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Abstract—Detecting fraud in modern supply chains is a grow-
ing challenge, driven by the complexity of global networks
and the scarcity of labeled data. Traditional detection methods
often struggle with class imbalance and limited supervision,
reducing their effectiveness in real-world applications. This paper
proposes a novel two-phase learning framework to address these
challenges. In the first phase, the Isolation Forest algorithm
performs unsupervised anomaly detection to identify potential
fraud cases and reduce the volume of data requiring further
analysis. In the second phase, a self-training Support Vector
Machine (SVM) refines the predictions using both labeled and
high-confidence pseudo-labeled samples, enabling robust semi-
supervised learning. The proposed method is evaluated on the
DataCo Smart Supply Chain Dataset, a comprehensive real-world
supply chain dataset with fraud indicators. It achieves an F1-
score of (0.817 while maintaining a false positive rate below 3.0%.
These results demonstrate the effectiveness and efficiency of com-
bining unsupervised pre-filtering with semi-supervised refinement
for supply chain fraud detection under real-world constraints,
though we acknowledge limitations regarding concept drift and
the need for comparison with deep learning approaches.

Keywords: Supply chain fraud detection, Isolation Forest,
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I. INTRODUCTION

Supply chain fraud has become a critical threat to global
commerce, with organizations facing increasingly sophisti-
cated fraudulent schemes across complex supply networks
[1]. The digitalization of supply chains has created new
vulnerabilities, enabling various fraudulent activities including
procurement fraud, vendor impersonation, invoice manipula-
tion, and counterfeit goods infiltration [2]]. These activities
result in substantial financial losses and operational disruptions
for businesses worldwide [3]]. The interconnected nature of
modern supply chains amplifies fraud impact, as single fraud-
ulent events can cascade across multiple organizations and
geographical regions, while increasing transaction complexity
challenges traditional real-time monitoring systems. Modern
supply chains involve multiple stakeholders, heterogeneous
data sources, and intricate networks that complicate fraud
detection [4]. The inherent class imbalance and sophisticated
fraud schemes have rendered traditional rule-based systems
inadequate [5], [6]. Zhou et al. [4] demonstrated XGBoost’s
effectiveness for supply chain fraud prediction, emphasizing
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feature engineering and ensemble methods. The DataCo Sup-
ply Chain Dataset [7] has become a valuable benchmark
for fraud detection research. Constante-Nicolalde et al. [2]]
explored smart supply chain fraud prediction with IoT in-
tegration. Baryannis et al. [3] examined the performance-
interpretability trade-off in machine learning for supply chain
risk prediction.

To address these limitations, innovative fraud detection
systems must effectively handle limited labeled data while
maintaining high detection accuracy and computational effi-
ciency through hybrid approaches combining multiple learning
paradigms. Prior work has explored artificial intelligence’s
role in enhancing cybersecurity across digital infrastructures,
including digital twin systems, emphasizing hybrid Al tech-
niques for detecting complex and evolving threats [9]-[11].
This paper proposes a novel two-phase learning model com-
bining unsupervised anomaly detection with semi-supervised
learning refinement. The first phase employs Isolation Forest
for efficient outlier identification without requiring labeled
training data [8]]. The second phase utilizes self-training Sup-
port Vector Machine to refine detection results by iteratively
expanding the labeled dataset with high-confidence predic-
tions [[12]]. This approach addresses key challenges includ-
ing computational efficiency, class imbalance handling, and
effective utilization of limited labeled data in supply chain
fraud detection systems. The rest of this paper is organized
as follows. Section [IIl reviews recent related works on fraud
detection in supply chains and machine learning methods.
Section [l1I| explains the proposed two-phase model, including
Isolation Forest and self-training SVM. Section describes
the experimental setup with datasets, evaluation metrics, and
baseline methods. Section [V]presents and discusses the results.
Finally, Section [V]] gives the conclusion and suggestions for
future work.

