
Civil Servants as Builders: Enabling Non-IT Staff to Develop
Secure Python and R Tools

Prashant Sharma∗
prashant.sharma@berkeley.edu

Independent Researcher
Sacramento, California, USA

ABSTRACT
Current digital government literature focuses on professional in-
house IT teams, specialized digital service teams, vendor-developed
systems, or proprietary low-code/no-code tools. Almost no schol-
arship addresses a growing middle ground: technically skilled civil
servants outside formal IT roles who can write real code but lack a
sanctioned, secure path to deploy their work. This paper introduces
a limits-aware, open-source and replicable platform that enables
such public servants to develop, peer-review, and deploy small-scale,
domain-specific applications within government networks via a
sandboxed, auditable workflow. By combining Jupyter Notebooks,
preapproved open-source libraries, and lightweight governance,
the platform works within institutional constraints such as procure-
ment rules and IT security policies while avoiding vendor lock-in.
Unlike low/no-code approaches, it preserves and enhances civil
servants’ programming skills, keeping them technically competi-
tive with their private-sector peers. This contribution fills a critical
gap, offering a replicable model for public-sector skill retention,
resilience, and bottom-up digital transformation.

KEYWORDS
Digital Government, End-User Development, Public Administration,
Information Security, Open-Source Software, Python, R, Jupyter
Notebooks, Government Innovation, Secure Application Deploy-
ment

1 INTRODUCTION
Government agencies operate under important mandates: to safe-
guard public resources, ensure procedural fairness, and uphold
high standards of security. To meet these obligations, digital tools
in the public sector are typically subjected to rigorous procurement
procedures and strict IT oversight. These institutional safeguards
exist for good reason—they are designed to prevent waste, ensure
equitable access to contracting opportunities, and reduce risks to
sensitive data and infrastructure. However, they also have a cost:

∗The author is a Research Data Specialist at the California Department of Food and
Agriculture (CDFA) at the time of writing. This paper represents independent research
conducted outside the scope of official duties and does not reflect the views, policies,
or endorsements of the State of California or the CDFA. The author’s prior experience
includes work at a startup that collaborated with government agencies in Canada and
the United Arab Emirates. All scenarios and observations presented are hypothetical,
based on general knowledge of public sector processes, and do not reflect internal
practices of any specific department or agency, including those the author has been
affiliated with.

LIMITS ’25, June 26–27, 2025, Online
2025.

civil servants who identify clear opportunities for internal automa-
tion or lightweight tooling often face long procurement cycles or
compete for limited IT bandwidth already stretched thin.

Procurement departments, for instance, are responsible for en-
suring that every expenditure serves the public interest and that
projects do not bypass fair competition. Similarly, IT teams act as
custodians of security and stability, ensuring that all deployed tools
conform to internal standards and do not introduce cybersecurity
vulnerabilities. In environments where time, staffing, and atten-
tion are chronically limited, both functions tend toward caution.
This tendency, while understandable, can unintentionally suppress
creativity, especially when civil servants propose novel solutions
that fall outside conventional procurement or IT service delivery
pipelines.

Today, many civil servants possess technical skills, such as script-
ing in Python or R, querying internal databases, or creating dash-
boards using open source libraries. However, these skills often
remain siloed within individuals or teams. When a civil servant
builds a script that automates a complex task or provides interactive
visualizations, there is often no sanctioned pathway to scale that
solution. Formalizing even a simple application can require navigat-
ing approvals, documentation, security reviews, and infrastructure
constraints that are disproportionate to the complexity of the tool.
As a result, practical innovations built by domain experts often re-
main trapped in local files or are discarded when the staff member
leaves. In addition, some government IT departments may interpret
security controls, such as those outlined in NIST SP 800-53 [14], as
requiring strict oversight of programming environments, resulting
in outright bans on tools like Jupyter Notebook, Python, or R for
non-IT teams.

This paper proposes a speculative but feasible system that en-
ables civil servants to safely build and deploy internal tools within
institutional limits. In doing so, it gestures toward a broader shift in
government digital transformation, moving beyond reliance on ex-
ternal vendors or centralized digital teams. The proposed platform
allows civil servants to create applications in Jupyter Notebooks
and deploy them as secure, interactive web applications accessible
exclusively to authenticated users on the government’s internal
network, whether on-site or connecting remotely through a secure
VPN gateway. Key features include a curated list of preapproved
Python, R, or other relevant language libraries, automated sandbox
execution, lightweight peer review, and internal-only web deploy-
ment. These mechanisms are intended not to replace institutional
oversight, but to make it more scalable, allowing frontline staff to
contribute low-risk digital tools while maintaining accountability
and information security.

ar
X

iv
:2

50
8.

07
20

3v
1 

 [
cs

.H
C

] 
 1

0 
A

ug
 2

02
5

https://orcid.org/1234-5678-9012
https://arxiv.org/abs/2508.07203v1


LIMITS ’25, June 26–27, 2025, Online Prashant Sharma

Rather than presenting digital transformation as a process that
must be outsourced to vendors or specialized IT teams, this pa-
per argues for a shift in perspective: one in which civil servants
already inside the system are empowered to create sustainable,
domain-specific applications under constrained conditions. This
shift reflects the broader values of the Computing within Limits
community, working within institutional, infrastructural, and eco-
logical boundaries while prioritizing resilience, adaptability, and
the reuse of local knowledge. The sections that follow articulate
the structural barriers to such an approach and how the proposed
system works with, rather than around, those constraints.

