖=1

(
∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

))
+ 2 (1 − 𝛽x)

1

𝑚

𝑚∑︁
𝑖=1

(
∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

)
+ ∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

) )



2

≤ 2 (1 − 𝛽x)2 E






v̄𝑡−1 −
1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)




2

+ 2𝛽2

x
𝑚2

𝑚∑︁
𝑖=1

E



∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
−∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 2 (1 − 𝛽x)2

𝑚2

𝑚∑︁
𝑖=1

E



∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

)
+∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 2E


Nx,𝑡 − (1 − 𝛽x) Nx,𝑡−1



2

(46)

The first inequality is obtained by Cauchy-Schwartz inequality. Then we use Lemma 3 on the last two terms, and then use Assumption 2,

Lemma 2 and Assumption 1, we can obtain.

E






v̄𝑡 − 1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)




2

≤ 2 (1 − 𝛽x)2 E






v̄𝑡−1 −
1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)




2

+ 2E


Nx,𝑡 − (1 − 𝛽x) Nx,𝑡−1



2

+ 2𝛽2

x𝜎
2

𝑚
+ 2𝐿2 (1 − 𝛽x)2

𝑚2

(
E ∥𝑋𝑡 − 𝑋𝑡−1∥2

𝐹 + E ∥𝑌𝑡 − 𝑌𝑡−1∥2

𝐹

)
(47)

At the same time, by using Cauchy-Schwarz inequality, we have a rewritten form for 𝑋𝑡 − 𝑋𝑡−1, 𝑌𝑡 − 𝑌𝑡−1.

∥𝑋𝑡 − 𝑋𝑡−1∥2

𝐹 ≤ 3



𝑋𝑡 − 𝑋𝑡



2

𝐹
+ 3𝑚𝜂2

x ∥v̄𝑡−1∥2 + 3



𝑋𝑡−1 − 𝑋𝑡−1



2

𝐹

∥𝑌𝑡 − 𝑌𝑡−1∥2

𝐹 ≤ 3



𝑌𝑡 − 𝑌𝑡


2

𝐹
+ 3𝑚𝜂2

y ∥ū𝑡−1∥2 + 3



𝑌𝑡−1 − 𝑌𝑡−1



2

𝐹

(48)

Combining above two inequalities with Eq.(47) and Lemma 8, we have:

𝑡−1∑︁
𝑠=0

E






v̄𝑠 − 1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)




2

≤ 2

𝛽x
E ∥v̄0 − ∇x 𝑓 (x0, y0)∥2 + 2𝛽x𝜎

2𝑡

𝑚
+ 12𝐿2

𝑚2𝛽x

𝑡−1∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 6𝐿2

𝑚𝛽x

𝑡−2∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+ 2

𝑡−1∑︁
𝑠=0

E


Nx,𝑠 − (1 − 𝛽x) Nx,𝑠−1



2

≤ 2𝜎2

𝑚𝑏0𝛽x
+ 2𝛽x𝜎

2𝑡

𝑚
+ 12𝐿2

𝑚2𝛽x

𝑡−1∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 6𝐿2

𝑚𝛽x

𝑡−2∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+ 2

𝑡−1∑︁
𝑠=0

E


Nx,𝑠 − (1 − 𝛽x) Nx,𝑠−1



2

(49)

for all 𝑡 ∈ {1, 2, · · · ,𝑇 }. In the first inequality we use the fact
1

1−(1−𝛽x )2
≤ 1

𝛽x
when 𝛽x ≤ 1. Where E ∥v̄0 − ∇x 𝑓 (x0, y0)∥2 ≤ 𝜎2

𝑚𝑏0

holds

because of Assumption 2 and Lemma 3. Mimic above steps we can also prove the second conclusion.
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Lemma 10. The consensus error satisfies the following recursive relation

𝑋𝑡+1 − 𝑋𝑡+1



2

𝐹
≤ 1 + 𝜆2

2



𝑋𝑡 − 𝑋𝑡



2

𝐹
+ 2𝜆2𝜂2

x
1 − 𝜆2



𝑉𝑡 −𝑉𝑡


2

𝐹

𝑌𝑡+1 − 𝑌𝑡+1



2

𝐹
≤ 1 + 𝜆2

2



𝑌𝑡 − 𝑌𝑡


2

𝐹
+

2𝜆2𝜂2

y

1 − 𝜆2



𝑈𝑡 −𝑈𝑡



2

𝐹

(50)

Proof. As we set 𝐽 = 11
𝑇

𝑛 , then we obtain:

𝑋𝑡+1 − 𝑋𝑡+1



2

𝐹
=



(𝑋𝑡 − 𝜂x𝑉𝑡 )𝑊 −
(
𝑋𝑡 − 𝜂x𝑉𝑡

)

2

𝐹

=


(𝑋𝑡 − 𝑋𝑡

)
(𝑊 − 𝐽 ) − 𝜂x

(
𝑉𝑡 −𝑉𝑡

)
(𝑊 − 𝐽 )



2

𝐹

(51)

Now, we use Lemma 4 and Assumption 4 on Eq.(51)

𝑋𝑡+1 − 𝑋𝑡+1



2

𝐹

≤ 𝜆2


𝑋𝑡 − 𝑋𝑡



2

𝐹
+ 𝜆2𝜂2

x


𝑉𝑡 −𝑉𝑡



2

𝐹
− 2

〈(
𝑋𝑡 − 𝑋𝑡

)
(𝑊 − 𝐽 ), 𝜂x

(
𝑉𝑡 −𝑉𝑡

)
(𝑊 − 𝐽 )

〉 (52)

We use the Young’s inequality to eliminate the last term above, and we set the constant 𝛼 = 1−𝜆2

2𝜆2
.

𝑋𝑡+1 − 𝑋𝑡+1



2

𝐹
≤

(
𝜆2 + 𝛼𝜆2

) 

𝑋𝑡 − 𝑋𝑡



2

𝐹
+

(
𝜆2𝜂2

x
𝛼

+ 𝜆2𝜂2

x

) 

𝑉𝑡 −𝑉𝑡


2

𝐹

≤ 1 + 𝜆2

2



𝑋𝑡 − 𝑋𝑡



2

𝐹
+ 2𝜆2𝜂2

x
1 − 𝜆2



𝑉𝑡 −𝑉𝑡


2

𝐹

(53)

Mimic the steps above, we can also get: 

𝑌𝑡+1 − 𝑌𝑡+1



2

𝐹
≤ 1 + 𝜆2

2



𝑌𝑡 − 𝑌𝑡


2

𝐹
+

2𝜆2𝜂2

y

1 − 𝜆2



𝑈𝑡 −𝑈𝑡



2

𝐹
(54)

Lemma 11. For all 𝑡 ′ ∈ {0, 1, · · · ,𝑇 − 1} we have
𝑡 ′∑︁
𝑠=0

E


𝑉𝑠 −𝑉𝑠



2

𝐹

≤ 2

1 − 𝜆2
E



𝑉0 −𝑉0



2

𝐹
+ 48𝜆2𝐿2(

1 − 𝜆2

)
2

𝑡 ′∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 24𝑚𝜆2𝐿2(

1 − 𝜆2

)
2

𝑡 ′−1∑︁
𝑠=0

𝜂2

yE ∥ū𝑠 ∥2 + 24𝑚𝜆2𝐿2(
1 − 𝜆2

)
2

𝑡 ′−1∑︁
𝑠=0

𝜂2

xE ∥v̄𝑠 ∥2 + 8𝑚𝜆2𝛽2

x𝜎
2𝑡 ′

1 − 𝜆2

+ 8𝜆2𝛽2

x(
1 − 𝜆2

)
2

𝑡 ′−1∑︁
𝑠=0

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑠 − ∇x 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)


2

+ 8𝜆2𝑚

1 − 𝜆2

𝑡 ′∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2

𝑡 ′∑︁
𝑠=0

E


𝑈𝑠 −𝑈𝑠



2

𝐹

≤ 2

1 − 𝜆2
E



𝑈0 −𝑈0



2

𝐹
+ 48𝜆2𝐿2(

1 − 𝜆2

)
2

𝑡 ′∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 24𝑚𝜆2𝐿2(

1 − 𝜆2

)
2

𝑡 ′−1∑︁
𝑠=0

𝜂2

yE ∥ū𝑠 ∥2 + 24𝑚𝜆2𝐿2(
1 − 𝜆2

)
2

𝑡 ′−1∑︁
𝑠=0

𝜂2

xE ∥v̄𝑠 ∥2 +
8𝑚𝜆2𝛽2

y𝜎
2𝑡 ′

1 − 𝜆2

+
8𝜆2𝛽2

y(
1 − 𝜆2

)
2

𝑡 ′−1∑︁
𝑠=0

𝑚∑︁
𝑖=1

E



h(𝑖 )𝑠 − ∇y 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)


2

+ 8𝜆2𝑚

1 − 𝜆2

𝑡 ′∑︁
𝑠=0

E


Ny,𝑠 − Ny,𝑠−1



2

(55)

Proof : Similar as Eq.(51) and (52), by definition of 𝑉𝑡 , we obtain:

𝑉𝑡+1 −𝑉𝑡+1



2

𝐹

≤ 𝜆2


𝑉𝑡 −𝑉𝑡



2

𝐹
+ 𝜆2



𝐺∗
𝑡+1

−𝐺∗
𝑡



2

𝐹
+ 2

〈(
𝑉𝑡 −𝑉𝑡

)
(𝑊 − 𝐽 ),

(
𝐺∗
𝑡+1

−𝐺∗
𝑡

)
(𝑊 − 𝐽 )