II. RELATED WORK
A. Supply Chain Fraud Detection

Supply chain fraud detection has gained significant attention
due to increasing complexity and digitalization of global net-
works. Modrusan et al. [1] reviewed public procurement fraud
detection techniques, highlighting evolution from rule-based to
machine learning approaches and identifying key challenges:
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data heterogeneity, real-time processing, and sophisticated
fraud schemes. Zhou et al. [4] demonstrated XGBoost’s effec-
tiveness for supply chain fraud prediction, while the DataCo
dataset [7] has become a valuable benchmark. Recent work has
explored IoT integration [2]] and performance-interpretability
trade-offs [3].

B. Machine Learning Approaches for Fraud Detection

Machine learning applications in fraud detection have been
extensively surveyed. Herndndez Aros et al. [[13] reviewed
financial fraud detection literature, analyzing 104 articles and
identifying Random Forest and Autoencoder as particularly
effective techniques. Phua et al. [|6] provided a comprehensive
survey of data mining-based fraud detection across multiple
domains. Recent work has applied semi-supervised learning
using Isolation Forests to effectively detect fraud in supply
chain data without full supervision [14].

C. Class Imbalance in Fraud Detection

Class imbalance represents a significant challenge in fraud
detection. Bauder and Khoshgoftaar [5] investigated varying
class distribution effects on learner behavior for Medicare
fraud detection, demonstrating that unsupervised learning
approaches can offer advantages with severely imbalanced
datasets [15]. Wei et al. [16] addressed sophisticated online
banking fraud detection on extremely imbalanced data (;0.1%
fraud rate), combining multiple techniques to handle extreme
imbalance while maintaining high detection accuracy.

D. Isolation Forest and Anomaly Detection

Isolation Forest [§] represents a paradigm shift in anomaly
detection, using isolation principles rather than distance or
density-based measures. The algorithm’s insight that anoma-
lies are “few and different” enables efficient detection with
O(n log n) complexity, suitable for large-scale supply chain
fraud detection. Liu et al. [17] provided detailed analysis
of the algorithm’s performance characteristics and robustness
properties. Hariri et al. [18] proposed Extended Isolation For-
est, addressing bias issues by using hyperplanes with random
slopes, improving detection consistency and accuracy.

E. Semi-supervised Learning and Self-training

Semi-supervised learning approaches show promise for
fraud detection with scarce labeled data. Wang et al. [[19]]
developed a semi-supervised graph attentive network for fi-
nancial fraud detection with substantial improvements. Hyun
et al. [20] proposed Suppressed Consistency Loss (SCL) to
handle distribution differences between labeled and unlabeled
data. Wei et al. [21] introduced CReST for imbalanced semi-
supervised learning, achieving 11.8% improvement over Fix-
Match. Amini et al. [[12] surveyed self-training methodologies,
providing guidance for selecting appropriate strategies. One-
Class SVM has been employed to model normal transaction
behavior in supply chains [22].

F. Research Gap

Despite extensive research in fraud detection, existing ap-
proaches face three critical limitations in supply chain con-
texts: (1) supervised methods require extensive labeled data
that is costly to obtain, (2) unsupervised methods suffer from
high false positive rates when used in isolation, and (3) current
semi-supervised approaches do not address the computational
scalability required for real-time supply chain monitoring.
Our work addresses this gap by proposing a computationally
efficient two-phase framework that combines the strengths of
unsupervised and semi-supervised learning while maintaining
practical deployment feasibility.

III. METHODOLOGY
A. Problem Formulation

Let X = {;}}'_, represent the complete supply chain trans-
action dataset (such as the DataCo dataset [7]), where z; € R%
denotes the d-dimensional feature vector for transaction 7, and
n is the total number of transactions. Each transaction has
an associated true label y; € {0,1} (0 for legitimate, 1 for
fraudulent), but these labels are only observed for a small
subset of the data.

The dataset can be partitioned into two disjoint subsets
based on label availability:

o Labeled subset: Dy, = {(x;, y;)} -5y, where n, < n
o Unlabeled subset: Dy = {x;};,, ,,, where labels exist
but are unobserved

We denote the complete dataset as D = Dy, U Dy, where
|Dr| = ng, and |Dy| = n — ny. In practical supply chain
scenarios, the dataset exhibits severe class imbalance with |{¢ :
yi = 1,(2,y:) € Do} < i+ yi = 0,(xi,ui) € Dr}l,
where fraudulent transactions constitute a small minority of
the labeled data.

