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Abstract—Provenance graph-based intrusion detection systems
are deployed on hosts to defend against increasingly severe Ad-
vanced Persistent Threat. Using Graph Neural Networks to detect
these threats has become a research focus and has demonstrated
exceptional performance. However, the widespread adoption of
GNN-based security models is limited by their inherent black-box
nature, as they fail to provide security analysts with any verifiable
explanations for model predictions or any evidence regarding the
model’s judgment in relation to real-world attacks.

To address this challenge, we propose PROVX, an effective
explanation framework for exlaining GNN-based security models
on provenance graphs. PROVX introduces counterfactual ex-
planation logic, seeking the minimal structural subset within a
graph predicted as malicious that, when perturbed, can subvert
the model’s original prediction. We innovatively transform the
discrete search problem of finding this critical subgraph into
a continuous optimization task guided by a dual objective of
prediction flipping and distance minimization. Furthermore, a
Staged Solidification strategy is incorporated to enhance the
precision and stability of the explanations.

We conducted extensive evaluations of PROVX on authoritative
datasets. The experimental results demonstrate that PROVX can
locate critical graph structures that are highly relevant to real-
world attacks and achieves an average explanation necessity
of 51.59%, with these metrics outperforming current SOTA
explainers. Furthermore, we explore and provide a preliminary
validation of a closed-loop Detection-Explanation-Feedback en-
hancement framework, demonstrating through experiments that
the explanation results from PROVX can guide model opti-
mization, effectively enhancing its robustness against adversarial
attacks.

I. INTRODUCTION

System-level detection of Advanced Persistent Threat (APT)
is a significant challenge in modern cybersecurity. To counter
these threats, which are characterized by long dormancy
periods and complex attack chains, the research community
has recently focused on the host interior, leveraging operating
system audit logs to capture and represent the complete causal
fabric of system execution (Fig. 1)!. By constructing discrete
log entries into a provenance graph—where system entities
(e.g., processes, files) are nodes and their causal relationships
(e.g., fork, read, write) are edges—a structured view that
clearly depicts the complete causal chain of system activities

I As of the submission of this article, some articles from 2025 may not be
included in the statistics because they have not been fully published.
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Fig. 1. Statistics on the number of security conferences on provenance graph
detection from 2016 to 2025 [1]-[11], [14]-[16], [18]-[26], [28]-[52].

is provided for Provenance-based Intrusion Detection Systems
(PIDS) [1]-[27].

Analyzing provenance graphs to detect malicious activity
is a core task of PIDS. Early research efforts included rule-
based methods that use predefined attack pattern templates for
subgraph matching [2], [10], [23], and statistics-based anomaly
detection based on macroscopic graph features (e.g., graph
degree, centrality) [3], [4], [53]. However, these methods are
highly dependent on prior knowledge or hard to distinguish
between normal recordings and previously unobserved but
semantically related activity, and often perform poorly in real-
world environments with vast and noisy log data. Conse-
quently, the research community’s focus has gradually shifted
to learning-based methods, which can automatically learn and
represent the deep patterns in graph-structured data. The core
principle of these methods is to train a model that maps system
entities and their relationships into low-dimensional vector
representations (i.e., embeddings), thereby capturing complex
patterns to distinguish between benign behaviors and malicious
attacks [7], [12], [16], [17], [20], [21], [24], [26], [50], [54],
[55].

The graph structure of provenance graphs makes them natu-
rally suitable for analysis using graph representation learning.
In recent years, using Graph Neural Networks (GNNs) to
detect APTs on provenance graphs has become a research
hotspot. As shown in TABLE I, a large number of related
research results have emerged in top cybersecurity confer-
ences. By designing various graph embedding and aggregation
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strategies, these studies have shown excellent performance in
anomaly detection in provenance graphs.

However, despite the detection efficacy achieved by GNNss,
their opaque, black-box nature severely limits security anal-
ysis, creating a fundamental crisis of trustworthiness and
usability [52], [56], [57]. The model’s output fails to provide
human operators with any verifiable explanations for its pre-
dictions or any evidence related to a real attack, leading to a
significant trust deficit. For a security analyst, an alert without
an explanation is nearly unactionable. When a security model
merely outputs a malicious label, it leaves a significant gap
between the analyst and an executable response. The analyst
cannot know: Was this alert triggered by a genuine, novel
0-day attack, or is it merely a false positive generated by
the model for an anomalously behaving benign administrator
script? This opacity not only consumes immense analytical
effort and delays critical incident response times but also
fundamentally erodes human trust in automated systems, pre-
venting them from being entrusted with critical responsibilities
in real-world security operations. This has become a core
bottleneck hindering advanced AI technologies like GNNs
from realizing their full potential in the security domain.
Moreover, adaptive and feedback loops post-detection are
severely lacking in existing work, which casts doubt on the
usability of PIDS in real-world environments.

While existing research [58]-[63] has begun to discuss GNN
decision-making and provide human-understandable explana-
tions, work on model interpretability remains scarce in the
security domain, primarily focusing on binary analysis [64]
and code vulnerability detection [65]—-[67]. For APT detection,
such work is even rarer and is concentrated on fact-based
explanation methods, which source evidence from empirical
input data to justify a specific outcome. Current approaches
either use surrogate models to indirectly explain the security
model [68] or exploit the change in permutation importance
to identify a subset of anomalies that may have led to the
detection [69]. However, analysts remain uncertain about the
actual impact of the entities and interactions that constitute the
explanation subgraph, casting doubt on the results.

In this paper, we design and implement PROVX, a counter-
factual explainer for GNN-based detection models on prove-
nance graphs. PROVX is designed to answer the question:
“For an attack graph classified as malicious, what is the most
critical combination of nodes or edges that, had they not
occurred, would have flipped the model’s prediction?” This
approach intuitively highlights for the analyst the root cause
of the alert. Furthermore, we explore the potential of a closed-
loop enhancement framework that progresses from Detection
to Explanation, and finally to Feedback, where explanations
guide model optimization.

In terms of design, the core idea of PROVX is to ingeniously
transform the discrete problem of graph structure edit search
into a continuous optimization task. Specifically, modifications
to the graph structure are achieved by learning a numerically
differentiable edge perturbation mask that shares the same
dimensions as the graph’s adjacency matrix. This learning

TABLE I
ANALYSIS OF SOME OF THE RESEARCH ON PROVENANCE DIAGRAMS THAT
HAVE ATTRACTED ATTENTION IN RECENT YEARS.

System Time Encoder Decoder Adaption
SLEUTH [23]' 2017 - - X
NoDozEe [4]? 2019 - - X
SIGL [19] 2021  Graph LSTM MLP X
ATLAS [7] 2021 LSTM+CNN - X
THREATRACE [17] 2022 GraphSAGE
SHADEWATCHER [21] 2022  TransR+GNN  Inner Product
MAGIC [18] 2024 GAT GAT+MLP
KAIROS [20] 2024 TGN MLP X
R-CAID [24] 2024 GAT - X
FLASH [26] 2024 GraphSAGE XGBoost X
SLor [50] 2025 GCN+RL MLP X

! SLEUTH builds rules based on typical or specific APT patterns and matches
these rules to detect.
2 NoDOZE measures anomalies based on the frequency of related events.

process is guided by a dual-objective optimization framework:
one is the Prediction Flip Loss, which drives the model
to find structural changes sufficient to reverse the original
malicious prediction; the other is the Mask Distance Loss,
which ensures that modifications to the graph are as minimal
as possible, thereby locating the most critical, core set of
key edges. Finally, PROVX introduces an innovative Staged
Solidification strategy. In the later stages of training, this
strategy locks in the importance of edges that have become
clear and penalizes optimization attempts that deviate from
this trend, thereby significantly enhancing the stability and
clarity of the explanation results. Ultimately, The framework is
able to achieve prediction flipping and output high-confidence
counterfactual explanations in a minimal perturbation scheme
based on the three most widely used PIDS basis models.

We evaluate the performance of PROVX on the widely
used and authoritative APT datasets, DARPA E3 [70] and
DARPA OpTC [71]. These datasets contain real-world attacks,
allowing for a realistic reflection of our explainer’s capabili-
ties. We design experiments to measure the relevance of the
explanation results to the actual ground truth, and we use
the Probability of Necessity (PN) to evaluate the necessity
of the explanations output by PROVX. We conduct extensive
performance analyses, hyperparameter analyses, and overhead
analyses, and compare PROVX with state-of-the-art explainers.
The experimental results demonstrate that PROVX outperforms
existing methods on most metrics. Finally, we design an
adversarial attack scenario, explain the resulting evasive attack
graphs, and explore the potential of a feedback mechanism
between the explainer and the detector. In summary, this paper
makes the following contributions:

e We propose PROVX, an explainer for the domain of
APT detection on provenance graphs, designed to provide
explanations for the judgments of black-box security
models that are understandable to security analysts.

e Distinct from existing works, PROVX is based on a
counterfactual explanation mechanism, transforming the
explanation problem into a search for the minimal struc-



tural subset that can subvert the security model’s predic-
tion. It also incorporates a novel Staged Solidification
mechanism to ensure the stability and clarity of the
explanations.

e We explore and validate a closed-loop enhancement
framework from detection to explanation and back to
feedback. Experiments demonstrate that the explainer can
enhance the robustness of the model against adversarial
attacks under the guidance of security analysts.

e We conduct extensive evaluations on widely recognized
APT datasets, validating both the relevance of PROVX’s
explanations to real-world attacks and the necessity of
these explanations. We compare PROVX with SOTA
explainers, and the necessity of explanation on three GNN
models is 7.75%, 15.91% and 34.05% higher than the
SOTA average level.

