arXiv:2508.07044v1 [cs.DB] 9 Aug 2025

Balancing Privacy and Efficiency: Music Information
Retrieval via Additive Homomorphic Encryption

William Zerong Wang Dongfang Zhao
Independent Researcher University of Washington
s-wangwil@outlook.com dzhao@cs.washington.edu

Abstract

In the era of generative AI, ensuring the privacy of music data
presents unique challenges: unlike static artworks such as images, music
data is inherently temporal and multimodal, and it is sampled, trans-
formed, and remixed at an unprecedented scale. These characteristics
make its core vector embeddings, i.e, the numerical representations
of the music, highly susceptible to being learned, misused, or even
stolen by models without accessing the original audio files. Traditional
methods like copyright licensing and digital watermarking offer limited
protection for these abstract mathematical representations, thus neces-
sitating a stronger, e.g., cryptographic, approach to safeguarding the
embeddings themselves. This line of works aims to develop a crypto-
graphic framework for music embeddings that balances security and
efficiency, as supporting core functionalities like music recommenda-
tion and retrieval requires the ability to perform expensive similarity
searches on encrypted data. Standard encryption schemes, such as
AES, render data unintelligible for computation, making such searches
impossible. While Fully Homomorphic Encryption (FHE) provides a
plausible solution by allowing arbitrary computations on ciphertexts,
its substantial performance overhead remains impractical for large-scale
vector similarity searches. Given this trade-off, we propose a more
practical approach using Additive Homomorphic Encryption (AHE)
for vector similarity search. Although AHE supports a restricted set
of operations, i.e., only arithmetic additions among ciphertexts, we
show that under certain threat models those additive operations suffice
to construct scalar multiplications and provide provable security in
common scenarios like safeguarding user query privacy or database
confidentiality, all at a significantly lower computational cost than FHE.
The primary contributions of this paper are threefold: we analyze threat
models unique to music information retrieval systems; we provide a the-
oretical analysis and propose an efficient AHE-based solution through

https://arxiv.org/abs/2508.07044v1

inner products of music embeddings to deliver privacy-preserving simi-
larity search; and finally, we demonstrate the efficiency and practicality
of the proposed approach through empirical evaluation and comparison
to FHE schemes on real-world MP3 files.

1 Introduction

In the era of generative Al, music data presents increasingly complex privacy
challenges. Recent advancements such as OpenATI’s Jukebox [I] and Google’s
MusicLM [2] demonstrate that high-fidelity musical content can now be
generated, conditioned on genre, instrumentation, or even textual prompts.
These systems rely on learned vector embeddings to power tasks such as syn-
thesis, classification, and recommendation. However, the same embeddings
also introduce vulnerabilities: once exposed, they can be sampled, remixed,
or reverse-engineered by generative models without requiring access to the
original audio. As the use of music embeddings expands across information
retrieval pipelines, recommendation systems, and creative tools, it becomes
increasingly important to ensure that these representations are protected
from misuse or unauthorized replication [3], [4, [5]. Balancing accessibility
with protection is therefore a central challenge for secure and ethical machine
learning on music data.

Recent high-profile incidents highlight the urgency of this issue. In
April 2023, the viral Al-generated song "Heart on My Sleeve" mimicked
the voices of Drake and The Weeknd using unauthorized voice cloning and
generative Al techniques. The track garnered millions of views before being
removed at the request of Universal Music Group, which condemned it as
a copyright violation [6]. This case illustrates how AI can exploit original
music data to create realistic but infringing material. Although from a
different medium, the Studio Ghibli AI art controversy provides a valuable
parallel [7]. Furthermore, in the context of remixes, mashups, and other
creative reinterpretations, it is essential to preserve the integrity of the original
musical components. While derivative works are a vital and culturally rich
part of music evolution, the original content, especially when embedded
as vectors, must be safeguarded from unauthorized extraction, misuse, or
misattribution. This is especially important for creators who share portions
of their work collaboratively but seek to retain control over core melodies,
harmonies, or expressive performance elements.

Equally important is the protection of user music preferences that can be
derived from queries during music information retrieval (IR). Music taste can
reflect deeply personal or emotional states, and listening data is often used

for therapy, mood regulation, or identity exploration. Many users would not
want such preferences to be exposed or exploited. Ensuring the privacy of
music queries upholds user dignity and autonomy.