The objective is to learn a classifier f : R? — {0,1} that
effectively identifies fraudulent transactions across the entire
dataset X, leveraging both the limited labeled data in D, and
the abundant unlabeled data in Dy, while minimizing false
positives and maintaining computational efficiency for real-
time processing requirements.

The algorithm terminates when either the Fl-score im-
provement between iterations (AF'1;) falls below 0.001 or
the maximum number of iterations (10) is reached, ensuring
convergence while preventing overfitting.

B. Two-Phase Framework Overview

Our proposed methodology consists of two sequential
phases designed to address the key challenges in supply chain
fraud detection: computational scalability, class imbalance, and
limited labeled data availability. The framework architecture
is illustrated in Algorithm [I}

The complete two-phase learning framework is illustrated
in Figure 1, which provides a comprehensive overview of
our proposed methodology. The framework begins with the
DataCo dataset containing 180,519 transactions with a 1.5%
fraud rate. The data is partitioned into labeled (10%) and
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Fig. 1. Two-Phase Learning Framework combining Isolation Forest pre-filtering with self-training SVM refinement, achieving F1-score of 0.817 and 2.9%

false positive rate on DataCo dataset.

Algorithm 1 Two-Phase Learning Framework

Require: Dataset D, labeled subset Dy, unlabeled subset Dy, parameters ., Opqse,

Ensure: Refined fraud detection model ff;nai

: Phase 1: Isolation Forest Pre-filtering

: Train Isolation Forest model I F' on entire dataset D

: Compute anomaly scores: s; = I F(xz;) for all z; € D
. Calculate threshold: 7 = s + aos

: Create candidate set: Degndidates = i € Du
: Phase 2: Self-training SVM Refinement

. Initialize SVM classifier SV My using labeled data D,

: D(Lo) «— Dp,t+ 0

: while AF1; > 0.001 and ¢ < 10 do

10: Predict on candidates: §; = SV M¢(x;) for z; € Deandidates
11: Compute confidence: ¢; = | f(z;)|/ max; |f(z;)]

12: Calculate class-specific thresholds using Eq.g

13: Select high-confidence: Py = {(zi,9:) : ¢ci > 0y, }

14: Update labeled set: D(LH'l) = D(Lt) U Py

15: Remove from candidates: Degndidates < Deandidates \ Pt
16: Retrain: SV Myyq on Dg+1) with class weights

17: t—t+1

18: end while

19: return fg;pq; = SV M,

18, > T}
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unlabeled (90%) subsets to simulate realistic semi-supervised
scenarios. Phase 1 employs Isolation Forest for unsupervised
pre-filtering to identify potential fraud candidates, while Phase
2 utilizes self-training SVM for semi-supervised refinement
through confidence-based pseudo-labeling and iterative model
updates (Figure [I).

C. Phase I: Isolation Forest Pre-filtering

The Isolation Forest algorithm, proposed by Liu et al. [§],
operates on the principle that anomalies are easier to isolate
than normal instances. For a given transaction x;, the anomaly
score is computed as:

_ B(u(zy))
s(z;) =27 "™ ey

where E(h(x;)) represents the average path length of x;
over all isolation trees, and c¢(n) is the average path length
of unsuccessful search in a Binary Search Tree (BST) with n
points:

2(n—1) )
n

The threshold selection strategy employs an adaptive thresh-

old approach:

c¢(n)=2H(n—-1) —

T = s + o, (3)

where 115 and o represent the mean and standard deviation
of anomaly scores, respectively, and « is a sensitivity param-
eter.
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Fig. 2. As an example, the Supply Chain Transaction Space showing normal
transactions (blue circles) clustering densely while fraudulent transactions (red
X) appear as isolated outliers.

Figure [2] illustrates the conceptual foundation of Isolation
Forest applied to supply chain transactions. Normal trans-
actions form dense clusters, while fraudulent transactions
appear as isolated outliers requiring fewer partitioning steps
for separation.

