
TRACELENS: Question-Driven Debugging for Taint
Flow Understanding

Burak Yetiştiren
UCLA

Los Angeles, CA, USA
burakyetistiren@cs.ucla.edu

Hong Jin Kang
The University of Sydney

Sydney, Australia
hongjin.kang@sydney.edu.au

Miryung Kim
UCLA

Los Angeles, CA, USA
miryung@cs.ucla.edu

Abstract—Taint analysis is a security analysis technique used
to track the flow of potentially dangerous data through an
application and its dependent libraries. Investigating why certain
unexpected flows appear and why expected flows are missing is
an important sensemaking process during end-user taint analysis.
Existing taint analysis tools often do not provide this end-user
debugging capability, where developers can ask why, why-not,
and what-if questions about dataflows and reason about the
impact of configuring sources and sinks, and models of 3rd-
party libraries that abstract permissible and impermissible data
flows. Furthermore, a tree-view or a list-view used in existing
taint-analyzer’s visualization makes it difficult to reason about
the global impact on connectivity between multiple sources and
sinks.

Inspired by the insight that sensemaking tool-generated results
can be significantly improved by a QA inquiry process, we
propose TRACELENS, a first end-user question-answer style
debugging interface for taint analysis. It enables a user to ask
why, why-not, and what-if questions to investigate the existence
of suspicious flows, the non-existence of expected flows, and
the global impact of third-party library models. TRACELENS
performs speculative what-if analysis, to help a user in debugging
how different connectivity assumptions affect overall results. A
user study with 12 participants shows that participants using
TRACELENS achieved 21% higher accuracy on average, com-
pared to CodeQL. They also reported a 45% reduction in mental
demand (NASA-TLX) and rated higher confidence in identifying
relevant flows using TRACELENS. This shows TRACELENS’s
potential to significantly reduce sensemaking effort.

I. INTRODUCTION

To prevent security vulnerabilities, developers use taint
analysis. This technique tracks potentially dangerous data as
it moves through a program. Data from untrusted sources,
like user input, is marked as "tainted" The analysis then
monitors how this tainted data spreads. If it reaches a critical
point in the code, known as a "taint sink," a warning is
generated. Tainted data can be made safe by "sanitizers,"
which are functions that clean or encode the data. For example,
the java.net.URLEncoder.encode(String input,
String encoding) function escapes potentially harmful
characters, preventing security issues. Since analyzing the
entire program is usually impossible, practical taint analysis
requires configuring simplified models of external libraries [1].
These models abstract the behavior of third-party libraries,
allowing an analysis to track taint flow without analyzing the
libraries’ internals.

Taint analysis tools often come with default configurations,
including pre-built models of external libraries. However,
these default models, often automatically generated, can be
inaccurate. This is because they rely on assumptions, which
may be incorrect, about how libraries handle data flow. In-
correct configurations can lead to significant problems. For
example, if a model incorrectly allows tainted data to flow
through a library function that should sanitize it, the analysis
will produce unexpected taint flows (i.e, false positives) [2],
[3]. This means it will report potential vulnerabilities that do
not actually exist, creating extra, unexpected warnings for the
user. Conversely, if a model incorrectly blocks the flow of
tainted data when it should not, the analysis will produce
missing flows (i.e., false negatives). This means it will miss
real vulnerabilities, failing to report flows expected by the user.

This paper focuses on end-user debugging of taint analysis
that do not match a user’s expectations, in other words, de-
bugging an end-user configuration, as opposed to debugging a
taint analysis implementation. To correct configuration errors,
developers must understand the impact of configuration on
tool-generated warnings. This sensemaking process involves
tracing the reported dataflows, understanding why specific
warnings are generated, and how these warnings relate to the
models of third-party libraries.

We introduce TRACELENS, a novel end-user debugger
that brings interactive, question-based sensemaking to taint
analysis. Drawing inspiration from interrogative debugging
principles, TRACELENS enables developers to ask why, why
not, and what if questions about their analysis configuration.
TRACELENS provides six customizable question templates,
which are then concretized by a user. A user can make sense of
currently detected taint flows and hypothetical flows through
interactive QA. Unlike state-of-the-art tools like CodeQL that
rely on list views, TRACELENS visualizes these reported
and hypothetical flows graphically, offering a more intuitive
understanding of configuration changes. Below, we discuss
two key features,Inquiry-based Sensemaking and Visualization
of Global Impact in detail.

Inquiry-based Sensemaking. To effectively debug taint
analysis results, developers need to investigate why specific
dataflows are reported and why others are not. Unfortunately,
many tools don’t allow developers to interactively ask ques-
tions about these flows. Furthermore, to efficiently narrow

ar
X

iv
:2

50
8.

07
19

8v
1 

 [
cs

.S
E

] 
 1

0 
A

ug
 2

02
5

https://arxiv.org/abs/2508.07198v1


Speculative analysis

D-SRC

Q

D-SNK

D-API

Source
Node

3rd Party
API Node

Sink
Node

FQN

G

Q

Q

Figure 1: TRACELENS supports interrogative debugging by enabling a user to ask why, why-not, and what-if questions about
taint-analysis. A user can select one among templated queries (shown in Q) and contextualize their inquiry with respect to a
specific source, sink, and 3rd party library model using a drop-down menu, shown in (D-SRC), (D-SNK), and (D-API). Once
configured, a background question-and-answer analysis is conducted to help a user with their sensemaking process of taint
analysis results. To aid in their sensemaking process about global connectivity, permissible and impermissible data flows, a
user can see the result in a graph view (G) with color-code annotation.

down their analysis, developers must understand how modi-
fying the models of external libraries impacts the permitted or
blocked dataflows.

In the Query Options pane of TRACELENS (shown in Fig-
ure 1), users can select from pre-defined question templates.
These templates allow users to investigate taint analysis results
by asking specific questions about dataflows. To make these
questions concrete, users specify the configuration they are
interested in, including the source of the data, the destination
(sink), and the models of third-party libraries involved.

For example, a user might choose the why-flow template,
which asks, “why is there a taint flow from a source to a
sink?” They can then concretize this question by specifying
a specific source and sink. For instance, they could ask,
“Which third-party library models currently allow taint flows
from the source java.net.InetAddress.getHost-
Name(...) to the sink org.apache.dubbo.metrics-
.model.ConfigCenterMetric.getTags(...)?”

Similarly, a user could select the why-not template, which
asks, “Why is there no taint flow from a source to a sink?”
They can then specify the source and sink of interest. For
example, they could ask, “Which third-party library models
could potentially block taint flows from the source msg-
:HttpRequest to the sink ErrorTypeAwareLogger-
.warn()?” Alternatively, a user could also select the what-
if template, which asks a speculative analysis question about
“which sinks would no longer be reachable if third-party
library models were to be configured as a sanitizer from source
to sink?”

Visualization of Global Impact. Once a user initiates a
query within TRACELENS, specifying their target source, sink,
and any relevant external API calls, TRACELENS generates
an interactive graph visualization, providing a holistic view of
the taint flow. This graph, as seen in the G pane of Figure
1, visually maps the program’s taint flows as interconnected
nodes, each representing a distinct stage in the taint flow.
This visualization reveals the global impact of configuration
choices through the network of connected nodes. To facilitate
sensemaking, TRACELENS employs a color-coded scheme:
source nodes are highlighted in green, sink nodes in red, and
external library nodes in orange. This color differentiation
draws attention to the impact of configuration choices. Fur-
thermore, templated queries are designed to illuminate how
which third-party library’s model can impact multiple sinks,
multiple sources, etc, making global impact salient through
visualization.

User study. We conducted a within-subject study with a
factorial crossover on 12 participants (graduate students and
professional developers), who inspected taint-analysis warn-
ings generated by CodeQL [4], [5]. Each participant answered
eight questions per task (16 total) designed to reflect a realistic
sensemaking process of tool-generated warnings. During these
tasks, a user had to answer questions about the impact of
third-party library models on taint analysis results, by iden-
tifying pass-through API calls, APIs that serve as sanitizers,
etc. Participants increased the average question completion
rate from 71% with the baseline CodeQL visualizer to 92%
with TRACELENS, especially on questions that require global

2



reasoning of multiple taint flows. When using TRACELENS,
users were more accurate in identifying multiple sinks affected
by the same third-party library model. For example, 50% of
answers prepared with TRACELENS are correct, whereas only
17% with the baseline.