〉 (56)
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By the definition of g(𝑖 )∗𝑡 :

g(𝑖 )∗
𝑡+1

− g(𝑖 )∗𝑡

= ∇x𝐹𝑖

(
x(𝑖 )
𝑡+1

, y(𝑖 )
𝑡+1

; z(𝑖 )
𝑡+1

)
− ∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

)
− 𝛽x

(
g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

))
+ 𝛽x

(
∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

))
+ 𝑛 (𝑖 )x,𝑡+1

− 𝑛
(𝑖 )
x,𝑡

(57)

Because of E
[
𝑛
(𝑖 )
x,𝑡+1

− 𝑛
(𝑖 )
x,𝑡

]
= 0 − 0 = 0, thus

E
[
g(𝑖 )

∗

𝑡+1
− g(𝑖 )

∗

𝑡

]
= ∇x 𝑓𝑖

(
x(𝑖 )
𝑡+1

, y(𝑖 )
𝑡+1

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)
− 𝛽x

(
g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

))
(58)

Considering about all the agents, we get:



E [
𝐺∗
𝑡+1

−𝐺∗
𝑡

]

2

=

𝑚∑︁
𝑖=1





∇x 𝑓𝑖

(
x(𝑖 )
𝑡+1

, y(𝑖 )
𝑡+1

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)
− 𝛽x

(
g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)) 



2

(59)

Taking expectation on z(𝑖 )
𝑡+1

the last term of Eq.(56) can be bounded by

E
〈(
𝑉𝑡 −𝑉𝑡

)
(𝑊 − 𝐽 ),

(
𝐺∗
𝑡+1

−𝐺∗
𝑡

)
(𝑊 − 𝐽 )

〉
=

〈(
𝑉𝑡 −𝑉𝑡

)
(𝑊 − 𝐽 ),E

[
𝐺∗
𝑡+1

−𝐺∗
𝑡

]
(𝑊 − 𝐽 )

〉
≤ 𝜆



𝑉𝑡 −𝑉𝑡



𝐹
· 𝜆



E [
𝐺∗
𝑡+1

−𝐺∗
𝑡

]


𝐹

≤ 1 − 𝜆2

4



𝑉𝑡 −𝑉𝑡


2

𝐹
+ 𝜆4

1 − 𝜆2



E [
𝐺∗
𝑡+1

−𝐺∗
𝑡

]

2

𝐹

≤ 1 − 𝜆2

4



𝑉𝑡 −𝑉𝑡


2

𝐹
+ 2𝜆4

1 − 𝜆2

𝑚∑︁
𝑖=1




∇x 𝑓𝑖

(
x(𝑖 )
𝑡+1

, y(𝑖 )
𝑡+1

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 2𝜆4𝛽2

x
1 − 𝜆2

𝑚∑︁
𝑖=1




g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

≤ 1 − 𝜆2

4



𝑉𝑡 −𝑉𝑡


2

𝐹
+ 2𝜆4𝐿2

1 − 𝜆2

(
∥𝑋𝑡+1 − 𝑋𝑡 ∥2

𝐹 + ∥𝑌𝑡+1 − 𝑌𝑡 ∥2

𝐹

)
+ 2𝜆4𝛽2

x
1 − 𝜆2

𝑚∑︁
𝑖=1




g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

(60)

Where we use Young’s inequality in the second inequality, and then we use Cauchy-Schwartz inequality in the third inequality, and the last

inequality is resulted from Assumption 1. Besides, applying Cauchy-Schwartz inequality to Eq.(57) we have:

E



g(𝑖 )∗𝑡+1

− g(𝑖 )
∗

𝑡




2

≤ 4E



∇x𝐹𝑖

(
x(𝑖 )
𝑡+1

, y(𝑖 )
𝑡+1

; z(𝑖 )
𝑡+1

)
− ∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

)


2

+ 4𝛽2

xE



g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 4𝛽2

xE



∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 4E



𝑛 (𝑖 )x,𝑡+1

− 𝑛
(𝑖 )
x,𝑡




2

≤ 4𝐿2

(
E




x(𝑖 )𝑡+1
− x(𝑖 )𝑡




2

+ E



y(𝑖 )𝑡+1

− y(𝑖 )𝑡




2

)
+ 4𝛽2

xE



g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 4𝛽2

x𝜎
2

+ 4E



𝑛 (𝑖 )x,𝑡+1

− 𝑛
(𝑖 )
x,𝑡




2

(61)
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where in the last inequality we use Assumption 1 and Assumption 2. Combining Eq.(56) (60), (61) and the definition of Nx,𝑡 we can obtain

E


𝑉𝑡+1 −𝑉𝑡+1



2

𝐹

≤ 1 + 𝜆2

2

E


𝑉𝑡 −𝑉𝑡



2

𝐹
+ 4𝜆4𝐿2

1 − 𝜆2

(
E ∥𝑋𝑡+1 − 𝑋𝑡 ∥2

𝐹 + E ∥𝑌𝑡+1 − 𝑌𝑡 ∥2

𝐹

)
+ 4𝜆4𝛽2

x
1 − 𝜆2

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 4𝐿2𝜆2

(
E ∥𝑋𝑡+1 − 𝑋𝑡 ∥2 + E ∥𝑌𝑡+1 − 𝑌𝑡 ∥2

)
+ 4𝛽2

x𝜆
2

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 4𝑚𝜆2𝛽2

x𝜎
2 + 4𝜆2𝑚E



Nx,𝑡+1 − Nx,𝑡


2

=
1 + 𝜆2

2

E


𝑉𝑡 −𝑉𝑡



2

𝐹
+

(
4𝜆4𝐿2 + 4𝐿2𝜆2 − 4𝐿2𝜆4

)
1 − 𝜆2

(
E ∥𝑋𝑡+1 − 𝑋𝑡 ∥2

𝐹 + E ∥𝑌𝑡+1 − 𝑌𝑡 ∥2

𝐹

)
+

(
4𝜆4𝛽2

x + 4𝛽2

x𝜆
2 − 4𝛽2

x𝜆
4
)

1 − 𝜆2

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 4𝑚𝜆2𝛽2

x𝜎
2

+ 4𝜆2𝑚E


Nx,𝑡+1 − Nx,𝑡



2

(62)

Then, we have the result below.

E


𝑉𝑡+1 −𝑉𝑡+1



2

𝐹

≤ 1 + 𝜆2

2

E


𝑉𝑡 −𝑉𝑡



2

𝐹
+ 4𝜆2𝐿2

1 − 𝜆2

(
E ∥𝑋𝑡+1 − 𝑋𝑡 ∥2

𝐹 + E ∥𝑌𝑡+1 − 𝑌𝑡 ∥2

𝐹

)
+ 4𝜆2𝛽2

x
1 − 𝜆2

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 4𝑚𝜆2𝛽2

x𝜎
2 + 4𝜆2𝑚E



Nx,𝑡+1 − Nx,𝑡


2

(63)

Using Eq.(48) for substitution:

E


𝑉𝑡+1 −𝑉𝑡+1



2

𝐹

≤ 1 + 𝜆2

2

E


𝑉𝑡 −𝑉𝑡



2

𝐹
+ 12𝜆2𝐿2

1 − 𝜆2

(
E



𝑋𝑡+1 − 𝑋𝑡+1



2

𝐹
+ E



𝑌𝑡+1 − 𝑌𝑡+1



2

𝐹

)
+ 12𝜆2𝐿2

1 − 𝜆2

(
E



𝑋𝑡 − 𝑋𝑡



2

𝐹
+ E



𝑌𝑡 − 𝑌𝑡


2

𝐹

)
+

12𝑚𝜆2𝐿2𝜂2

y

1 − 𝜆2
E ∥ū𝑡 ∥2 + 4𝑚𝜆2𝛽2

x𝜎
2

+ 12𝑚𝜆2𝐿2𝜂2

x
1 − 𝜆2

E ∥v̄𝑡 ∥2 + 4𝜆2𝛽2

x
1 − 𝜆2

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 4𝜆2𝑚E


Nx,𝑡+1 − Nx,𝑡



2

(64)

Summing over Eq.(64), we obtain:

𝑡 ′∑︁
𝑠=0

E


𝑉𝑠 −𝑉𝑠



2

𝐹

≤ 2

1 − 𝜆2
E



𝑉0 −𝑉0



2

𝐹
+ 48𝜆2𝐿2(

1 − 𝜆2

)
2

𝑡 ′∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 24𝑚𝜆2𝐿2(

1 − 𝜆2

)
2

𝑡 ′−1∑︁
𝑠=0

𝜂2

yE ∥ū𝑠 ∥2 + 24𝑚𝜆2𝐿2(
1 − 𝜆2

)
2

𝑡 ′−1∑︁
𝑠=0

𝜂2

xE ∥v̄𝑠 ∥2 + 8𝑚𝜆2𝛽2

x𝜎
2𝑡 ′

1 − 𝜆2

+ 8𝜆2𝛽2

x(
1 − 𝜆2

)
2

𝑡 ′−1∑︁
𝑠=0

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑠 − ∇x 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)


2

+ 8𝜆2𝑚

1 − 𝜆2

𝑡 ′∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2

(65)

for all 𝑡 ′ ∈ {0, 1, · · · ,𝑇 − 1}. Here we should notice that term E


𝑋𝑡+1 − 𝑋𝑡+1



2

𝐹
in Eq.(64) is summed from E



𝑋1 − 𝑋1



2

𝐹
to E



𝑋𝑡 ′ − 𝑋𝑡 ′


2

𝐹
,

while term E


𝑋𝑡 − 𝑋𝑡



2

𝐹
is summed from E



𝑋0 − 𝑋0



2

𝐹
to E



𝑋𝑡 ′−1 − 𝑋𝑡 ′−1



2

𝐹
. As 𝑋0 = 𝑋0, these two terms can be merged together. And it

is the same with term E


𝑌𝑡+1 − 𝑌𝑡+1



2

𝐹
. Mimic above steps and we can prove the conclusion for

∑𝑡 ′
𝑠=0
E



𝑈𝑠 −𝑈𝑠



2

𝐹
in the similar way.
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Lemma 12. We have the local average gradient estimators ḡ𝑡 and ¯h𝑡 satisfy the following conclusion