D. Phase 2: Self-training SVM Refinement

The second phase employs a self-training Support Vector
Machine (SVM) approach to refine the fraud detection results
using both labeled and unlabeled data. The SVM classifier is
trained to learn the decision boundary:

f(z) = sign Z aiyi K (zi,2) +b “4)
i=1

The confidence measure for pseudo-labeling is based on the
distance from the decision boundary:



max; |f(z;)|

c(z;) = )

To address class imbalance during self-training, we employ
a balanced pseudo-labeling strategy inspired by the work of
Wei et al. [21]:

N,
00 abase =+ 6 IOg (Ntarget> (6)
where NN, is the current number of pseudo-labeled samples
for class ¢, and Nyq,.ge; is the desired target number of samples
for balanced representation.

We used an SVM with a radial basis function (RBF)
kernel, which is well-suited for capturing nonlinear patterns
in complex fraud detection tasks. The kernel parameter -~y
and the regularization parameter C' were selected using grid
search with 5-fold cross-validation performed exclusively on
the labeled training subset within each fold of the main 10-
fold evaluation. This nested cross-validation approach prevents
data leakage while ensuring robust hyperparameter selection.
The search space was defined as C € {0.1,1,10,100}
and v € {0.001,0.01,0.1,1}. The combination yielding the
highest average F1-score was chosen for final model training.

IV. EXPERIMENTAL SETUP

All experiments were conducted on Google Colab’s free
tier (Intel Xeon 2.20GHz CPU, 12.7GB RAM) without GPU
requirements, ensuring accessibility for reproduction.

A. Dataset

We evaluated our proposed two-phase learning model on the
DataCo Smart Supply Chain Dataset [7], containing 180,519
transactions (2015-2018) with 1.5% fraud rate and 52 features
covering comprehensive supply chain operations across multi-
ple countries. We employed stratified 10-fold cross-validation
with 10% labeled data per fold, maintaining original class dis-
tribution, along with standard feature preprocessing including
missing value imputation, categorical encoding, and numerical
standardization.

B. Evaluation Metrics

Given the class imbalance inherent in fraud detection, we
employed multiple evaluation metrics (Precision, Recall, F1-
Score, AUC-ROC, AUC-PR, FPR) with statistical significance
testing via Wilcoxon signed-rank test. We compared our
approach against six baselines: Isolation Forest [8], SVM,
Random Forest [[13]], XGBoost [4], Semi-supervised SVM, and
Ensemble Method [23]]. The Semi-supervised SVM baseline
differs from our Phase 2 by operating without pre-filtering and
using fixed confidence thresholds instead of our adaptive class-
balanced approach (Eq. [6). All methods used identical 10%
labeled data splits, prioritizing interpretable methods suitable
for real-time deployment.

C. Experimental Protocol

1) Labeled/Unlabeled Data Split: For our semi-supervised
learning experiments, we simulated realistic scenarios with
limited label availability. Within each fold of the 10-fold
cross-validation, the training portion (approximately 162,467
transactions per fold) was split such that 10% served as labeled
data (Dy, with 16,247 samples per fold), while the remaining
90% ( 146,220 transactions per fold) formed the unlabeled
set Dy. The labeled subset maintained the original class
distribution with approximately 1.5% fraud rate. To assess the
robustness of our approach under varying supervision levels,
we repeated experiments with 5%, 10%, and 20% labeled data
ratios within each fold.

2) Hyperparameter Settings: The following hyperparame-
ters were determined through systematic experimentation on
a validation subset. For the Isolation Forest parameters, we
set the number of trees to 100 with a subsample size of
256. The contamination factor was strategically set to 0.05
(5%) rather than the dataset’s actual fraud rate of 1.5% to
account for potential underreporting of fraud cases and to
improve recall by capturing borderline anomalous transactions
that may represent sophisticated fraud attempts. The sensitivity
parameter a = 1.5 (Eq. [3) was chosen to balance between
false positives and detection accuracy.

For self-training SVM, we set Op,sc = 0.85, 8 = 0.3
(Eq. @), and Nygrger = 0.5x|Dy| per class. The algorithm runs
for maximum 10 iterations with convergence when |P;| < 50
or Fl-score change < 0.001.

3) Feature Engineering Pipeline: The 52 features from
the DataCo dataset underwent comprehensive preprocessing
through a four-stage pipeline.