1.1 Structural Barriers to Digital Innovation
Despite growing technical fluency among civil servants, systemic
and organizational barriers often prevent frontline innovation from
taking root. These barriers are not primarily technological; they
are deeply embedded in the structures of public administration,
which tend to prioritize procedural integrity, risk minimization,
and stability over agility and experimentation.

Digital transformation in the public sector frequently proceeds
through external procurement. While necessary for ensuring fair-
ness and fiscal accountability, procurement processes are poorly
suited to iterative or exploratory work. Edler et al. [3] note that pro-
curement regimes emphasize compliance and predictability rather
than creativity or impact. This orientation often makes it difficult to
contract for lightweight, open-ended tools or small-scale internal
prototypes. Proposals that do not fit neatly into formal scopes of
work or budget categories may be filtered out early, regardless of
their practical utility.

At the same time, government IT departments face pressures to
maintain operational stability across critical infrastructure. Boze-
man and Kingsley [1] describe how public sector organizations
develop strong cultures of risk aversion—where the political and
reputational consequences of software failure far outweigh the
rewards of incremental success. As a result, even technically fea-
sible proposals involving new platforms, packages, or data access
methods are often denied. This caution systematically excludes
open-source or experimental tools, even when they are popular,
well-documented, and widely used in academia or industry.

Furthermore, digital innovation is not analogous to constructing
a physical asset, such as a bridge or a building, that can be completed
and then handed over for maintenance. Mergel [9] emphasizes
that digital systems require continual refinement, adaptation, and
support. When digital services are delivered entirely through third-
party contracts, agencies often lack the institutional memory or
technical fluency to modify them in response to shifting policy or
operational needs. This dependency leads to brittle systems and
long procurement delays for even minor updates—an unsustainable
model under conditions of resource constraint.

Legacy systems further intensify the challenge. As noted by the
UK House of Commons Public Accounts Committee [15, 20], much
of government infrastructure relies on aging software that is diffi-
cult to modernize and expensive to maintain. These systems con-
sume the bulk of IT budgets, leaving little room for experimentation
or small-scale innovation. Moreover, their rigidity often requires

new tools to conform to outdated standards, thereby limiting what
frontline developers can feasibly build.

These constraints are not temporary; they are structural. Yet as
the Computing within Limits community has emphasized, working
within limits does not mean abandoning innovation—it means redi-
recting it [16, 17]. Digital infrastructure should be made resilient
by embedding it in local practice, enabling small teams to operate
and adapt their own tools without continuous reliance on external
vendors or high-overhead processes. While much of the Computing
within Limits community has focused on ecological and material
resource constraints of the future, some scholarship argues that
the scenarios anticipated by limits community are not just future
concerns but present realities in many domains. Chen [2] proposes
that limits-aware computing should increasingly engage with real,
immediate problems to make a difference today while preparing for
potential future societal crisis, a perspective in conversation with
by Tomlinson et al.’s [18] work on collapse informatics, the study,
design, and development of sociotechnical systems in the abun-
dant present for use in a future of scarcity. Addressing structural
barriers to small-scale digital innovation in government embodies
many characteristics of a limits context. In fact, solving today’s
deeply embedded limits problems may offer a better foundation
for resilience than designing for hypothetical futures—because the
latter are difficult to predict. The system proposed in this paper
thus contributes to the growing body of work [2, 13] that views
collapse not as a singular future event, but as an ongoing condition
that demands adaptive, embedded responses from within existing
structures.

2 SYSTEM GOALS AND ASSUMPTIONS
The proposed system is designed with several key assumptions and
goals:

• No Vendor Lock-In A foundational assumption of the pro-
posed platform is the elimination of vendor lock-in and re-
liance on proprietary low-code environments, which pose
significant risks to government IT sustainability. By exclu-
sively using open-source tools like Jupyter Notebooks and
deploying applications within secure internal networks, the
platform ensures long-term institutional control, modifiabil-
ity, and resilience without dependency on commercial ven-
dors. Unlike proprietary low-code platforms, which often
suffer from opaque licensing, limited long-term support, and
inferior documentation and quality compared to open-source
ecosystems, this approach leverages the robust, community-
driven standards of open-source software.

• Empower Domain Experts: Civil servants possess deep,
situated knowledge of government workflows, policies, and
public needs—insights that external vendors often lack.Many
already write analysis scripts in languages like Python or
R to meet their day-to-day needs, yet systemic barriers pre-
vent this technical ability from being channeled into broader
digital innovation. By enabling civil servants to build and de-
ploy tools themselves, the platform recognizes that domain
expertise is a critical asset, not something to be outsourced.
Unlike traditional vendor-driven development, which often



Civil Servants as Builders: Enabling Non-IT Staff to Develop Secure Python and R Tools LIMITS ’25, June 26–27, 2025, Online

struggles with costly requirement gathering and miscom-
munication cycles, empowering internal experts allows for
iterative, agile development directly informed by frontline
realities. In the spirit of Computing within Limits, this ap-
proach values local, embedded knowledge over external con-
sultancy models, fostering systems that are better adapted
to the environments in which they must operate.