𝑡∑︁
𝑠=0

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑠 − ∇x 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)


2

≤𝑚𝜎2

𝛽x𝑏0

+ 2𝑚𝛽x𝜎
2𝑡 + 12𝐿2

𝛽x

𝑡∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹

+E


𝑌𝑠 − 𝑌𝑠



2

𝐹

)
+ 6𝑚𝐿2

𝛽x

𝑡−1∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
𝑡∑︁

𝑠=0

𝑚∑︁
𝑖=1

E



h(𝑖 )𝑠 − ∇y 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)


2

≤𝑚𝜎2

𝛽y𝑏0

+ 2𝑚𝛽y𝜎
2𝑡 + 12𝐿2

𝛽y

𝑡∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹

+E


𝑌𝑠 − 𝑌𝑠



2

𝐹

)
+ 6𝑚𝐿2

𝛽y

𝑡−1∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
(66)

Proof: According to the definition of g(𝑖 )𝑡 , we have:

g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)
= (1 − 𝛽x)

(
g(𝑖 )
𝑡−1

− ∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

))
+ 𝛽x

(
∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

))
+ (1 − 𝛽x)

(
∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

)
+∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)
−∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

))
(67)

The last two terms of Eq.(67) will be 0 if we taking expectation of z(𝑖 )𝑡 .

E



(1 − 𝛽x)

(
∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

)
+∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)
−∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

))


2

≤ 2𝛽2

xE



∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 2 (1 − 𝛽x)2 E



∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
−∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

)


2

(68)

As Eq.(68) is 0, by using Cauchy-Schwartz we get:

E



g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

≤ (1 − 𝛽x)2 E



g(𝑖 )𝑡−1

− ∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)


2

+ 2𝛽2

xE



∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
−∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

+ 2 (1 − 𝛽x)2 E



∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x𝐹𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

; z(𝑖 )𝑡

)


2

≤ (1 − 𝛽x)2 E



g(𝑖 )𝑡−1

− ∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)


2

+ 2𝛽2

x𝜎
2 + 2 (1 − 𝛽x)2 𝐿2

(
E




x(𝑖 )𝑡 − x(𝑖 )
𝑡−1




2

+E



y(𝑖 )𝑡 − y(𝑖 )

𝑡−1




2

)
(69)
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where we use Assumption 1 and Assumption 2 in the last inequality. Sum above inequality from 𝑖 = 1 to𝑚 and we have:

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑡 − ∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)


2

≤ (1 − 𝛽x)2

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑡−1

− ∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)


2

+ 2𝑚𝛽2

x𝜎
2 + 2 (1 − 𝛽x)2 𝐿2

(
E ∥𝑋𝑡 − 𝑋𝑡−1∥2 + E ∥𝑌𝑡 − 𝑌𝑡−1∥2

)
≤ (1 − 𝛽x)2

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑡−1

− ∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)


2

+ 2𝑚𝛽2

x𝜎
2 + 12 (1 − 𝛽x)2 𝐿2

(
E



𝑋𝑡 − 𝑋𝑡



2

𝐹
+ E



𝑌𝑡 − 𝑌𝑡


2

𝐹

)
+ 6𝑚 (1 − 𝛽x)2 𝐿2

(
𝜂2

xE ∥v̄𝑡−1∥2 + 𝜂2

yE ∥ū𝑡−1∥2

)

(70)

Applying Lemma 8 to Eq.(70), we have:

𝑡∑︁
𝑠=0

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑠 − ∇x 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)


2

≤ 1

𝛽x

𝑚∑︁
𝑖=1

E



g(𝑖 )

0
− ∇x 𝑓𝑖

(
x(𝑖 )

0
, y(𝑖 )

0

)


2

+ 12𝐿2

𝛽x

𝑡∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 6𝑚𝐿2

𝛽x

𝑡−1∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+ 2𝑚𝛽x𝜎

2𝑡

≤ 𝑚𝜎2

𝛽x𝑏0

+ 2𝑚𝛽x𝜎
2𝑡 + 12𝐿2

𝛽x

𝑡∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 6𝑚𝐿2

𝛽x

𝑡−1∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)

(71)

for all 𝑡 ∈ {0, 1, · · · ,𝑇 − 1}. Here the last inequality is derived by E



g(𝑖 )

0
− ∇x 𝑓𝑖

(
x(𝑖 )

0
, y(𝑖 )

0

)


2

≤ 𝜎2

𝑏0

due to Lemma 3. The estimation of h(𝑖 )𝑡

can be achieved in the same way as above.

Lemma 13. Let 𝜂x ≤ (1−𝜆)2

500𝐿
and 𝜂y ≤ (1−𝜆)2

500𝐿
. The consensus error can be bounded by

𝑡∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
≤ 16𝜆2𝜂2

x(
1 − 𝜆2

)
3
E



𝑉0 −𝑉0



2

𝐹
+

16𝜆2𝜂2

y(
1 − 𝜆2

)
3
E



𝑈0 −𝑈0



2

𝐹
+

576𝑚𝜆4𝐿2

(
𝜂2

x + 𝜂2

y

)
(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2

+𝜂2

yE ∥ū𝑠 ∥2

)
+

64𝑚𝜆4

(
𝛽x𝜂

2

x + 𝛽y𝜂
2

y

)
𝜎2(

1 − 𝜆2

)
4

𝑏0

+
192𝑚𝜆4

(
𝛽2

x𝜂
2

x + 𝛽2

y𝜂
2

y

)
𝜎2𝑡(

1 − 𝜆2

)
4

+ 64𝑚𝜆4𝜂2

x(
1 − 𝜆2

)
3

𝑡−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2 + 64𝑚𝜆4𝜂2

x(
1 − 𝜆2

)
3
E



Ny,𝑠 − Ny,𝑠−1



2

(72)
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Proof: Combining Lemma 8 and Lemma 10 , for all 𝑡 ∈ {0, 1, · · · ,𝑇 } we have:

𝑡∑︁
𝑠=0



𝑋𝑠 − 𝑋𝑠


2

𝐹

≤ 4𝜆2𝜂2

x(
1 − 𝜆2

)
2

𝑡−1∑︁
𝑠=0



𝑉𝑠 −𝑉𝑠


2

𝐹

≤ 8𝜆2𝜂2

x(
1 − 𝜆2

)
3
E



𝑉0 −𝑉0



2

𝐹
+ 192𝜆4𝐿2𝜂2

x(
1 − 𝜆2

)
4

𝑡−1∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 96𝑚𝜆4𝐿2𝜂2

x(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

𝜂2

yE ∥ū𝑠 ∥2 + 96𝑚𝜆4𝐿2𝜂2

x(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

𝜂2

xE ∥v̄𝑠 ∥2 + 32𝑚𝜆4𝛽2

x𝜂
2

x𝜎
2 (𝑡 − 1)(

1 − 𝜆2

)
3

+ 32𝑚𝜆4𝜂2

x(
1 − 𝜆2

)
3

𝑡−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2 + 32𝜆4𝛽2

x𝜂
2

x(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

𝑚∑︁
𝑖=1

E



g(𝑖 )𝑠 − ∇x 𝑓𝑖

(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)


2

(73)

Where we use Lemma 11 in the last inequality. Using Lemma 12 to replace the last term in the result.

𝑡∑︁
𝑠=0

E


𝑋𝑠 − 𝑋𝑠



2

𝐹

≤ 8𝜆2𝜂2

x(
1 − 𝜆2

)
3
E



𝑉0 −𝑉0



2

𝐹
+ 192𝜆4𝐿2𝜂2

x(
1 − 𝜆2

)
4

𝑡−1∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 96𝑚𝜆4𝐿2𝜂2

x(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+ 32𝑚𝜆4𝛽x𝜂

2

x𝜎
2(

1 − 𝜆2

)
4

𝑏0

+ 64𝑚𝜆4𝛽3

x𝜂
2

x𝜎
2 (𝑡 − 2)(

1 − 𝜆2

)
4

+ 32𝑚𝜆4𝛽2

x𝜂
2

x𝜎
2 (𝑡 − 1)(

1 − 𝜆2

)
3

+ 384𝜆4𝛽x𝐿
2𝜂2

x(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 192𝑚𝜆4𝛽x𝐿

2𝜂2

x(
1 − 𝜆2

)
4

𝑡−3∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+ 32𝑚𝜆4𝜂2

x(
1 − 𝜆2

)
3

𝑡−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2

≤ 8𝜆2𝜂2

x(
1 − 𝜆2

)
3
E



𝑉0 −𝑉0



2

𝐹
+ 576𝜆4𝐿2𝜂2

x(
1 − 𝜆2

)
4

𝑡−1∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+ 288𝑚𝜆4𝐿2𝜂2

x(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+ 32𝑚𝜆4𝛽x𝜂

2

x𝜎
2(

1 − 𝜆2

)
4

𝑏0

+ 96𝑚𝜆4𝛽2

x𝜂
2

x𝜎
2𝑡(

1 − 𝜆2

)
4

+ 32𝑚𝜆4𝜂2

x(
1 − 𝜆2

)
3

𝑡−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2

(74)

We use the condition 𝛽x ≤ 1 in the inequality substitutions to simplify the expressions. Similarly, we can get:

