
Enhancing Software Vulnerability Detection

Through Adaptive Test Input Generation Using

Genetic Algorithm

Yanusha Mehendran1, Maolin Tang1, Yi Lu1

1School of Computer Science, Queensland University of Technology,
Brisbane, 4000, QLD, Australia.

Contributing authors: yanusha.mehendran@hdr.qut.edu.au;
m.tang@qut.edu.au; yt.lu@qut.edu.au;

Abstract

Software vulnerabilities continue to undermine the reliability and security of
modern systems, particularly as software complexity outpaces the capabilities of
traditional detection methods. This study introduces a genetic algorithm-based
method for test input generation that innovatively integrates genetic operators
and adaptive learning to enhance software vulnerability detection. A key contri-
bution is the application of the crossover operator, which facilitates exploration
by searching across a broader space of potential test inputs. Complementing this,
an adaptive feedback mechanism continuously learns from the system’s execu-
tion behavior and dynamically guides input generation toward promising areas
of the input space. Rather than relying on fixed or randomly selected inputs,
the approach evolves a population of structurally valid test cases using feedback-
driven selection, enabling deeper and more effective code traversal. This strategic
integration of exploration and exploitation ensures that both diverse and tar-
geted test inputs are developed over time. Evaluation was conducted across nine
open-source JSON-processing libraries. The proposed method achieved substan-
tial improvements in coverage compared to a benchmark evolutionary fuzzing
method, with average gains of 39.8% in class coverage, 62.4% in method cov-
erage, 105.0% in line coverage, 114.0% in instruction coverage, and 166.0% in
branch coverage. These results highlight the method’s capacity to detect deeper
and more complex vulnerabilities, offering a scalable and adaptive solution to
software security testing.

Keywords: Software Testing, Evolutionary Algorithms, Test Input Generation,
Genetic Operators, Grammar-Based Fuzzing

1

ar
X

iv
:2

50
8.

05
92

3v
1

 [
cs

.S
E

]
 8

 A
ug

 2
02

5

https://arxiv.org/abs/2508.05923v1

1 Introduction

Software is one of the essential elements of any computer system, being programs and
applications that help the hardware perform a specific task. However, with the growing
complexity of software, there are vulnerabilities which may lead to the loss of the sys-
tem’s integrity, confidentiality, or availability. A software vulnerability may arise from
coding errors, design flaws, or misconfigurations, each posing significant risks to digital
security. Ideally, software should be written in a manner that eliminates vulnerabili-
ties entirely. However, achieving this level of flawlessness is practically impossible due
to factors such as the complexity of modern systems, the inevitability of human error,
and the dynamic nature of evolving threats. As a result, no system can be entirely
free from vulnerabilities, underscoring the necessity of robust vulnerability detection
techniques to mitigate potential risks [1].

Traditional manual approaches to vulnerability detection face several challenges.
These methods rely heavily on human expertise for feature extraction [2, 3], making
them susceptible to the limitations of human capacity and consistency. Large amounts
of code that needs to be analyzed may overwhelm experts and vulnerabilities may be
missed. Also, manual analysis can introduce subjectivity into the assessment process.
Manual analysis is labor intensive and time consuming, which requires an in-depth
code review that may introduce human errors [4–6]. Not only does this delay the
detection of vulnerabilities but it also leaves the system exposed to vulnerabilities for
a longer period of time, highlighting the importance of automated and fast techniques
such as fuzzing.

Among the various methods for identifying vulnerabilities, fuzzing has emerged
as a particularly effective approach [7]. Fuzzing involves generating diverse and often
unexpected inputs to test software systems, systematically exploring execution paths
to uncover defects. Fuzzing itself encompasses several approaches, including static,
dynamic, and hybrid methods [8]. Static fuzzing generates test inputs without exe-
cuting the software, relying on predefined rules or formats to uncover potential
vulnerabilities. While useful for quick validation, it is prone to high false positive
rates and often lacks the context needed to uncover dynamic, runtime-specific vul-
nerabilities. Dynamic fuzzing, on the other hand, executes the software and monitors
its behavior in real-time, making it effective for identifying vulnerabilities that arise
under specific runtime conditions [9]. Hybrid fuzzing combines elements of both static
and dynamic methods, offering a more comprehensive testing approach by lever-
aging the strengths of each. Despite these advancements, a persistent challenge in
fuzzing remains: generating high-quality and diverse test inputs. Traditional random
input generation methods often fail to explore complex software paths effectively. The
scarcity of effective test inputs further intensifies the difficulty of discovering vulnera-
bilities in increasingly complex systems, highlighting the need for innovative techniques
to address this gap.