• Interactive Applications: The platform supports the cre-
ation of rich, interactive web applications that allow end
users to input parameters, explore data, visualize results, and
export outputs in a clean interface, without requiring them to
engage with underlying code written in Jupyter Notebook.
This system makes civil servants’ technical work accessi-
ble to non-programmer colleagues across departments. By
transforming notebooks into interactive applications, the
system bridges the gap between code and operational tools,
allowing for responsive feedback loops and rapid iteration.
In constrained environments where formal IT resources are
scarce, such lightweight applications offer a practical path
to increasing internal digital capacity without the need for
heavy, vendor-led IT infrastructure investments.

• Privacy and Security: All applications created on the plat-
form are securely hosted within the government’s internal
network, ensuring that sensitive data remains protected and
accessible only to authenticated users. To minimize security
risks, developers are restricted to a vetted set of preapproved
libraries, with a streamlined workflow for requesting and
approving new libraries when necessary. This structure ac-
knowledges the legitimate concerns of IT security teams
while still promoting flexibility and innovation. Furthermore,
cross-departmental collaboration on maintaining the shared
library list reduces redundant overhead and accelerates safe
experimentation. For example, multiple departments within
a state government might collaborate to maintain a shared
list of approved libraries. From a LIMITS perspective, this
security model accepts the inevitability of constraints—legal,
ethical, and infrastructural—and designs innovation path-
ways that work within them, rather than ignoring them.

• Lightweight Governance: Rather than imposing heavy
approval processes typical of traditional IT deployments, the
platform emphasizes lightweight, efficient governance mech-
anisms. Each application undergoes a quick but meaningful
peer review, modeled after common software engineering
practices like GitHub pull requests, to catch obvious issues
and ensure basic quality standards. Version control ensures
that any changes are tracked and recoverable, and audit trails
log who uploaded, reviewed, and approved each application,
ensuring accountability without bureaucratic friction. This
approach aligns with LIMITS values by creating governance
structures that are resilient and sustainable under conditions
of limited administrative and technical capacity. It demon-
strates that good governance need not be synonymous with
delay.

• Cultural Transformation: By enabling civil servants to
build, deploy, and maintain their own digital tools, the plat-
form challenges the entrenched notion that public sector in-
novation must always flow through formal IT procurement

or external vendors. It reframes civil servants as capable
technologists who, given the right platforms and safeguards,
can drive meaningful change from within. This reorientation
not only increases organizational agility but also fosters a
culture of continuous learning, creativity, and ownership
among public employees. The system also empowers in-
novative civil servants who do not want to be siloed into
learning only low-code proprietary tools, and who may in-
stead wish to gain or refine hands-on coding skills, ensuring
they remain as technically competitive as their private sector
counterparts. Consistent with LIMITS thinking, the platform
recognizes that systemic resilience is best achieved not by
relying on external interventions but by cultivating internal
capacities that can adapt and evolve under constraint. Civil
servants are not passive users of technology; they are, and
must be, its stewards.

3 RELATEDWORK
3.1 The Gap: Everyday Tool Development by

Domain Expert Civil Servants
While extensive literature covers formal in-house development by
professional engineers versus outsourcing to vendors, there exists a
significant gap in addressing everyday tool development by domain
expert civil servants. This represents a fundamentally different
category that mainstream conversations have largely overlooked.
The existing discourse typically frames government technology
as a binary choice: hire professional software engineers including
those at specialized agencies such as USDS or contract with ven-
dors. [8, 9] However, this ignores a critical middle ground—the
small, domain-specific tools that technically skilled civil servants
could build to solve immediate challenges. These differ fundamen-
tally from enterprise systems in scope and complexity, yet face
the same institutional barriers as major software projects. A real-
world example of addressing this middle ground is the UK Ministry
of Justice Analytical Platform (AP), documented in official user
guidance [11] and written evidence to parliament [10]. The AP
provides civil servants with secure, containerized access to modern
programming environments such as JupyterLab and RStudio, en-
abling analytical workflows while complying with stringent data
security requirements.

The practitioner perspective on the AP is captured in a 2018
article by Robin Linacre on the official website of the UK Govern-
ment [7]. Reflecting on his early experience as a government analyst
in 2006, Linacre recalled: “we worked mainly with spreadsheets,
and sometimes with more specialist proprietary tools. Working
with bigger, complex datasets was difficult and software licens-
ing and training was very expensive. Government IT often got in
the way, and people joked how we were years behind the private
sector.” He further noted that while the past decade has seen “an
explosion in free and open source analytical tools” enabling more
advanced analysis, “historically these tools have not been available
to government analysts. The key difficulty is in giving analysts
greater freedom, while safeguarding sensitive government data.”
As described earlier in this paper, internal government IT functions,
while essential for maintaining security and compliance, are often
very risk averse. This tendency, as reflected in Linacre’s account,



LIMITS ’25, June 26–27, 2025, Online Prashant Sharma

can inadvertently limit access to modern analytical tools to civil
servants.