II. BACKGROUND AND MOTIVATION

A. Background and Related work

1) System Provenance: System provenance techniques are
widely adopted in academia to conduct attack investigations on
large-scale audit logs from hosts. Specifically, by constructing
audit logs into provenance graphs (the construction method of
which can be referred to in XI), we can obtain a more intuitive
and information-rich representation of system execution pro-
cesses. Leveraging provenance graphs, security analysts can
perform causal analysis on system activities, thereby enabling
intrusion detection and security event attribution. Based on
the utilization of data provenance, current research primarily
focuses on learning-based PIDS.

In recent years, the effectiveness of PIDS employing Deep
Learning techniques, especially in defending against APT, has
been demonstrated. Notably, even systems that demonstrate
excellent performance in detecting APT—such as UNICORN
[16], which utilizes graph sketching techniques and evo-
lutionary behavior modeling to detect APT; KAIROS [20],
which employs a GNN-based encoder-decoder architecture to
quantify the abnormality of system events and reconstruct
attack footprints; MAGIC [18], which leverages mask graph
representation learning to model benign system entity behav-
iors and achieve high-precision multi-granularity detection;
and FLASH [26], Word2Vec-based semantic encoding of the
basic semantics of the audit log, and learning using Graph-
SAGE—often suffer from their black-box nature, making
it difficult for analysts to gain insight into their decision-
making rationale. In the latest work [52], [57], multiple works
including MAGIC, KAIROS and FLASH were systematically
analyzed, and this phenomenon was keenly confirmed. Since
human experts cannot directly comprehend the learning logic
of these black-box models, they often rely on post-detection
manual review to locate the cause of attacks, which incurs
significant time and economic costs. In view of this, there is
an urgent need for an PIDS explainer oriented towards APT
scenarios to provide security analysts with more instructive
security insights.

2) Explanations generated for security models: In the field
of eXplainable Artificial Intelligence (XAI), researchers have
recently focused on generating understandable GNN explana-
tions for human experts. For instance, fact-based explainers
such as PGExplainer [59], SubgraphX [60], and GNNEx-
plainer [58] generate explanations by probing the internal
mechanisms of GNNs to identify critical edges, nodes, or im-
portant substructures. However, the depth of these explanations
is limited to “which input features the model’s current decision
relies on”.

Furthermore, it is noteworthy that despite the increasing
application of GNNs in the security domain, research on
the interpretability of these security models has not received
adequate attention. Particularly in the field of APT detection,
related research is especially scarce, and existing studies have
their respective limitations. For example, [69] systematically
perturbs the analyzed provenance graph and continuously
observes how the anomaly score output by the target APT
detection model changes to derive explanations. However,
limited by the fidelity of the explanations and the constraints
of fact-based explainers, the authors eventually had to concede
that not all perturbation strategies are universally applicable.
[68] pioneered the exploration of using interpretable surrogate
models (e.g., decision trees) to provide instance-level factual
explanations. However, this approach relies on customized,
specific graph structures and uses simple machine learning
models as substitutes for GNNs. These explanation methods
are still not intuitive or sufficient, cannot directly reveal the
direct reasons for security model judgment, and are not easy
to understand. In this paper, we focus on the graph-level
explanation task and use various industry-standard graph neu-
ral network models to model provenance graphs and provide
trustworthy explanations that are easy to analyze.
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Fig. 2. Analysis of embedding distribution of benign and malignant subgraph
patterns.

B. Explanation Necessity and Motivating Example

1) Key Observation: At the beginning of the research, we
performed a simple division and processing of PG to obtain
several smaller traceability subgraphs, each representing a
specific attack pattern or benign behavior, hoping to find some
clues from them. An interesting and key observation is that the
structure of attack-prone subgraphs differs significantly from
that of purely benign subgraphs. In contrast, their semantic
properties do not show such obvious differences.
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Fig. 3. An attack example from DARPA E3 Trace and how to make
counterfactual explanations, (i)-(iv) represent different situations in different
counterfactual reasoning, which will lead to two results, the model predicts
Not Flip or Prediction Flip.

Specifically, Fig. 2 shows the TSNE comparison of be-
nign and malicious subgraphs extracted from multiple real
APT datasets in terms of semantic similarity and structural
similarity. To calculate semantic similarity, we encode the
textual attributes of each node in the subgraph (e.g., process
name, username, command line parameters, file path, IP
address, etc.), aggregate the resulting vectors into a graph-
level representation, and then compare the cosine similarity
between graphs. For structural similarity, we randomly gen-
erate node features and use GNNs to learn embeddings. The
results clearly show that structural features are more helpful in
distinguishing APT attack behaviors than semantic attributes
of system entities. This finding is also confirmed by mature
network security frameworks such as Kill Chain and ATT&CK
[72]. In summary, topological structure is an important basis
for guiding our efforts to mine and understand malicious attack
patterns.

2) Counterfactual explanations for provenance graphs: We
use the APT attack shown in the Fig. 3 as a driving example
for illustration. This instance originates from an attack segment
within the DARPA TC Trace dataset. In this scenario, the
attacker infiltrates the target host via a browser extension
named pass_mgr and subsequently executes the gtcache
program. gtcache then establishes communication with the
attacker’s Command and Control (C&C) server. Its primary
objective is to scan the host for sensitive information and
operate on the /ztmp directory, preparing for subsequent
attack stages. For clarity in the subsequent discussion, each
system entity in the figure has been numbered.

In the above attack, using existing fact-based explainers,
taking SubgraphX as a nexample, typically identifies a sub-
graph that contributes significantly to the malicious prediction,
for example: “The structure formed by nodes @, @, @,
(7 and is crucial to the predicted outcome”. However,
this explanation can still be confusing for security analysts.
It merely identifies a suspicious area but fails to reveal the
root cause or critical turning point that led the model to

conclude an attack. A key question remains: How do system
interactions within this crucial subgraph influence the security
model’s judgment? In fact, rather than determining whether a
set of edges is crucial, finding some core operations is the real
explanation requirement.

Therefore, we adopt a counterfactual explanation approach
to explore various hypothetical structural changes (as shown
in (i), (ii), (iii), and (iv) in Fig. 3). Our goal is to investigate:
after what structural modifications to the original provenance
graph will the detection system make a prediction opposite to
the original one. For instance:

o (1) After deleting edges @—@ and @—@ (representing
partial interaction between pass_mgr and sh), the sub-
graph’s predicted outcome is still “attack”. This suggests
that the operation of pass_mgr on sh represented by
@-@ may have malicious tendencies, but its individual
effect is not the fundamental reason for the system
classifying the entire subgraph as malicious.

e (ii) and (iii) Modifications similar to these might also
yield comparable results.

o However, in (iv), if both edge @-@ (interaction between
pass_mgr and sh) and edge @-@ (execution of
gtcache by pass_mgr) are deleted, the detection
system flips the predicted outcome to “benign”. This
counterfactual result reveals the critical significance of the
pass_mgr executing gtcache operation in the security
determination, and also indicates that the interaction
between pass_mgr and sh is likewise an important
part of the malicious topological structure learned by the
detection system.

This type of explanation, independent of the ground truth,
can assist security analysts in overcoming the limitations of
black-box models, thereby obtaining a more thorough and
easily understandable analysis of the detection results.

III. PROBLEM FORMALIZATION
A. Definition

We define key designs and notations for the task. Assume
we have N provenance subgraphs {Gi,G2,Gs,...,Gn},
where each subgraph Gy, corresponds to a ground truth label
Y;, € {0,1}. Here, 0 indicates that all system entities within
the subgraph are benign (i.e., the subgraph is benign), while
1 indicates the presence of malicious system entities (i.e., the
subgraph contains at least one stage of an APT attack).

For model selection, we use GNN to learn from source
subgraphs. The learned embeddings are then fed into a simple
downstream classifier to perform the attack prediction task on
these source subgraphs. During the testing phase, we use the
trained security model f(-) to predict the probability for each
subgraph G, and obtain its predicted outcome V.