In response to these challenges, this paper introduces a novel evolutionary
computation-based approach for optimizing test input generation in dynamic fuzzing.
Evolutionary computation, inspired by the principles of natural selection, iteratively
refines a population of test inputs through operations such as mutation, crossover, and
selection [10]. This adaptive process enables the generation of test inputs that are not

2

only diverse but also highly effective in uncovering vulnerabilities. Among the class
of evolutionary computation methods, this study specifically adopts a genetic algo-
rithm (GA), a well-established method that evolves candidate solutions by mimicking
biological evolution. Genetic algorithms offer a well-structured way to introduce varia-
tion and apply selection, making them especially effective for exploring complex input
spaces in fuzz testing. By leveraging feedback from the Software Under Test (SUT),
the genetic algorithm dynamically improves input quality, ensuring broad exploration
and targeted refinement.

The proposed GA approach aims to overcome the limitations of traditional
input generation methods by introducing adaptability, generalizability, and structural
awareness into the fuzzing process. Traditional fuzzers often rely on seed inputs or
domain-specific heuristics, which can constrain the diversity and depth of generated
test inputs. In contrast, this study presents a novel grammar-guided genetic algo-
rithm (GA) for dynamic fuzzing that begins from scratch which is a cold-start setting
and generates valid structured inputs without relying on existing test cases or prior
knowledge of the SUT.

This study contributes to the domain of software vulnerability detection through
the development of a grammar-driven, domain-agnostic GA based fuzzing framework.
Evolutionary computation encompasses a variety of algorithms inspired by natural
evolution, including Genetic Algorithms (GA), Genetic Programming (GP), Evolution
Strategies (ES), and Differential Evolution (DE). While all these approaches share
the core principle of evolving candidate solutions over generations, they differ pri-
marily in how individuals are represented and manipulated. In Genetic Programming,
solutions are represented as executable program trees, making it suitable for evolving
logic structures. In contrast, Genetic Algorithms operate on structured or fixed-length
representations, making them particularly well-suited for problems like test input
generation, where candidate inputs such as JSON files can be directly encoded and
manipulated.

This study adopts a GA because of its strength in evolving structured representa-
tions with controlled variation. The initial population of JSON test inputs is generated
directly from a JSON grammar, ensuring syntactic validity while offering diversity.
Notably, this cold-start generation approach eliminates the dependency on initial
seeds, making the method applicable to diverse grammar-defined input format. From
this base, the algorithm evolves inputs using genetic operators specifically tailored for
structured data. The mutation operator introduces localized structural changes, while
the crossover operator recombines substructures from two parent inputs, enabling the
discovery of novel and complex structural patterns. This grammar-aware crossover
is particularly powerful, as it preserves syntactic validity while expanding the input
space far beyond what mutation alone can achieve.

The evolutionary process is adaptive and feedback-driven where the generated
inputs are executed against target SUTs, and branch coverage and exceptions are
collected as feedback to guide the fitness evaluation. This optimization process enables
the algorithm to dynamically target unexplored code regions, improving the likelihood
of uncovering subtle or deep vulnerabilities that traditional approaches might miss.

3

The novelty of this GA approach lies in its grammar-guided, cold-start fuzzing
approach that eliminates the reliance on manually crafted seed inputs or domain-
specific heuristics. By generating test inputs directly from a predefined grammar, the
method is inherently domain-agnostic and adaptable to a wide range of structured
formats. Furthermore, the study introduces a structure-preserving crossover and muta-
tion operator that recombines syntactically valid substructures from parent inputs,
allowing the exploration of complex and diverse input patterns while maintaining
grammatical correctness. In addition, the approach adopts a feedback-driven opti-
mization strategy based solely on branch coverage, simplifying the fitness evaluation
process and avoiding the complexity of multi-objective tuning commonly seen in prior
work. The key contributions of this study are as follows.

1. the design and implementation of a novel grammar-based GA that applies both
structure-preserving crossover and mutation operators to generate valid, diverse
JSON inputs from scratch.

2. development of a feedback-driven fuzzing loop that dynamically evolves the input
population based on execution feedback from the SUTs

3. comprehensive evaluation on real-world software systems that require structured
inputs, demonstrating the approach’s broad applicability and its ability to uncover
new execution paths

2 Related Work

The field of software vulnerability detection has seen significant advancements through
the development of various testing methodologies and optimization techniques. Among
these, fuzzing has emerged as a prominent strategy for uncovering software defects,
while evolutionary computation has demonstrated its effectiveness in enhancing
automated test case generation.