Traditional methods like copyright licensing and digital watermarking
offer limited protection for these abstract mathematical representations, thus
necessitating a cryptographic approach to directly safeguard the embed-
dings themselves. Vector similarity search is a fundamental operation in
modern machine learning and music IR applications, such as Shazam—a
music search application [§], and Spotify, which uses vector databases for
recommendation [9]. These vector databases [10] are also widely used in
recommendation systems, retrieval-augmented generation, and large-scale
search [I1]. To ensure data privacy in these settings, Fully Homomorphic
Encryption (FHE) has been extensively studied for encrypted similarity
search; however, it remains computationally expensive and impractical for
real-time or large-scale applications [12}, 13].

We observe that in many scenarios, applying FHE is an overkill because
the multiplication between two ciphertexts is unnecessary. For example,
recent works [14] 15] demonstrated that only one component—either the
stored database vectors or the query vector—requires encryption, but not
both. Music IR systems share the same pattern, where only the query or
the music database may need to remain encrypted depending on the specific
privacy requirements of the application.

In this paper, we explore the feasibility of performing music vector simi-
larity search using only Additively Homomorphic Encryption (AHE), which
supports addition and scalar multiplication in the encrypted domain. Unlike
FHE, which enables arbitrary computations at a high cost, AHE provides
a significantly more efficient alternative by allowing direct computation of
inner products without expensive ciphertext-ciphertext multiplications or
bootstrapping. We present three main contributions in: (1) analyzing the
threat models of music information retrieval and the reasons behind these
threat models; (2) proposing an AHE-based solution for music data retrieval
based on the threat models; and (3) demonstrating the practicality of AHE
through empirical evaluation.

2 Related work

Vector databases have gained significant attention with the rise of applica-
tions such as natural language processing, recommendation systems, and
information retrieval, where large-scale vector similarity searches are funda-

mental. Various systems have been designed to support these needs. For
instance, Pinecone [16] provides efficient vector search capabilities but often
lack flexibility in handling non-vector queries or supporting mixed workloads.
These systems primarily rely on approximate nearest neighbor (ANN) search
techniques, with graph-based methods such as Hierarchical Navigable Small
Worlds (HNSW) [17] being widely adopted [18].

Among purpose-built vector database management systems, Milvus [I1]
distinguishes itself by supporting multiple index types and hybrid queries,
allowing structured attributes to be combined with vector-based similarity
searches. This flexibility enables Milvus to integrate traditional query opti-
mization techniques with emerging data modalities, including unstructured
text and images. Other systems, such as SingleStore-V [19], further enhance
vector search capabilities by incorporating features such as predicate-based
vector search and cost-based optimization, making them suitable for federated
and distributed environments.

Despite these advancements, many existing solutions lack efficient mech-
anisms for preserving privacy in distributed and federated learning systems.
This limitation is particularly critical for real-time applications, where cryp-
tographic protocols often introduce significant computational overhead [15].
Although prior work on privacy-preserving machine learning establishes foun-
dational approaches, our proposal aims to enhance vector data management
by integrating secure and efficient cryptographic mechanisms in music IR
systems.

For secure computation, FHE has been widely explored, but has high
computational costs that limit its applicability in large-scale retrieval systems.
Recent work has demonstrated the feasibility of using AHE for similarity
search, significantly reducing computational overhead [20]. Currently, to our
knowledge, no existing work applies AHE-based encrypted similarity search
to music vector databases, which often contain multimodal and temporal
structures. This work aims to design an efficient privacy-preserving retrieval
system specifically for music embeddings.

3 Unique Technical Challenges in Music Informa-
tion Retrieval

First, music data require higher-dimensional embeddings to effectively rep-
resent the added complexity. Music is temporal: its sequential structure
matters, and thus longer vectors are typically needed to capture this infor-
mation [21), 22]. Music often involves hierarchy and layering. For example,

orchestral music comprises multiple instruments playing simultaneously,
while remix culture overlays tracks from multiple sources. The additional
characteristics of music further complicate its retrieval. Pitch invariance,
where melodies are recognized regardless of their absolute key, demands
transposition-robust embeddings [23]. Rhythm sensitivity must be preserved
to distinguish between stylistic and tempo-based variations [21]. Audio qual-
ity differences, resulting from compression or recording equipment, also distort
feature extraction, requiring embeddings to be resilient to such noise [24].
Cultural variation in musical structure and tuning across traditions add fur-
ther representational burden. Lastly, semantic fuzziness (e.g, genre or mood)
is difficult to represent precisely, necessitating embeddings that generalize
from subjective tags or crowd-labeled data [22].