The counterfactual explainer aims to analyze and output
the minimal structural information that causes the security
model’s prediction to flip. For a subgraph G}, we introduce
a small perturbation to generate its counterfactual instance
Gy. Note that the predicted class for this instance by the



security model is opposite to the original prediction, i.e.,
f(G) # f(Gy). Our objective is to minimize the difference
between the perturbed subgraph and the original subgraph,
such that the prediction flips. The mathematical definition is
as follows: B

min d(Gk7 Gk),

o, (1)

s.t., ffk 7é Yk

B. Threat Model and Explaination Principle

In our threat model setting, we assume that attackers will
leave traceable behavioral patterns and attack traces in the
audit logs of the target system. These traces enable the security
model we construct to effectively distinguish between mali-
cious attack activities and normal benign system behaviors.
Similar to other related research [2], [9], [15], [16], we
presume that the data collected by audit logging tools is
complete and acquired on top of a Trusted Computing Base
(TCB). This assumption ensures the reliability and authenticity
of the provenance graphs we construct [73], [74].

Regarding the evaluation of the explanation results, we will
refer to the method in [17], [18], [26], [50] and use public
documents containing real attack annotations as the basis for
evaluating the accuracy of the explanation. Considering the
increasing prevalence of adversarial attacks in the current field
of network security, we also carefully evaluate the performance
changes of the explanation method proposed in this paper
when facing the attack mode that has been obfuscated or ad-
versarially modified. The relevant discussion and experimental
results will be presented in detail in the experimental part VII
of this paper.

IV. PROVENANCE DETECTION

Our explainer is built upon an efficient APT detection
model, and here we define our graph-level detection task.
Given host audit log data, which is constructed into a prove-
nance graph containing system entities and their interaction
information, the goal of provenance detection is to utilize
a GNN to analyze this graph and determine if it represents
APT activity. This process aims to identify key patterns or
substructures within the provenance graph that are related to
APT behavior.

Existing detectors use GNNs for autoencoding [18], semi-
supervised detection [50], and others. However, ProvX only
handles downstream detection tasks, so we simply map APT
detection to a GNN-based subgraph classification task. Specifi-
cally, we focus on particular structures within provenance sub-
graphs (e.g., suspicious processes, abnormally accessed files,
or interactions between critical system events) and attempt
to classify these structures and their local environments to
determine if they are involved in malicious activities.

Next, we detail the steps of provenance detection:

(1) Provenance Graph Construction. Host audit logs are
first processed and converted into a provenance graph Gj,ost =
(V, E), where nodes V represent system entities or events that
occur, and edges E represent causal dependencies between

these entities (e.g., a process creating a file, a process sending
data over the network, etc.). This provenance graph Gjost
serves as the basis for subsequent subgraph extraction.
(2) Subgraph Extraction. We use an improved Louvain [75]
algorithm to extract appropriately sized malicious and benign
provenance subgraphs. Notably, benign subgraphs consist en-
tirely of benign system entities, while malicious subgraphs
depict attack processes with a mix of benign and malicious
entities. In our modified Louvain algorithm, some important
“hub” nodes will be allowed to appear redundantly across
various provenance subgraphs to ensure event completeness.
We extract N provenance subgraphs {G1, G2, Gs,...,Gn},
where each subgraph G}, corresponds to a ground truth label
Y. € {0,1}. Here, 0 indicates that all system entities within
the subgraph are benign (i.e., the subgraph is benign), while
1 indicates the presence of malicious system entities (i.e., the
subgraph contains at least one stage of an APT attack).
(3) Provenance Detection. The goal of provenance detec-
tion is to predict a label for each extracted subgraph Gy,
indicating whether this local system behavior is APT-related.
By inputting the provenance subgraphs into GNN models, we
learn a mapping function f(-) to get the predicted probability
P(c|G}). The final result label Yx for Gy, is determined by
chosing the highest probability:

Y, = arg max P(c|Gy). 2)
ce{0,1}

Graph Neural Networks: For model selection, we will
adopt standard GNN model frameworks widely used in the
industry (including GCN, GAT and GraphSAGE). It should
be emphasized that the security model used for attack detection
is only an auxiliary tool to help us screen and locate the
source subgraphs containing suspicious activities (i.e. potential
attacks) and determine the predicted flips. Readers can replace
any other GNN-based detection model; the in-depth explana-
tion of the decision-making mechanism of the trained security
model is the core and innovation of our research.

V. DESIGN OF PROVX

In this section, we propose PROVX, a counterfactual expla-
nation framework for provenance graphs, which comprises the
following three components:
® Provenance Subgraph Perturbation(V-A). To perform
structural changes on the provenance subgraph, we represent
perturbations to the provenance graph by learning adjustable
edge masks, thereby transforming the discrete graph edit
search problem for counterfactual changes into a continuous
mask learning task.
® Counterfactual Reasoning(V-B). We seek a minimal
graph perturbation scheme that can explicitly flip the security
model’s original judgment of an APT threat. PROVX con-
structs a dual optimization objective framework comprising a

21t is worth noting that most of the custom models in these works [17],
[18], [21], [24], [26], [50] are also based on these basic GNN architectures.
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Fig. 4. PROVX working mode. Provenance detection is the upstream task
of PROVX. PROVX explains the detected malicious provenance subgraphs.

threat misclassification guidance loss and an attack path min-
imal perturbation loss, and introduces a staged solidification
strategy to focus on core attack elements.

® Generate Explanations(V-C). After the above optimization
learning process, we sort the final edge masks according
to their importance and transform them into independent
counterfactual subgraphs to obtain a complete explanation.

A. Provenance Graph Perturbation

Since APT attacks often involve meticulously planned
event sequences and concealed dependencies, PROVX ex-
plores variations in both the provenance graph structure (i.e.,
dependencies and correlations between system events) and
entity/behavioral features, its objective is to alter the edge
structure of the original provenance subgraph to simulate
various obfuscation and evasion strategies that attackers might
employ. We focus on perturbing system entity interactions.
For a provenance subgraph G, its adjacency matrix is Ay €
{0,1}™*™, where O represents the absence of an entity pair
and 1 represents its presence.

PrROVX employs an edge masking method to derive a
perturbed graph Gy by masking edges of the original prove-
nance subgraph G;. Specifically, we achieve graph structure
perturbation by learning a differentiable, continuous-valued
edge mask parameter matrix M; € R™*™ with the same
dimensions as Ag(where n is the number of nodes in the
provenance graph). The perturbed adjacency matrix Ay is
formulated as follows:

Ay = Ay © My, 3)
where Mj, € {0,1}™*™ is a binary edge mask matrix, and ®
denotes element-wise multiplication. If an element My ;;, it
indicates that the edge (i,j) is masked in Aj. Considering
that directly learning the binary edge mask matrix My is
non-differentiable, we relax M, to continuous real values, ie.,
M, € R™ ", then,

Ay = Ay, © a(My), (4)

where o(-) denotes the sigmoid function, which maps the edge
mask to the range [0,1], enabling a smooth transition between

the presence and absence of edges. Consequently, starting from
a randomly initialized edge mask, M} can be optimized via
gradient descent.

B. Counterfactual Reasoning

We conduct counterfactual reasoning and learn masks for
the provenance subgraphs predicted by the security model as
malicious [66]. The core idea of our counterfactual reasoning
is to determine the minimum perturbation of the provenance
subgraph, which is achieved by establishing an optimization
task and optimizing the composite loss function. It is worth
mentioning that our counterfactual optimization task only
focuses on the learning of edge masks and does not involve
the learning of the GNN security model. The parameters in
the GNN security model are fixed.

The specific workflow is as follows: We perturb the target
provenance subgraph as described in section V-A to generate a
perturbed subgraph Gy, and input it together with the original
subgraph G, into the well-trained GNN-based security model
we built in the previous article to generate the corresponding
prediction results, which are:

Vi = GNN(4y), Yi = GNN(Ay). (5)

We learn the edge mask M, based on the optimization
objective of the counterfactual reasoning problem to determine
the minimal counterfactual perturbation.The mask learning
process is achieved by minimizing a composite loss function
Lprovx over T training epochs. This loss function simulates
the trade-off between attempting to change the model’s pre-
diction (akin to an attacker evading detection) and minimiz-
ing modifications to the original activity logs (maintaining
provenance fidelity and the minimal perturbation principle).
It consists of a primary counterfactual loss Lcpx and a staged
solidification loss Ls.