2.1 Fuzzing Approaches

Fuzzing has emerged as a powerful technique for uncovering software vulnerabilities
by generating and executing diverse test inputs to explore potential defects. Over
the years, various fuzzing approaches have been developed, each tailored to address
specific challenges in software testing. These approaches can be broadly categorized
based on their input generation strategies, level of access to the software, and testing
methodologies. This section examines static, dynamic, and hybrid fuzzing approaches,
providing an analysis of their methodologies, strengths, and limitations.

Static analysis provides high detection speed, enabling quick examination and
issue resolution. However, static analysis often suffers from high false positive rates,
as many tools lack user-friendly vulnerability detection models, leading to numerous
false alarms. This complicates the identification and validation of actual vulnerabilities
[9, 11]. Zheng et al. introduced a static fuzzy mutation method guided by software vul-
nerability evolution laws, identifying potential threat paths through Abstract Syntax

4

Tree (AST) analysis [12]. In a related direction, Ponta et al. [13] proposed a com-
prehensive approach combining static reachability analysis with dynamic reachability
assessment to detect, assess, and mitigate vulnerabilities in open source dependencies.

While dynamic analysis (e.g., fuzzing) can achieve high precision in vulnerabil-
ity detection, it often requires significant manual effort for debugging and triaging
results, demanding technical expertise [9]. Additionally, dynamic approaches face scal-
ability challenges due to runtime overhead. Dynamic analysis underpins techniques
like black-box, white-box, and grey-box fuzzing, which optimize the exploration of
software vulnerabilities. Recent advances in grey-box fuzzing focus on intelligent muta-
tion strategies, such as CMFuzz [14], which employs contextual bandit algorithms
(LinUCB) to dynamically select optimal mutation operators based on seed file charac-
teristics. This context-aware approach significantly improves code coverage and crash
discovery compared to traditional uniform mutation strategies. The selection of initial
seed inputs has also been shown to significantly affect fuzzing effectiveness, as observed
in a study on JavaScript engines where seeds derived from CVE proof-of-concepts led
to higher code coverage and more crashes [15]. STATEAFL further advances grey-box
fuzzing by targeting stateful network servers, which require multiple sequential inputs
to reach deep protocol states [16].

Hybrid fuzzing integrates the strengths of fuzzing and symbolic execution to over-
come their respective limitations, offering a robust framework for effective vulnerability
detection. Kim et al. [17] introduced HFL, a hybrid approach tailored for kernel
fuzzing, which incorporates mechanisms for syscall sequence inference and resolving
nested argument structures, significantly enhancing code coverage and vulnerability
detection in Linux kernels. GAFuzzing combines static and dynamic techniques to
improve traditional fuzzing by extracting structural information from code to guide
test generation [11]. Yun et al. [18] proposed QSYM, a practical concolic execution
engine that applies symbolic execution selectively to challenging paths identified dur-
ing fuzzing, thereby optimizing efficiency and scalability while achieving deeper code
path exploration. He et al. [19] extended hybrid fuzzing to IoT firmware, integrat-
ing static analysis for known vulnerabilities and dynamic fuzzing for discovering new
ones, demonstrating its effectiveness in addressing IoT-specific security challenges.
Together, these studies highlight the versatility and efficacy of hybrid fuzzing in uncov-
ering complex vulnerabilities across diverse domains, including operating systems, IoT
devices, and general software systems. Zhang et al. proposed a coverage-guided fuzzing
method that employs reinforcement learning-enabled multi-level input mutation to
dynamically adapt the mutation strategy based on feedback, significantly improving
vulnerability discovery efficiency. Recent comprehensive reviews comprehensive sur-
veys have explored the application of deep learning techniques in identifying software
vulnerabilities [20]. Zhu et al. extensively reviewed 48 DL-based studies, emphasiz-
ing the perception gap between machine-learned models and expert-level vulnerability
understanding. Their study highlights both the potential and the current limitations
of deep learning techniques in addressing complex vulnerability semantics [21].

5

2.2 Evolutionary Computation in Fuzzing

Evolutionary computation, inspired by the principles of natural selection, have found
applications across diverse fields, including software engineering. These algorithms
have been widely studied and adapted to tackle complex problems by iteratively opti-
mizing solutions. In the context of software testing, evolutionary computation play
a pivotal role in automating the generation of test cases. Their adaptability makes
them particularly effective in addressing the dynamic challenges of modern software
systems, including fuzzing, where generating diverse and high-quality inputs is crucial
for detecting vulnerabilities.