We measured cognitive load via NASA-TLX questions. We
found that TRACELENS led to improvement on the partic-
ipants self-reported mental demand, stress, and success rate.
Considering the technology acceptance model [6], participants
rated TRACELENS higher on both Confidence (mean 4.3 vs.
2.1) and Ease of Use (4.3 vs. 1.9) than the baseline CodeQL.
Qualitative feedback highlighted that color-coded graphs and
dedicated template queries helped alleviate analysis paraly-
sis [7]. Overall, these results underscore that TRACELENS
substantially enhances users’ ability to make sense of complex
taint paths and reduce their mental workload through QA-
based end-user debugging.

In this paper, we make the following contributions:

1) Configuring taint analysis is tricky, often leading to
unexpected results. To help users understand and fix these
issues, TRACELENS is the first interactive end-user de-
bugger that enables the investigation of how different user
configuration choices in modeling third-party libraries
impact the taint analysis results.

2) TRACELENS is equipped with template queries for ‘why’,
‘why not’, and ‘what if’ questions, which are auto-
matically translated into logic queries; it enables users
to concretize the template queries with concrete code
names embedded in tool-generated warnings. TRACE-
LENS’s graphical interface eases the examination of the
global impact of models, which are difficult to reason
when viewing warnings in a list view, packaged with an
existing taint analyzer.

3) We conduct a within-subject user study with a facto-
rial crossover design (12 participants) to assess TRACE-
LENS’s effectiveness in sensemaking CodeQL-generated
taint analysis warnings [4], [5]. TRACELENS raises the
average question completion rate from 71% to 92%
and reduces mental demand (NASA-TLX) from 5.9 to
3.3, demonstrating clear improvement in the end-user
debugging of taint analysis.

4) Improvement in accuracy, reduction in cognitive load,
improvement in confidence and ease of use compared
to CodeQL’s visualizer is statistically significant. The
additional case study with two professionals corroborates
this improvement in accuracy, confidence, and ease of
use.

The remainder of this paper is organized as follows. Sec-
tion II introduces a motivating example and the design goals
of TRACELENS. Section III presents TRACELENS’s approach.
Section IV provides the study design and results from our
within-subject user study. Section V reports the results we ob-
tained from our user study. Section VI discusses implications
of our findings, and possible threats to validity. Section VII

presents related work. Finally, we draw the conclusions of our
work in Section VIII.

II. MOTIVATION

When using modern static taint analyzers such as Cod-
eQL [5], developers struggle to identify why unexpected flows
appear or why certain expected flows are missing. These tools
rely on models of external libraries, which may not always
match the developer’s expectations. This paper is concerned
with the problem of end-user debugging of taint analysis—i.e.,
understanding the impact of user configuration choices. Two
key end-user debugging challenges prevent developers to eas-
ily make sense of unexpected results.

First, traditional tools lack support for effective inquiry-
based debugging, presenting only isolated warnings without
contextual flow connections. This forces developers into man-
ual tracing, which hinders their ability to answer questions
they have during debugging. A robust QA process, focused
on sensemaking, is therefore essential to bridge this gap to
enable active investigation rather than passively viewing the
flow.

Second, beyond isolated flow views, developers require
support for reasoning about the model’s impact on multiple
dataflows. Current tools fall short, lacking the ability to easily
query these complex relationships, or predict the ripple effects
of model changes. This forces developers to manually piece
together disparate flows, hindering them from understanding
the broader consequences of modifications and leaving unre-
ported flows completely opaque.

Prior debugging introduced WhyLine [8] to let users ask
“why did” or “why didn’t” on a program trace, where the
context of debugging is on runtime events (e.g., runtime
errors). However, “why and why-not” questions remain largely
unaddressed in the context of modern taint analysis tools.
Developers want customizability over taint analysis [9], visual
outputs of warnings and code [10], and the ability to inspect
intermediate pass through nodes of the analysis [8]. Yet, typ-
ical dataflow or taint analysis interfaces do not systematically
address higher-level inquiries such as “Why does data from
source X reach sink Y?” or “Why is no warning raised for a
known bug?”

Table I shows six kinds of templated queries. In the follow-
ing paragraphs, we detail the motivating scenario behind each
query.
1. WhyFlow: Why is there a taint flow from a source
X to a sink Y? Suppose that Alice sees an unexpected taint-
analysis warning in CodeQL from a source user.getSSN()
(untrusted data) to a sink log(SSN) (potential vulnerabil-
ity) [9], [10], [8]. She suspects the culprit is an imprecise third-
party library model; however, manually tracing a long chain
of calls is overwhelming. The WHYFLOW query highlights
in one view the taint flow path from a source in green to a
sink in red, displaying pass-through third-party API calls in
orange, shown in Figure 2. Alice then notices an intermediate
API call is encrypt(SSN). She then discovers that this API

3



Table I: Template queries for why, why-not and what-if questions and corresponding English interpretation and logic queries.

Query Type Plain-English Question Logic Query Interpretation

WhyFlow “Why is there a taint flow from a source X to a sink Y ?” “Which third-party library models (or assumptions) currently
allow data to propagate from X to Y ?”

WhyNotFlow “Why is there no taint flow from a source X to a sink Y ?” “Which third-party library models (or assumptions) currently
terminate the flow (e.g., sanitizers), where their model change
could create a flow from a source X to a sink Y ?”

AffectedSinks “If we alter a third party library Z’s model, which sinks are
affected?”

“Under a new assumption of treating a third party library Z as a
sanitizer, which previously reported sinks are no longer reachable
from X?”

DivergentSinks “Which third party library X’s model could influence multiple
taint flows from the same source X?”

“What are the common third-party API nodes in multiple paths
originating from X that split into multiple different sinks?”

DivergentSources “Which third party library X’s model could influence multiple
taint flows reaching the same sink Y ?”

“What are the common third-party API nodes in multiple flow
paths that eventually reach the same sink Y ?”

GlobalImpact “Which third party library Z’s model could have the largest global
influence on dataflows from X to Y ?”

“What is the frequency of each third-party API call appearing
along all paths from X to Y in terms of the overall usage counts?”

user.getSSN() SSN encrypt(SSN)

Source Ext. API

encryptedSSN log(encryptedSSN)

Sink

why_node_pair_answer(user.getSSN(), log(SSN), y) :-
 

why_node_pair(user.getSSN(), log(SSN)), 

library_flow_on_path(log(SSN), user.getSSN(), y).

Yields
Answer: encrypt(SSN)

Figure 2: WhyFlow: “Why is there a taint flow from a source
to a sink?”

is a sanitizer, and thus this warning should have not reported
and encrypt()’s model should be debugged.
2. WhyNotFlow: Why is there no taint flow from a source
X to a sink Y? Suppose that Alice needs to investigate a
missing taint flow (i.e., a bug arises at a sink, yet CodeQL
does not issue a corresponding warning). She suspects that
a third-party library is mistakenly modeled as a sanitizer. In
Figure 3, the sensitive data travels from user.getSSN()
through an external API format(SSN) to log(SSN). After
investigating the intermediate flow steps, Alice finds that
format(SSN) was erroneously modeled as a sanitizer.

WHYNOTFLOW visually identifies which APIs are acting as
sanitizers (dashed arrows), pinpointing which API model could
be responsible for killing a flow. WHYNOTFLOW performs a
speculative analysis by reasoning which taint flow path could
have been plausible under a configuration where a sanitizer is
instead modeled as a non-sanitizer. In Figure 3, the graphical
view marks the arrow after format(SSN) with a dashed
line, indicating the flow currently does not exist, but would
exist with a different model assumption.
3. AffectedSinks: If we alter a third party library Z’s
model, which sinks are affected? Alice wants to reason about
the global impact of updating a third party library model [11].
Suppose that she sees an unexpected warning and considers
marking a third-party library’s API as a sanitizer. However,
she is concerned this update might suppress other warnings.
Without TRACELENS, she would need to sift through all
reported warnings, manually trace each flow from the source,
and check which sinks might become unreachable after her
change—a time-consuming process. Figure 4 shows how AF-

user.getSSN() SSN format(SSN)

Source Ext. API

formattedSSN log(formattedSSN)

Sink

whynot_node_pairs_answer(user.getSSN(), log(formattedSSN), y) :-
 

whynot_node_pairs(user.getSSN(), log(formattedSSN)), 

plausible_warning_paths(user.getSSN(), log(formattedSSN), y),
 

!warning_paths(user.getSSN(), log(formattedSSN), y.

Yields

Answer: format(SSN)

Figure 3: WhyNotFlow: “Why is there no taint flow from a
source to a sink?”

user.getSSN() SSN extractParts(SSN)

Source Ext. API

log(SSNparts[])
Sink 1

sinks_affected_answer(user.getSSN(), extractParts(SSN), sink) :-
 

sinks_affected(user.getSSN(), extractParts(SSN)), 

warning_paths(user.getSSN(), sink, extractParts(SSN)).