Second, streaming and interactive music IR applications demand ex-
tremely low response latency. For example, it typically only takes Shazam
around 5 seconds to identify a song, despite having millions of entries in its
database [25]. These systems must remain responsive under high load and
rapid adoption, underscoring the need for scalable vector search [24].

Both the high-dimensional representation of music data and the require-
ment for low response latency in large-scale IR systems create unique technical
challenges when introducing privacy-preserving mechanisms into music IR.
Encryption and decryption of vectors are typically computationally expensive.
Thus, it is essential to identify methods that are both effective in preserving
privacy and efficient enough for real-world deployment.

4 Homomorphically-Encrypted Music-Embedding
Similarity Search

4.1 Threat Model for Music Embeddings
4.1.1 Melody and Rhythm Pattern Inference

In the context of music IR, the threat of privacy breaches extends beyond the
simple recovery of an entire encrypted vector. A more subtle and realistic
threat is the inference of specific, high-value musical patterns, such as a
copyrighted melody, a unique rhythmic signature, or a distinctive chord
progression, even when they are part of a larger, fully encrypted work. This
threat model assumes an adversary who does not necessarily need the full
song, but rather seeks to confirm the presence of a specific, exploitable musical
element within an encrypted database. This scenario is highly relevant in an
era where Al models can be trained on such patterns to generate new, often

infringing, content, as seen in real-world controversies involving Al-generated
music.

The attack scenario can be described as follows, adhering to the formal
threat model where the adversary knows the plaintext query x, the encrypted
database vector Enc(y), and observes the encrypted result Enc(s):

1. Target Pattern Identification: The adversary first identifies a
target musical pattern of interest. This could be, for example, the
iconic four-note opening of a famous symphony or the chorus melody
of a chart-topping pop song.

2. Query Vector Formulation: The adversary crafts a plaintext query
vector x that specifically represents this target pattern. For dimensions
of the vector that do not correspond to the pattern, the values can be
set to zero or neutral noise, effectively isolating the pattern of interest.
This leverages the understanding that music embeddings often capture
sequential or hierarchical information, making such targeted queries
possible.

3. Similarity Computation: The adversary performs a similarity search
using their crafted query x against an encrypted music vector y’ from
the database. This computation, as described in this paper, results in
an encrypted similarity score s’ = Enc(x - y’).

4. Inference from the Result: The crucial information leak occurs at
this stage. If the adversary is the service provider who also holds the
decryption key (a common “honest-but-curious” threat model), they
can decrypt the score to get s = x-y’. A high value of s strongly implies
that the encrypted track y’ contains the musical pattern represented by
x. Conversely, a low score implies its absence. This allows the adversary
to effectively “scan” an entire encrypted library for a specific musical
component without ever decrypting the full tracks themselves. Even
without the decryption key, the ability to observe and compare the
distribution of different Enc(s) values might allow statistical inference
over time.

This threat is significant because it directly enables the kind of data
exploitation that current copyright and watermarking techniques struggle
to prevent for abstract vector embeddings. It allows a malicious actor to
systematically identify and harvest core musical ideas for unauthorized use
in generative models, fundamentally undermining the privacy and ownership
of creative musical works.

4.1.2 Creator Identity Inference

Beyond inferring musical content, a sophisticated adversary may seek to infer
the identity of a creator from an encrypted database. This threat model
addresses the critical challenge of provenance and attribution in the age of
Al-generated content and complex collaborations. The adversary’s goal is not
to decrypt a song, but to link a piece of music of disputed origin to a specific
creator whose works are stored in the database, thereby performing an
identity inference attack. This is particularly relevant in copyright disputes
or cases of suspected plagiarism involving generative Al.
The attack scenario unfolds as follows:

1. Disputed Material as Query: The adversary begins with a piece
of music whose origin is in question, for instance, a viral Al-generated
track that mimics a famous artist’s style, or a melody from a new song
that sounds suspiciously familiar. The adversary computes the vector
embedding of this disputed track, which becomes their plaintext query
vector, x.