1) Primary Counterfactual Loss: The guiding principle of

Lcrx is to find modifications to the provenance graph that can
effectively change the APT detection result while keeping the
perturbation as small as possible. Thus, Lcrx is made up of
two loss terms:
Prediction Flip Loss. The prediction flip loss Lpreq drives the
model to find a modification to the provenance graph such that
the modified graph is no longer classified under the original
threat category (i.e., is no longer considered an APT attack
behavior). We achieve this by minimizing the probability
corresponding to the original threat prediction Vi , which
encourages the model to significantly reduce its confidence
in the original threat assessment when faced with tampered
attack evidence chains:

Lprea = P(Vi, Ay). (6)

Mask Distance Loss. The mask distance loss Lgist aims
to ensure that the identified provenance graph modification,
which can change the model’s judgment, is as small as
possible. This means identifying only those most critical, core
activity segments or system interactions that an attacker would
most want to hide or exploit. If a masking scheme requires



modifying a large number of event correlations to make the
GNN model change its prediction, then this loss term will be
larger:

(N

Laist = BinaryCrossEntropy(a(M k), Ak)-

Get Primary Counterfactual Loss. We integrate the above
two loss terms into the primary counterfactual loss function to
optimize them collaboratively:

Lepx = - l:pred + (1 - Oé) - Laist ()
where « is responsible for regulating the trade-off between
the prediction loss term and the distance loss term. A higher o
prioritizes changes to counterfactual predictions at the expense
of larger perturbations, while a lower a focuses more on
minimizing graph modifications.

2) Staged Solidification: To provide security analysts with
clearer and more reliable insights into critical attack paths and
potential vulnerabilities, PROVX introduces a staged solidifica-
tion mechanism. This mechanism is controlled by a solidifica-
tion factor ~yg, a solidification stage starting ratio Rg € [0, 1],
and confidence thresholds 7., and 7p4p. Its core idea is
to further reinforce the judgment on event correlations that
have already been initially identified as extremely important
or unimportant for prediction flipping in the later stages of
explanation model training, making their contributions more
prominent.

The solidification process is activated after an initial ex-
ploratory learning phase, specifically starting from the T4t —
th epoch, and its strength is controlled by the solidification
factor ~g.

Mask Snapshot and Confident Edge Identification. At the
Tstart epoch the currently activated edge mask (sFemﬁcally
for o(M},) in the paper, denoted as M, by = Tatart)
recorded. Then, based on predefined low conﬁdence threshold
Tiow (confident threshold low) and high confidence threshold
Thigh (confident threshold high), two sets of edge indices are
identified:

<

« For low confidence edge index set lio, = {i|m%,,,;
Tiow } (edges whose mask values are already close to 0
in the snapshot),

« For high confidence edge index set Ipign = {j|m%,,, ; >
Thight (edges whose mask values are already close to 1
in the snapshot).

Solidification Penalty Application. For epochs ¢ > Tsiqr¢,
the solidification penalty Lg is calculated as follows:

Ls

Vs

iellow jelhigh

©))
This penalty term targets edges whose mask values already
showed a clear trend (approaching 0 or 1) at Ty, moment.
If these edges’ mask values deviate from their snapshot state
during subsequent training, they are penalized. This encour-
ages the mask values to consolidate towards O or 1.

Z (U(Mlifg)_mlsgnap,i)2+ Z (U(Mlgt;)_m];nap,j)2’

3) Final Loss: The total loss function Lprovx is the sum
of the counterfactual loss and the weighted solidification loss:

Lprovx = Lcrx +7s - L, (10)

where the ~g parameter is used to fix the weight of the
solidification loss.

C. Generating Counterfactual Explanations

In this phase, we generate intuitive security explanations
to answer for security personnel the predictions of the APT
detection model. After implementing counterfactual reasoning,
we will obtain a final set of event correlation masks M & . By
subtracting the mask values from 1 value, we can obtain the
contribution of each event correlation to flipping the GNN’s
original APT judgment. High-contribution event correlations
indicate that their corresponding edges should be removed;
these represent the critical behavioral links in the provenance
graph that, if successfully hidden, tampered with, or missed
by an attacker, are most likely to cause the GNN detec-
tion model to miss or misclassify an APT. Low-contribution
event correlations indicate their corresponding edges should
be retained. We select the top-K highest-contribution edges,
where K is a hyperparameter used to control the conciseness
of the counterfactual explanation. To highlight the impact
of structural properties on model predictions, we randomize
the nodes associated with these edges to avoid diluting the
influence of edges due to overly dense node interactions.
Our objective is to explain the change in the prediction by
modifying as few edges as possible. Finally, we extract the
subgraph formed by these K removed edges. This subgraph,
@z, is the core of the counterfactual explanation, stating:
“If these K edges were removed from the original graph,
then this provenance graph would not be predicted as an
APT attack.”. Such explanations will reveal the predictive
mechanisms of the security model and assist security analysts
in understanding the warnings output by PIDS.

VI. EXPLAINTION TO DETECTION FEEDBACK

Although PIDS are widely deployed, their robustness
against adaptive adversaries remains to be proven. When
a malicious activity successfully deceives a PIDS through
camouflage or obfuscation [47], causing it to be misclassified
as benign, we refer to it as a successful adversarial evasion.
This type of adversarial attack modify attack patterns to make
them behaviorally indistinguishable from benign processes.

The core capability of PROVX is to answer the question,
”Why is a certain behavior classified as malicious?”. However,
its counterfactual framework can also be extended to answer
a more challenging question: "Why is a malicious behavior
able to successfully evade detection?”. Therefore, we explore
a closed-loop enhancement framework guided by security
analysts and based on explanation feedback. By utilizing
PRrROVX as a forensic analyzer for adversarial behaviors, we
aim to explain the reasons for adversarial evasion and feed the
analysis results back to the detector to enhance its adversarial



ﬁ~ Attack Escape Explaine Attack
RS -5
= ==
GNNs ProvX
Retrain Feedback
-y
--------------- P —meee M

Fig. 5. Feedback Loop between Explainers and Detectors.

robustness. Unlike existing PIDSs that integrate adaption mod-
ule [17], [18], [21], our framework actively learns adversarial
patterns that induce false negatives, rather than focusing on
passively correcting false positives.

The framework’s design is formalized in Fig.5. When an
adversarial sample G4, evades the current security model
f(+), PROVX is tasked with a new objective: to find the mini-
mal structural perturbation, Gz, that would flip the model’s
prediction from “benign” back to “malicious”. This generated
explanation, Ge.p, represents the benign structural elements
used by the adversary to evade detection. This explanation
is then presented to a security analyst for verification, then,
security analyst will remove Gegp from Giq4, and retain the
remaining subgraph structure G5, for verification. This part
of the structure contains the malicious structure determined
by the model and mix with some benign noise. Upon con-
firmation, the Goq, and G.yi—along with their now-correct
malicious label—is added to a new set of training samples
together. This allows us to retrain two different adversarial
behaviors with more abundant data.

One noteworthy point is that our framework primarily
mitigates the risk of increasing false positives through analyst
verification, a step that influences the model to filter out
ambiguous or low-confidence explanations. Furthermore, fine-
tuning on the full graph structure, rather than completely re-
training on a dismantled subgraph, also helps reduce false pos-
itives while simultaneously feeding back adversarial strategies
to reduce false negatives. The effectiveness of this feedback
mechanism is quantitatively evaluated in Section VII-F.

VII. EVALUATION

In this section, we evaluate the effectiveness of PROVX
in explaining attacks. Our goal is to answer the following
research questions:

« RQI1. What is the relevance of the explanations generated
by ProvX to real-world attacks? (VII-B)

« RQ2. To what extent can PROVX explain the security
model’s predictions? (VII-C)

o« RQ3. What is the impact of hyperparameters on the
explanation performance of PROVX? (VII-D)

e RQ4. What is the overhead of PROVX? (VII-E)

« RQS. How does PROVX as an explainer help detect
adversarial threats? (VII-F)

A. Experimental Setup

1) Datasets: Consistent with existing APT detection works,
we conduct our experimental evaluation on two widely used
APT datasets: the DARPA TC (Transparent Computing pro-
gram) and the DARPA OpTC (Operationally Transparent
Cyber)?. The DARPA TC dataset [70] was collected during
adversarial engagements in a realistic environment. In these
scenarios, a red team employed various exploits and attack
techniques to compromise target hosts and obtain sensitive
information, while a blue team worked to detect attacks and
collect data on suspicious behavior through methods like host-
level auditing and causal analysis. DARPA TC targets specific
hosts for attack, and for our research, just like [18], we
select the Cadets, Theia and Trace scenarios. The DARPA
OpTC dataset [71] provides a broad view of benign and
malicious audit records from approximately 1,000 hosts. A
key reason for choosing these two datasets over others is their
enhanced realism and credibility, owing to their high-quality
ground truth. To improve training quality, we perform random
negative sampling on the scarce malicious behavior subgraphs
to obtain a balanced dataset. We split the data into training,
validation, and test sets at a ratio of 7:1:2. Please note that the
explainer provides explanations only for the detection model’s
predictions on the test set.

TABLE 11
DARPA OPTC DETECTION PERFORMANCE ON THREE GNNS.

GNN type | Acc Pr Rec F; AUC FPR!
GCN | 07379  0.5757 06340 0.6034  0.8006 0.2144
GAT | 09126 0.8464 0.8824 0.8640 0.9670  0.0735

GraphSAGE | 0.9404 09276 0.8791 0.9027 0.9784 0.0315

1 FPR (False Positive Rate), a detection system with a lower false positive
rate can better avoid false positive attacks during detection.