While platforms such as the AP address some of the same chal-
lenges identified in this paper, their publicly available descriptions
are limited to official websites, blog posts, and parliamentary evi-
dence rather than peer-reviewed literature. Moreover, their designs
are tailored to the specific organizational context and are not pre-
sented as a generalized, open-source reference architecture for
adoption across jurisdictions.

To my knowledge, no prior work has combined secure, sand-
boxed execution; curated package governance; lightweight peer
review; and reproducible deployment pipelines into a single, repli-
cable platform specifically aimed at technically skilled but non-IT
civil servants operating within government networks. My contribu-
tion lies in integrating these elements into a coherent, limits-aware
model that can be readily adapted by agencies with similar institu-
tional constraints.

3.2 End-User Development in HCI
The concept proposed in this paper is closely related to research
on End-User Development (EUD), which focuses on enabling peo-
ple who are not professional developers to create or adapt soft-
ware for their own purposes [6]. EUD systems often lower barriers
through visual environments, templates, or domain-specific lan-
guages, while supporting iterative adaptation by users. [4] The
proposed platform follows this tradition by transforming Jupyter
Notebooks, already familiar to many civil servants, into secure,
interactive applications. While it requires some programming skills
in languages like Python, it significantly enhances accessibility
for civil servants compared to traditional software development,
empowering them to build tailored solutions without the need for
extensive technical expertise or complex development processes.
Recognizing the unique domain expertise of civil servants, prior
research in End User Development have proposed platforms to
enable public-sector staff to participate in creating e-government
services. For example, Fogli and Provenza [5] present a framework
that empowers administrative personnel to create e-government
services instead of software professionals. However, these systems
are primarily oriented toward participants without programming
skills, focusing on visual modeling, wizards, and guided workflows.
In contrast, the platform proposed in this paper targets a different
audience, civil servants who already possess programming skills,
and seeks to remove structural and procedural barriers that prevent
them from securely deploying the small-scale tools they can already
create.

3.3 Technical Inspiration
Technically, the platform draws inspiration from existing open-
source tools designed to turn computational notebooks into inter-
active applications, such as Voilà [19] and Mercury [12]. These
tools demonstrate how end-user code artifacts can be repurposed
into usable interfaces without requiring professional web develop-
ment skills. While these systems have been applied in scientific
computing, education, and industry, they are rarely adapted to
environments with strict security, procurement, and governance
constraints. By incorporating controlled library whitelists, sandbox

execution, and internal-only deployment, the proposed platform
recontextualizes these technical patterns for public-sector use. This
adaptation illustrates how established open-source components can
be recombined to meet institutional requirements without resorting
to proprietary low-code solutions that risk vendor lock-in.

4 SYSTEM OVERVIEW
The core philosophy of the system is to work with, rather than
against, the institutional limits present in government settings:
recognizing that procurement rules, IT restrictions, and limited
technical support are enduring realities, not temporary obstacles.
The platform’s use of Jupyter Notebooks reflects this ethos: they
are already widely used for internal data work, are open-source and
auditable, and avoid the risk of vendor lock-in—a critical concern
for sustainability in public institutions. Rather than relying on pro-
prietary low-code solutions, the platform prioritizes transparency,
modifiability, and long-term institutional control. Its architecture
distributes responsibility through peer review and versioning, align-
ing with open-source development norms and reducing burden on
central IT. The system can be built using open-source technologies,
such as Docker and Kubernetes, which can be shared as a reusable
template across government agencies.

Figure 1 illustrates the full pipeline from notebook authoring to
live application deployment.

Figure 1: System Architecture for Notebook to WebApp

4.1 Authoring the Notebook
Civil servants initiate the process by writing Jupyter Notebooks
that encapsulate their data analysis, internal API interactions, visu-
alizations, and workflows. The focus remains on domain logic and
usability rather than web development. To make notebooks inter-
active, authors can add lightweight configuration metadata, such
as a YAML header specifying which variables should be exposed as
user inputs (e.g., dropdown menus, sliders, or file upload fields).



Civil Servants as Builders: Enabling Non-IT Staff to Develop Secure Python and R Tools LIMITS ’25, June 26–27, 2025, Online

This approach builds on lessons from open-source frameworks
like Mercury [12] and Voilà [19], which demonstrate that notebooks
can serve as viable, low-code front-end interfaces.

4.2 Upload to Portal
Once the notebook is complete, the civil servant uploads it to the
platform’s secure internal portal. This portal acts as the primary
interface for managing application submissions, status updates,
version history, and peer reviews.

Upon upload, the platform performs an automated validation
process:

• Checks Package Whitelist: Authors must submit a de-
pendency file (e.g., requirements.txt for Python) listing
all external libraries their notebook depends on. The plat-
form cross-checks these against a curated registry of preap-
proved libraries. If any unapproved packages are detected,
the author is prompted to submit a streamlined request for
IT security review.

• Commits Version Control: Each notebook upload or revi-
sion is committed to an internal Git-based version control
system. This ensures that all changes are tracked, histori-
cal versions are preserved, and any previous version can be
restored if necessary.