2. Targeted Database Search: The adversary gains access to perform
similarity searches against an encrypted database. This database is
assumed to contain the vector embeddings of original works from a
known set of creators, where each encrypted vector Enc(y) is implicitly
linked to its creator (e.g., stored in a folder designated for Artist A,
Artist B, etc.).

3. Iterative Probing and Score Comparison: The adversary performs
a series of similarity computations. They query with their vector x
against subsets of the database belonging to different creators. For
each query against an encrypted vector Enc(yartist A) from Artist
A’s collection, they obtain a similarity score sq4 = X - yarist 4 (after
decryption by a key-holding entity). They repeat this process for Artist
B, Artist C, and so on.

4. Inference via Score Discrepancy: The information leak occurs by
comparing the resulting similarity scores. If the score s, is consistently
and significantly higher than the scores obtained from other artists’
collections (sp, sc, ...), it creates a strong statistical link. The adver-
sary can reasonably infer that the disputed track x was most likely
derived from, or heavily inspired by, the original work of Artist A.

This form of attack poses a serious threat to creator privacy and intel-
lectual property. It could be exploited in various ways: a malicious actor
could attempt to falsely attribute a low-quality track to a famous artist to
cause reputational damage; a party in a copyright dispute could use this
method to gather evidence; or a collaborator could check if their creative
partner is re-using their protected, encrypted contributions in unauthorized
projects. This highlights the need for privacy-preserving mechanisms that
protect not only the content but also the metadata and context surrounding
the creator’s identity.

4.2 Efficient Homomorphic Inner Product for Music Embed-
ding Vectors

4.2.1 Blocked Inner Product for Structural Vectors

A standard inner product treats a high-dimensional vector as a monolithic
entity, which is often insufficient for the nuanced requirements of music
similarity search. Music embeddings are not merely flat lists of numbers;
they possess a rich internal structure designed to capture music’s complex
and layered nature. For instance, a single embedding vector might contain
distinct, contiguous segments representing rhythmic patterns, melodic con-
tours, harmonic progressions, and timbral qualities. A simple inner product
would conflate these distinct features, potentially allowing high similarity
in one aspect (e.g., rhythm) to be diluted by dissimilarity in another (e.g.,
melody), leading to less relevant search results.

To address this challenge and leverage the inherent structure of music
embeddings, we propose a Blocked Inner Product approach. In this scheme,
we partition a high-dimensional plaintext query vector x and its corresponding
encrypted database vector Enc(y) into k semantically meaningful blocks:

X:{X17X27"'7xk} and y:{YI7YQ7---7Yk}-

Each block x; and y; corresponds to a specific musical feature. The encrypted
similarity is then computed as the homomorphic sum of the inner products
of these corresponding blocks:

k k
Simpocked(X, Enc(y)) = @ Sim(x;, Enc(y;)) = Enc (Z X; - yi> , (1)
i=1 i=1

where Enc(y;) represents the encryption of the i-th block of vector y. This
approach allows for more granular similarity comparisons. By isolating

features into blocks, our method prevents the “averaging out” of important
musical characteristics and provides a more interpretable and structurally
aware measure of similarity. Furthermore, this partitioning creates the
necessary foundation for the weighted retrieval scheme discussed in the
following section, where different levels of importance can be assigned to
each musical aspect.

4.2.2 Weighted Hierarchical Inner Product

While the blocked inner product provides a more structured comparison,
it still assumes that each musical feature block is equally important for
any given search. This one-size-fits-all approach fails to capture the task-
specific nature of music retrieval. For instance, a query to find songs with a
“similar groove” should prioritize rhythmic and bassline features, whereas a
query for “lyrically similar” songs would focus on blocks representing vocal
melody and ignore instrumentation. The ability to dynamically emphasize
or de-emphasize certain features is crucial for building a truly intelligent and
flexible retrieval system.