TABLE III
DARPA TC E3 DETECTION PERFORMANCE ON THREE GNNS.

GNN | Datasets | Acc Pr Rec Fq AUC FPR
Cadets 0.9972  0.9999 0.9286 0.9630 0.9938  0.0001
GCN Theia 0.9612  0.8491 0.7031 0.7692  0.8947  0.0127
Trace 0.9968 0.9778 0.9635 0.9706 0.9915 0.0013
Cadets 0.9944  1.0000 0.8571 0.9231 0.9647 0.0001
GAT Theia 0.9554 0.7705 0.7344 0.7520 0.9209 0.0222
Trace 0.9968 0.9850 0.9562 0.9704 0.9918  0.0009
Graph Cadets 0.9986  0.9999 0.9643 09818 0.9931 0.0001
SXEE Theia 0.9885 09828 0.8906 0.9344 09617 0.0016
Trace 0.9955 0.9701 0.9489 0.9594 0.9907 0.0017

2) Implementation Details: Here, we detail the implemen-
tation of our two main components:
GNN-based APT Attack Detection Model. We implemented
subgraph-level attack detection models based on GCN, GAT,
and GraphSAGE. In our design, each model is configured

3Existing PIDS based on provenance graphs all use one [21] or more [17],
[20] of these datasets to verify APT detection performance. Our work refers
to [18], [26], [50] and selects the above datasets.



with a 2-layer GNN architecture. Each GNN layer is followed
by a ReLU activation function and a Dropout layer. Then
an average pooling layer is applied to obtain the graph-level
representation and input it into the classifier. We use a simple
2-layer MLP (Multi-layer Perceptron) as the classifier, and the
final output of the model is a prediction score that distinguishes
benign and malicious subgraphs. We use the Adam optimizer
for optimization, with the number of iterations set to 50 and
the learning rate to 0.001. The test performance of the security
model on all datasets and GNNs is listed in Table II and
Table III, respectively. The results show that the three datasets
of DARPA TC E3 perform well in all indicators, showing
considerable attack sensitivity and extremely low false alarm
rate. For DARPA OpTC, GAT performs second best and GCN
performs the weakest, indicating that the complexity of OpTC
does make it difficult to classify directly as in the E3 dataset.
The above detection model provides a solid foundation for the
interpreter to locate malicious subgraphs and make accurate
prediction flip judgments.

Counterfactual Explainer. For each detected provenance
subgraph, PROVX conducts the explanation training process
independently. We set the learning rate to 0.01 and the number
of epochs to 200. The solidification ratio is set to 60%
of the total epochs, solidification factor is set to 0.5, and
the lower and upper confidence bounds are set to 0.05 and
0.95, respectively. Additionally, we conducted hyperparameter
experiments on the counterfactual parameter o within Lcpx
and the solidification penalty strength g within Lg to analyze
their impact on PROVX’s explanation results. Furthermore,
during the explanation generation phase, we also discuss the
selection of the number of edges, K, for the explanation.
Details can be found in Section VII-D.

3) Evaluation Metrics: In the following evaluation of ex-
planation performance, we define two core tasks to assess
the quality of an explainer from two aspects, we establish
corresponding metrics for each:

Taskl. Explanation of hit degree. We first explore whether
the counterfactual explanations generated by the explainer are
related to real attacks. We use the collection of malicious
labels from existing works [17], [18], [26] as the ground
truth for evaluation. After the explainer is trained, we generate
explanations for the target subgraphs. We use Accuracy, Preci-
sion, Recall and F1-score as evaluation metrics for explanation
hit accuracy. By comparing the explanation results with the
ground truth, we quantitatively assess how accurately the
generated explanations pinpoint key information related to the
attack. Specifically, if an edge within the Top-K explanation
provided by the explainer corresponds to a real attack, we
consider it a ‘Hit’. We define Accuracy as the proportion
of malicious graphs in the test set for which the explainer
achieves at least one such hit. We then calculate Precision and
Recall for each subgraph by comparing the explanation results
with the ground truth, and finally average these scores over all
subgraphs. Precision verifies what proportion of the key events
found by PROVX are real key attack steps. Recall verifies what
proportion of all real key attack steps are successfully found

by PROVX. The final F1 score is obtained by dividing the F1
score of each subgraph by the number of malignant subgraph
detected.

Task2. Explanation of necessity. We investigate at the model
level whether the counterfactual explanations generated by the
explainer truly influence the GNN security model’s predic-
tion for an APT attack. This is because the structures that
influence model predictions are not necessarily all attacking
structures; some benign structures also play an important
role in the explanation and analysis. They are the key to
reversing benign and malignant predictions. Unlike in [68],
we do not use Fidelity+/Fidelity- to measure the explainer’s
performance, because we do not need surrogate models for
indirect explanations; instead, we directly explain the graph
structure. Inspired by research in other fields [66], [76], [77],
we introduce concepts from causal inference and use the
Probability of Necessity (PN) [78] to evaluate the necessity
of an explanation. In simple terms, it asks: If the explanation
E' did not occur, would the prediction P still occur? In our
scenario, this translates to: For a specific graph structure é’,;
within an attack graph, if it were removed, would the GNN
model still classify the graph as an APT? PN is defined as
follows:

1, if Y/ # Y,

1 N
NZ k> pk:{o’

Where Y}, is the original prediction, Yk’ represents the predic-
tion result of the security model after removing the explanation
subgraph CNJ;; from the original traceability graph Gj.

4) Explainers for Comparison: To the best of our knowl-
edge, there are very few works on provenance-based explana-
tions. Since these works are not open source, we are unable to
reproduce the comparative experiments [68], [69]. Therefore,
we use other SOTA fact-based explainers with similar ideas to
these works for comparison (these SOTA explainers are also
used for comparative experiments in [68], [69]). These include:
(1) perturbation-based methods such as GNNExplainer [58],
SubgraphX [60], and PGExplainer [59]; (2) decomposition-
based methods like GNN-LRP [61] and DeepLIFT [62]; and
(3) gradient-based methods like GradCam [63]. The detailed
comparison can be found in Section VII-B and Section VII-C.

(1)

else.

B. Explanation Relevance to Ground-Truth Attacks (RQI1)

A critical path found by an explainer might mathematically
flip a model’s prediction, but it may not correspond to the
actual root cause of an attack in a real-world cybersecurity
context. Therefore, a major focus of our work is to investigate
whether the important interaction structures identified by the
explainer can match the real attack paths manually annotated
by domain experts. We adopt the metrics mentioned in VII-A3
to conduct experiments and comparisons between ProvX and
the baselines. TABLE IV presents the evaluation results of
ProvX across all datasets and GNN models, while TABLE
V shows the comparison between ProvX and the baseline
explainers.



TABLE IV
EXPLAINING ATTACK CORRELATION PERFORMANCE OF DARPA OPTC
AND TC-E3 ON GCN, GAT, AND GRAPHSAGE, WiTH K=10.

GNN | . 1| DARPA |  DARPA TC E3
Type Metrics OpT

| | | Cadets  Theia Trace
Acc 0.8402 0.9615 1.0000  1.0000
GCN Pr 0.1009 0.9290 0.8803 1.0000
Rec 0.7573 0.1198  0.1077  0.0990
F1 0.1683 0.1904  0.1821 0.1802
Acc 0.9148 0.9630 0.9778 1.0000
GAT Pr 0.1293 0.9021 09124  1.0000
Rec 0.8169 0.1616  0.1051 0.1089
F1 0.2118 0.1959 0.1884  0.1287
Acc 0.9033 0.9988  1.0000  1.0000
Pr 0.1306 1.0000 0.9491 1.0000
GraphSAGE | pec | 07035 | 0.1089 0.1387  0.1287
F1 0.2006 0.1964 0.2380 0.2281

I PROVX uses different security model, so the number of mali-
cious subgraphs captured is different.

EXPLAINING ATTACK CORRELATION ON THREE GNNS, IN DARPA OPTC.