Yields

writeTo(f, SSNparts[])
Sink 2

cache.set('SSN', SSNparts[])
Sink 3

Answer: log(SSN)
       writeTo(f, SSN)
       cache.set('SSN', SSN)

Figure 4: AffectedSinks: “If we alter a third party library’s
model, which sinks are affected?

FECTEDSINKS automates this what-if analysis, immediately
revealing all red sinks that would be “killed.”.
4. DivergentSinks & 5. DivergentSources: Which third
party library model could influence multiple taint flows
reaching the same sink (or originating from the same
source)?

Suppose that Alice would like to know whether a known
vulnerability reaching multiple sinks could be fixed at
once [11], [12]. In a typical taint analyzer, it can be cum-
bersome to trace how a single piece of sensitive data such
as an SSN propagates through multiple taint flows. Conse-
quently, developers may not prefer to identify a common
interception point instead of fixing one sink at a time. With
DIVERGENTSINKS query, she can quickly locate a common
point from the source that “splits” into multiple sinks. (see
Figure 5).

4



user.getSSN() SSN extractParts(SSN)

Source Ext. API

SSNparts[]

log(SSNparts[])

Sink 1

common_paths_answer(lib) :- 
start1(user.getSSN()), end1(log(SSN)), 
start2(user.getSSN()), end2(writeTo(f, SSN), 
warning_paths(user.getSSN(), log(SSN), lib), 
warning_paths(user.getSSN(), log(SSN), lib), 
lib != -1.

Yields
Answer: SSNparts[]

Sink 2

writeTo(f, SSNparts[])

Figure 5: DivergentSinks: “Which third party library model
could influence multiple taint flows from the same source?”

user.getSSN() SSN standardize(SSN)
Source Ext. API

stdSSN

log(SSNparts[])

global_impact_answer(user.getSSN(), log(SSN), lib, score) :- 

global_impact(user.getSSN(), log(SSN)), 

libs_on_path(user.getSSN(), log(SSN), lib), 

library_paths_count(lib, cnt), score = cnt.

Yields

extractParts(stdSSN)SSNparts[]

Ext. API

Score: 15

Score: 7

Answer: (1) standardize(SSN)
               (2) extractParts(stdSSN)

Sink

Figure 6: GlobalImpact: “Which third party library model
could have the largest global influence on dataflows from a
source to a sink?”

To illustrate another scenario, imagine a single sensitive
destination (sink) that receives data from multiple untrusted
sources. Using the DIVERGENTSOURCES query, Alice can
readily identify if these diverse sources converge towards
the same vulnerable point. This allows her to pinpoint the
specific model responsible for the convergence, i.e., the
‘culprit model’. Unlike traditional list-based warning views,
TRACELENS provides a visual representation of where these
multiple taint paths intersect, which makes pinpointing the
culprit model significantly easier.

6. GlobalImpact: Which third party library’s model could
have the largest global influence on multiple flows from
a source to a sink? When multiple models could explain
a false or missing warning, developers often prefer a con-
servative fix that impacts the fewest flows [13]. Without
TRACELENS, identifying the frequency of each API in all taint
paths would require her to painstakingly review every single
warning and count occurrences manually. GLOBALIMPACT
automatically computes how often each API appears across
multiple paths, ranking them by frequency. In Figure 6,
because extractParts(standardizedSSN) appears in
more paths, it has a higher score, signaling a larger global
impact.

III. SPECULATIVE ANALYSIS FOR INQUIRY-BASED
DEBUGGING

TRACELENS enables inquiry-based debugging for sense-
making to debug spurious flows or missing flows. As presented
in Figure 7, we execute both the CodeQL taint query as well as
a less restricted version of this query (Sections III-A), convert
the taint analysis results into Soufflé facts and store them
in a database (Section III-B). Subsequently, TRACELENS
queries the database to provide answers to the questions posed
using TRACELENS, according to the user’s choice (Section
III-C). The answers are presented as an interactive graph
visualization. In this section, we present the components of
TRACELENS, and how each of these components help the
overall workflow. Before we elaborate on our approach, we
state several assumptions in our design.

Assumption 1. We presume that a user of TRACELENS
is familiar with the subject program that she is inspecting,
meaning that they may recognize that some flows are spurious,
unexpected flows and some expected flows are missing, serv-
ing a starting point for end-user debugging. This way, running
an interrogative debugger can help narrow down the third-
party library’s model after selecting a relevant template query
for ‘why’ or ‘why-not’ questions.

Assumption 2. We leverage CodeQL’s taint analysis as is
obtain taint analysis results, and then we utilize Soufflé to run
the interrogative debugging queries on top of CodeQL results.
Hence, it is important to emphasize that CodeQL and Soufflé
are being used together, and there is no modification to the
underlying CodeQL’s analysis algorithm. These two tools are
not meant to compete.

Assumption 3. We assume that CodeQL results are created
with the information flow models of third party libraries, which
is typical for modern taint analysis. Since these models are
plug-in abstractions and third party libraries that may not have
source code, we assume that inaccuracies in these plug-in
models should be debugged, when a user suspects a missing
flow or a spurious flow.

Assumption 4. The goal of TRACELENS is not to frame
‘why’ and ‘why-not’ question asking as a classification prob-
lem of false positive or false negative. In fact, TRACELENS
never removes or adds any taint warnings reported by Cod-
eQL. Rather, TRACELENS helps users with end-user debug-
ging—how their configuration choices such as source/sink/san-
itizer definitions and third-party models may lead to spurious
or missing paths. Given that the target users need to maintain
and update third-party models, TRACELENS aims to simplify
this process.

A. CodeQL

CodeQL is an open-source static analysis framework, devel-
oped and maintained by GitHub. Users can use a specialized
Domain-Specific Language (DSL) to detect potential security
vulnerabilities, code quality issues, or other custom patterns
[14]. While CodeQL offers code scanning capabilities out of
the box, its extendability via user-defined queries and models
is particularly noteworthy.

5



Figure 7: A user selects a WhyNotFlow template query to investigate a suspected missing flow msg:HttpRequest to
ErrorLogger.warn(). TRACELENS concretizes a corresponding logic query. For instance, to explain a potential missing
flow from msg: HttpRequest (node 1) to ErrorLogger.warn() (node 2), a plausible path via an intermediate node
(node 3) is first identified by the rule whynot_node_pairs_answer(1,2,3). The query result is shown in the Graph
View.

A key factor in CodeQL’s precision and comprehensive-
ness lies in its third party library modeling. Each library
API (including third-party dependencies) can be modeled
to reflect how data flows through its methods. Recognizing
that manual creation of such models is time-consuming and
error-prone, the CodeQL team has explored automated and
machine-learning-based techniques to infer library behaviors
[9]. Nonetheless, incomplete or incorrect modeling remains
a practical challenge, especially in large ecosystems where
libraries evolve frequently without thorough documentation of
their input-output contracts.

Rather than relying on specific third-party library models
and source and sink definitions, a general query may relax
these configuration assumptions, revealing the “maximal” set
of reachable flows from all possible sinks to all possible
sources, ignoring third-party library models. Such an approach
can help users uncover paths that would otherwise be missed
due to incomplete or inaccurate library modeling. Moreover,
comparing results from both model-aware and “maximal”
queries can expose discrepancies—hints that the current model
assumptions may need refinement. Our work builds on these
insights by introducing an interactive, interrogative debugger,
where users can easily toggle assumptions about sanitizers or
third-party methods with pre-defined template queries.

B. Soufflé and Logic Query Implementation

TRACELENS converts the CodeQL taint-analysis results into
a set of facts that can be analyzed by Soufflé’s Datalog
engine. In this factbase, each node, edge, and taint-related
annotation (e.g., source, sink, and library API) is expressed as
a logical predicate. Once the output of a single CodeQL query
is transformed into these facts, TRACELENS can quickly re-
evaluate multiple “secondary” queries, such as those in Table I,
without needing to re-run CodeQL’s underlying taint analysis
itself.