𝑡∑︁
𝑠=0

E


𝑌𝑠 − 𝑌𝑠



2

𝐹

≤
8𝜆2𝜂2

y(
1 − 𝜆2

)
3
E



𝑈0 −𝑈0



2

𝐹
+

576𝜆4𝐿2𝜂2

y(
1 − 𝜆2

)
4

𝑡−1∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+

288𝑚𝜆4𝐿2𝜂2

y(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+

32𝑚𝜆4𝛽y𝜂
2

y𝜎
2(

1 − 𝜆2

)
4

𝑏0

+
96𝑚𝜆4𝛽2

y𝜂
2

y𝜎
2𝑡(

1 − 𝜆2

)
4

+
32𝑚𝜆4𝜂2

y(
1 − 𝜆2

)
3

𝑡−1∑︁
𝑠=0

E


Ny,𝑠 − Ny,𝑠−1



2

(75)
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Add Eq.(74) and (75), we obtain:

𝑡∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
≤ 8𝜆2𝜂2

x(
1 − 𝜆2

)
3
E



𝑉0 −𝑉0



2

𝐹
+

8𝜆2𝜂2

y(
1 − 𝜆2

)
3
E



𝑈0 −𝑈0



2

𝐹

+
576𝜆4𝐿2

(
𝜂2

x + 𝜂2

y

)
(
1 − 𝜆2

)
4

𝑡−1∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
+

32𝑚𝜆4

(
𝛽x𝜂

2

x + 𝛽y𝜂
2

y

)
𝜎2(

1 − 𝜆2

)
4

𝑏0

+
288𝑚𝜆4𝐿2

(
𝜂2

x + 𝜂2

y

)
(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2 + 𝜂2

yE ∥ū𝑠 ∥2

)
+

96𝑚𝜆4

(
𝛽2

x𝜂
2

x + 𝛽2

y𝜂
2

y

)
𝜎2𝑡(

1 − 𝜆2

)
4

+ 32𝑚𝜆4𝜂2

x(
1 − 𝜆2

)
3

𝑡−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2 +
32𝑚𝜆4𝜂2

y(
1 − 𝜆2

)
3
E



Ny,𝑠 − Ny,𝑠−1



2

(76)

As 𝜆 < 1, when 𝜂x ≤ (1−𝜆)2

500𝐿
and 𝜂y ≤ (1−𝜆)2

500𝐿
, it holds that

576𝜆4𝐿2

(
𝜂2

x+𝜂2

y

)
(1−𝜆2 )4

≤ 1

2
, thus, we can obtain:

𝑡∑︁
𝑠=0

(
E



𝑋𝑠 − 𝑋𝑠


2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

)
≤ 16𝜆2𝜂2

x(
1 − 𝜆2

)
3
E



𝑉0 −𝑉0



2

𝐹
+

16𝜆2𝜂2

y(
1 − 𝜆2

)
3
E



𝑈0 −𝑈0



2

𝐹
+

576𝑛𝜆4𝐿2

(
𝜂2

x + 𝜂2

y

)
(
1 − 𝜆2

)
4

𝑡−2∑︁
𝑠=0

(
𝜂2

xE ∥v̄𝑠 ∥2

+𝜂2

yE ∥ū𝑠 ∥2

)
+

64𝑚𝜆4

(
𝛽x𝜂

2

x + 𝛽y𝜂
2

y

)
𝜎2(

1 − 𝜆2

)
4

𝑏0

+
192𝑚𝜆4

(
𝛽2

x𝜂
2

x + 𝛽2

y𝜂
2

y

)
𝜎2𝑡(

1 − 𝜆2

)
4

+ 64𝑚𝜆4𝜂2

x(
1 − 𝜆2

)
3

𝑡−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2 + 64𝑚𝜆4𝜂2

x(
1 − 𝜆2

)
3
E



Ny,𝑠 − Ny,𝑠−1



2

(77)

A.2 Proof for main Theorems
Here, we firstly prove the first equation in Theorem 1, we set

𝛽x =
𝜖 min{1,𝑚𝜖}

20

, 𝑇 =
1500𝜅3

(1 − 𝜆)2𝜖𝛽x
(78)

Since Φ(𝑥) is (𝜅𝐿 + 𝐿)-smooth we have:

Φ (x̄𝑡 ) ≤Φ (x̄𝑡−1) − 𝜂x ⟨v̄𝑡−1,∇Φ (x̄𝑡−1)⟩ + 𝜂2

x𝜅𝐿 ∥v̄𝑡−1∥2

=Φ (x̄𝑡−1) −
𝜂x
2

∥v̄𝑡−1∥2 − 𝜂x
2

∥∇Φ (x̄𝑡−1)∥2 + 𝜂x
2

∥v̄𝑡−1 − ∇Φ (x̄𝑡−1)∥2 + 𝜂2

x𝜅𝐿 ∥v̄𝑡−1∥2
(79)

Then we use Cauchy-Schwartz on above equation, we have:

Φ (x̄𝑡 ) ≤Φ (x̄𝑡−1) −
𝜂x
2

∥∇Φ (x̄𝑡−1)∥2 −
(𝜂x

2

− 𝜂2

x𝜅𝐿
)
∥v̄𝑡−1∥2 + 𝜂x ∥v̄𝑡−1 − ∇x 𝑓 (x̄𝑡−1, ȳ𝑡−1)∥2

+ 𝜂x ∥∇Φ (x̄𝑡−1) − ∇x 𝑓 (x̄𝑡−1, ȳ𝑡−1)∥2

(80)

Because ∇Φ (x̄𝑡−1) = ∇x 𝑓 (x̄𝑡−1, ŷ𝑡−1), according to Assumption 1, the last term satisfies:

∥∇Φ (x̄𝑡−1) − ∇x 𝑓 (x̄𝑡−1, ȳ𝑡−1)∥2 ≤ 𝐿2 ∥ŷ𝑡−1 − ȳ𝑡−1∥2 = 𝐿2𝛿𝑡−1 (81)

Additionally, using Cauchy-Schwartz inequality and Assumption 1 we have:

∥v̄𝑡−1 − ∇x 𝑓 (x̄𝑡−1, ȳ𝑡−1)∥2

≤ 2






v̄𝑡−1 −
1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)




2

+ 2






 1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)
− ∇x 𝑓 (x̄𝑡−1, ȳ𝑡−1)






2

≤ 2






v̄𝑡−1 −
1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)




2

+ 2






 𝑚∑︁
𝑖=1

1

𝑚

(
∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)
− ∇x 𝑓 (x̄𝑡−1, ȳ𝑡−1)

)




2

≤ 2






v̄𝑡−1 −
1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)




2

+ 2𝐿2

𝑚

(

𝑋𝑡−1 − 𝑋𝑡−1



2

𝐹
+



𝑌𝑡−1 − 𝑌𝑡−1



2

𝐹

)
(82)
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Combine Eq.(80) (81) and (82) and we can get the inequality:

∥∇Φ (x̄𝑡−1)∥2

≤ 2 (Φ (x̄𝑡−1) − Φ (x̄𝑡 ))
𝜂x

− (1 − 2𝜅𝐿𝜂x) ∥v̄𝑡−1∥2 + 2𝐿2𝛿𝑡−1 +
4𝐿2

𝑚

(

𝑋𝑡−1 − 𝑋𝑡−1



2

𝐹

+


𝑌𝑡−1 − 𝑌𝑡−1



2

𝐹

)
+ 4






v̄𝑡−1 −
1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )
𝑡−1

, y(𝑖 )
𝑡−1

)




2

(83)

Telescoping and taking expectation on Eq.(83) we have:

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2

≤ 2 (Φ (x0) − EΦ (x̄𝑡 ))
𝜂x𝑇

− (1 − 2𝜅𝐿𝜂x)
𝑇

𝑇−1∑︁
𝑡=0

E ∥v̄𝑡 ∥2 + 2𝐿2

𝑇

𝑇−1∑︁
𝑡=0

E𝛿𝑡

+ 4𝐿2

𝑚𝑇

𝑇−1∑︁
𝑡=0

(
E



𝑋𝑡 − 𝑋𝑡



2

𝐹
+ E



𝑌𝑡 − 𝑌𝑡


2

𝐹

)
+ 4

𝑇

𝑇−1∑︁
𝑡=0

E






v̄𝑡 − 1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)




2

(84)

Using Lemma 6 to replace

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2

≤ 2 (Φ (x0) − Φ∗)
𝜂x𝑇

−
(
1 − 2𝜅𝐿𝜂x −

40𝜅4𝜂2

x

𝜂2

y

)
1

𝑇

𝑇−1∑︁
𝑡=0

E ∥v̄𝑡 ∥2 + 8𝜅𝐿2𝛿0

𝑇𝐿𝜂y

−
28𝜅𝐿𝜂y

5𝑇

𝑇−1∑︁
𝑡=0

(
1 −

(
1 −

𝜇𝜂y

4

)𝑇−𝑡 )
E ∥ū𝑡 ∥2 + 84𝜅2𝐿2

𝑚𝑇

𝑇−1∑︁
𝑡=0

(
E



𝑋𝑡 − 𝑋𝑡



2

𝐹

+E


𝑌𝑡 − 𝑌𝑡



2

𝐹

)
+ 4

𝑇

𝑇−1∑︁
𝑡=0

E






v̄𝑡 − 1

𝑚

𝑚∑︁
𝑖=1

∇x 𝑓𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡

)




2

+
20𝜅𝐿𝜂y

𝑇

𝑇−1∑︁
𝑡=1

(
1 −

𝜇𝜂y

4

)𝑇−𝑡−1
𝑡−1∑︁
𝑠=0

E






ū𝑡 − 1

𝑚

𝑚∑︁
𝑖=1

∇𝑓𝑖
(
x(𝑖 )𝑠 , y(𝑖 )𝑠

)




2

(85)

And using Lemma 9 to replace the last two terms.