By frontloading dependency checks and automating version
management, the platform reduces the administrative burden on IT
departments while maintaining security and traceability standards.

4.3 Automated Sandbox Build and Test
After successful upload, the platform automatically spins up a se-
cure sandbox environment to validate the notebook execution:

• Execution and Rendering: The notebook runs end-to-end
in a containerized environment to generate outputs such as
plots, tables, and downloadable data files. Raw code cells are
hidden from the final interface, ensuring users interact only
with the intended front-end elements.

• UI Generation: Based on notebook metadata or YAML con-
figurations, the system dynamically generates user interface
controls. For example, a variable annotated as a dropdown
choice will automatically appear as a selection menu in the
resulting app. This feature transforms notebooks from static
documents into parameter-driven, interactive applications.

• Sandbox Restrictions: The execution environment strictly
limits external internet access and enforces read-only per-
missions for database credentials. Only connections to vet-
ted internal APIs are permitted. These security measures
minimize the risk of data leakage or unauthorized external
communication, adhering to public sector IT security best
practices.

If any failures occur, such as missing dependencies, runtime
errors, or unauthorized operations, the platform halts the process
and provides detailed feedback to the author for revision.

4.4 Peer Review and Approval
Following a successful sandbox build, the system initiates a light-
weight peer review process:

• A designated peer reviewer, typically a colleague within the
same program area, is notified.

• Reviewers are asked to validate basic functionality (e.g., does
the app run correctly and produce expected outputs?) rather
than performing deep technical security audits.

• Review actions—such as approval, request for changes, or
rejection—are logged in the platform, creating an auditable
trail for internal governance and compliance purposes.

This peer review model draws inspiration from collaborative
software engineering practices, balancing quality assurance with
efficiency. It supports rapid deployment while ensuring that at least
two people assess each tool before it becomes widely accessible.

4.5 Deployment to Internal Server
Upon approval, the notebook is automatically deployed as a stan-
dalone web application on the government’s internal servers. Key
deployment features include:

• Applications are assigned stable internal URLs (e.g., https:
//apps.department.gov/internal/<app-name>), easily share-
able within teams.

• Access is restricted to authenticated users connected through
the intranet or VPN.

• Each application runs inside its own isolated container, en-
suring that resource consumption, crashes, or security vul-
nerabilities in one app do not affect others.

• Applications can be scaled horizontally if usage grows, allow-
ing for basic load balancing without requiring civil servants
to manage infrastructure directly.

Because the deployed applications are fundamentally Jupyter-
based backends rendered through secure web frontends, they can
evolve easily over time. Civil servants can update their notebooks,
submit new versions through the portal, and roll out iterative im-
provements without requiring full redeployments or external ven-
dor involvement.

This deployment strategy minimizes the operational burden on
central IT while enabling frontline teams to maintain, adapt, and
enhance their digital tools autonomously—a critical capability for
sustainability within the practical limits of government environ-
ments.

5 USER SCENARIO EXAMPLE
To illustrate how the platform might function, consider the follow-
ing hypothetical cases:

5.1 Spreadsheets Generator – Binita’s Tool
Binita, a Transportation Engineer at a government department,
develops a Jupyter Notebook to automate the generation of Excel
spreadsheets. Her tool extracts data from an internal SQL Server
and an ArcGIS geodatabase, processes it, and outputs multiple
structured Excel files. Previously, preparing these spreadsheets
required approximately eight hours of manual work every week;
her script reduces the task to just a few seconds.

With the proposed platform, Binita uploads her notebook. She
specifies two configurable inputs—month and county name—using a
YAML header. Her notebook relies mostly on preapproved libraries

https://apps.department.gov/internal/<app-name>
https://apps.department.gov/internal/<app-name>


LIMITS ’25, June 26–27, 2025, Online Prashant Sharma

(pandas, numpy, geopandas) but also requires spacy, which is not yet
on the approved list. The platform detects the use of an unapproved
package and notifies Binita. Binita submits a package approval re-
quest for spacy through the platform. The IT security team reviews
and approves the spacy library. The platform sandbox executes
her notebook, generates the expected outputs, and configures UI
widgets for the specified parameters. Binita is notified that the tool
has passed automated checks and is ready for peer review.

During peer review, Yaw accesses the deployed app through
a private preview link. Yaw suggests clarifying the title of one
of the output charts for better interpretability. Binita updates her
notebook accordingly, resubmits the new version, and passes the
second review. The platform redeploys the finalized app and assigns
it an internal URL.

Binita shares the link with her team. Team members, including
those without coding skills, can now instantly generate customized
spreadsheets for different months and counties, significantly im-
proving efficiency.

5.2 Text Analysis Tool – Sirak’s Tool
Sirak, a Program Data Specialist at the same government depart-
ment as Binita but in a different team, develops a Jupyter Notebook
that processes textual data and generates outputs based on user
input. His tool utilizes the pandas and spacy libraries, both of which
are already included in the agency’s preapproved list. spacy was
added after Binita’s request while she was building Spreadsheet
Generator tool, so it is already available to Sirak.