The target domains of evolutionary fuzzing approaches are diverse, depending on
the SUT. The study on Vulnerability Analysis for X86 Executables focuses on opti-
mizing input generation for x86 executables using genetic algorithms [11]. VUzzer
addresses binary applications by leveraging application-aware feedback to guide the
fuzzing process [22]. In the domain of web applications, KameleonFuzz is specifically
tailored to uncover cross-site scripting (XSS) vulnerabilities [23]. Additionally, IFuzzer
and EvoGFuzz target structured input domains, refining test inputs for interpreters
and leveraging grammar-based approaches [10, 24].

The input structures used in these studies align with their respective tar-
get domains. Binary fuzzers primarily handle inputs without predefined structure,
enabling them to test a wide range of applications [22]. In contrast, methods target-
ing web applications often use attack grammars to craft inputs tailored to specific
vulnerabilities, focusing on structured contexts [23]. Grammar-based input genera-
tion has been effective in producing syntactically valid structured inputs for domains
requiring strict adherence to input formats [24]. However, despite dealing with struc-
tured inputs, EvoGFuzz does not employ a fully-fledged genetic algorithm (GA) since
it lacks crossover as a genetic operator, a key component of traditional evolutionary
algorithms.

The genetic operators utilized highlight variations in evolutionary strategies.
VUzzer primarily relies on mutation as its dominant operator, guided by dynamic
taint analysis and control-flow features to mutate input bytes at critical offsets
[22]. Similarly, KameleonFuzz emphasizes mutation over crossover, using grammar-
guided mutations to refine XSS payloads while limiting crossover to subtree swaps.
IFuzzer employs GP that uses crossover and mutation to evolve test inputs, focus-
ing on interpreter-specific requirements [10]. In contrast, EvoGFuzz does not employ
crossover, relying entirely on mutation to evolve inputs generated from a probabilis-
tic grammar [24]. This design was chosen because directly mutating individuals may
lead to syntactically invalid inputs that violate the grammar, and the probabilistic
grammar itself already introduces stochasticity into the generation process.

The fitness functions used in these studies are tailored to their respective objec-
tives. KameleonFuzz relies on feedback from successful XSS payloads to optimize input
generation [23]. EvoGFuzz [24] and IFuzzer [10] use fitness functions based on exe-
cution behavior, such as triggered exceptions and structural complexity. Specifically,
EvoGFuzz evaluates fitness through a multi-objective function that combines feed-
back scores, which measure the ability of inputs to trigger exceptions, and structural
complexity, which assesses adherence to the probabilistic grammar. Similarly, IFuzzer

6

employs a fitness function that evaluates structural complexity metrics, including
cyclomatic complexity, to guide the generation of inputs that explore intricate exe-
cution paths. Studies like [24] and [10] employ fitness functions to address multiple
objectives, though they do not appear to leverage weight-based approaches, which
could enhance the balancing of diverse goals during optimization.

The motivation for this study arises from the inherent challenges in generating
effective and diverse structured inputs for software vulnerability detection. Structured
inputs, such as JSON, require strict syntactic correctness while also demanding exten-
sive exploration of the input space to expose hidden vulnerabilities. Existing genetic
algorithm-based fuzzing techniques have largely focused on mutation operators. While
mutation supports fine-grained local search, it may struggle to escape limited regions
of the input space. In contrast, this study emphasizes the integration of crossover
that fundamentally recombines segments from different parent inputs to introduce
entirely new structural variations that would be unlikely to emerge through mutation
alone. Crossover enables the exploration of a much broader and more diverse input
space, increasing the likelihood of triggering deeper execution paths and revealing
complex vulnerabilities that traditional mutation-based fuzzing may miss. Crucially,
both crossover and mutation operators are carefully designed to preserve the syntactic
validity of the generated inputs.

Furthermore, the approach adopts an adaptive, feedback-driven learning mecha-
nism that continuously refines input generation based on runtime behavior, allowing
the algorithm to dynamically prioritize under-tested code regions. This dual focus on
structural diversity through genetic operators and adaptive exploration through feed-
back distinguishes the proposed method from existing GA-based approaches, offering
a more robust framework for advancing software vulnerability detection. Furthermore,
its grammar-guided, seed-independent design making it a versatile solution for diverse
testing scenarios.