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2

≤ 2 (Φ (x0) − Φ∗)
𝜂x𝑇

−
(
1 − 2𝜅𝐿𝜂x −

40𝜅4𝜂2

x

𝜂2

y

)
1

𝑇

𝑇−1∑︁
𝑡=0

E ∥v̄𝑡 ∥2 + 8𝜅𝐿2𝛿0

𝑇𝐿𝜂y
+ 8𝜎2

𝑚𝑏0𝑇

(
1

𝛽x
+ 20𝜅2

𝛽y

)
+ 8𝜎2

𝑚

(
𝛽x + 20𝜅2𝛽y

)
+ 4𝐿2

𝑚𝑇

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) 𝑇−1∑︁
𝑡=0

(
E



𝑋𝑡 − 𝑋𝑡



2

𝐹
+ E



𝑌𝑡 − 𝑌𝑡


2

𝐹

)
+ 24𝐿2

𝑚𝛽x𝑇

𝑇−1∑︁
𝑡=0

(
1 − (1 − 𝛽x)𝑇−𝑡

) (
𝜂2

xE ∥v̄𝑡 ∥2 + 𝜂2

yE ∥ū𝑡 ∥2

)
+ 480𝜅2𝐿2

𝑚𝛽y𝑇

𝑇−1∑︁
𝑡=0(

1 −
(
1 −

𝜇𝜂y

4

)𝑇−𝑡 ) (
𝜂2

xE ∥v̄𝑡 ∥2 + 𝜂2

yE ∥ū𝑡 ∥2

)
−

28𝜅𝐿𝜂y

5𝑇

𝑇−1∑︁
𝑡=0

(
1 −

(
1 −

𝜇𝜂y

4

)𝑇−𝑡 )
E ∥ū𝑡 ∥2

+ 8

𝑇

𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − (1 − 𝛽x) Nx,𝑠−1



2 +
40𝜅𝐿𝜂y

𝑇

𝑇−1∑︁
𝑡=1

(
1 −

𝜇𝜂y

4

)𝑇−𝑡−1
𝑡−1∑︁
𝑠=0

E


Ny,𝑠 −

(
1 − 𝛽y

)
Ny,𝑠−1



2

(86)

For the sum of 1 − 𝛽x

1

𝛽x

(
1 − (1 − 𝛽x)𝑇−𝑡

)
=

𝑇−𝑡−1∑︁
𝑠=0

(1 − 𝛽x)𝑠 (87)
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we know Eq.(87) is increasing when 𝛽x is decreasing.

Hence
1

𝛽x

(
1 − (1 − 𝛽x)𝑇−𝑡

)
≤ 300𝜅2

(1−𝜆)2𝛽x

(
1 − (1 − (1−𝜆)2𝛽x

300𝜅2
)𝑇−𝑡

)
. According to the definition of 𝛽x and 𝜂y, we have

(1−𝜆)2𝛽x
300𝜅2

≤ 𝜇𝜂y
4

and

24𝐿2

𝑚𝛽x𝑇

(
1 − (1 − 𝛽x)𝑇−𝑡

)
≤ 7200𝐿2𝜅2

𝑚 (1−𝜆)2𝛽x𝑇

(
1 −

(
1 − 𝜇𝜂y

4

)𝑇−𝑡 )
. Therefore, using the definition of 𝛽x, 𝛽y and 𝜂y we obtain:

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2

≤ 2 (Φ (x0) − Φ∗)
𝜂x𝑇

−
(
1 − 2𝜅𝐿𝜂x −

40𝜅4𝜂2

x

𝜂2

y

)
1

𝑇

𝑇−1∑︁
𝑡=0

E ∥v̄𝑡 ∥2 + 8𝜅𝐿2𝛿0

𝑇𝐿𝜂y
+ 8𝜎2

𝑚𝑏0𝑇

(
1

𝛽x
+ 20𝜅2

𝛽y

)
+ 8𝜎2

𝑚

(
𝛽x + 20𝜅2𝛽y

)
+ 4𝐿2

𝑚𝑇

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) 𝑇−1∑︁
𝑡=0

(
E



𝑋𝑡 − 𝑋𝑡



2

𝐹
+ E



𝑌𝑡 − 𝑌𝑡


2

𝐹

)
+

(
24𝐿2𝜂2

x
𝑚𝛽x

+ 480𝜅2𝐿2𝜂2

x
𝑚𝛽y

)
1

𝑇

𝑇−1∑︁
𝑡=0

E ∥v̄𝑡 ∥2 −
𝜅𝐿𝜂y

𝑇

𝑇−1∑︁
𝑡=0

E ∥ū𝑡 ∥2 + 8

𝑇

𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − (1 − 𝛽x) Nx,𝑠−1



2

+ 160𝜅2

𝑇

𝑇−1∑︁
𝑠=0

E


Ny,𝑠 −

(
1 − 𝛽y

)
Ny,𝑠−1



2

(88)

Using Lemma 13 to replace E


𝑋𝑠 − 𝑋𝑠



2

𝐹
+ E



𝑌𝑠 − 𝑌𝑠


2

𝐹

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2

≤ 2 (Φ (x0) − Φ∗)
𝜂x𝑇

−
(
1 − 2𝜅𝐿𝜂x −

40𝜅4𝜂2

x

𝜂2

y

)
1

𝑇

𝑇−1∑︁
𝑡=0

E ∥v̄𝑡 ∥2 + 8𝜅𝐿2𝛿0

𝑇𝐿𝜂y
+ 8𝜎2

𝑚𝑏0𝑇

(
1

𝛽x
+ 20𝜅2

𝛽y

)
+ 8𝜎2

𝑚

(
𝛽x + 20𝜅2𝛽y

)
+ 4𝐿2

𝑚𝑇

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) (
16𝜆2𝜂2

x(
1 − 𝜆2

)
3
E



𝑉0 −𝑉0



2

𝐹

+
16𝜆2𝜂2

y(
1 − 𝜆2

)
3
E



𝑈0 −𝑈0



2

𝐹
+

64𝑚𝜆4

(
𝛽x𝜂

2

x + 𝛽y𝜂
2

y

)
𝜎2(

1 − 𝜆2

)
4

𝑏0

+
192𝑚𝜆4

(
𝛽2

x𝜂
2

x + 𝛽2

y𝜂
2

y

)
𝜎2𝑇(

1 − 𝜆2

)
4

ª®®¬
+ 4𝐿2

𝑚𝑇

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

)
576𝑚𝜆4𝐿2

(
𝜂2

x + 𝜂2

y

)
(
1 − 𝜆2

)
4

𝑇−1∑︁
𝑡=0

(
𝜂2

xE ∥v̄𝑡 ∥2 + 𝜂2

yE ∥ū𝑡 ∥2

)
+

(
24𝐿2𝜂2

x
𝑚𝛽x

+ 480𝜅2𝐿2𝜂2

x
𝑚𝛽y

)
1

𝑇

𝑇−1∑︁
𝑡=0

E ∥v̄𝑡 ∥2 −
𝜅𝐿𝜂y

𝑇

𝑇−1∑︁
𝑡=0

E ∥ū𝑡 ∥2 + 8

𝑇

𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − (1 − 𝛽x) Nx,𝑠−1



2

+ 160𝜅2

𝑇

𝑇−1∑︁
𝑠=0

E


Ny,𝑠 −

(
1 − 𝛽y

)
Ny,𝑠−1



2 + 256𝐿2𝜆4𝜂2

x

𝑇
(
1 − 𝜆2

)
3

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

)
𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2 +
256𝐿2𝜆4𝜂2

y

𝑇
(
1 − 𝜆2

)
3

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) 𝑇−1∑︁
𝑠=0

E


Ny,𝑠 − Ny,𝑠−1



2

(89)

When 𝛽x, 𝛽y, 𝜂x and 𝜂y are defined as Theorem 1 , we have

4𝐿2

𝑚𝑇

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

)
576𝑚𝜆4𝐿2

(
𝜂2

x + 𝜂2

y

)
(
1 − 𝜆2

)
4

𝜂2

y ≤
𝜅𝐿𝜂y

2𝑇
(90)

and

1 − 2𝜅𝐿𝜂x −
40𝜅4𝜂2

x

𝜂2

y
− 24𝐿2𝜂2

x
𝑚𝛽x

− 480𝜅2𝐿2𝜂2

x
𝑚𝛽y

− 4𝐿2

𝑚

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

)
576𝑚𝜆4𝐿2

(
𝜂2

x + 𝜂2

y

)
(
1 − 𝜆2

)
4

𝜂2

x ≥ 2

5

(91)
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Therefore, subtracting the terms containing these two quantities will not affect the validity of the inequality. This simplification is achieved

by using this scaling method.