This arrangement is particularly useful for tasks like
missing-flow analysis (WhyNotFlow) or identifying global
impact. Instead of incurring repeated analysis times of 10 to 14
seconds (excluding the compile time of the query) in CodeQL
for each reconfiguration of the library model, we rely on
Soufflé’s Datalog engine [15] to query the precomputed facts
in the order of 5 seconds—a speed-up that supports interactive
debugging.

a) Converting the CodeQL Output to Facts.: Each
CodeQL dataflow node is mapped to a node(id) predi-
cate, capturing its unique identifier and associated metadata
(e.g., filename, line/column, symbol name). Likewise, each
dataflow edge is encoded as edge(edgeid, sourceid,
targetid), indicating potential taint propagation. We also
store “plausible edges”—those that might be inactive under

6



Figure 8: CodeQL’s tree-based view shows each warning one
by one and does not support inquiry-based sensemaking of
multiple taint flows and the impact of user choices and 3rd-
party library models.

certain sanitizers or library assumptions—using a similar
plausible_edge predicate. Sources and sinks become
source(nodeid) and sink(nodeid), while known
library-flow relations (e.g., which arguments flow into re-
turn values) are recorded with library_flow(edgeid,
fact_id).

b) Answering “WhyFlow” and “WhyNotFlow”: Once
loaded into Soufflé, the questions in Table I are encoded as
logic queries shown in Figures 2 and 3. For example, WhyFlow
query uses transitive closure over edge to find whether data
can reach a sink from a source, intersecting with library_-
flow to highlight which third party library’s APIs (orange
nodes) appear along the path. WhyNotFlow similarly checks
for “broken” transitive paths and identifies library_flow
edges that act as sanitizers, effectively terminating any flow.

c) Supporting Divergent Sources/Sinks and Global Im-
pact.: Queries like DivergentSinks or DivergentSources use
logic rules to detect the last common node or first common
node in two paths. We do so by computing the intersec-
tion of reachable sets for each source/sink pair. Meanwhile,
GlobalImpact queries pivot on counting how frequently an
API appears in distinct reachable flows; each API node is
assigned a score via an aggregation rule over the factbase. The
resulting integer is used to size the node (in the visualization)
and thus show its “global impact.”

C. TRACELENS’s User Interface

To support sensemaking, key design elements in TRACE-
LENS include:

a) Color-Coding and Visual Clarity.: Nodes in the flow
graph are color-coded: green for sources, red for sinks,
orange for external APIs or libraries, and blue for other
intermediate nodes.

b) Graphical Flows and Expandable Paths.: TRACE-
LENS overlays the taint flows onto a single graph. Solid
edges represent dataflow steps. Dashed edges indicate “plau-
sible flows” currently unreported by the analyzer, but can be
reported under a different configuration. Each flow can be
expanded to narrow down onto suspicious segments.

c) Clickable Nodes and Code Navigation.: Clicking on
a node opens the corresponding code snippet in the user’s IDE
for easy reference of the source code. TRACELENS includes
hover popups showing details such as fully-qualified names of
identifiers referenced by the intermediate steps along the flow.

d) Customizable Layouts and Node Sizing.: TRACELENS
supports multiple layout algorithms (e.g., breadth-first, con-
centric). Users can reorganize the graph for improved clarity.
A GlobalImpact query resizes API nodes by their number of
occurrences on different flows.

IV. USER STUDY

To evaluate TRACELENS’s usefulness in sensemaking taint
flows, we designed a within-subject study. We assess how
users can reason about the impact of user configurations on
multiple taint flows, including third-party taint analysis mod-
els. We use CodeQL’s Visual Studio Code plugin (CodeQL
Visualizer in short), as the baseline.

a) Study Design: Participants were asked to answer eight
sensemaking questions about taint analysis results and how
the configuration of third-party libraries impacts taint flows.
Each user study task consists of eight questions in Table III.
The first six questions centered on why, why-not, and what-if
questions about taint flows and the remaining two centered on
quantifying taint flows.

b) Research Questions:

1) How much does TRACELENS improve the participants’
ability to answer questions about the configuration’s
impact on taint flows?

2) How does TRACELENS influence cognitive load and user
confidence in sensemaking taint flows?

3) What are the participants’ perceptions of TRACELENS’s
usability and functionality in enhancing their workflow?

A. Study Protocol

The study task is based on 383 taint warnings generated
on Apache Dubbo with the CodeQL query shown in Listing
1 [16]. The resulting facts from this query are presented in
Table II.

7



Metric Value

# of edges 6,901
# of nodes 8,101
# of sources 26
# of sinks 265
# of 3rd-party API functions 85

Table II: Statistics of Taint Analysis Facts for Apache
Dubbo.

1 import java
2 import semmle.code.java.dataflow.FlowSources
3 import semmle.code.java.dataflow.TaintTracking
4 import semmle.code.java.security.ExternalAPIs
5 import UntrustedDataToExternalApiFlow::

PathGraph
6

7 from UntrustedDataToExternalApiFlow::PathNode
source,

8 UntrustedDataToExternalApiFlow::PathNode
sink

9 where UntrustedDataToExternalApiFlow::flowPath
(source, sink)

10 select sink, source, sink,
11 "Call to " + sink.getNode().(

ExternalApiDataNode).
getMethodDescription() +

12 " with untrusted data from $@.", source,
source.toString()

Listing 1: CodeQL Taint Analysis Query [16].

1) Baseline: We selected the CodeQL plugin in VSCode
(CodeQL visualizer in short), shown in Figure 8 as our
baseline tool. It provides an interface where warnings are listed
one-by-one, grouped under each analysis kind. Users can click
and expand each warning to reveal the flows that contributed
to the warning. Each flow can be expanded to show the steps
in the flow. A user inspects warnings one-by-one.

2) Participants: We conducted a within-subject user study
with a crossover design. We recruited 12 participants, in-
cluding graduate students and professional developers from
the industry. Their programming experience ranged from 1–
3 years (4 participants), 4–6 years (3 participants), 7–10
years (3 participants), to over 10 years (2 participants). The
average self-reported familiarity with taint analysis was 2 out
of 5, suggesting that most participants had only moderate
experience with this type of dataflow analysis.

7 participants are PhD students, 3 are MS students, 1 is an
undergraduate and 1 is a professional developer from industry.
We dropped one participant from the study, since they failed
to complete half of both tasks. The average self-reported
familiarity with taint analysis was 2.1 out of 5.

a) Number of participants.: While between-subject user
studies require a large number of participants to account for
variations among individual participants, within-subject user
studies minimize variability, as each participant uses both
tools following a different order. The order of tool usage
and task assignment is randomized and counterbalanced [17],

[18]. Within-subject user studies with 8 to 16 participants are
standard practice in both software engineering [19], [20], [21]
and HCI research [22], [23], [24].

b) Use of student participants.: While most of our
study’s participants are students, prior work found that the
findings based on student participants often generalize to a
broader population as students have comparable performance
to professionals in security-related tasks [25], [26], [27], [28].
Other studies [29], [30], [31] also emphasize that students can
provide meaningful feedback when their expertise aligns with
the tool’s target audience. Since TRACELENS is designed for
end-user debugging, the use of student participants is method-
ologically sound. We also conducted a case study with two
security professional participants, discussed in Section V-D.
Also, the goal of TRACELENS is to help end-users who are
not necessarily security experts. TRACELENS helps them to
sensemake taint analysis results and debug them with our
interrogative queries.

3) Protocol: Each participant took part in a 1.5-hour ses-
sion. The study involved using both TRACELENS and the
baseline CodeQL visualizer and the two tasks. The order of
assigned tool (TRACELENS first vs. CodeQL first) and the
assigned task (Problem Set #1 and Problem Set #2) was coun-
terbalanced across participants through random assignment.
We gave a 3-minute pre-study survey to collect background
information, followed by a tutorial.

Next, each participant proceeded to the two tasks, each
lasting 20 minutes. Each task had 8 questions that participants
were tasked to answer. They had the option of skipping
over questions and ending the task early. After each task,
participants filled out post-task survey, which included the
NASA TLX (5 minutes total). In the final 12-minute post-
study survey, we asked participants to compare TRACELENS
and CodeQL, and rate TRACELENS’s features.

4) Tutorial: We conducted a tutorial session to introduce
participants to the functionality of both TRACELENS and the
CodeQL VSCode plugin. The tutorials were structured around
realistic dataflow scenarios. For TRACELENS, we guided
users through all six query types. This involved selecting
relevant sources, sinks, or API calls from dropdown menus and
interpreting the graphical output rendered by TRACELENS.
Participants were encouraged to hover over nodes to view fully
qualified names, click on nodes to navigate directly to code
locations, and adjust the layout using built-in options. Through
these interactions, participants familiarized themselves with
TRACELENS’s features.

We also conducted a tutorial session on using CodeQL’s
visualizer. Participants learned how the plugin displays query
results in a tabular list. We walked them through the process of
expanding or collapsing the flows presented in the visualizer
to inspect the intermediate steps between source to sink.

Finally, we explained the role of CodeQL “models” of
external libraries, highlighting their role in the analysis. We
reinforced core concepts: sources, sinks, sanitizers- and pro-
vided examples.

8



Figure 9: Average NASA-TLX Ratings for TRACELENS vs.
CodeQL visualizer.