To achieve this, we extend the blocked product to a Weighted Hierarchical
Inner Product. This method assigns a public, plaintext weight, w;, to the
similarity score of each block. These weights are not fixed; they are chosen
based on the specific retrieval task, allowing the system to adapt its definition
of similarity on a per-query basis.

The weighted hierarchical similarity is computed as:

k

Simucighad(x, Enc(y)) = €D Sim(x;. Ene(y:))™ o)
=1

k
= ETLC (Z w; - (Xi . Yz)> s
=1

where the weights w; are public parameters chosen based on the retrieval
task. This method provides enhanced flexibility without compromising the
underlying additive homomorphic properties. The application of weights is
performed as an efficient plaintext-ciphertext multiplication, which is natively
supported by the AHE scheme and avoids the costly operations associated
with FHE.

This weighted approach offers significant advantages. It transforms the
similarity search from a static operation into a dynamic, context-aware
process. A system can now support diverse query types—from finding songs
with a similar instrumentation to identifying tracks with a specific mood—Dby

simply adjusting the weight vector {w1,...,wy}. This provides a powerful
mechanism for building sophisticated, privacy-preserving music search and
recommendation engines that are both efficient and highly adaptable to user
intent.

5 Evaluation

5.1 Experimental Setup

The experiment is carried out with an AWS EC2 t3.xlarge VM. Music data
source is retrieved from the MagnaTagATune dataset [26] and we sampled
1,000 MP3 files from the dataset for music embeddings, each mapped as
a vector (plaintext or encrypted) in Milvus [II]. We use YAMNet [27] to
generate music embeddings with different lengths, i.e., 128, 256, 512, and
1024. We employed Microsoft TenSEAL [28] to apply encryption schemes
including FHE and AHE. For AHE, we consider the below two different
settings.

Encrypted Database Setting: in this scenario, the database vectors are
encrypted, and the query vector remains plaintext. Here, the dot product is
taken similarly: each encrypted database value is added to itself x; times,
with z; coming from the plaintext query.

Encrypted Query Setting: in this variation, only the query vector is en-
crypted. The database is in plaintext. Instead of using multiplication, the dot
product is computed through fast repeated addition, where each encrypted
query element is added to itself y; times (with y; being the corresponding
value in the plaintext database vector). This avoids ciphertext—ciphertext
operations and uses the additive function. This method reduces memory
usage and runtime avoiding encrypting large database vectors and operates
well ciphertext—plaintext interactions.

5.2 System Implementation

We implemented vector dot product computations using both AHE and FHE
schemes across a range of embedding vector lengths (1024, 512, 256, and 128).
These dimensions reflect typical sizes used in music embedding systems such
as those based on CLAP [29] or wav2vec [30]. The comparison is conducted
between FHE and AHE under both encrypted query and encrypted database
settings that are defined in the experimental setup section.

The FHE implementation takes TenSEAL’s CKKS scheme to encrypt both
the query vector and the database vectors. Each dot product is computed

10

Vector Length 1024

Vector Length 512

& 4000 | 1 = 2000} i
]]
g 2,000 |- - g 1,000 | -
= =
ol = — | ol = —
T T T T T T
FHE AHE DB AHE Query FHE AHE DB AHE Query
Vector Length 256 Vector Length 128
| |
600 -
~— 1,000 |- e
~ ~ 400 - -
= =
A 9500 B R= L |
& & 200
ol = — ol = -
T T T T T T
FHE AHE DB AHE Query FHE AHE DB AHE Query

Figure 1: Dot product computation times using FHE and AHE methods for
different vector lengths.

through: Performing ciphertext—ciphertext multiplication for each element,
then summing the encrypted values. This supports real numbers and allows
arbitrary computations on encrypted data but causes a longer runtime and
significant memory use. The encryption context is relatively heavy, and
homomorphic multiplication increases noise.

The AHE implementation uses the same TenSEAL’s CKKS scheme
to encrypt either the query vector or the database vectors under the two
different settings in the proposed approach, i.e., Encrypted Query Setting
and Encrypted Database Setting.

5.3 Preliminary Results
5.3.1 Baseline Comparison

As shown in Figure [I] the AHE implementations completed the dot product
operations substantially faster in all dimensions, highlighting its viability in
handling the encryption/description of embeddings much more efficiently,
which is an essential requirement in music IR contexts. The encrypted
query setting, in particular, showed the best performance since it minimizes
the number of encrypted values processed, aligning well with real-world

11

~— 400 e -

200 = .