TABLE V
COMPARISON OF PROVX AND BASELINES’ PERFORMANCE IN

GNNS‘ Explainers! ‘ Acc Pr Rec F1
GradCam 0.2165y74. 29, 0.0944yg 49, 0.2473yg7.37% 0.1418y25 59
DeepLIFT | 0.2639y6g8.6% 0.0355y64.8% 0.1832y75 8% 0.0730yg1 7%
GNN-LRP | 0.2526yg9. 9% 0.0891y11. 79, 0.1774dy76 6% 0.1186y37 79

GCN | PGExplainer | 0.7938y5 50, 0.0978y5 19 0.7147y5 6% 0.1426y25 1%
SubgraphX | 0.7783y7 4%, 0.1019,; ooy 0.6413y153% 0.1011y46 9%
GNNExplainer | 0.8402¢ o 0.1025, o,  0.7492y, 10, 0.1698, 1 g,
PRrROVX 0.8402, 50 55,2 0.1009,16 29, 0.7573,67.50, 0.1904, 55 oo,

GradCam 0.6570y28.29%% 0.1173yg 0% 0.6867y15.9% 0.1894y10.6%
DeepLIFT | 0.7956y13 0% 0.1044y19.3% 0.7039y13.5% 0.1948y5 0%
GNN-LRP 0.8540yg. 6%, 0.1151y10.7% 0.7666yg 20, 0.1974yg g%

GAT | PGExplainer | 0.8905y1 g, 0.1188yg5 10,  0.8007y; g,  0.2021y5 9,
SubgraphX 0.9015y, 40, 0.1162y10.6% 0.7938y36% 0.1950yg 0%
GNNExplainer | 0.8759y4 29, 0.1130y12.19 0.7848y5 20,  0.1977yg. 79
PRrROVX 09148, 10 5, 0.1293,,5 39, 0.8169,5 o5, 0.2118,5 oo,

GradCam 0.7434y17.79% 0.0784y39 8% 0.6202y17 9% 0.1311y34 6%
DeepLIFT | 0.7199y20. 20, 0.0727y43 9% 0.5925y15 8% 0.1230y38 7%

Graph GNN-LRP | 0.6841y24.3% 0.0877y32.8% 0.5800y17.6% 0.1206y40.0%

SAGE PGExplainer | 0.8922y; 29, 0.1233y569% 0.6748y4.19 0.1779y11 3%
SubgraphX 090330 0%,  0.1298,4 g0,  0.7124,4 39, 0.2147, 7 o,

GNNExplainer | 0.9108,( s, 0.1247y4 59, 0.7002yg. 5% 0.1994y0 6%
PrOVX 0.9033, 11 7o, 0.1306,57 1, 0.7035,5 50, 0.2006, 54 50,

- Bold denotes the best results, and underline denotes the second-best results.
v% represents the percentage of reduction, A% represents the percentage of improve-

ment.

! We adopt the hyperparameter configuration of previous work [65] to set up the baselines

explainers.

2 Improvement compared to the average of all detection systems except PROVX.

The results show that ProvX achieves high Accuracy across
all datasets, with an average Accuracy of 0.8861, demonstrat-
ing that at least a portion of the edges considered important by
ProvX overlaps with real attacks. Influenced by the inherent
distribution of the datasets, the results show a data distribution
where Recall is particularly outstanding on DARPA OpTC,
while Precision is more prominent on DARPA TC. This is a
very interesting phenomenon. We found that the prevalence
of star structures (such as those related to Nginx) in the
DARPA TC dataset significantly affects the learning trend of

the detection model. The K key edges found by PROVX cannot
fully cover the numerous interactions of the hub nodes. The at-
tack distribution in OpTC is more scattered and complex. The
interpreter can obtain multiple important links of the scattered
attack links, but these important edges may be crucial to model
prediction, rather than the real steps annotated by experts. The
above performance is also partly due to the limitation of the
subgraph partitioning method. Interested readers can view our
subgraph partitioning design in the Appendix.

In the comparative experiments, PROVX outperforms the
baseline explainers in the vast majority of cases, demon-
strating the high efficiency of the counterfactual explana-
tion approach in the APT explanation domain. Among the
baselines, the perturbation-based methods (GNNExplainer,
PGExplainer, and SubgraphX) perform slightly better than
the decomposition-based methods (GNN-LRP and DeepLIFT-
Graph), while the gradient-based method, Gradcam, performs
the worst. The experimental results indicate that perturbing
the subgraph structure can effectively highlight important
structures in APT datasets. In contrast, due to the generally
high confidence of the model’s predictions, decomposition-
based methods struggle to create a significant gap in edge im-
portance scores within the provenance subgraphs. Meanwhile,
the gradient-based approach of using gradients to analyze edge
importance tends to explain hidden correlations rather than
actual attacks amidst the dense interactions of provenance
graphs.

TABLE VI
EXPLAINATION NECESSITY PERFORMANCE OF DARPA OPTC AND
TC-E3 oN GNNs, WiTH K=10.

GNN ‘ DARPA ‘ DARPA TC E3

Type | OpTC | Cadets  Theia  Trace

GCN ‘ 0.1856 ‘ 0.3943  0.3197 0.3515

GAT ‘ 0.5926 ‘ 0.4534  0.4356  0.4679
GraphSAGE ‘ 0.7695 ‘ 0.4877  0.4556  0.5751

Perturbation-based Decomposition-based Gradient-based

GradCam 42274.31 V77734.66 +/7}33.58
DeepLIFT 7.78 4 37.89 B 42.03
GNN-LRP +212.06 B 40.55 g 34.75
PGExplainer 1 717.12 4 7451.97 B 7452.29
SubgraphX 716.22 B 253.79 B! 7150.50
GNNExplainer § 217.64 | 4 7141.24 7777744.27
*ProvX(ours) 1 7118.56| 7159.26 4 7]76.95|
0 1'0 2'0 20 4'0 6'0 2'5 5'0 7'5
PN(%) PN(%) PN(%)

Fig. 6. PROVX ’s PN(%) performance on DARPA OpTC, from left to right are
the results of GCN, GAT, and GraphSAGE. PROVX is also a perturbation-
based scheme, but is the only counterfactual-based explainer among these
works.

C. Analysis of Explanation Necessity (RQ2)

Unlike RQ1, which investigates whether the generated ex-
planations hit real-world attacks, RQ2 analyzes the necessity
of the explanations. It examines whether the explanations



generated by PROVX genuinely influence the security model’s
predictions, thereby assisting security analysts in understand-
ing the model’s decision-making mechanism. A high PN score
indicates that the explanation found by PROVX is indeed
critical to the model’s decision, and removing it can effec-
tively change the model’s prediction. This suggests that the
explanation has high fidelity and causal validity. Conversely,
a low PN score implies that the so-called critical path found by
the explainer is not the true reason for the model’s decision, as
the model still considers the graph malicious after its removal.
TABLE VI presents the evaluation results of PROVX on all
datasets, while Fig. 6 shows a comparison between PROVX
and the baselines using the OpTC dataset as an example. We
can see that, with K=10 as the baseline parameter, PROVX
achieves a PN result greater than 40% on all datasets, with an
average PN result of 51.59%. In other words, on the test set,
the set of important edges explained by PROVX does indeed
subvert the security model’s prediction upon removal, leading
to a completely opposite judgment.

We observe the comparison with the baselines. The purpose
of this comparison is to study the relative merits of the coun-
terfactual explanation mechanism represented by PROVX and
the factual explanation mechanisms represented by the other
baselines. The results show that PROVX’s explanations for the
three GNN-based models outperform all the state-of-the-art
fact-based explainers. This is because PROVX’s explanation
approach seeks the minimal change to a provenance subgraph
that alters the prediction. This method, distinct from fact-
based approaches, can guarantee the identification of the truly
necessary edges that influence the security model’s prediction.

Among the various fact-based baselines, their different
explanation logics lead to different results in the PN evalu-
ation. Specifically, the optimization objective of perturbation-
based methods can most intuitively lock important decisions,
while the local nature of gradient-based methods makes their
connection to the necessity of a global decision the weakest.
Therefore, we can observe a systematic performance gap
among these three types of methods: the perturbation-based
explainers achieve relatively high PN values, followed by
the decomposition-based methods, while the gradient-based
method has the lowest PN value. However, in this evaluation,
the settings of several hyperparameters can also significantly
affect the PN assessment, which we will discuss in subsequent
sections.
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Fig. 7. PROVX ’s PN(%) and Hit rate(%) changes when the K changes, from
left to right are the results of GCN, GAT and GraphSAGE.

D. Hyperparameter Investigation (RQ3)

The setting of hyperparameters is crucial for the perfor-

mance of machine learning-based models. We investigate the
impact of several different hyperparameters on the explanation
performance of ProvX:
Explanation Size K: K directly determines the number of
edges from the explainer that are included in the evaluation,
making it one of the most direct hyperparameters affecting the
assessed performance. We evaluate K on the OpTC, varying
its value from 1 to 20. The results are shown in Fig. 7.
Increasing K directly improves the PN value. On GraphSAGE,
when K is 20, the PN value can even reach 81.91%. This
demonstrates that if the 20 evaluated edges are removed from
each target graph (malicious subgraph), the prediction for
81.91% of these subgraphs will flip directly from ’Attack’
to Benign’. However, K should not be excessively large, as
this would diminish the significance of the evaluation; it is
not surprising that removing a large portion of a graph’s edges
would cause its prediction to flip. Furthermore, across the three
security models, increasing K also increases the Accuracy and
Recall of the ground truth evaluation. It is worth noting that
Precision, in most cases, shows an opposite trend to Recall.
This is easy to understand: the number of true positive edges
is capped by the ground truth and does not change as K
increases, but the denominator in the Precision calculation (the
total number of selected edges, K) becomes larger.
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Fig. 8. PN and F-score changes of PROVX when the o changes.