5) Tasks: Each task had a different set of questions (Prob-
lem Set #1 and Problem Set #2). The questions and their
answers are shown in Table III. To minimize learning effects,
we balanced the order of tools that participants used first. Each
task contained eight questions about ’why’, ’why-not’, ’what-
if’, shown in Table I and the other two about quantitative
aspects of taint flows (e.g., how many taint paths exist or how
many third-party APIs appear in the taint paths). The questions
were multiple-choice questions, some had multiple answers.
We granted partial credit if participants selected some correct
answers, but missed or added incorrect choices.

6) Criteria for Study Tasks: We designed questions based
on realistic scenarios involving the analysis of flows from
sources to sinks. These questions correspond to “why”, “why-
not”, and “what-if” questions that developers may ask about a
taint analysis or assess potential changes to models of external
libraries. The tasks require pinpointing of sanitizers and pass-
through APIs and assessing how many flows or nodes are
present.

a) Post-Study Questionnaire.: After completing each
task, participants completed a brief post-task questionnaire,
which included the NASA TLX [32] (e.g., mental demand,
time pressure, perceived success, effort, and frustration) and
described their strategies to find answers to the questions.
At the end of the session, participants rated user-interface
features, confidence, and ease of use.

V. RESULTS

In this section, we analyze the results of our user study.
We assess the statistical significance of our findings with
the Mann-Whitney U test [33], [34] given the non-normal
distribution of our data and its ordinality (e.g., Likert-scale
responses), which is common for user studies [35], [36], [37],
[38], [39]. Each participant is denoted as P#.

A. RQ1. Accuracy

Table IV shows the participants’ accuracy in answering
questions for the problem sets (Task 1 and Task 2) when
using TRACELENS and using the CodeQL VSCode plugin
visualizer (CodeQL Visualizer in short). Accuracy outcomes

showed a clear advantage for TRACELENS, where users had
more correct answers than with CodeQL (p < 0.05), alongside
fewer empty responses (p < 0.05).

These differences are statistically significant according to
the Mann-Whitney U test [40] with a large effect size (Cor-
rectness: Cohen′s d = 1.33, Empty answers: Cohen′s d =
1.8). Participants using TRACELENS provided more correct
answers, especially when needing to reason about multiple
flows and global impact; on the other hand, participants using
the CodeQL visualizer felt overwhelmed [7].

Participants gave more correct and complete answers
using TRACELENS than the baseline. Their answers
were over 50% more accurate and significantly better
(p < 0.05). TRACELENS users also left fewer questions
unanswered.

B. RQ2. Cognitive Load and Confidence

After each task, participants filled in the NASA-TLX,
which measures five dimensions: mental demand, hurriedness,
perceived success, effort, and stress. Figure 9 reports the
average scores for the participants. Other than perceived suc-
cess (where higher is better), lower values are better. Overall,
participants found completing the task with TRACELENS less
mentally demanding (3.25 compared to 5.92), less hurried
(2.83 compared to 6.17), and less stressful (2.33 compared
to 5.17), while reporting higher perceived success (6.17 com-
pared to 3.08) and required less effort (2.92 compared to
6.08). On all NASA-TLX dimensions, the improvements were
statistically significant (p < 0.05) with a large effect size
(Cohen’s D > 2).

Several participants commented that CodeQL visualizer
forced them to “manually inspect the nodes in each path” (P2)
and “go back and forth to visualize in [their] head” (P10).
In contrast, P5 described TRACELENS’s approach as “very
clear,” and P11 noted it was “easier to track the dataflow.”
These comments reinforce our findings that TRACELENS’s
inquiry-based debugging reduced the cognitive overhead of
analyzing multiple interconnected flows. Most participants
preferred TRACELENS’s graph-based interface over the default
list-view of CodeQL visualizer. The participants identified
areas for improvement for TRACELENS. P9 mentioned the
reliance on node IDs might be unrealistic in real-world sce-
narios where users do not have those IDs at hand. P1, while
feeling “more confident using [TRACELENS],” pointed out that
some “general taint analysis questions” might still be faster in
CodeQL visualizer’s tabular format. P7 suggested “showing
fully qualified names when hovering on a node” to reduce
confusion in large, complex graphs.

Participants valued the ease of tracing flows, especially
when there are multiple source-sink relationships. They envi-
sioned advanced filtering options, improved naming (to avoid
codebase ambiguities), and possible integration of textual or
tabular summaries.

9



Program Point Set #1 Program Point Set #2

(1) Explain why a taint flow is permitted from getReques-
tURI(...) in [...].PageServlet.java to charAt(...) in
[...].StringUtils.java. Name a third-party API permitting the
flow.

Answer: java.lang.String.substring(int beginIndex,
int endIndex)

(1) Explain why a taint flow is permitted from msg : String
in [...].TelnetProcessHandler.java to json : String in
[...].FastJsonImpl.java. Name a third-party API permitting the
flow.

Answer: java.lang.String.substring(...)

(2) Explain why no taint flow is permitted from msg : HttpRequest to
warn(...) in [...].HttpProcessHandler.java.

Answer: io.netty.handler.codec.http.HttpRequest.method(...)

(2) Explain why no taint flow is permitted from msg : Http2StreamFrame
in [...].TripleHttp2ClientResponseHandler.java to
release(...) in [...].TripleClientStream.java.

Answer: io.netty.handler.codec.http2.
Http2DataFrame.isEndStream()

(3) Explain what sinks would no longer be reachable,
if io.netty.handler.codec.http.HttpRequest.uri() were modeled
as a sanitizer, starting from source msg : HttpRequest in
[...].HttpProcessHandler.java.

Answer: valueList in [...].HttpCommandDecoder.java
and msg in [...].Log4jLogger.java

(3) Explain what sinks would be no longer reachable, if
io.netty.handler.codec.http2.Http2HeadersFrame.headers() is
marked as a sanitizer, starting from source msg : Object in
[...].TripleHttp2FrameServerHandler.java.

Answer: path: [...].TriplePathResolver.java and headers:
[...].TripleIsolationExecutorSupport.java

(4) Identify the program point that affects multiple taint flows ending at
two sinks:
sinks: path : String in [...].TriplePathResolver.java at line
41 and path : String in [...].TriplePathResolver.java
at line 46, source: msg : Http2StreamFrame in
[...].TripleHttp2ClientResponseHandler.java.

Answer: toString(...) : String in
[...].TripleServerStream.java

(4) Identify the program point that affects multiple taint flows ending at
two sinks:
sinks: path : String in [...].TriplePathResolver.java – line
41 and path : String in [...].TriplePathResolver.java
– line 46, source: msg : Object in
[...].TripleHttp2FrameServerHandler.java.

Answer: toString(...) : String in
[...].TripleServerStream.java

(5) Identify the intermediary program point that influ-
ences multiple flows originating from input : ByteBuf in
[...].NettyCodecAdapter.java and in : ByteBuf in
[...].NettyPortUnificationServerHandler.java, ending
at buffer : ByteBuf in [...].NettyBackedChannelBuffer.java.

Answer: parameter this : NettyBackedChannelBuffer
[buffer] : ByteBuf in [...].NettyBackedChannelBuffer.java

(5) Identify the intermediary program point that influences
multiple flows originating from msg : Http2StreamFrame in
[...].TripleHttp2ClientResponseHandler.java and msg
: Object in [...].TripleHttp2FrameServerHandler.java,
ending at path : String in [...].TriplePathResolver.java.

Answer: headers : Http2Headers in
[...].TripleServerStream.java

(6) Which third-party APIs could have the most in-
fluence on the taint path from msg : Object in
[...].TripleHttp2FrameServerHandler.java to path :
String in [...].TriplePathResolver.java? Rank in the order
of importance.

Answer:
(1)io.netty.handler.codec.http2.Http2HeadersFrame.headers()
(2)java.lang.CharSequence.toString()
(3)io.netty.handler.codec.http2.Http2Headers.path()

(6) Which third-party APIs could have the most influence on the taint
path from msg : Object in [...].NettyClientHandler.java to
key : String in [...].TraceFilter.java? Rank in the order of
importance.

Answer:
(1)java.lang.String.trim()
(2)java.lang.String.replace(...)
(3)java.lang.String.substring(...)

(7) Determine the number of pass-through API points from
getRequestURI(...) in [...].PageServlet.java to charAt(...)
in [...].StringUtils.java.

Answer: 21

(7) Determine the number of pass-through
API points from msg : Http2StreamFrame in
[...].TripleHttp2ClientResponseHandler.java to
path : String in [...].TriplePathResolver.java.

Answer: 21

(8) Count how many different dataflow paths exist from in : ByteBuf
in [...].NettyPortUnificationServerHandler.java to
buffer : ByteBuf in [...].NettyBackedChannelBuffer.java.

Answer: 2

(8) Count how many different dataflow
paths exist from msg : Http2StreamFrame in
[...].TripleHttp2ClientResponseHandler.java to
path : String in [...].TriplePathResolver.java.