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2

≤ 2 (Φ (x0) − Φ∗)
𝜂x𝑇

+ 8𝜅𝐿2𝛿0

𝑇𝐿𝜂y
+ 8𝜎2

𝑚𝑏0𝑇

(
1

𝛽x
+ 20𝜅2

𝛽y

)
+ 8𝜎2

𝑚

(
𝛽x + 20𝜅2𝛽y

)
+ 4𝐿2

𝑚𝑇

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) (
16𝜆2𝜂2

x(
1 − 𝜆2

)
3
E



𝑉0 −𝑉0



2

𝐹
+

16𝜆2𝜂2

y(
1 − 𝜆2

)
3
E



𝑈0 −𝑈0



2

𝐹

+
64𝑚𝜆4

(
𝛽x𝜂

2

x + 𝛽y𝜂
2

y

)
𝜎2(

1 − 𝜆2

)
4

𝑏0

+
192𝑚𝜆4

(
𝛽2

x𝜂
2

x + 𝛽2

y𝜂
2

y

)
𝜎2𝑇(

1 − 𝜆2

)
4

ª®®¬ +
8

𝑇

𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − (1 − 𝛽x) Nx,𝑠−1



2

+ 160𝜅2

𝑇

𝑇−1∑︁
𝑠=0

E


Ny,𝑠 −

(
1 − 𝛽y

)
Ny,𝑠−1



2 + 256𝐿2𝜆4𝜂2

x

𝑇
(
1 − 𝜆2

)
3

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) 𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2 +
256𝐿2𝜆4𝜂2

y

𝑇
(
1 − 𝜆2

)
3

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) 𝑇−1∑︁
𝑠=0

E


Ny,𝑠 − Ny,𝑠−1



2

(92)

By Assumption 4 and Cauchy-Schwartz inequality we also have

E


𝑉0 −𝑉0



2

𝐹
= E ∥𝐺0 (𝑊 − 𝐽 )∥2

𝐹 ≤ 𝜆2E ∥𝐺0∥2

𝐹 ≤ 2𝑚𝜆2𝜎2

𝑏0

+ 2𝜆2

𝑚∑︁
𝑖=1

∥∇x 𝑓𝑖 (x0, y0)∥2
(93)

Similarly, we have

E


𝑈0 −𝑈0



2

𝐹
≤ 2𝑚𝜆2𝜎2

𝑏0

+ 2𝜆2

𝑚∑︁
𝑖=1



∇y 𝑓𝑖 (x0, y0)


2

(94)

With the definition of 𝛽x, 𝛽y, 𝜂x and 𝜂y are given in Theorem 1, therefore we get:

256𝐿2𝜆4𝜂2

x

𝑇
(
1 − 𝜆2

)
3

(
21𝜅2 + 12

𝑛𝛽x
+ 240𝜅2

𝑛𝛽y

)
≤ 𝜆4 (1 − 𝜆)

𝑇

(
𝑚2𝜖2 + 26𝜅2

)
256𝐿2𝜆4𝜂2

y

𝑇
(
1 − 𝜆2

)
3

(
21𝜅2 + 12

𝑛𝛽x
+ 240𝜅2

𝑛𝛽y

)
≤ 𝜆4 (1 − 𝜆)

𝑇

(
𝑚2𝜖2 + 26𝜅2

) (95)

We know that the maximum of 𝜆4 (1 − 𝜆) is 256

3075
< 1, meanwhile, by the definition of 𝜅 = 𝐿

𝜇 ≤ 1 thus, we have:

256𝐿2𝜆4𝜂2

x

𝑇
(
1 − 𝜆2

)
3

(
21𝜅2 + 12

𝑛𝛽x
+ 240𝜅2

𝑛𝛽y

)
≤

(
𝑚2𝜖2 + 3𝜅2

)
𝑇

256𝐿2𝜆4𝜂2

y

𝑇
(
1 − 𝜆2

)
3

𝜅2

(
21𝜅2 + 12

𝑛𝛽x
+ 240𝜅2

𝑛𝛽y

)
≤

(
𝑚2𝜖2 + 3

)
𝑇

(96)

Combine above three inequalities and substitute the parameters with their definitions. We achieve

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2

≤𝐿
(
Φ (x0) − Φ∗) 𝜖2 + 2𝐿2𝛿0𝜖

2 + 2𝜎2𝜖2 + 𝜖2

𝑚

𝑚∑︁
𝑖=1

∥∇x 𝑓𝑖 (x0, y0)∥2

+ 𝜖2

𝑚

𝑚∑︁
𝑖=1

∥∇x 𝑓𝑖 (x0, y0)∥2 +
(
𝑚2𝜖2 + 3𝜅2

)
𝑇

𝑇−1∑︁
𝑠=0

(
E



Nx,𝑠 − Nx,𝑠−1



2 + E


Ny,𝑠 − Ny,𝑠−1



2

)
+ 8

𝑇

𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − (1 − 𝛽x) Nx,𝑠−1



2 + 160𝜅2

𝑇

𝑇−1∑︁
𝑠=0

E


Ny,𝑠 −

(
1 − 𝛽y

)
Ny,𝑠−1



2

(97)



Enhancing Privacy in Decentralized Min-Max Optimization:
A Differentially Private Approach MobiHoc 2025, June 2025, Houston, USA

Now, review the definition of Nx,𝑠 and Nx,𝑠 , we can obtain that:

Nx,𝑡 ∼ N
(
0,
𝜎2

x
𝑚

𝐼𝑑1

)
,N𝑦,𝑡 ∼ N

(
0,
𝜎2

y

𝑚
𝐼𝑑2

)
(98)

Nx,𝑠 andNx,𝑠−1 are independent normally distributed random variables because the noises 𝑛
(𝑖 )
x,𝑠 and 𝑛

(𝑖 )
x,𝑠−1

generated at times 𝑠 and 𝑠 − 1 are

independent. Therefore, the distribution of Nx,𝑠 − Nx,𝑠−1 is also normally distributed, with mean 0 and a covariance matrix that is the sum

of the covariances of the two independent normal distributions.

Nx,𝑠 − Nx,𝑠−1 ∼ N
(
0, 2

𝜎2

x
𝑚

𝐼𝑑1

)
(99)

Therefore:

E


Nx,𝑠 − Nx,𝑠−1



2

= Tr

(
2 · 𝜎

2

x
𝑚

𝐼𝑑1

)
= 2

𝜎2

x
𝑚

𝑑1 (100)

Sum up from 0 to 𝑇 − 1:

𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2

=

𝑇−1∑︁
𝑠=0

2 · 𝜎
2

x
𝑚

· 𝑑1 = 2

𝜎2

x
𝑚

𝑑1𝑇 (101)

Similarly, we can get:

𝑇−1∑︁
𝑠=0

E


Ny,𝑠 − Ny,𝑠−1



2

= 2

𝜎2

y

𝑚
𝑑2𝑇 (102)

Mimic the process above, we know that:

Nx,𝑠 − (1 − 𝛽x) Nx,𝑠−1 ∼ N
(
0,
𝜎2

x
𝑚

(
𝐼𝑑1

+ (1 − 𝛽x)2 𝐼𝑑1

))
(103)

Therefore, we have:

𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − (1 − 𝛽x) Nx,𝑠−1



2

= 𝑇
𝜎2

x
𝑚

𝑑1

(
1 + (1 − 𝛽x)2

)
𝑇−1∑︁
𝑠=0

E


Ny,𝑠 −

(
1 − 𝛽y

)
Ny,𝑠−1



2

= 𝑇
𝜎2

y

𝑚
𝑑2

(
1 +

(
1 − 𝛽y

)
2

) (104)

Therefore, Eq.(97) can be written as:

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2 ≤𝐿
(
Φ (x0) − Φ∗) 𝜖2 + 2𝐿2𝛿0𝜖

2 + 2𝜎2𝜖2 + 𝜖2

𝑚

𝑚∑︁
𝑖=1

∥∇x 𝑓𝑖 (x0, y0)∥2

+ 𝜖2

𝑚

𝑚∑︁
𝑖=1

∥∇x 𝑓𝑖 (x0, y0)∥2 + (2𝑚2𝜖2 + 6𝜅2)
𝑚

(
𝜎2

x𝑑1 + 𝜎2

y𝑑2

)
+ 16𝜎2

x𝑑1

𝑚
+

320𝜅2𝜎2

y𝑑2

𝑚

(105)

where we use following inequalities for simplification.

𝛽x ≥ 𝛽y, 4𝐿
2

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

)
≤ 100𝐿2𝜅2 + 1000𝐿2𝜅2

𝑚𝛽y

𝐿2𝛽x𝜂
2

x
(1 − 𝜆)4𝑏0𝑇

≤ 𝜖 (min{1,𝑚𝜖})5𝜖2

20 · 400𝜅 · 30000𝜅3

(
15000𝜅3

)
2
,

𝐿2𝛽y𝜂
2

y

(1 − 𝜆)4𝑏0𝑇
≤ 𝜖 (min{1,𝑚𝜖})5𝜖2

500 · 400𝜅 · 30000𝜅3 (1500𝜅)2

𝐿2𝛽2

x𝜂
2

x
(1 − 𝜆)4

≤ 𝜖2 (min{1,𝑚𝜖})4

400

(
15000𝜅3

)
2
,
𝐿2𝛽2

y𝜂
2

y

(1 − 𝜆)4
≤ 𝜖2 (min{1,𝑚𝜖})4(

500𝜅2

)
2 (1500𝜅)2

(106)

Therefore, if 𝑇 is determined by 𝜖 , we have the first conclusion in Theorem 1:

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2 =O
(
𝜖2

)
+ O

(
𝑚𝜖2

)
+ O

(
𝜎2

x𝑑1 + 𝜎2

y𝑑2

)
(107)
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In the above proof, we have established the convergence result when𝑇 is determined by 𝜖 . Next, we analyze the case when 𝑇 is uncertain,

for which we provide the following proof. Before presenting our proof, we first provide some definitions regarding 𝑇 .