Counterfactual Trade-off Parameter «: The parameter « is
responsible for balancing the Prediction Flip Loss Lpreq and
the Mask Distance Loss Lgjst- The former aims to change the
model’s prediction result, while the latter aims to minimize the
modifications to the original graph. The experimental results
are shown in Fig. 8. Fig. 8(a) displays the change in PN with
respect to «, and Fig. 8(b) shows the change in F1-score with
respect to «. For ProvX’s explanations on the three security
models based on GCN, GAT, and GraphSAGE, the optimal
values for « are 0.6, 0.8, and 0.9, respectively. This is validated
by the performance in terms of both PN and Fl-score. It
can be observed that when a exceeds the optimal point, both
experimental metrics begin to decline. This demonstrates that
the explainer, by trying too hard to generate perturbations to
obtain the opposite prediction, disrupts the balance between
flipping the model’s prediction and minimizing the perturba-
tion, thereby failing to achieve the flip at a minimal cost.
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TABLE VII

THE OVERHEAD OF PROVX PERFORMING A COMPLETE COUNTERFACTUAL
EXPLANATION AND THE DETECTION OVERHEAD ARE ALSO RECORDED.

Peak Memory

Time consumption (s) consumption (MB)

Phase
Graph Graph
GCN  GAT SAGE GCN  GAT SAGE
Detection Training 113 174 140 1377 1405 1379
. .| Training 733 1196 994 1491 1519 1391
Explaination
| Evaluating 3 4 4 1541 1561 1461

Solidification Start Ratio 7;,; & Penalty Strength ~g:
Solidifying explanations is one of the core features of PROVX.
The solidification ratio determines when the training transi-
tions into the strict solidification phase, activating this mech-
anism only after a specific proportion of the training is
complete. Once in the solidification phase, the solidification
strength determines the magnitude of the penalty applied to
explanations that attempt to deviate from established, clear
judgments (i.e., where mask values are already close to O or 1).
Fig. 9 shows the analysis of T4+ and vg. Fig. 9(a) shows the
trend of PN as Ty, varies, with g fixed at 0.6. It can be seen
that when T, is controlled at 0.6, entering the solidification
phase at this point allows the explainer to retain sufficient
training epochs to hypothesize counterfactual possibilities.
A value of Tg:qr+ that is too low leads to the premature
arrival of penalties, while a value that is too high causes the
counterfactual hypotheses to become too divergent, leading the
model to favor some overly exaggerated perturbation patterns.
Fig. 9(b) shows the trend of PN as g varies, with Ts;,¢ fixed
at 0.6. It is observable that when g is O (i.e., no penalty), the
explainer effectively skips the solidification phase, which leads
to a significant drop in performance. The best performance is
achieved when ~g is 0.7, 0.6, and 0.6 for GCN, GAT, and
GraphSAGE, respectively.

E. System Overhead (RQ4)

PrROVX is a security model explainer, and its complete
workflow includes training the detection model, training the
explainer, and evaluating the explanation results. We test the
time and memory overhead for three types of GNN cores.
Notably, considering that most real-world threat analysis sce-
narios lack GPU support, we conduct our evaluation in a CPU
environment.
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Fig. 10. PROVX finds the key structures that evade model detection and feeds
back to the security model to enhance adversarial robustness.

The experimental results are shown in TABLE VII. As
can be seen, training the detector does not incur excessive
overhead. For the explainer training, even the longest case
(using GAT) requires less than 20 minutes, and the average
peak memory usage is only 1.43 GB, which can be easily
handled by a standard host machine. Furthermore, the final
evaluation of the explanation can be completed in just 3-4
seconds. Overall, ProvX demonstrates excellent performance
in terms of time and memory overhead. Its low hardware
requirements significantly reduce the barrier and cost for
enterprises to interpret APT, allowing for easy integration
into existing standard server architectures. Security teams can
leverage it to rapidly iterate on explanation models based on
newly emerging attack patterns.

F. Explanation Feedback for Adversarial Attacks (RQS5)

In VI, we investigate security analyst-guided explanation
feedback for adversarial attacks, utilizing the counterfactual
explainer PROVX as a forensic analyzer for adversarial be-
haviors. In this chapter, we design adversarial experiments
to verify the actual performance of the adversarial attack
Feedback Loop based on PROVX.

Specifically, our experimental design is as follows:

e Based on existing malicious provenance subgraphs, we
add benign structures according to the method in [47]
to create adversarial samples capable of evading PIDS
detection. We then input these samples into PROVX to
analyze its explanation.

e The counterfactual objective is set to instruct PROVX
to find modifications that flip the prediction of the ad-
versarial example. This portion of the explanation is the
attacker-manipulated obfuscated structure.

e We retain the adversarial subgraph structures outside the
explanation structure as new training examples. These
examples and orginal adversarial attack are manually fed
back into PIDS for retraining to enhance its ability to
learn against adversarial behavior.

We will record the explanation performance of PROVX before
and after the addition of adversarial behaviors, as well as the
detection performance of the PIDS on adversarial behaviors
before and after the explanation feedback, as shown in Fig.
10(a) and Fig. 10(b).

As can be seen, adding adversarial structures to the same
attack graph leads to a decrease in explanation performance.
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Fig. 11. An attack case from the DARPA E3 Theia dataset. We construct a provenance graph from the audit log, which includes processes, files, and sockets.
We input the graph that the model identifies as an attack into PROVX for interpretation. The figure shows four possible ways to perturb PROVX.

This is because the new structures mislead the detector’s
prediction mechanism. However, thanks to PROVX’s staged
solidification mechanism, we can progressively lock onto
the key interfering entities, enhancing the stability of the
explanation results against minor, non-core perturbations in
the input graph. When security analysts feed the explained
counterfactual prediction structures back into the security
model for retraining, we can observe significant improvements
in detection performance, specifically, Accuracy, Precision,
Recall, and F1 improved by 20.1%, 43.7%, 22.2%, and 35.5%,
respectively.

VIII. CASE STUDY

We use an attack from the DARPA E3 Theia audit log
dataset as an illustrative example for our case study, As
shown in the Fig. 11, the attacker targets the Theia host, first
establishing a connection to the victim host through a backdoor
vulnerability in firefox and writing a malicious payload
named clean to the disk. Next, the attacker uses elevated
privileges to execute the payload, communicates with the
attacker’s C&C server, and downloads another payload named
profile. Finally, another payload, wdewv, is retrieved, and
a port scan of the victim’s network is executed via gtcache
and mail.

In this case study, we observe that PROVX’s mechanism
works by trying different combinations of perturbations to lock
onto the subset of edges that truly causes the model’s predic-
tion to flip. For example, in scenario (i), PROVX discovers
that after deleting three sets of interactions—the malicious
IP 146.153.68.151 with /bin/dash, gtcache with
/proc/*, and clean with wdev—the model’s prediction
remains ”Attack”. This indicates that these specific interactions
are not the fundamental cause of the prediction. Analyzing
other scenarios similarly, we find that in scenario (iv), deleting
the interactions among clean, profile, mail, and wdev
directly causes the model’s prediction to flip. This directly
guides security analysts to focus on the roles of the malicious
payloads clean and profile in the overall attack flow and
to analyze the real reason mail was used to exfiltrate user
privacy. It is noteworthy that ProvX can also yield multiple sets
of counterfactual explanations, which may contain other sets
of edges and topological structures that influence the model’s
decision.

IX. DISCUSSION & FUTURE WORK

Explanation Granularity. PROVX focuses on edge-granular
interpretability for graph-level detection models. While we
believe that the graph-level is a suitable granularity for PIDS,
it can go beyond the limitations of a single data point or
connection, reveal complex attack patterns that are composed
of a series of seemingly normal but combined malicious ac-
tivities, such as lateral movement, data theft, or DDoS attacks,
and support security analysts to reasonably filter batch alerts,
recent research has shown a trend towards finer granularity,
with a preference for node-level [18], [20], [26], [50] and
edge-level [21] analysis. Conducting interpretability analysis
for node-level and edge-level detectors is a very interesting
research direction. ProvX does not fall within this scope, and
we look forward to future work addressing this issue.

Detection & Explanation. As discussed in the main text,
the complexity of APTs leads to the incomprehensibility of
provenance-based detection, and the opacity of GNN models
leads to the unreliability of security detection models. The
output of existing PIDS is thin. We firmly believe that PIDS
should provide security analysts with a clear understanding of
where malicious activity is located, rather than overwhelming
analysis centers with a deluge of warnings (which is why
alert fatigue is rampant). In our vision, the explainer is an
effective support for the detector and should be integrated
into existing PIDS frameworks to provide interpretability
assistance. In the main text, we briefly proposed a closed-loop
”Detection-Explanation-Feedback™” framework for analyzing
and retraining on false negatives and false positives. We will
explore and refine this framework in our future work.