With the proposed platform, Sirak uploads his notebook. He
specifies one parameter, day, as a configurable input using a YAML
header. His notebook uses only preapproved libraries (pandas, spacy),
so it passes the package validation automatically. The platform sand-
box runs his notebook, generates an interface, and sets up a basic
text input field for the parameter. Sirak is notified that the tool has
passed initial checks and is ready for peer review.

During peer review, Marina reviews the deployed app via a
private preview link. Marina suggests that instead of a free-text
input, a dropdown list with days of the week (Monday, Tuesday,
etc.) would standardize user input. She also recommends clarifying
the input label to "Day of Week" to avoid confusion with specific
calendar dates. Sirak updates his notebook’s YAML configuration
to replace the text input with a dropdown list and clarifies the
label. He reuploads the revised notebook, and the platform sandbox
re-executes it successfully. The app passes the second peer review
without further issues. The platform deploys the updated app with
an internal URL.

Sirak shares the link with his colleagues. Staff across the depart-
ment can now easily select the day of the week from a dropdown
menu and run the analysis consistently, without risk of input errors
or needing any technical assistance.

The entire process, from code upload to internal deployment, can
be completed in one to three days, rather than requiring months of
procurement, contracting, or IT development time. These scenarios
demonstrate how civil servants can deliver rapid, secure innovation
within existing structural limits, freeing IT departments from rou-
tine application requests while maintaining public sector standards
of security, accountability, and fairness.

6 LIMITATIONS AND FUTUREWORK
6.1 Setup Complexity
Setting up such a system may require formal approvals, IT coordi-
nation, and, in some cases, vendor procurement. This raises a valid
concern: does the platform merely shift complexity rather than
reduce it? To some extent, yes—the initial setup is not trivial. How-
ever, unlike bespoke tools or one-off vendor systems, the platform is
designed as a reusable template. Once piloted in a few government
contexts, it gains institutional legitimacy, enabling other agencies
to reference prior deployments and streamline their own approval
processes. Early adopters thus pave the way for risk-averse institu-
tions to adopt the platform with greater confidence. Future work
could explore shared deployment kits, inter-agency collaborations,
or public documentation to formalize this pattern.

6.2 Small Scale Tools
The platform is not intended for large-scale software development.
It focuses on small, domain-specific tools, such as data cleaning
scripts, report generators, or internal dashboards, that many civil
servants already create informally or are capable of building but
are restricted by IT security policies. By lowering barriers for these
lightweight applications, the platform addresses a specific need but
does not replace the need for enterprise-grade systems or formally
procured software contracts.

6.3 Accessibility for Non-Programmers
In its current form, the platform may exclude non-programmer
innovators. Many frontline public servants have valuable ideas for
improving workflows but lack coding experience. While Jupyter
Notebooks reduce the barrier compared to traditional web develop-
ment, they still require Python or R fluency. However, this mirrors
the status quo rather than creating new obstacles. The platform
may even widen participation by fostering collaboration between
domain experts and technically skilled colleagues. Even if only one
team member knows how to script, they can build tools that auto-
mate manual tasks for the entire team, making everyone’s work
easier and more efficient.

6.4 Library Approval Delays
Although the platform simplifies security governance through sand-
boxing and package whitelisting, approving new libraries can still
cause delays. IT departments, especially in sensitive policy or regu-
latory environments, are understandably cautious. No system can
ensure complete safety, and there remains a risk of introducing
vulnerabilities through third-party packages.

6.5 Feasibility for Small Governments
While designed for broad use across agencies, the platform may
be challenging for smaller local governments with limited IT re-
sources. Maintaining the infrastructure for sandboxed execution,
peer review governance, and package registry curation demands
sustained organizational capacity. Collaboration across multiple
small governments could help pool resources, but further research
is needed to assess such models in practice.



Civil Servants as Builders: Enabling Non-IT Staff to Develop Secure Python and R Tools LIMITS ’25, June 26–27, 2025, Online

7 DISCUSSION
Government digital transformation has followed several dominant
approaches, each shaped by the institutional and technical con-
straints of its time. Early systems were often developed in-house by
government IT departments as large, centralized projects—highly
customized but expensive, inflexible, and difficult to evolve. Over
time, many governments shifted toward vendor-driven procure-
ment, outsourcing software development to external contractors.
While this model promised efficiency and risk reduction, it often
introduced long delays, rigid contracts, and deep dependency on
outside vendors for even minor changes.

To address the limitations of these models, many governments
introduced centralized digital service teams, such as the UK’s Gov-
ernment Digital Service (GDS), the U.S. Digital Service (USDS), and
similar units elsewhere. [8] These teams brought technical talent
inside the public sector and demonstrated the value of agile, user-
centered design. However, their capacity is often concentrated on
selected high impact projects, not the small, domain specific tools
needed by front line staff in everyday operations. More recently,
low-code and no-code platforms have been promoted as a way to
decentralize development, but they often come with risks of vendor
lock-in, limited transparency, and unclear long-term support.

By contrast, in the private sector, many of these challenges are
less pronounced. Teams across industries often have the flexibility
to adopt freely available tools, low-cost software- as-a-service (SaaS)
products, or internal scripts without the same legal, procurement,
or security hurdles. For example, a marketing team might install a
browser plugin, automate a spreadsheet, or connect a database to a
visualization tool in just a few hours. In government, those same
actions could require weeks or months of legal review, procurement
paperwork, IT security vetting, or approvals from multiple depart-
ments. This stark difference highlights the need for systems that
are specifically designed to work within public-sector constraints,
rather than assuming the ease and flexibility that private-sector
teams often take for granted.