3 Design of the New GA-based Approach

Classic input generation methods face challenges in effectively exploring complex and
structured input spaces, often leaving critical execution paths untested. Additionally,
the scarcity of high-quality and diverse test data further exacerbates the difficulty
in achieving comprehensive software testing, limiting the discovery of potential vul-
nerabilities. To address this, our approach utilizes a Genetic Algorithm (GA) as its
foundation, leveraging its capability for dynamic evolution and optimization. By iter-
atively refining a population of candidate inputs, the algorithm generates inputs that
maintain structural validity while adapting to the feedback from the SUT. This adap-
tive and iterative process ensures both diversity and effectiveness, enabling a more
thorough and targeted vulnerability detection process.

To address the challenges of input diversity and dynamic exploration, the process
begins with generating test inputs from a predefined grammar, ensuring that they
adhere to the required structure for effective testing. This grammar defines the rules

7

for generating syntactically correct inputs, enabling the creation of a random ini-
tial population of 100 inputs. These inputs form the foundation for the evolutionary
process, providing a diverse set of test cases for subsequent analysis.

Fig. 1: Overview of the Proposed Genetic Algorithm-based Method

The generated inputs are executed with various Systems Under Test (SUTs),
comprising nine open-source Java libraries designed to process structured data. This
process observes how the SUTs handle these inputs. Figure 1 represents a structured
approach for generating and testing JSON files using an evolutionary algorithm. The
goal is to identify unexpected outcomes, or exceptions, which are then compiled into
Coverage Reports and Exception Reports. These reports measure the extent of code
exercised by the inputs (e.g. instruction, line, branch, method, and class coverage) and
document errors encountered during testing.

3.1 Initial Input Generation

The initial population of test files is generated using a JSON grammar as input. This
grammar consists of a set of production rules, which are randomly selected during
input generation. The structure of each JSON file is expanded based on these randomly
chosen rules, allowing for high variability and structural diversity among the generated
inputs. In contrast to approaches [24, 25] which begin with five manually crafted
seed inputs to infer a probabilistic grammar, GA approach directly leverages random
rule expansion from the base grammar. By relying solely on random selection from
the original grammar, our approach naturally produces a diverse initial population
without the need for prior samples. For illustration purposes, consider the following
simplified grammar representing JSON generation:

Grammar:

json → "{" pairs "}" | "{" "}"

pairs → pair | pair "," pairs

pair → string ":" value

value → string | number | json | "true" | "false" | "null"

8

string → "\"" letters "\""

letters → letter | letter letters

letter → "a" | "b" | ... | "Z" | digit

number → digit | digit number

digit → "0" | "1" | ... | "9"

Possible Outputs:

{}

{ "a": "true" }

This grammar highlights how random expansion can lead to structurally varied
JSON, demonstrating the effectiveness of the method in generating diverse initial
inputs.

3.2 Genetic Operators

The evolutionary process applies genetic operators to enhance diversity and refine the
quality of test inputs. This study specifically focuses on the one-point crossover and
reordering mutation techniques.

3.2.1 Crossover Mechanism

Crossover mechanisms across various studies share the common goal of combining
traits from parent inputs to generate diverse offspring, particularly in approaches that
leverage grammar-based input generation to ensure syntactic validity. For instance,
IFuzzer [10] grammar-aware crossover tailored to specific domains, such as interpreters,
ensuring syntactic correctness, while EvoGFuzz [24], notably rely solely on mutation,
omitting crossover altogether.

In this study, one-point crossover is used, where a random crossover point is selected
in both parent inputs, and the segments beyond this point are swapped to produce
two offspring as illustrated in Figure 2. This method effectively maintains the struc-
tural validity of JSON inputs while fostering meaningful diversity in test cases. When
compared to other techniques like two-point crossover and uniform crossover, one-
point crossover demonstrated superior performance. It is hypothesized that alternative
methods may disrupt key structural relationships, or linkages, within JSON inputs,
thereby reducing their effectiveness. By preserving these linkages, one-point crossover
ensures that structural dependencies are maintained, enabling the generation of syn-
tactically and semantically valid inputs that are more effective for testing. By adopting
a crossover technique that integrates well with grammar-based input generation, our
GA approach achieves a balance between exploration and the preservation of input
validity, enhancing its ability to uncover new execution paths and vulnerabilities in
the SUT.