Time (ms
u
\

|
128 256 512 1,024

Embedding Length

’ —e— Encrypted Query - w- Encrypted Database ‘

Figure 2: Trend of AHE-based dot product runtime across different embedding
lengths.

client—server setups where only the user’s input (query) needs protection.

5.3.2 Scalability

The ability to handle vectors of varying lengths is crucial for the flexibility of
music IR applications, enabling them to capture different levels of information
in embeddings. In Figure [2, we demonstrate that AHE achieves linear
computational time with respect to vector size (i.e., 128, 256, 512, and 1024),
applicable to both encrypted database and encrypted query settings. This
efficiency is due to the reduced ciphertext handling in AHE. Notably, in
the encrypted query setting, the server’s workload closely mirrors that of a
plaintext dot product.

5.3.3 Memory footprint

We also tested the memory usage across the FHE and AHE-based methods
on 1024-length vectors as shown in Figure [3] Based on this experiment, AHE
approach under Encrypted Database Setting (i.e., AHE DB in the figure)
exhibits similar memory consumption compared to FHE, while AHE ap-
proach under Encrypted Query Setting (i.e., AHE Query in the figure) shows
significantly lower memory. This is because both FHE and AHE DB methods
require storing and processing large ciphertexts that encode entire vectors,
significantly inflating memory usage due to ciphertext expansion. These
ciphertexts often include metadata for noise management, modulus switching,
and require more complex data structures for intermediate computations.

12

Memory Usage (1024-Length Vectors)
! ! !

g

< 1,000 |- .
o

%

=}

> 500 N
Z

3

: H

[}

= 0 1 1 1

FHE AHE DB AHE Query

Figure 3: Memory usage for dot product operations on 1024-length vectors using
FHE and AHE schemes.

6 Ongoing Efforts

6.1 Lifecycle Management for Semantically-Aware Music
Databases

The ultimate vision is to create a full-fledged Database Management System
(DBMS) for encrypted, semantically-structured vector data. This system
would move far beyond a simple cryptographic library, offering a comprehen-
sive suite of features analogous to modern relational DBMSs. This includes
a declarative query language for expressing complex similarity criteria, a
cost-based query optimizer that understands the semantics of encrypted data
structures, and robust protocols for multi-tenant data management, schema
evolution, and transactional updates. The goal is to make the management
of sensitive, high-dimensional AI data as tractable, flexible, and secure as
traditional enterprise data, enabling a new generation of privacy-preserving
intelligent applications.

To achieve the above goal, this foundational paper introduces new con-
cepts of a Blocked Inner Product and a Weighted Hierarchical Inner Product
to embed musical structure into similarity computations. A direct extension
is to build a complete system around these static, query-time concepts. This
involves first formalizing a data model and a declarative query interface (e.g.,
a SQL extension) that allows users to specify blocks and weights dynamically.
Subsequent research must address the full data lifecycle: developing effi-
cient and atomic protocols for updating a vector’s semantic block structure
or associated metadata without requiring full re-encryption. Furthermore,
a robust key management framework is necessary to handle multi-owner
scenarios, where different rights-holders (e.g., music labels) contribute to a
single, shared database while retaining control over their assets.

13

6.2 Federated Music Retrieval Systems

The vision is a secure and decentralized marketplace for creative Al assets,
often described as a “data clean room” for vector embeddings. In such
an ecosystem, multiple, mutually distrusting parties could securely query
each other’s proprietary databases. This would enable critical business
functions including copyright-infringement checks, content licensing, and
trend analysis, all without any party revealing its private query data or
its confidential database content to the other. This paradigm shifts from
a client-server trust model to a federated, multi-party trust environment,
unlocking collaborative potential while enforcing privacy for all participants.
To achieve the above goal, this foundational paper effectively analyzes
threat models like Melody Inference and Creator Identity Inference, proposing
AHE-based solutions for scenarios where either the query or the database is
encrypted. The critical next step is to address the mutual privacy scenario,
where both the query Enc(x) and the database Enc(y) must be protected
from each other. As the paper notes, FHE is too inefficient for this task.
The extension would involve designing and evaluating a novel hybrid system
architecture. A promising approach combines the efficiency of the paper’s
AHE scheme with the power of Trusted Execution Environments (TEEs) for
computation. In this model, AHE-encrypted data would be securely loaded
into a TEE, decrypted for high-speed plaintext computation, and the results
re-encrypted before exiting, ensuring that even the server administrator
cannot access the sensitive data. This requires formalizing the multi-party
threat model and evaluating the performance and security trade-offs.