The system proposed in this paper offers a complementarymodel
to existing approaches, not a replacement. It does not reject cen-
tralized teams or vendor partnerships. This model recognizes a
gap that neither vendors nor specialized digital units can bridge:
deep, situated knowledge of frontline workflows and operational
nuance. While centralized teams may have advanced engineering
or data science skills, they often lack the granular, often tacit knowl-
edge possessed by civil servants working directly on the problem.
Empowering those workers to build tools does not just increase
efficiency, it improves relevance, adaptability, and ownership.

By standardizing a reusable architecture, the platform lowers
the barrier for risk-averse agencies to adopt it over time. Early
implementations generate institutional precedent, allowing others
to follow with less friction.

An important consideration in evaluating the long-term impact
of the platform is that it will enable a mix of types of work: some
applications will automate entirely new tasks that were previously
performed manually or not at all, while others may take over small-
scale functions once handled by vendors or centralized IT teams.
Success can be measured by tracking productivity improvements in
formerly manual tasks, as well as reductions in vendor reliance or

IT requests for small-scale tool development. In addition, qualitative
research, including interviews and case studies with civil servants
using the platform, can provide valuable insights into how these
tools enable new ways of working and influence organizational
culture.

7.1 Building Resilience Through LIMITS
From a LIMITS perspective, this approach reflects the need to build
within real constraints. The system uses what institutions already
have: public servants with technical skills, open-source tooling,
and secure internal networks. Designing for institutional resilience
today, within bureaucratic and infrastructural limits, may offer a
more grounded foundation for navigating future scenarios in other
sectors that presently enjoys more flexibility on using low cost
SaaS tools, open source packages, or internal scripts with minimal
oversight. As LIMITS scholars have noted [2, 16, 17], future scenar-
ios shaped by potential ecological instability, economic degrowth,
supply chain fragility, or geopolitical disruptions could impose new
limits similar to those faced by governmental organizations in other
sectors. In that context, innovating within these constraints now
may offer practical patterns and infrastructure that prove valuable
far beyond their original use case.

8 CONCLUSION
This paper proposes a speculative but feasible platform that empow-
ers civil servants to build and deploy internal tools safely within
the structural limits of government work. By providing a secure,
auditable pipeline from notebook to web application, the system up-
holds core public sector values of accountability, security, and fair-
ness, while dramatically increasing agility at the frontline. Rather
than bypassing procurement or IT processes, the platform comple-
ments and supports them, freeing critical resources for higher-risk
projects and enabling routine innovation to flourish. It repositions
civil servants not just as users of technology, but as active builders
of digital solutions.

REFERENCES
[1] Barry Bozeman and Gordon Kingsley. 1998. Risk culture in public and private

organizations. Public Administration Review 58, 2 (1998), 109–118.
[2] Jay Chen. 2016. A strategy for limits-aware computing. In Proceedings of the Sec-

ondWorkshop on Computing within Limits. Association for ComputingMachinery,
New York, NY, USA. https://doi.org/10.1145/2926676.2926692

[3] Jakob Edler, Luke Georghiou, Elvira Uyarra, and Jillian Yeow. 2015. The meaning
and limitations of public procurement for innovation: a supplier’s experience.
In Public Procurement for Innovation, Charles Edquist et al. (Eds.). Edward Elgar
Publishing, 35–64.

[4] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev. 2004. Meta-
design: a manifesto for end-user development. Commun. ACM 47, 9 (September
2004), 33–37. https://doi.org/10.1145/1015864.1015884

[5] Daniela Fogli and Loredana Parasiliti Provenza. 2011. End-User Development
of e-Government Services through Meta-modeling. In End-User Development,
Maria Francesca Costabile, Yvonne Dittrich, Gerhard Fischer, and Antonio Pic-
cinno (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 107–122.

[6] Henry Lieberman, Fabio Paternò, and Volker Wulf (Eds.). 2006. End User Develop-
ment (1st ed.). Springer. https://link.springer.com/book/10.1007/1-4020-5386-X

[7] Robin Linacre. 2018. Pushing the boundaries of data science with
the MoJ Analytical Platform. Official website of the UK Govern-
ment. https://mojdigital.blog.gov.uk/2018/04/05/pushing-the-boundaries-of-
data-science-with-the-moj-analytical-platform/ Accessed: 2025-08-10.

[8] Ines Mergel. 2016. Agile innovation management in government: A research
agenda. Government Information Quarterly (2016).

https://doi.org/10.1145/2926676.2926692
https://doi.org/10.1145/1015864.1015884
https://link.springer.com/book/10.1007/1-4020-5386-X
https://mojdigital.blog.gov.uk/2018/04/05/pushing-the-boundaries-of-data-science-with-the-moj-analytical-platform/
https://mojdigital.blog.gov.uk/2018/04/05/pushing-the-boundaries-of-data-science-with-the-moj-analytical-platform/


LIMITS ’25, June 26–27, 2025, Online Prashant Sharma

[9] Ines Mergel. 2017. Digital Service Teams: Challenges and Recommendations
for Government. Technical Report. IBM Center for The Business of Govern-
ment. https://www.businessofgovernment.org/sites/default/files/Digital%
20Service%20Teams%20-%20Challenges%20and%20Recommendations%20for%
20Government.pdf

[10] Ministry of Justice. 2021. Written evidence (NTL0053). https://committees.
parliament.uk/writtenevidence/40365/pdf/. UK Parliament, Accessed: 10 August
2025.