9

Fig. 2: Example of one-point crossover on JSON inputs

3.2.2 Mutation Mechanism

Mutation strategies in evolutionary approaches introduce structural changes to test
inputs while maintaining their validity. IFuzzer performs mutations by selecting ran-
dom code fragments from the input and replacing them with fragments from a
predefined pool corresponding to the same non-terminal, ensuring syntactic correctness
[10]. In contrast, EvoGFuzz mutates its learned probabilistic grammar by modifying
the probabilities of individual production rules, indirectly influencing the diversity of
generated inputs [24]. In this study, element reordering is used as the primary muta-
tion technique as shown in Figure 3. This method rearranges elements within JSON
inputs, preserving their structural integrity while fostering diversity. Alternative muta-
tion strategies, such as deleting elements or introducing nested structures, were also
explored. However, reordering elements performed best, likely due to its ability to
maintain the structural validity of the JSON files while still promoting diversity.

The choice of one-point crossover and reordering mutation as genetic operators
was based on their proven ability to balance exploration and exploitation effectively.
Together, these techniques maintain the structural integrity of test inputs while
enhancing the algorithm’s capability to uncover unique execution paths and identify
potential vulnerabilities. Mutation introduces randomness, generating diverse inputs

10

Fig. 3: Example of reorder mutation on JSON input

that reveal varied behaviors in the SUT, while crossover facilitates the recombination
of successful traits, broadening genetic diversity.

3.3 Fitness Function

The fitness of each test input is a critical component of the evolutionary process, as it
determines which inputs are selected for subsequent generations. Initially, a weighted
multi-objective fitness function is employed that incorporated both structural com-
plexity and feedback. The weighted design enabled the algorithm to balance these
objectives effectively. However, when multi-objective fitness functions are not weight-
based, the objective values remain unnormalized, potentially leading to imbalanced
optimization [10, 24]. For example, objectives with larger numerical ranges might dom-
inate the selection process, skewing the algorithm’s focus and diminishing the overall
effectiveness.

In the latest iteration of our approach, the fitness evaluation has been streamlined
to focus solely on branch coverage, a metric that measures the extent to which decision
branches within the code are executed during testing. This fitness score is computed
as:

Fitness Score(x) =
Bexec(x)

Btotal
× 100 (1)

where:

• x is a test input.
• Bexec(x) is the number of unique branches exercised by input x.
• Btotal is the total number of branches in the SUT.

This fitness function contributes to our study in the following ways:

• Exploration: Maximizing branch coverage encourages discovery of new execution
paths, ensuring diverse code regions are exercised.

• Exploitation: Inputs that reach previously uncovered branches are retained and
refined, focusing on high-potential areas.

11

• Vulnerability exposure: Deeply nested branches are often more error-prone;
exercising these increases the likelihood of triggering latent vulnerabilities.

• Simplicity and scalability: The single-objective nature simplifies fitness evalua-
tion while remaining computationally efficient for large, complex SUTs.

Inputs with higher fitness scores are more likely to be selected as parents, ensuring
that their traits are preserved and refined in subsequent generations. The transition to
a single-objective fitness function not only simplifies the evolutionary process but also
aligns it more closely with the goal of maximizing software robustness and security.
Additionally, this approach reduces computational cost, making the algorithm more
efficient and scalable for large and complex systems.

3.4 Selection

High-fitness inputs are selected using a tournament selection strategy, which pits a sub-
set of candidates against each other, allowing only the most fit individuals to be chosen
as parents. This method ensures that the evolutionary process is guided by high-quality
inputs while maintaining genetic diversity within the population. Once selected, the
parents undergo genetic operations such as crossover and mutation. Through this iter-
ative process, the test suite evolves progressively, improving its capability to uncover
critical vulnerabilities and defects by optimizing coverage in the software.

4 Evaluation

In this study, the new GA has been evaluated and compared against the benchmark
method-EvoGFuzz [24]. The evaluation focuses on the effectiveness of both methods in
terms of their ability to uncover vulnerabilities and achieve high coverage of the SUT.
The metrics used for comparison include coverage reports and the types of exceptions
triggered during the testing process.

4.1 Benchmark Problems

The benchmark problems were selected based on their extensive use in other research
studies for evaluation purposes [24, 25]. The chosen libraries accept JSON as input,
with the majority serving as serialization/deserialization libraries to convert Java
objects into JSON and back. These include libraries such as Gson, Fastjson, and
Minimal-json, which are commonly used for tasks like JSON parsing and serialization.
Additionally, json-simple is utilized for encoding and decoding JSON text, while json-
flattener is specifically designed to flatten nested JSON objects and unflatten them
back. The evaluation setup involves testing the generated inputs on nine open-source
Java libraries, each serving as an SUT. The open-source libraries evaluated in this
study are enumerated in Table 1.