X. CONCLUSION

We propose PROVX, a provenance graph explainer for APT
detection that uses a counterfactual explanation framework.
It is designed to output human-understandable explanatory
analyses for the predictions of GNN-based security models,
addressing the fundamental crisis of trustworthiness and us-
ability caused by the opaque, black-box nature of GNNSs.
After provenance detection, PROVX ingeniously transforms
the discrete problem of graph structure edit search into a
continuous optimization task. By maximizing the Prediction
Flip Loss, minimizing the Mask Distance Loss, and incorporat-
ing Staged Solidification, PROVX finds the minimal structural



subset capable of flipping the model’s prediction. Through
evaluations on real-world APT datasets, the results show
that PROVX’s explanations have a high relevance to actual
attacks, achieving excellent Accuracy and Recall. Furthermore,
PROVX’s explanations demonstrate high necessity, proving
the importance of the identified edge structures to the secu-
rity model’s predictions. Finally, we discuss the real-world
challenges of adversarial detection and explore and validate
a closed-loop Detection-Explanation-Feedback enhancement
framework, which serves as a powerful supplement to existing
PIDS.
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XI. APPENDIX

A. Provenance Graph of the Audit Logs

The TABLE VIII shows how existing PIDS constructs audit
log datasets into provenance graphs, but it is worth mentioning
that we do not use edge connection relationship types and only
retain four ways of building connections.

TABLE VIII
SYSTEM BEHAVIORS EXTRACTED FROM AUDIT LOGS.

System Behavior Relation Description

Process — R1 — Process R1: fork, execute, exit, clone, etc.
Process — R2 — File

Process — R3 — Netflow

R2: read, open, close, write, etc.
R3: connect, send, recv, write, etc.

Process — R4 — Memory  R4: read, mprotect, mmap, etc.

B. Improved Louvain Detail

Here we give the specific implementation of the im-
proved Louvain:

In order to effectively analyze large-scale traceability
graphs, we designed and implemented a subgraph partitioning
algorithm based on the Louvain community detection algo-
rithm. The core goal of this algorithm is to decompose the
huge monomer traceability graph into a series of subgraphs
with controllable size and semantic cohesion to facilitate the
processing of downstream tasks. The main workflow of this
algorithm includes: graph preprocessing, community detection
based on the Louvain algorithm, partitioning of ultra-large-
scale communities, and context expansion and formatted out-
put of subgraphs. Our subgraph partitioning method includes
the following key steps:

1) Graph Construction and Preprocessing: The algorithm
loads the graph’s topology from an edge list and reads the
set of known attack/malicious nodes from a node list. Before
performing community detection, we preprocess the graph
by removing all isolated nodes (nodes with a degree of 0).
This step is necessary because isolated nodes contain no
relational information and do not contribute to structure-based
community detection or subsequent graph learning tasks.

2) Community-based Initial Partitioning: We employ the
widely-used Louvain community detection algorithm to par-
tition the preprocessed graph. The Louvain algorithm can
efficiently discover modular structures in a network, iden-
tifying densely connected groups of nodes as communities.
This aligns with the characteristic of provenance graphs where
system behaviors are clustered logically and temporally; there-
fore, the resulting communities typically represent relatively
complete behavioral units.

If the number of nodes in a community exceeds a preset
threshold, S.,4., we perform a forced partitioning on it. This
is to ensure that all finally generated subgraphs are within a
manageable size, preventing difficulties in downstream model
analysis or memory overflow issues due to excessively large
individual subgraphs. The partitioning operation sequentially

Algorithm 1 Provenance Subgraph Partitioning Algorithm

Require: Graph edge file Ef;., Attack node file Ay, Max
subgraph size S;,q4
Ensure: Formatted subgraph data file O ;e
1: procedure PARTITIONPROVENANCE-
GRAPH(Efile7 Afil67 Smax)

2: > Step 1: Graph loading and preprocessing

3: G < ReadGraphFromEdges(E ;i)

4: Apodes + ReadAttackNodes(A i)

5 G, < RemovelsolatedNodes(G)

6: > Step 2: Community detection and splitting

7: if G, has no edges then

8 C' < PartitionNodesBySize(G,,.nodes(), Simaz)

9: else

10: Craw < LouvainCommunityDetection(G,,)

11: C+ 0

12: for all community c in C,.q,, do

13: if |¢| > Spae then

14: C + C U SplitCommunity(¢, Spaz)

15: else

16: C <+ CU{c}

17: > Step 3: Finalize subgraphs with contextual
expansion

18: Open Oy for writing
19: for all node partition P in C' do

20: Gsup +— Gp.subgraph(P)

21: if Gsup.number_of_edges() = 0 then

22: > Expand context for internally disconnected
partitions

23: Nout7 Eout —
GetOneHopNeighborhood (G, P)

24: else

25: Noyt — P

26: Eout + Ggyp-edges()

27: > Step 4: Labeling and writing to file

28: is_attack < (In € Ny, such that n € Ay pdes)

29: WriteFormattedSubgraph(O ti1¢, Nout, Eout, 15_attack)

30: Close Oyige

splits the node list of the large community into multiple
sublists that satisfy the S, limit.

3) Subgraph Contextual Expansion and Label Generation:
When generating the final subgraph files, we designed a key
contextual expansion mechanism. For a partitioned subgraph,
we first check its internal connections.

o If edges exist within the subgraph, its set of nodes and
edges remains unchanged.

o If there are no internal edges within the subgraph (i.e.,
all connections between its nodes were severed during
partitioning), we perform a One-hop Neighbor Expansion
to preserve its structural information from the original
graph. Specifically, we find all the direct neighbors of
these nodes in the original graph and include these
neighboring nodes and the edges connecting them into



TABLE IX
DETAILS OF THE DATASETS.

Dataset # of Benign Avg # of (Min-Max) # of # of Malicious Avg # of (Min- Max) # of
atasets Graphs Nodes / Edges Nodes / Edges Graphs Nodes / Edges Nodes / Edges
DARPA OpTC!

OpTC | 8339 50.97 / 48.06 (2-233) / (1-240) | 1534 66.82 / 92.26 (7-4012) / (1-4011)
DARPA TC E3

Cadets 3450 100.25 / 100.72 (1-110) / (1-344) 144 100.37 / 104.74  (22-104) / (2-636)

Theia 3159 103.11 / 99.80 (2-2260) / (1-12046) 321 102.07 / 114.61 (94-106) / (4-186)

Trace 11633 99.98 / 86.20 (1-312) / (1-4212) 686 101.05 / 100.55  (66-175) / (3-861)

I The DARPA OpTC dataset contains different types of attacks over three days. The first day depicts the rehearsal scenario of
PowerShell Empire. The second day records the data leakage incident. The third day records the upgrade of malware. In the
explanation, we construct the three days of data together as the origin subgraph and do not separate them for separate analysis..

the subgraph. This step significantly enriches the sub-
graph’s structural information and prevents the creation
of information islands due to partitioning.
Finally, based on whether the final set of nodes in the subgraph
contains any known attack nodes, we label the subgraph as
”Malicious” or ”Benign” .

4) Formatted Output: The algorithm writes each processed
subgraph to an output file in a standardized four-line format.
This format includes the subgraph’s unique identifier, its final
list of nodes, its final list of edges (source and destination
nodes), and its malicious/benign label, facilitating direct pars-
ing and use by subsequent programs.

C. Details of the Datasets

TABLE IX shows the size of the dataset subgraphs we
used, which is divided by the algorithm XI-B. We used
two authoritative APT datasets, DARPA OpTC and DARPA
TC E3, and selected the widely used Cadets, Theia, and
Trace in the E3 dataset. As you can see, we cut the origin
graph into several subgraphs, each with different numbers of
nodes and edges, and divided them into benign subgraphs and
malignant subgraphs according to the groundtruth. It is worth
noting that we can divide the subgraphs into different sizes
for different degrees of graph interpretation, but too large a
granularity may increase the difficulty of interpretation and
the understandability of human experts. Interested readers can
try the interpretation results of different granularities.

D. Case Study in Baselines

Here we expand the case study on the baselines. After
the explanations of these six fact-based explainers, differ-
ent explanations are output respectively. Among them: the
gradient-based method GradCam and the decomposition-based
methods DeepLIFT and GNN-LRP can hardly obtain a more
accurate attack explanation. The perturbation-based methods
SubgraphX and GNNExplainer can provide a partial set of
structures that contain some attack causes, but the former
has a range deviation, while the latter contains some benign
behaviors (which may also participate in model decision-
making, but will mislead security analysts). PGExplainer locks

(e) SubgraphX.

(f) GNNxplainer.

Fig. 12. The case study inherited from VIII includes six baselines: GradCam,
DeepLIFT, GNN-LRP, PGExplainer, SubgraphX, and GNNExplainer.

the explanation into three more accurate sets of structures.

By analyzing @, , , @, @, we can roughly obtain

understandable explanations, but it is still not intuitive enough.