𝑇0 ≥ 10𝑚2, 𝑇 =
30000𝜅3𝑇0

(1 − 𝜆)2
(108)

Similarly, we can obtain:

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2

≤ 2 (Φ (x0) − Φ∗)
𝜂x𝑇

+ 8𝜅𝐿2𝛿0

𝑇𝐿𝜂y
+ 8𝜎2

𝑚𝑏0𝑇

(
1

𝛽x
+ 20𝜅2

𝛽y

)
+ 8𝜎2

𝑚

(
𝛽x + 20𝜅2𝛽y

)
+ 4𝐿2

𝑚𝑇

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) (
16𝜆2𝜂2

x(
1 − 𝜆2

)
3
E



𝑉0 −𝑉0



2

𝐹
+

16𝜆2𝜂2

y(
1 − 𝜆2

)
3
E



𝑈0 −𝑈0



2

𝐹

+
64𝑚𝜆4

(
𝛽x𝜂

2

x + 𝛽y𝜂
2

y

)
𝜎2(

1 − 𝜆2

)
4

𝑏0

+
192𝑚𝜆4

(
𝛽2

x𝜂
2

x + 𝛽2

y𝜂
2

y

)
𝜎2𝑇(

1 − 𝜆2

)
4

ª®®¬ +
8

𝑇

𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2

+ 160𝜅2

𝑇

𝑇−1∑︁
𝑠=0

E


Ny,𝑠 − Ny,𝑠−1



2 + 256𝐿2𝜆4𝜂2

x

𝑇
(
1 − 𝜆2

)
3

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) 𝑇−1∑︁
𝑠=0

E


Nx,𝑠 − Nx,𝑠−1



2 +
256𝐿2𝜆4𝜂2

y

𝑇
(
1 − 𝜆2

)
3

(
21𝜅2 + 12

𝑚𝛽x
+ 240𝜅2

𝑚𝛽y

) 𝑇−1∑︁
𝑠=0

E


Ny,𝑠 − Ny,𝑠−1



2

(109)

Substituting the parameter values given in above Eq.(108) and the relationships between all these parameters in Theorem 1, and using the

scaling method to simplify the calculations, we can get:

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2 ≤𝐿 (Φ (x0) − Φ∗) + 2𝜎2 + 2𝐿2𝛿0

(𝑚𝑇0)2/3

+
1

𝑚

∑𝑚
𝑖=1
E ∥∇x 𝑓𝑖 (x0, y0)∥2

𝑇0

+
1

𝑚

∑𝑚
𝑖=1
E



∇y 𝑓𝑖 (x0, y0)


2

𝑇0

+
(

2𝑚2/3

𝑇
2/3

0

+ 3𝜅2

𝑚

) (
𝜎2

x𝑑1 + 𝜎2

y𝑑2

)
+ 16𝜎2

x𝑑1

𝑚
+

320𝜅2𝜎2

y𝑑2

𝑚

(110)

Therefore, if the number of iteration is not fixed, we have the second conclusion in Theorem 1, we have:

1

𝑇

𝑇−1∑︁
𝑡=0

E ∥∇Φ (x̄𝑡 )∥2 =O
(

1

(𝑚𝑇0)2/3

)
+ O

(
1

𝑇0

)
+ O

(
𝑚1/3

𝑇
2/3

0

)
+ O

(
𝜎2

x𝑑1 + 𝜎2

y𝑑2

)
(111)

B Proof of privacy guarantee
Before we start our privacy analysis, let’s introduce moments accountant method [1].

Definition 2. [Privacy Loss [1]] For adjacent datasets 𝐷 and 𝐷′
, mechanismM, and output 𝑜 ∈ R, the privacy loss at 𝑜 is defined as:

𝑐
(
𝑜 ;M, 𝐷, 𝐷′) = log

(
P[M(𝐷) = 𝑜]
P [M (𝐷′) = 𝑜]

)
(112)

Definition 3. [Moment [1]] For a mechanismM and the privacy loss at output 𝑜 , the 𝜆-th moment is defined as:

𝛼M
(
𝜆;𝐷, 𝐷′) = log

(
E𝑜∼M(𝐷 )

[
exp

(
𝜆𝑐

(
𝑜 ;M, 𝐷, 𝐷′) ) ] )

(113)

with the upper bound given by:

𝛼M (𝜆) = max

𝐷,𝐷 ′
𝛼M

(
𝜆;𝐷,𝐷′)

(114)

Lemma 14. [Composability [1]] Let 𝛼M (𝜆) be defined as above. Suppose M is composed of several mechanisms M1, . . . ,M𝑘 , where M𝑖

depends onM1, . . . ,M𝑖−1. Then, for any 𝜆:

𝛼M (𝜆) ≤
𝑘∑︁
𝑖=1

𝛼M𝑖
(𝜆) (115)



Enhancing Privacy in Decentralized Min-Max Optimization:
A Differentially Private Approach MobiHoc 2025, June 2025, Houston, USA

Lemma 15. [Tail Bound [1]] For any 𝜃 > 0, mechanismM is (𝜃,𝛾)-differentially private if:

𝛾 = min

𝜆
exp

(
𝛼M (𝜆) − 𝜆𝜃

)
(116)

Definition 4. [Rényi Divergence [10]] Let 𝑃 and 𝑄 be probability distributions. For 𝜌 ∈ (1,∞), the Rényi Divergence of order 𝜌 between 𝑃

and 𝑄 is defined as:

𝐷𝜌 (𝑃 ∥𝑄) =
1

𝜌 − 1

log

(
Ex∼𝑃

[(
𝑃 (x)
𝑄 (x)

)𝜌−1

])
(117)

Lemma 16. For Gaussian distributions N(𝜇, 𝜎2𝐼𝑝 ) and N(𝜈, 𝜎2𝐼𝑝 ), where 𝜇, 𝜈 ∈ R𝑝 , 𝜎 ∈ R, and 𝜌 ∈ (1,∞), the Rényi Divergence of order 𝜌
is given by:

𝐷𝜌

(
N

(
𝜇, 𝜎2𝐼𝑝

)
∥N

(
𝜈, 𝜎2𝐼𝑝

))
=

𝜌 ∥𝜇 − 𝜈 ∥2

2

2𝜎2

(118)

Firstly, let’s review training process in DP-DM-HSGD:

x̄𝑡+1 = x̄𝑡 − 𝜂x
(
ḡ𝑡 + Nx,𝑡

)
ȳ𝑡+1 = ȳ𝑡 + 𝜂y

(
¯h𝑡 + N𝑦,𝑡

) (119)

where Nx,𝑡 ∼ N
(
0,

𝜎2

x
𝑚 𝐼𝑑1

)
, Ny,𝑡 ∼ N

(
0,

𝜎2

y
𝑚 𝐼𝑑2

)
, and 𝜎x = 𝑐

©­­«
𝐿𝑔

√︂(
8𝑇 (𝑇+1) (2𝑇+1)

3
+4𝑇

)
log(1/𝛾 )

2𝜃
√
𝑚

ª®®¬
Now, we will present the full proof for Theorem 2. We first analyze parameter x.

When updating x, at iteration 𝑡 , the randomized mechanismM𝑡 which may disclose privacy is

M𝑡 = ḡ𝑡 + Nx,𝑡

=
1

𝑚

𝑚∑︁
𝑗=1

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘

)
− ∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

) )
+ Nx,𝑡

(120)

We set probability distribution of M𝑡 over adjacent datasets 𝐷,𝐷
′
as 𝑃 and 𝑄 , respectively, also, we assume the single different data sample

is on the𝑚th
one, and we obtain:

𝑃 =
1

𝑚

𝑚−1∑︁
𝑖=1

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘

)
− ∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

) )
+ 1

𝑚

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)
𝑘

)
−∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)
𝑡+1

)]
+ ∇x𝐹 𝑗

(
x(𝑚)
𝑡 , y(𝑚)

𝑡 ; z(𝑚)
𝑡+1

) )
+ Nx,𝑡

𝑄 =
1

𝑚

𝑚−1∑︁
𝑖=1

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘

)
− ∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

) )
+ 1

𝑚

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)′
𝑘

)
−∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)′
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑚)
𝑡 , y(𝑚)

𝑡 ; z(𝑚)′
𝑡+1

) )
+ Nx,𝑡

(121)
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For the simplicity of the next steps, we set

I =
1

𝑚

𝑚−1∑︁
𝑖=1

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘

)
− ∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

) )
+ 1

𝑚

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)
𝑘

)
−∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)
𝑡+1

)]
+ ∇x𝐹 𝑗

(
x(𝑚)
𝑡 , y(𝑚)

𝑡 ; z(𝑚)
𝑡+1

) )
I′ =

1

𝑚

𝑚−1∑︁
𝑖=1

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘

)
− ∇x𝐹 𝑗

(
x(𝑖 )
𝑘

, y(𝑖 )
𝑘

; z(𝑖 )
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )

𝑡+1

) )
+ 1

𝑚

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)′
𝑘

)
−∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)′
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑚)
𝑡 , y(𝑚)

𝑡 ; z(𝑚)′
𝑡+1

) )

(122)

As we define z(𝑖 ) as an index sample in local datasetZ, therefore, according to Assumption 7:


∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )𝑡

)
− ∇x𝐹𝑖

(
x(𝑖 )𝑡 , y(𝑖 )𝑡 ; z(𝑖 )′𝑡

)



2

≤ 2𝐿𝑔 (123)

The inequality above stands because z(𝑚)
𝑡 and z(𝑚)′

𝑡 are adjacent data samples. Now, we can get:

I − I′

2

2

=





 1

𝑚

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)
𝑘

)
− ∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑚)
𝑡 , y(𝑚)

𝑡 ; z(𝑚)
𝑡+1

) )
− 1

𝑚

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
[
∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)′
𝑘

)
−∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)′
𝑘+1

)]
+ ∇x𝐹 𝑗

(
x(𝑚)
𝑡 , y(𝑚)

𝑡 ; z(𝑚)′
𝑡+1

) )



2

2

≤ 2

𝑚2

( 𝑡∑︁
𝑘=0

(1 − 𝛽x)𝑡−𝑘
(


∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)
𝑘

)
− ∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)′
𝑘

)



2

−



∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)
𝑘+1

)
− ∇x𝐹 𝑗

(
x(𝑚)
𝑘

, y(𝑚)
𝑘

; z(𝑚)′
𝑘+1

)



2

) )
2

+ 2

𝑚2

(


∇x𝐹 𝑗

(
x(𝑚)
𝑡 , y(𝑚)

𝑡 ; z(𝑚)
𝑡+1

)
− ∇x𝐹 𝑗

(
x(𝑚)
𝑡 , y(𝑚)

𝑡 ; z(𝑚)′
𝑡+1

)