4.2 Benchmark Method - Comparative Analysis

For our study, the benchmark method we selected is the ”Evolutionary Grammar-
Based Fuzzing (EvoGFuzz)” introduced by Eberlein et al., which provides an effective

12

Table 1: Open-source projects used in the evaluation

Input Format Benchmark Problem Lines of Code

JSON

Argo 5.4 [26] 8,265
fastjson 1.2.51 [27] 166,761
Genson 1.4 [28] 18,780
Gson 2.8.5 [29] 25,172
json-flattener 0.6.0 [30] 1,522
JSONJava 20180130 [31] 3,742
json-simple 1.1.1 [32] 2,432
MinimalJson 0.9.5 [33] 6,350
Pojo 0.5.1 [34] 18,492

mechanism for balancing both the diversity and complexity of test inputs [24]. This
GA-based approach is particularly well-suited for our research due to its ability to
handle large and complex input spaces, which aligns with our goal of generating diverse
and complex JSON inputs. EvoGFuzz builds on an existing probabilistic grammar-
based fuzzer by incorporating an evolutionary algorithm into the process, which is an
extension to the work on ”Inputs from Hell” by Soremekun et al. [25].

EvoGFuzz represents a significant advancement in the field of software testing, par-
ticularly in leveraging evolutionary algorithms for grammar-based input generation.
Its ability to produce syntactically valid inputs minimizes errors due to invalid test
cases. However, while EvoGFuzz has demonstrated notable success, certain aspects of
its approach require further consideration. For instance, its reliance on probabilistic
grammar can introduce biases in input generation, potentially limiting the diversity of
generated inputs. Furthermore, the absence of genetic operators like crossover restricts
its ability to explore novel combinations of input structures, which are often criti-
cal for uncovering deeper execution paths. These considerations highlight areas where
further enhancements could make the methodology even more robust and effective.

EvoGFuzz adopts a probabilistic mechanism to input generation, leveraging
grammar-based constraints to ensure that the generated inputs adhere to syntacti-
cal correctness. By assigning probabilities to different grammar rules, EvoGFuzz can
guide the input generation process to favor specific patterns or structures. While this
probabilistic mechanism effectively minimizes invalid inputs and aligns with the SUT’s
requirements, it can inadvertently introduce biases that limit the exploration of diverse
or less common input structures, potentially leaving certain execution paths untested.
In contrast, our study generates inputs directly from a predefined JSON grammar
without relying on probabilistic methods. By randomly selecting elements based on
the grammar’s rules, each potential structure has an equal chance of being generated.
This ensures a broader and more unbiased exploration of the input space, increasing
the likelihood of uncovering edge cases and complex execution paths.

EvoGFuzz does not employ a crossover mechanism as part of its test input gener-
ation process. Instead, it focuses on generating inputs using a probabilistic grammar
and relies heavily on mutation and probabilistic adjustments to the grammar to intro-
duce variability. Specifically, EvoGFuzz alters the learned probabilistic grammar rather

13

than mutating the test inputs directly. However, the absence of a crossover mechanism
in EvoGFuzz imposes certain limitations. Without crossover, the algorithm relies pri-
marily on mutation, which may restrict the generated inputs to variations around a
smaller set of initial seeds. This can reduce the diversity of test cases and result in a
narrower exploration of the input space, potentially overlooking certain vulnerabili-
ties or performance issues. In genetic algorithms (GAs), crossover and mutation play
complementary roles: crossover is instrumental for both exploration and exploitation,
while mutation primarily enhances exploration [35, 36].

In contrast, our study integrates a one-point crossover mechanism, enabling the
algorithm to escape local optima by generating offspring that inherit diverse and
advantageous characteristics. When mutation coupled with crossover, the approach
not only broadens the genetic diversity but also refines existing input structures to
maximize their fitness. Together, these genetic operators enable the evolutionary pro-
cess to systematically explore deeper paths in the code, improving the likelihood of
uncovering critical vulnerabilities and performance issues.