7 Conclusion

This paper demonstrates that Additive Homomorphic Encryption (AHE)
offers a practical and efficient solution for privacy-preserving music informa-
tion retrieval, striking a crucial balance between security and performance.
We have analyzed threat models unique to music data, proposed structure-
aware inner product methods to enable meaningful similarity searches on
encrypted vectors, and empirically verified that our AHE-based approach is
substantially faster and more memory-efficient than traditional FHE. Our
ongoing work builds upon this foundation, aiming to develop (i) full-fledged
database management systems for semantically-aware music data and (ii)
federated platforms for mutually private collaboration of music works in the
creative Al ecosystem.

14

References

[1] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec
Radford, and Ilya Sutskever. Jukebox: A generative model for music.
OpenAlI Blog, 2020. https://openai.com/blog/jukebox.

[2] Andrea Agostinelli, Matthieu Caron, Theo Copet, Alexandre Défossez,
Jack Frankel, Kunal Goel, Baldzs Hidasi, Antoine Liutkus, Matthieu

Monfort, Olivier Pietquin, et al. Musiclm: Generating music from text.
arXiv preprint arXiw:2501.11525, 2023.

[3] Jean-Pierre Briot, Gaétan Hadjeres, and Frangois-David Pachet. Deep
learning techniques for music generation—a survey. arXiv preprint
arXiv:1709.01620, 2017.

[4] Philippe Esling, Axel Chemla-Romeu-Santos, and Jordan Bitton. Bridg-
ing audio analysis, synthesis, and processing with deep learning: A
survey. IEEE Transactions on Audio, Speech, and Language Processing,
26(12):1-13, 2018.

[5] Samuel Ferguson. Generative ai and the music industry: Threats
and opportunities. https://jolt.law.harvard.edu/digest/
generative-ai-and-the-music-industry-threats-and-opportunities,
2023. Harvard Journal of Law & Technology Digest.

[6] Ben Sisario. A.i. song featuring fake drake and the weeknd goes viral —
and gets pulled. The New York Times, April 2023.

[7] Diya Zhang. Studio ghibli fans push back against a.i.-generated art.
The Verge, July 2023.

[8] Josiah Hester. Shazam it! music processing, fingerprinting, and recogni-
tion. Toptal Engineering Blog, 2023.

[9] Lynkz. What are vector databases? understanding the 2024 landscape.
Lynkz Blog, 2024.

[10] Solmaz Seyed Monir and Dongfang Zhao. Efficient feature extraction for
image analysis through adaptive caching in vector databases. In 2024
Tth International Conference on Information and Computer Technologies
(ICICT), pages 193-198, 2024.

[11] Jianguo Wang et al. Milvus: A purpose-built vector data management
system. In SIGMOD, pages 2614-2627, 2021.

15

https://openai.com/blog/jukebox
https://jolt.law.harvard.edu/digest/generative-ai-and-the-music-industry-threats-and-opportunities
https://jolt.law.harvard.edu/digest/generative-ai-and-the-music-industry-threats-and-opportunities

[12]

[13]

[15]

Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing (STOC), 2009.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homo-
morphic encryption for arithmetic of approximate numbers. In Tsuyoshi
Takagi and Thomas Peyrin, editors, 23rd International Conference on
the Theory and Applications of Cryptology and Information Security
(AsiaCrypt). Springer, 2017.

Yin Li, Dhrubajyoti Ghosh, Peeyush Gupta, Sharad Mehrotra, Nisha
Panwar, and Shantanu Sharma. Prism: Private verifiable set compu-
tation over multi-owner outsourced databases. In Proceedings of the
2021 International Conference on Management of Data, SIGMOD 21,
page 1116-1128, New York, NY, USA, 2021. Association for Computing
Machinery.