[11] Ministry of Justice. 2025. Analytical Platform User Guidance. https://user-
guidance.analytical-platform.service.justice.gov.uk/. Accessed: 10 August 2025.

[12] mljar. 2025. Mercury: Convert Jupyter Notebooks to Web Apps. https://github.
com/mljar/mercury. Accessed: 2025-04-29.

[13] Bonnie Nardi, Bill Tomlinson, Donald J. Patterson, Jay Chen, Daniel Pargman,
Barath Raghavan, and Birgit Penzenstadler. 2018. Computing within Limits.
Commun. ACM (2018).

[14] National Institute of Standards and Technology. 2020. Security and Privacy
Controls for Information Systems and Organizations. Technical Report NIST SP 800-
53 Rev. 5. U.S. Department of Commerce. https://doi.org/10.6028/NIST.SP.800-
53r5

[15] Committee of Public Accounts. 2025. Use of AI in Government. Eighteenth
Report of Session 2024–25 HC 356. House of Commons, London, UK. https:
//committees.parliament.uk/publications/47199/documents/244683/default/

[16] Birgit Penzenstadler, Ankita Raturi, Debra J. Richardson, M. Six Silberman, and
Bill Tomlinson. 2015. Collapse (and Other Futures) Software Engineering. First
Monday (2015).

[17] Bill Tomlinson and Benoit A. Aubert. 2017. Information Systems in a Future of
Decreased and Redistributed Global Growth. In Proceedings of the 2017 Workshop
on Computing Within Limits (LIMITS ’17). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3080556.3080561

[18] Bill Tomlinson, M. Six Silberman, Donald J. Patterson, Yue Pan, and Eli Blevis.
2012. Collapse informatics: Augmenting the sustainability and ICT4D discourse
in HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM. https://doi.org/10.1145/2207676.2207770

[19] voila dashboards. 2025. Voilà: turn Jupyter notebooks into standalone web
applications. https://github.com/voila-dashboards/voila. Accessed: 2025-04-29.

[20] Peter Walker. 2025. Government AI roll-outs threatened by outdated IT systems.
The Guardian (2025). https://www.theguardian.com/technology/2025/mar/26/
government-ai-roll-outs-threatened-by-outdated-it-systems Accessed: 2025-06-
23.

https://www.businessofgovernment.org/sites/default/files/Digital%20Service%20Teams%20-%20Challenges%20and%20Recommendations%20for%20Government.pdf
https://www.businessofgovernment.org/sites/default/files/Digital%20Service%20Teams%20-%20Challenges%20and%20Recommendations%20for%20Government.pdf
https://www.businessofgovernment.org/sites/default/files/Digital%20Service%20Teams%20-%20Challenges%20and%20Recommendations%20for%20Government.pdf
https://committees.parliament.uk/writtenevidence/40365/pdf/
https://committees.parliament.uk/writtenevidence/40365/pdf/
https://user-guidance.analytical-platform.service.justice.gov.uk/
https://user-guidance.analytical-platform.service.justice.gov.uk/
https://github.com/mljar/mercury
https://github.com/mljar/mercury
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-53r5
https://committees.parliament.uk/publications/47199/documents/244683/default/
https://committees.parliament.uk/publications/47199/documents/244683/default/
https://doi.org/10.1145/3080556.3080561
https://doi.org/10.1145/2207676.2207770
https://github.com/voila-dashboards/voila
https://www.theguardian.com/technology/2025/mar/26/government-ai-roll-outs-threatened-by-outdated-it-systems
https://www.theguardian.com/technology/2025/mar/26/government-ai-roll-outs-threatened-by-outdated-it-systems

	Abstract
	1 Introduction
	1.1 Structural Barriers to Digital Innovation

	2 System Goals and Assumptions
	3 Related Work
	3.1 The Gap: Everyday Tool Development by Domain Expert Civil Servants
	3.2 End-User Development in HCI
	3.3 Technical Inspiration

	4 System Overview
	4.1 Authoring the Notebook
	4.2 Upload to Portal
	4.3 Automated Sandbox Build and Test
	4.4 Peer Review and Approval
	4.5 Deployment to Internal Server

	5 User Scenario Example
	5.1 Spreadsheets Generator – Binita’s Tool
	5.2 Text Analysis Tool – Sirak’s Tool

	6 Limitations and Future Work
	6.1 Setup Complexity
	6.2 Small Scale Tools
	6.3 Accessibility for Non-Programmers
	6.4 Library Approval Delays
	6.5 Feasibility for Small Governments

	7 Discussion
	7.1 Building Resilience Through LIMITS

	8 Conclusion
	References