First, missing value imputation used domain-specific strate-
gies: median values within product categories for numerical
features, mode imputation with “Unknown” category for rare
categorical values, and forward-fill for sequential missing dates
in temporal features.

Second, feature encoding included one-hot encoding for
categorical variables with < 10 unique values, target encoding
for high-cardinality features (e.g., Customer City), and cyclical
encoding for temporal features (day of week, month) to
preserve circularity.

Third, feature scaling normalized continuous features to
zero mean and unit variance using StandardScaler, percentage-
based features to 0-1 range using MinMaxScaler, and log-
transformed skewed financial metrics (sales, profit) to handle
outliers.

Finally, feature selection removed 3 features with > 80%
missing values (Customer Zipcode, Product Description, and
Order Zipcode) and eliminated 2 highly correlated features
(Pearson r > 0.95): Order Item Total and Sales per Customer
(both highly correlated with Sales), resulting in 47 final
features (52 - 3 - 2 = 47) that ensure data quality and
computational efficiency for fraud detection.



PERFORMANCE COMPARISON ON DATACO SUPPLY CHAIN DATASET (10-FOLD CV)

TABLE I

Method Precision Recall F1-Score AUC-ROC AUC-PR

Isolation Forest 0.487 + 0.021 0.524 + 0.019 0.505 + 0.018 0.842 + 0.012 0.187 + 0.015
SVM 0.673 £ 0.018 0.612 + 0.022 0.641 £ 0.019 0.883 £ 0.010 0.284 £ 0.014
Random Forest 0.761 £ 0.015 0.694 + 0.017 0.726 + 0.014 0.908 + 0.008 0.367 + 0.012
XGBoost 0.782 + 0.013 0.703 + 0.016 0.740 £ 0.013 0.915 £ 0.007 0.389 + 0.011
Semi-supervised SVM 0.794 £ 0.012 0.721 £ 0.015 0.756 + 0.012 0.921 £ 0.006 0.412 £ 0.010
Ensemble Method 0.807 + 0.011 0.738 £ 0.014 0.771 £ 0.011 0.926 + 0.006 0.428 + 0.009

Two-Phase (Ours)

0.856 + 0.008*

0.782 + 0.010*

0.817 + 0.007*

0.943 + 0.005*

0.486 = 0.009*

* Indicates statistically significant improvement over all baselines (Wilcoxon signed-rank test, p < 0.05).

V. RESULTS AND DISCUSSION
A. Overall Performance Comparison
Our two-phase approach significantly outperforms all base-
lines (Table , achieving Fl-score of 0.817—a 6.0% im-
provement over the best baseline. Wilcoxon signed-rank tests

confirm statistical significance (p < 0.05) across 10-fold cross-
validation.

TABLE I
DETAILED PERFORMANCE ANALYSIS OF TWO-PHASE APPROACH

Metric Value
Precision 0.856 + 0.008
Recall 0.782 + 0.010
F1-Score 0.817 + 0.007
False Positive Rate 0.029 + 0.004
AUC-ROC 0.943 + 0.005
AUC-PR 0.486 + 0.009
Training Time (seconds) 143.5 £ 12.7
Inference Time (ms/transaction) 24 +£04

Memory Usage (GB) 3.8
Total Transactions Processed 180,519

B. Detailed Performance Analysis

Table [T shows detailed performance metrics, demonstrating
excellent precision-recall balance (0.856/0.782) with a low
2.9% false positive rate crucial for practical deployment.

TABLE III
COMPUTATIONAL EFFICIENCY COMPARISON

Method Train Infer. Mem. Complex.
(s) (ms)  (GB)

Full SVM 432.8 3.8 11.9 o(n?)

Semi-sup. SVM  387.5 3.5 10.5 o(n?)

XGBoost 214.3 2.1 8.7 O(nlog n)

Ensemble 298.6 42 10.3 O(n log n)

Ours 143.5 24 3.8 O(nlogn)

Our approach achieves 67% training time reduction, 68%
memory reduction (11.9GB—3.8GB), and O(n log n) scala-
bility (Table [III).