2

)
2

≤ 2

𝑚2

(
𝑡∑︁

𝑘=0

(1 − 𝛽x)𝑡−𝑘 4𝐿𝑔

)
2

+
8𝐿2

𝑔

𝑚2

≤
2𝐿2

𝑔

𝑚2

©­«16

(
𝑡∑︁

𝑘=0

(1 − 𝛽x)𝑡−𝑘
)

2

+ 4
ª®¬ ≤

2𝐿2

𝑔

𝑚2

(
16𝑡2 + 4

)
=

𝐿2

𝑔

𝑚2

(
32𝑡2 + 8

)

(124)

where we use Young’s inequality in the first inequality, and simplify

∑𝑡
𝑘=0

(1 − 𝛽x)𝑡−𝑘 to

∑𝑡
𝑘=0

1 in last inequality as we have a bound

0 < 𝛽𝑥 < 1. Noting that Nx,𝑡 ∼ N
(
0,

𝜎2

x
𝑚 𝐼𝑝

)
, we have

𝑃 ∼ N
(
I, 𝜎

2

x
𝑚

𝐼𝑝

)
, 𝑄 ∼ N

(
I′,

𝜎2

x
𝑚

𝐼𝑝

)
(125)

With Definition 2 and 3, we obtain:

𝛼M𝑡

(
𝜆;𝐷, 𝐷′) = log

(
E𝑜∼𝑃

[
exp

(
𝜆 log

(
𝑃

𝑄

))] )
= log

(
E𝑜∼𝑃

[(
𝑃

𝑄

)𝜆])
= 𝜆𝐷𝜆+1

(𝑃 ∥𝑄) (126)
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Where we use Definition 4 to get the last inequality. From lemma 16, we have:

𝛼M𝑡

(
𝜆;𝐷, 𝐷′) = 𝑚𝜆(𝜆 + 1) ∥I − I′∥2

2

2𝜎2
≤

(
16𝑡2 + 4

)
𝐿2

𝑔𝜆(𝜆 + 1)
𝑚𝜎2

= 𝛼M𝑡
(𝜆) (127)

The inequality holds because 𝐹𝑖 (·, ·; ·) is 𝐿-Lipschitz, and the last step holds because of Definition 3. By Lemma 14, there are 𝑇 iterations, so

we have

𝛼M (𝜆) ≤
𝑇∑︁
𝑡=1

𝛼M𝑡
(𝜆) ≤

2

(
16𝑡2 + 4

)
𝐿2

𝑔𝜆
2

𝑚𝜎2

(128)

where the last inequality holds because 𝜆 ∈ (1,∞). We also assume that the maximum value of 𝛼M𝑡
(𝜆) is no greater than twice the average

of its sum.

Taking 𝜎x = 𝑐
𝐿𝑔

√︂(
8𝑇 (𝑇+1) (2𝑇+1)

3
+4𝑇

)
log(1/𝛾 )

2𝜃
√
𝑚

, we can guarantee 𝛼M (𝜆) ≤ 𝜆𝜃/2, and as the consequence, by Lemma 16, we obtain 𝛾 ≤

exp(−𝜆𝜃/2), and in this way, it leads (𝜃,𝛾)-DP to parameter x̄. Similarly, we have the same proof for ȳ𝑡 , if N𝑦,𝑡 ∼ N
(
0,

𝜎2

y
𝑚 𝐼𝑝

)
with

𝜎y = 𝑐
𝐿𝑔

√︂(
8𝑇 (𝑇+1) (2𝑇+1)

3
+4𝑇

)
log(1/𝛾 )

2𝜃
√
𝑚

is used when updating ȳ𝑡 , then (𝜃,𝛾)-DP can be guaranteed. The proof is completed.

C Additional Experiments
C.1 Gradient clipping
We conducted experiments on DPMixSGD and DM-HSGD with a clipping threshold set to clip the top 20% of gradients, which yielded

similar results, further confirming the reliability of our original findings. See in Table 3, here 𝜎 represents the intensity of the noise added in

the DPMixSGD algorithm.

Table 3: AUC Performance of DPMixSGD and DM-HSGD under Different Noise Levels with Gradient Clipping Comparison

Dataset DM-HSGD 𝜎 = 0.5 𝜎 = 1

DPMixSGD DPMixSGD (Clip) DPMixSGD DPMixSGD (Clip)
MNIST 0.9937 0.9897 0.9733 0.9796 0.9548

Fashion_MNIST 0.9859 0.9757 0.9493 0.9627 0.9184

ljcnn1 0.9984 0.9962 0.9889 0.9901 0.9711

C.2 Decentralized min-max problem in multilayer perceptron of image classification problem
This experiment focuses on image classification of the Fashion-MNIST [75] dataset using a multilayer perceptron (MLP) model. We introduce

corresponding dual variables to formulate a min-max problem. Additionally, we also compare the AUROC performance of the DPMixSGD,
DM-HSGD, SGDA, and DP-SGDA algorithms across different scenarios. In this problem, we consider a distributed network composed of

𝑚 agents. Each agent 𝑖 possesses its own model parameter x𝑖 as well as a set of dual variables 𝑦𝑎,𝑖 , 𝑦𝑏,𝑖 , and 𝑦𝑤,𝑖 . These dual variables are

typically employed to handle constraints or to model adversarial factors. The optimization objective of the entire MLP system is defined as

follows:

min

{x𝑖 }𝑚𝑖=1

max

{𝑦𝑎,𝑖 ,𝑦𝑏,𝑖 ,𝑦𝑤,𝑖 }𝑚𝑖=1

Φ
(
{x𝑖 }, {𝑦𝑎,𝑖 , 𝑦𝑏,𝑖 , 𝑦𝑤,𝑖 }

)
, (129)

where Φ is the global objective function, defined as the average of all agents’ local objective functions as the following:

Φ
(
{x𝑖 }, {𝑦𝑎,𝑖 , 𝑦𝑏,𝑖 , 𝑦𝑤,𝑖 }

)
=

1

𝑚

𝑚∑︁
𝑖=1

𝜙𝑖
(
x𝑖 , 𝑦𝑎,𝑖 , 𝑦𝑏,𝑖 , 𝑦𝑤,𝑖

)
. (130)

Each agent 𝑖 has a local optimization function 𝜙𝑖 defined as:

𝜙𝑖
(
x𝑖 , 𝑦𝑎,𝑖 , 𝑦𝑏,𝑖 , 𝑦𝑤,𝑖

)
= L (x𝑖 ;D𝑖 ) + 𝑦𝑎,𝑖 · 𝑓𝑎 (x𝑖 ) + 𝑦𝑏,𝑖 · 𝑓𝑏 (x𝑖 ) + 𝑦𝑤,𝑖 · 𝑓𝑤 (x𝑖 ) , (131)

where L (x𝑖 ;D𝑖 ) is the primary loss function based on the local datasetD𝑖 (e.g., cross-entropy loss). 𝑓𝑎 (x𝑖 ), 𝑓𝑏 (x𝑖 ), and 𝑓𝑤 (x𝑖 ) are auxiliary
functions associated with the dual variables, introduce to impose additional constraints or model adversarial factors. 𝑦𝑎,𝑖 , 𝑦𝑏,𝑖 , and 𝑦𝑤,𝑖 are

the corresponding dual variables, typically acting as lagrange multipliers to balance the primary loss with the auxiliary terms.

For the image classification algorithms DPMixSGD, DM-HSGD, SGDA, and DP-SGDA, we conduct extensive experimental validations

and compare their AUROC metrics. The primary parameters involved in the experiments are as follows: the learning rates for the model
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Table 4: AUROC results over epochs for each algorithm during the image classification experiments on Fashion-MNIST dataset.
(a) Impact of total number of agents𝑚.

𝑚 𝑚 = 5 𝑚 = 10 𝑚 = 15 𝑚 = 20

SGDA 0.7978 0.7227 0.5602 0.5503

DP-SGDA 0.7754 0.7251 0.5367 0.5506

DM-HSGD 0.9352 0.9179 0.9345 0.9087

DPMixSGD 0.9311 0.9310 0.9296 0.9317

(b) Impact of sparsity level 𝑝 .

𝑝 𝑝 = 0.2 𝑝 = 0.5 𝑝 = 0.8 𝑝 = 1

SGDA 0.7881 0.7978 0.7978 0.7971

DP-SGDA 0.7816 0.7796 0.7754 0.7769

DM-HSGD 0.9359 0.9357 0.9352 0.9329

DPMixSGD 0.9328 0.9373 0.9311 0.9369

(c) Impact of 𝜃 .

𝜃 𝜃 = 0.005 𝜃 = 0.01 𝜃 = 0.05 𝜃 = 0.1

SGDA 0.7978 0.7978 0.7978 0.7978

DP-SGDA 0.6637 0.5773 0.7066 0.7542

DM-HSGD 0.9351 0.9351 0.9351 0.9351

DPMixSGD 0.9048 0.9213 0.9356 0.9355

(d) Impact of 𝛾 .

𝛾 𝛾 = 1

60000
𝛾 = 1

30000
𝛾 = 1

5000
𝛾 = 1

1000

SGDA 0.7978 0.7978 0.7978 0.7978

DP-SGDA 0.5795 0.5773 0.5732 0.5725

DM-HSGD 0.9351 0.9351 0.9351 0.9351

DPMixSGD 0.9206 0.9213 0.9237 0.9264

parameters x and their dual variables y are selected from the set {0.01, 0.001, 0.0001}. The mini-batch size is set to 64. Specifically, for

the DPMixSGD and DM-HSGD algorithms, the initial batch size is set to 𝑏0 = 64. The gradient weight adjustment parameters 𝛽𝑥 and 𝛽𝑦
are chosen from the set {0.1, 0.01}. Table 4 illustrates the AUROC results over epochs for each algorithm during the image classification

experiments. In all compared groups, our proposed method surpasses existing algorithms, because the introduced noise aids in escaping

saddle points while expediting the model’s training process.
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