Answer: 4

Table III: Study Tasks: Program Sets #1 and #2 with their correct answers. Participants were assigned one of the two tasks
to complete with CodeQL visualizer and the other with TRACELENS.

10



TRACELENS CodeQL visualizer
Q Task 1 (C/E) Task 2 (C/E) Task 1 (C/E) Task 2 (C/E)
(1) 100%/0% 100%/0% 100%/0% 67%/0%
(2) 83%/0% 100%/0% 83%/0% 50%/0%
(3) 33%/0% 50%/0% 17%/17% 0%/17%
(4) 100%/0% 100%/0% 83%/0% 83%/17%
(5) 67%/0% 50%/0% 50%/50% 83%/17%
(6) 67%/0% 83%/0% 17%/67% 33%/17%
(7) 100%/0% 67%/17% 83%/17% 17%/83%
(8) 100%/0% 67%/17% 67%/33% 17%/83%

Table IV: User Study Results: Percentage of participants
providing (C)orrect/(E)mpty answers when using TRACELENS
vs. CodeQL visualizer.

Using TRACELENS, participants reported significantly
lower mental demand, effort, stress, and hurriedness,
and felt more successful. They found the visually clear
graphs and template queries helpful in supporting a
smoother and more confident sensemaking process.

C. RQ3. Usability and Workflow

1) Interface Features: Participants rated the usefulness of
TRACELENS’s interface beyond its core queries. Participants
rated color-coding with the highest average score (4.83). P9
said, “Imagine not having the coloring and having to click
each node to figure out what they are... The visualization hides
the textual noise.”

Some participants underutilized expandable taint paths (with
an average score of 3.33) as they were unaware of the feature.
Meanwhile, P7 wanted explicit labeling of fully qualified
names on the graph to avoid switching to the IDE. Participants
found clicking on nodes to jump into code less useful (with an
average score of 3.92), mainly using it to confirm ambiguous
method names.

2) Confidence and Ease of Use: Table V shows partici-
pants’ ratings of TRACELENS and CodeQL visualizer in terms
of confidence (in the answers to the questions) and overall ease
of use. TRACELENS scored 4.25 on both measures, substan-
tially higher than CodeQL visualizer (2.08 for confidence, 1.92
for ease). These improvements were statistically significant
(p < 0.05, Cohen’s D > 2).

Multiple participants appreciated TRACELENS’s "dedicated
queries" (P2) for analyzing the results, noting that “it makes
it easier to handle higher-level tasks” (P4). However, some
participants (P1, P9) commented that CodeQL visualizer’s
table-based listings would still be useful in simpler scenarios.

TRACELENS CodeQL Visualizer
Confidence (1–5) 4.25 2.08
Ease of Use (1–5) 4.25 1.92

Table V: The participants were confident in answering ques-
tions with TRACELENS and found it easy to use.

3) Future Adoption: When asked if they would like to
use TRACELENS in future taint-flow inspections, participants
gave an average rating of 4.83. Many emphasized that de-
spite needing refinements, the specialized queries, graph-based

1 .decl edge(id: number, src: number, dst:
number)

2 .input edge
3

4 .decl branch(n: number)
5 .output branch
6 branch(n) :-
7 edge(_, n, _),
8 c = count : edge(_, n, _),
9 c > 1.

Listing 2: A divergent path query flagging branch points
where flow diverges to multiple targets. Using the raw three-
arity edge(id,src,dst) input, we declare branch(n)
for each n that appears as src in more than one edge(_-
,n,_) fact.

results, and color-coded visualization saved significant time.
P5 commented, “For a large program, it’s difficult for the
programmer to check each path by hand—TRACELENS’s
approach can save time and reduce errors.”

Participants valued TRACELENS’s color-coding and
graph-based sensemaking features.

D. Case Study

To reinforce our findings from the perspective of industry
professionals, we conducted studies with two security pro-
fessionals in addition to our within-subject study with 12
participants. We used the same protocol from Section IV-A.
Both reported 5/5 familiarity with static taint analysis and had
7 to 10 years of experience.

Both participants (P101 and P102) provided more correct
answers with TRACELENS than CodeQL. They liked the
workflow of inspecting taint flows using TRACELENS. P101
commented, “CodeQL requires lots of manual labor, whereas
TRACELENS’s visual components make it easier to navigate.”
“That [the workflow for using TRACELENS] was very intu-
itive, the tooling eases manual inspection load completely.”
P102 mentioned “With CodeQL, I wonder whether I’m missing
another row that describes the same location.” Both par-
ticipants reported higher confidence and ease of use using
TRACELENS, achieving the same high level of task success
with both tools (6 out of 7), while TRACELENS consistently
felt easier to use. For P102, mental demand was equally low
for both tools but they felt more rushed with TRACELENS (4/7
vs. 2/7), even though it required less effort (2/7 vs. 3/7) and
caused no additional frustration. P101 experienced a reduction
in mental demand (2/7 vs. 7/7), pace pressure (1/7 vs. 7/7), and
effort (2/7 vs. 5/7) using TRACELENS, with a slight decrease
in frustration. In both cases, TRACELENS matched CodeQL
in perceived success, while lowering cognitive burden.

VI. DISCUSSION

11



a) Improved Accuracy with Visual Queries.: Participants
using TRACELENS achieved better accuracy, especially when
analyzing multiple flows. In particular, the AffectedSinks and
GlobalImpact queries require the analysis of multiple or inter-
connected flows. Surprisingly, participants were able to answer
questions related to “why-not” using both tools. In contrast,
participants using the CodeQL visualizer responses frequently
had empty submissions due to lack of time, suggesting viewing
results one by one a list view is time-consuming. This shows
that an interactive, inquiry-based debugger of taint analysis
warnings has the potential to improve sensemaking for large
result sets, which is known to hinder adoption [10].

b) Suggestions for Enhancement.: While participants
found TRACELENS “less cumbersome” (P2) for analysis in-
volving multiple flows, they offered suggestions for improving
TRACELENS. They recommended adding an on-screen legend
to clarify colors and dotted edges, and using distinct shapes for
different node types (e.g., sources versus sinks) to avoid visual
confusion. Additional interactive features, such as “click-to-
edit” functionality for enabling or disabling sanitizers were
also proposed. This suggests that participants would appreciate
real-time feedback through interaction on the graph.

c) Extensibility of Template Queries.: While TRACE-
LENS supports six template questions from Table I, adding
more template queries is easy since TRACELENS’s template
questions are Datalog-style queries. As a case study, adding a
new template query called ’divergent path’ query to TRACE-
LENS (Listing 2) took under ten minutes. This query identifies
the branch points, which are locations where the flow branches
into multiple targets. Note that TRACELENS’s queries sup-
ports any taint analysis results from CodeQL. More extension
queries are available in our replication package (https://github.
com/tracelens/TraceLens/tree/main/data/extension_queries).

d) Supporting Interactivity.: TRACELENS supports inter-
rogative and speculative debugging built on a rich history of
using logic programming for software comprehension [41],
[42], [43], [44], [45], [46]. Soufflé is the state of the art logic
query engine. TRACELENS does not compete with underlying
taint analysis engines but instead emphasizes sensemaking
support. We pay a one-time cost of fact extraction from
CodeQL’s result to support TRACELENS’s interactive features.

e) Threats to Validity.: A threat to validity is the size of
our user study. While our user study involved only 12 partic-
ipants, it employs a within-subject crossover design, thereby
reducing variance and requiring fewer participants [17], [47].
While our study evaluated TRACELENS only against a single
baseline (CodeQL) and and a single subject program (Apache
Dubbo), our approach is not tied to CodeQL, and can gener-
alize to any taint analysis.

VII. RELATED WORK

Speculative What-If Analysis. Speculative execution al-
lows the investigation of future or alternative actions devel-
opers may perform. Brun et al. explored its application for
providing fix suggestions [48], as well as identifying conflicts
during version merging [49]. Our work is the first to apply it

to taint analysis for reasoning about permissible dataflows of
sensitive information under different configuration of different
dataflow connectivity.

Templated Questions for asking questions. Developers
often ask questions during variety of developer tasks [50].
In particular, developers need support for understanding code
reachability [8], exploring how different vulnerabilities relate
and finding similar ones [11], tracking intermediate states of
analysis [51], reasoning about system-wide implications when
making changes [11]. TRACELENS is the first work providing
templated questions for investigating and debugging the results
of taint analysis.

Modelling 3rd party libraries. Existing work [52], [53],
[54] automatically infers models of third-party libraries. How-
ever, they do not guide users to understand the impact of these
models. They do not support end-user debugging and do not
allow end-users to ask questions about the impact of modelling
choices. While Paralib [55] allows comparison between multi-
ple choices of libraries, it does not allow reasoning about how
incorrect models cause a mismatch between user expectations
and the actual tool results.