Olamide T. Tawose, Jun Dai, Lei Yang, and Dongfang Zhao. Toward
efficient homomorphic encryption for outsourced databases through
parallel caching. Proceedings of the ACM on Management of Data
(SIGMOD), May 2023.

Pinecone: A vector database for machine learning. https://www.
pinecone.io/, 2025.

Yu A Malkov and D A Yashunin. Efficient and robust approximate near-
est neighbor search using hierarchical navigable small world graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(4):824-836, 2020.

J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with
gpus. In IEEE Trans. Big Data, pages 535-547, 2019.

Cheng Chen, Chenzhe Jin, Yunan Zhang, Sasha Podolsky, Chun Wu,
Szu-Po Wang, Eric Hanson, Zhou Sun, Robert Walzer, and Jianguo
Wang. Singlestore-v: An integrated vector database system in singlestore.
Proc. VLDB Endow., 17(12):3772-3785, August 2024.

Dongfang Zhao. A note on efficient privacy-preserving similarity search
for encrypted vectors. arXiv preprint arXiv:2502.14291, 2025.

Yi Ren, Jinglin Liu, Tong Zou, Zhou Liu, Zhijie Zhao, and Zhiyao
Zhao. Pirhdy: Learning pitch, rhythm, and dynamics representations
for symbolic music. arXiv preprint arXiw:2010.08091, 2020.

16

https://www.pinecone.io/
https://www.pinecone.io/

[22]

[23]

[24]

[25]

[26]

Wenjing Yang, Keunwoo Choi, Xavier Serra, Xubo Zhang, and Juho
Nam. Towards robust multimodal music understanding via supervised
contrastive learning. arXiv preprint arXiv:2404.13569, 2024.

Cory McAllister, Igor Aizenberg, and Douglas Turnbull. Cover detection
with contrastive learning: Feasibility and shortcomings. arXiv preprint
arXiv:2109.02472, 2021.

Christian Fremerey and Meinard Miiller. Music retrieval evaluation:
From ad-hoc retrieval to standardized test collections and beyond.
Dagstuhl Follow-Ups, 3:93—-118, 2013.

Dev Aggarwal. Shazam’s algorithm. https://medium.com/@dream-y/
shazams-algorithm-5ba2b0a60d7a, 2022. Accessed: 2025-07-26.

Edith Law, Olivier Gillet, and J. Stephen Downie. The
magnatagatune dataset. https://mirg.city.ac.uk/codeapps/
the-magnatagatune-dataset) 2009. City, University of London.

Manoj Plakal and Daniel P. W. Ellis. Yamnet: A deep net that predicts
521 audio event classes from the audioset-youtube corpus. https://www!
tensorflow.org/hub/tutorials/yamnet, 2020. TensorFlow Hub.

Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfed-
hal. Tenseal: A library for encrypted tensor operations using homomor-
phic encryption, 2021.

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Marianna Nezhurina,
Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Large-scale contrastive
language-audio pretraining with feature fusion and keyword-to-caption
augmentation, 2024.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael
Auli. wav2vec 2.0: A framework for self-supervised learning of speech
representations, 2020.

17

https://medium.com/@dream-y/shazams-algorithm-5ba2b0a60d7a
https://medium.com/@dream-y/shazams-algorithm-5ba2b0a60d7a
https://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
https://mirg.city.ac.uk/codeapps/the-magnatagatune-dataset
https://www.tensorflow.org/hub/tutorials/yamnet
https://www.tensorflow.org/hub/tutorials/yamnet

	Introduction
	Related work
	Unique Technical Challenges in Music Information Retrieval
	Homomorphically-Encrypted Music-Embedding Similarity Search
	Threat Model for Music Embeddings
	Melody and Rhythm Pattern Inference
	Creator Identity Inference

	Efficient Homomorphic Inner Product for Music Embedding Vectors
	Blocked Inner Product for Structural Vectors
	Weighted Hierarchical Inner Product

	Evaluation
	Experimental Setup
	System Implementation
	Preliminary Results
	Baseline Comparison
	Scalability
	Memory footprint

	Ongoing Efforts
	Lifecycle Management for Semantically-Aware Music Databases
	Federated Music Retrieval Systems

	Conclusion