C. Ablation Study

Table [[V| shows the performance improvement through self-
training iterations. The iterative process demonstrates consis-
tent improvement from the initial F1-score of 0.695 to 0.817,

TABLE IV
PERFORMANCE IMPROVEMENT THROUGH SELF-TRAINING ITERATIONS
ON DATACO DATASET

Iteration F1-Score AF1 Precision Recall
0 (Initial) 0.695 - 0.742 0.653
1 0.743 0.048 0.789 0.702
2 0.781 0.038 0.823 0.744
3 0.817 0.036 0.856 0.782
4 0.817 0.000 0.856 0.782

with the largest gain (0.048) in the first iteration when high-
confidence pseudo-labels are incorporated. The diminishing re-
turns pattern (0.038, 0.036) validates our convergence criteria,
achieving stability at iteration 4 without overfitting.

D. Hyperparameter Sensitivity Analysis

We evaluated the sensitivity of our approach to key hyper-
parameters. Table [V| shows Fl-score variations:

TABLE V
HYPERPARAMETER SENSITIVITY ANALYSIS

Parameter Range Tested F1-Score Range
a (IF threshold) [1.0, 2.0] 0.803 - 0.817
Opase (confidence) [0.80, 0.90] 0.809 - 0.817
[ (class balance) [0.2, 0.4] 0.811 - 0.817

The results demonstrate robustness to parameter variations,
with F1-score fluctuations within 1.7% across reasonable
parameter ranges.

E. Performance with Varying Labeled Data

As mentioned in Section 4.3, we evaluated our approach
with different percentages of labeled data to assess its robust-
ness under varying supervision levels. Table presents the
results:

Results show strong performance with only 5% labeled
data (Fl-score 0.773), with diminishing returns beyond 10%
indicating effective unlabeled data utilization.

While SVM with RBF kernels provides good performance,
the decision boundaries are not easily interpretable. For sup-
ply chain managers requiring explanations, we recommend
extracting decision rules from the support vectors or using



TABLE VI
PERFORMANCE WITH VARYING LABELED DATA PERCENTAGES

Labeled % Precision Recall F1-Score

5% 0.812 £ 0.011 0.738 £0.013  0.773 £ 0.010
10% 0.856 £ 0.008 0.782 £ 0.010  0.817 = 0.007
20% 0.867 £ 0.007  0.791 £ 0.009  0.827 + 0.006

LIME/SHAP for post-hoc explanations. The Isolation Forest
phase provides some interpretability through anomaly scores
that indicate deviation from normal patterns.

E. Limitations and Failure Modes

While our approach demonstrates strong performance, sev-
eral limitations warrant discussion:

o Concept Drift: Our current framework assumes static
fraud patterns. In practice, fraudsters continuously evolve
their techniques. Future work will incorporate online
learning capabilities.

o Failure Modes: Our approach may underperform when:
(1) fraud patterns deviate significantly from anomalous
behavior assumptions, (2) the unlabeled data contains a
higher fraud rate than expected, affecting pseudo-labeling
quality, or (3) feature distributions shift dramatically
between training and deployment.

o Cost-Sensitive Considerations: While we report a 2.9%
false positive rate, the business impact varies by con-
text. In high-value transactions, even this rate could be
costly. Future work should incorporate domain-specific
cost matrices to optimize for business objectives rather
than purely statistical metrics.

VI. CONCLUSIONS

This research introduces a two-phase learning model com-
bining Isolation Forest pre-filtering with self-training SVM
refinement for supply chain fraud detection. Our approach
addresses class imbalance, limited labeled data, and com-
putational scalability challenges, achieving an Fl-score of
0.817 with 2.9% false positive rate on the DataCo dataset.
The framework reduces training time by 67% and memory
usage by 73% compared to traditional methods, demonstrating
that hybrid machine learning techniques can provide robust,
practical solutions for complex supply chain environments
with scarce labeled data. These computational efficiency gains
enable real-world deployment in large-scale systems while
maintaining reliable fraud detection.

Future work will develop online learning capabilities for
adapting to evolving fraud patterns and explore graph-based
methods to capture complex supply chain relationships.

DATA AVAILABILITY

The implementation is publicly avail-
able at: https://colab.research.google.com/drive/
1eIWYQbhuCgcaQ6p4JZJJ12BZhF6cQOC-z. The DataCo
dataset is accessible from Mendeley Data [7].
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