End-user debugging. End user debugging [56], [57], [58]
is about the problem of investigating the root cause of tool
outcomes, and has been applied to spreadsheet debugging,
search engine configuration, etc. Similarly, TRACELENS is an
end-user debugger for reasoning how taint flows are affected
by the configuration of sources, sinks, and models of third-
party libraries.

VIII. CONCLUSION

We presented TRACELENS, a tool for end-user debugging
for taint analysis. Through speculative analysis, TRACELENS
allows developers to ask “why”, “why-not”, and “what-if”
questions about the analysis configuration, and is able to
visualize multiple, interconnected flows on a graphical view.
TRACELENS enables sensemaking of taint analysis and helps
users identify root causes of unexpected flows or missing
flows. Our user study confirms that TRACELENS helps users
provide 21% more correct answers to questions about the taint
analysis, while experiencing a lower cognitive load. These
results suggest that TRACELENS’s inquiry-based approach
empowers developers to analyze the outputs of taint analysis.

IX. DATA AVAILABILITY

The replication package and study’s data are avail-
able. at https://github.com/tracelens/TraceLens/tree/main/data/
extension_queries.

REFERENCES

[1] V. Chibotaru, B. Bichsel, V. Raychev, and M. Vechev, “Scalable taint
specification inference with big code,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2019. New York, NY, USA: Association
for Computing Machinery, Jun. 2019, p. 760–774. [Online]. Available:
https://dl.acm.org/doi/10.1145/3314221.3314648

[2] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee, “Merlin:
specification inference for explicit information flow problems,”
SIGPLAN Not., vol. 44, no. 6, p. 75–86, Jun. 2009. [Online]. Available:
https://dl.acm.org/doi/10.1145/1543135.1542485

12

https://github.com/tracelens/TraceLens/tree/main/data/extension_queries
https://github.com/tracelens/TraceLens/tree/main/data/extension_queries
https://github.com/tracelens/TraceLens/tree/main/data/extension_queries
https://github.com/tracelens/TraceLens/tree/main/data/extension_queries
https://dl.acm.org/doi/10.1145/3314221.3314648
https://dl.acm.org/doi/10.1145/1543135.1542485


[3] S. Banerjee, S. Cui, M. Emmi, A. Filieri, L. Hadarean, P. Li,
L. Luo, G. Piskachev, N. Rosner, A. Sengupta, O. Tripp, and
J. Wang, “Compositional taint analysis for enforcing security policies
at scale,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2023. New York, NY, USA:
Association for Computing Machinery, Nov. 2023, p. 1985–1996.
[Online]. Available: https://dl.acm.org/doi/10.1145/3611643.3613889

[4] P. Avgustinov, O. De Moor, M. P. Jones, and M. Schäfer, “Ql: Object-
oriented queries on relational data,” in 30th European Conference on
Object-Oriented Programming (ECOOP 2016). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik, 2016.

[5] T. Szabó, “Incrementalizing production codeql analyses,” in Proceedings
of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2023, pp.
1716–1726.

[6] Y. Lee, K. A. Kozar, and K. R. Larsen, “The technology acceptance
model: Past, present, and future,” Communications of the Association
for information systems, vol. 12, no. 1, p. 50, 2003.

[7] B. Schwartz, “The paradox of choice,” Positive psychology in practice:
Promoting human flourishing in work, health, education, and everyday
life, pp. 121–138, 2015.

[8] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging interface
for asking questions about program behavior,” in Proceedings of the
SIGCHI conference on Human factors in computing systems, 2004, pp.
151–158.

[9] M. Nachtigall, M. Schlichtig, and E. Bodden, “A large-scale study of
usability criteria addressed by static analysis tools,” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2022, pp. 532–543.

[10] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 672–681.

[11] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “Ques-
tions developers ask while diagnosing potential security vulnerabilities
with static analysis,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 248–259.

[12] G. Piskachev, L. N. Q. Do, and E. Bodden, “Codebase-adaptive detection
of security-relevant methods,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
181–191.

[13] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
design of bug fixes,” in 2013 35th International Conference on Software
Engineering (ICSE). IEEE, 2013, pp. 332–341.

[14] C. developers, “CodeQL documentation: Using custom queries
with the CodeQL CLI,” https://docs.github.com/en/code-security/
codeql-cli/using-the-advanced-functionality-of-the-codeql-cli/
using-custom-queries-with-the-codeql-cli.

[15] H. Jordan, B. Scholz, and P. Subotić, “Soufflé: On synthesis of program
analyzers,” in Computer Aided Verification: 28th International Confer-
ence, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II 28. Springer, 2016, pp. 422–430.

[16] C. developers, “CodeQL query: Untrusteddata-
toexternalapi,” https://github.com/github/codeql/blob/
996bc47ae8d10f6087504413db02c8920243b13e/java/ql/src/Security/
CWE/CWE-020/UntrustedDataToExternalAPI.ql.

[17] S. Vegas, C. Apa, and N. Juristo, “Crossover designs in software
engineering experiments: Benefits and perils,” IEEE Transactions on
Software Engineering, vol. 42, no. 2, pp. 120–135, 2015.

[18] S. E. Chasins, E. L. Glassman, and J. Sunshine, “Pl and hci: better
together,” Commun. ACM, vol. 64, no. 8, p. 98–106, Jul. 2021.
[Online]. Available: https://doi.org/10.1145/3469279

[19] E. J. Arteaga Garcia, J. a. F. Nicolaci Pimentel, Z. Feng, M. Gerosa,
I. Steinmacher, and A. Sarma, “How to support ml end-user
programmers through a conversational agent,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE ’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3597503.3608130

[20] H. J. Kang, K. Wang, and M. Kim, “Scaling code pattern inference
with interactive what-if analysis,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3597503.3639193

[21] M. Ganji, S. Alimadadi, and F. Tip, “Code coverage criteria for
asynchronous programs,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2023. New York,
NY, USA: Association for Computing Machinery, 2023, p. 1307–1319.
[Online]. Available: https://doi.org/10.1145/3611643.3616292

[22] A. Horvath, B. Myers, A. Macvean, and I. Rahman, “Using annotations
for sensemaking about code,” in Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’22.
New York, NY, USA: Association for Computing Machinery, 2022.
[Online]. Available: https://doi.org/10.1145/3526113.3545667

[23] S. Suh, B. Min, S. Palani, and H. Xia, “Sensecape: Enabling
multilevel exploration and sensemaking with large language models,”
in Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology, ser. UIST ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3586183.3606756

[24] M. Huh and A. Pavel, “Designchecker: Visual design support for blind
and low vision web developers,” in Proceedings of the 37th Annual
ACM Symposium on User Interface Software and Technology, ser. UIST
’24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3654777.3676369

[25] G. Sandoval, H. Pearce, T. Nys, R. Karri, S. Garg, and B. Dolan-Gavitt,
“Lost at c: a user study on the security implications of large language
model code assistants,” in Proceedings of the 32nd USENIX Conference
on Security Symposium, ser. SEC ’23. USA: USENIX Association,
2023.

[26] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information sources
on code security,” in 2016 IEEE Symposium on Security and Privacy
(SP), 2016, pp. 289–305.

[27] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl,
“Security developer studies with GitHub users: Exploring a convenience
sample,” 2017, p. 81–95. [Online]. Available: https://www.usenix.org/
conference/soups2017/technical-sessions/presentation/acar

[28] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of
professionals in software engineering experiments?” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1,
2015, pp. 666–676.

[29] A. Naiakshina, A. Danilova, C. Tiefenau, M. Herzog, S. Dechand,
and M. Smith, “Why do developers get password storage wrong? a
qualitative usability study,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
311–328. [Online]. Available: https://doi.org/10.1145/3133956.3134082

[30] A. Naiakshina, A. Danilova, E. Gerlitz, and M. Smith, “On
conducting security developer studies with cs students: Examining a
password-storage study with cs students, freelancers, and company
developers,” ser. CHI ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1–13. [Online]. Available:
https://doi.org/10.1145/3313831.3376791

[31] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide to
controlled experiments of software engineering tools with human par-
ticipants,” Empirical Software Engineering, vol. 20, no. 1, p. 110–141,
Feb. 2015.

[32] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): Results of empirical and theoretical research,” in Advances in
psychology. Elsevier, 1988, vol. 52, pp. 139–183.

[33] D. Ashby, “Practical statistics for medical research. douglas g. altman,
chapman and hall, london, 1991. no. of pages: 611. price: £32.00,”
Statistics in Medicine, vol. 10, no. 10, p. 1635–1636, 1991.

[34] Student, “The probable error of a mean,” Biometrika, vol. 6, no. 1, p.
1–25, 1908.

[35] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “An empirical study on the developers’ perception of
software coupling,” in 2013 35th International Conference on Software
Engineering (ICSE), May 2013, p. 692–701. [Online]. Available:
https://ieeexplore.ieee.org/document/6606615

[36] X. Yu, F. R. Cogo, S. McIntosh, and M. W. Godfrey, “Studying the
impact of risk assessment analytics on risk awareness and code review
performance,” Empirical Software Engineering, vol. 29, no. 2, p. 46,
Feb. 2024.

[37] E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein, “Iris:
A conversational agent for complex tasks,” in Proceedings of the 2018

13

https://dl.acm.org/doi/10.1145/3611643.3613889
https://docs.github.com/en/code-security/codeql-cli/using-the-advanced-functionality-of-the-codeql-cli/using-custom-queries-with-the-codeql-cli
https://docs.github.com/en/code-security/codeql-cli/using-the-advanced-functionality-of-the-codeql-cli/using-custom-queries-with-the-codeql-cli
https://docs.github.com/en/code-security/codeql-cli/using-the-advanced-functionality-of-the-codeql-cli/using-custom-queries-with-the-codeql-cli
https://github.com/github/codeql/blob/996bc47ae8d10f6087504413db02c8920243b13e/java/ql/src/Security/CWE/CWE-020/UntrustedDataToExternalAPI.ql
https://github.com/github/codeql/blob/996bc47ae8d10f6087504413db02c8920243b13e/java/ql/src/Security/CWE/CWE-020/UntrustedDataToExternalAPI.ql
https://github.com/github/codeql/blob/996bc47ae8d10f6087504413db02c8920243b13e/java/ql/src/Security/CWE/CWE-020/UntrustedDataToExternalAPI.ql
https://doi.org/10.1145/3469279
https://doi.org/10.1145/3597503.3608130
https://doi.org/10.1145/3597503.3639193
https://doi.org/10.1145/3611643.3616292
https://doi.org/10.1145/3526113.3545667
https://doi.org/10.1145/3586183.3606756
https://doi.org/10.1145/3654777.3676369
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1145/3313831.3376791
https://ieeexplore.ieee.org/document/6606615


CHI Conference on Human Factors in Computing Systems, ser. CHI ’18.
New York, NY, USA: Association for Computing Machinery, Apr. 2018,
p. 1–12. [Online]. Available: https://doi.org/10.1145/3173574.3174047

[38] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, Y. Huang, J. Hu, and
Q. Wang, “Unblind text inputs: Predicting hint-text of text input in
mobile apps via llm,” in Proceedings of the 2024 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’24. New York,
NY, USA: Association for Computing Machinery, May 2024, p. 1–20.
[Online]. Available: https://dl.acm.org/doi/10.1145/3613904.3642939

[39] N. Warford, C. W. Munyendo, A. Mediratta, A. J. Aviv, and
M. L. Mazurek, “Strategies and perceived risks of sending sensitive
documents,” 2021, p. 1217–1234. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity21/presentation/warford

[40] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other,” The Annals
of Mathematical Statistics, vol. 18, no. 1, pp. 50 – 60, 1947. [Online].
Available: https://doi.org/10.1214/aoms/1177730491

[41] R. C. Holt, “Structural manipulations of software architecture using
tarski relational algebra,” in Proceedings of the Working Conference
on Reverse Engineering (WCRE’98), ser. WCRE ’98. USA: IEEE
Computer Society, 1998, p. 210.

[42] K. Mens, T. Mens, and M. Wermelinger, “Maintaining software
through intentional source-code views,” in Proceedings of the 14th
International Conference on Software Engineering and Knowledge
Engineering, ser. SEKE ’02. New York, NY, USA: Association
for Computing Machinery, 2002, p. 289–296. [Online]. Available:
https://doi.org/10.1145/568760.568812

[43] E. Hajiyev, M. Verbaere, O. de Moor, and K. de Volder, “Codequest:
querying source code with datalog,” in Companion to the 20th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 102–103. [Online].
Available: https://doi.org/10.1145/1094855.1094884

[44] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini, “Defining
and continuous checking of structural program dependencies,” in
Proceedings of the 30th International Conference on Software
Engineering, ser. ICSE ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 391–400. [Online]. Available:
https://doi.org/10.1145/1368088.1368142

[45] Y.-G. Guéhéneuc and G. Antoniol, “Demima: A multilayered approach
for design pattern identification,” IEEE Transactions on Software Engi-
neering, vol. 34, no. 5, pp. 667–684, 2008.

[46] T. Tourwe and T. Mens, “Identifying refactoring opportunities using
logic meta programming,” in Seventh European Conference onSoftware
Maintenance and Reengineering, 2003. Proceedings., 2003, pp. 91–100.

[47] D. Gergle and D. S. Tan, Experimental Research in HCI. New
York, NY: Springer, 2014, p. 191–227. [Online]. Available: https:
//doi.org/10.1007/978-1-4939-0378-8_9

[48] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative analysis:
exploring future development states of software,” in Proceedings of the
FSE/SDP workshop on Future of software engineering research, 2010,
pp. 59–64.

[49] ——, “Proactive detection of collaboration conflicts,” in Proceedings of
the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, 2011, pp. 168–178.

[50] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data sci-
entists in software engineering,” in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 12–23.

[51] L. N. Q. Do, S. Krüger, P. Hill, K. Ali, and E. Bodden, “Debugging
static analysis,” IEEE Transactions on Software Engineering, vol. 46,
no. 7, pp. 697–709, 2018.

[52] Z. Li, S. Dutta, and M. Naik, “Llm-assisted static analysis for detecting
security vulnerabilities,” arXiv preprint arXiv:2405.17238, 2024.

[53] G. Piskachev, L. N. Q. Do, O. Johnson, and E. Bodden, “Swan_assist:
semi-automated detection of code-specific, security-relevant methods,”
in 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2019, pp. 1094–1097.

[54] W.-H. Chiang, P. Li, Q. Zhou, S. Banerjee, M. Schaef, Y. Lyu,
H. Nguyen, and O. Tripp, “Inference for ever-changing policy of
taint analysis,” in Proceedings of the 46th International Conference
on Software Engineering: Software Engineering in Practice, ser.
ICSE-SEIP ’24. New York, NY, USA: Association for Computing
Machinery, May 2024, p. 452–462. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3639477.3639738

[55] L. Yan, M. Kim, B. Hartmann, T. Zhang, and E. L. Glassman, “Concept-
annotated examples for library comparison,” in Proceedings of the 35th
Annual ACM Symposium on User Interface Software and Technology,
2022, pp. 1–16.

[56] M. Burnett, C. Cook, and G. Rothermel, “End-user software engineer-
ing,” Communications of the ACM, vol. 47, no. 9, pp. 53–58, 2004.

[57] C. Kissinger, M. Burnett, S. Stumpf, N. Subrahmaniyan, L. Beckwith,
S. Yang, and M. B. Rosson, “Supporting end-user debugging: what do
users want to know?” in Proceedings of the working conference on
Advanced visual interfaces, 2006, pp. 135–142.

[58] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, and
I. Kwan, “End-user debugging strategies: A sensemaking perspective,”
ACM Transactions on Computer-Human Interaction (TOCHI), vol. 19,
no. 1, pp. 1–28, 2012.

14

https://doi.org/10.1145/3173574.3174047
https://dl.acm.org/doi/10.1145/3613904.3642939
https://www.usenix.org/conference/usenixsecurity21/presentation/warford
https://www.usenix.org/conference/usenixsecurity21/presentation/warford
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/568760.568812
https://doi.org/10.1145/1094855.1094884
https://doi.org/10.1145/1368088.1368142
https://doi.org/10.1007/978-1-4939-0378-8_9
https://doi.org/10.1007/978-1-4939-0378-8_9
https://dl.acm.org/doi/10.1145/3639477.3639738
https://dl.acm.org/doi/10.1145/3639477.3639738

	Introduction
	Motivation
	Speculative Analysis for Inquiry-based Debugging
	CodeQL
	Soufflé and Logic Query Implementation
	TraceLens’s User Interface

	User Study
	Study Protocol
	Baseline
	Participants
	Protocol
	Tutorial
	Tasks
	Criteria for Study Tasks


	Results
	RQ1. Accuracy
	RQ2. Cognitive Load and Confidence
	RQ3. Usability and Workflow
	Interface Features
	Confidence and Ease of Use
	Future Adoption

	Case Study

	Discussion
	Related Work
	Conclusion
	Data Availability
	References