EvoGFuzz employs a fitness function that combines structural complexity and
execution feedback to evaluate test inputs. This method ensures that inputs are syn-
tactically valid while prioritizing those that trigger exceptions. However, when an
input triggers an exception, its structural complexity becomes irrelevant due to the
overwhelming influence of the feedback score. This bias toward simpler, fault-revealing
inputs can lead to a narrower exploration of the input space, potentially overlooking
structurally complex inputs that may expose deeper vulnerabilities. In contrast, the
proposed approach initially employed a weight-based fitness function to balance mul-
tiple objectives, such as structural complexity and feedback. This was later refined
to focus solely on branch coverage, prioritizing inputs that explore untested execu-
tion paths. By emphasizing branch coverage, the current study ensures systematic
exploration, increasing the likelihood of uncovering vulnerabilities across the codebase.

4.3 Experimental Setup

All experiments have been performed on a system running Ubuntu 20.04.6 LTS fea-
turing an AMD Ryzen 32-Core Processor with 251 GB of RAM. Each experiment was
executed 30 times, with a runtime of 600 seconds per experiment. This time frame
was chosen to maintain a fair comparison with EvoGFuzz, which operates under the
same conditions. The implementation was carried out using Visual Studio Code (VS
Code) as the development environment. The experimental setup requires Python 3.7
and the NumPy package to run the test generation framework.

Table 2 outlines the detailed setup of the experiment, showcasing different con-
figurations for each experiment, including initial input sources, fitness functions,
population size, crossover and mutation techniques applied. The experiments summa-
rized here were designed to explore the impact of different evolutionary strategies and
configurations on software vulnerability detection. Experiment 1 serves as the base-
line and uses the benchmark method without applying crossover, relying solely on
probabilistic grammar and mutation. This experiment is a replication of the bench-
mark method used for comparison. Subsequent experiments introduce variations to
evaluate the impact of different configurations on performance. The experiments 2

14

Table 2: Experiment setup for different configurations

E
x
p
.

In
it
ia
l

In
p
u
t

F
it
n
e
ss

F
u
n
c
ti
o
n

C
r
o
ss
o
v
e
r

M
u
ta

ti
o
n

1 Probabilistic grammar Feedback & Structure ✗ Probability mutation
from classic samples Score in production rule

2 Probabilistic grammar Feedback & Structure ✗ Probability mutation
from classic samples Score (0.5, 0.5) in production rule

3 Probabilistic grammar Feedback & Structure ✗ Probability mutation
from classic samples Score (0.9, 0.1) in production rule

4 Probabilistic grammar Feedback & Structure ✗ Probability mutation
from classic samples Score (0.1, 0.9) in production rule

5 Probabilistic grammar Branch Coverage ✓ ✗
from classic samples Only

6 Probabilistic grammar Branch Coverage ✓ Reordering elements
from classic samples Only in JSON files

7 Randomly generated Branch Coverage ✓ Reordering elements
from JSON grammar Only in JSON files

to 4 employed probabilistic grammar derived from classic samples, focusing on a
multi-objective fitness function that balanced feedback and structure scores. In these
experiments, different weight distributions (equal, feedback-heavy, and structure-
heavy) were tested to assess their influence on input generation. No crossover was
applied, and mutation was limited to modifying the probability of production rules
within the grammar.

Experiments 5 to 7 introduced more sophisticated techniques to further enhance
input diversity and exploration. Crossover, specifically the one-point technique, was
integrated into the process. In addition, mutation shifted from modifying the grammar
to directly modifying the JSON files. The input generation method also evolved: start-
ing with probabilistic grammar-based input generation, it later switched to random
generation from a well-defined JSON grammar.

4.4 Evaluation Metrics

The evaluation of both methods was based on several key metrics, including:

• Coverage: These metrics reflect the extent to which the generated inputs exer-
cise different parts of the SUT’s code. Higher coverage indicates a more thorough
exploration of the codebase, increasing the likelihood of uncovering potential vul-
nerabilities or defects. Coverage is a widely used metric in software testing research
as it provides a quantitative measure of how comprehensively the inputs interact
with the SUT.

• Exceptions Triggered: This metric captures the types of exceptions encountered
during testing, which can indicate potential vulnerabilities or areas of instabil-
ity within the SUT. Tracking exceptions provides direct insight into the ability of

15

the generated inputs to expose faults. Exception-triggering capability is also com-
monly employed in software testing studies to evaluate the effectiveness of test input
generation methods.

These evaluation metrics were selected because they provide a comprehensive
assessment of the generated inputs’ effectiveness in exploring the codebase and identi-
fying vulnerabilities. Additionally, both metrics are widely adopted in research studies
within the software testing domain, ensuring comparability and relevance to existing
literature [14, 15, 24, 25].

4.5 Results and Analysis

The analysis of results focuses on evaluating the effectiveness of the new GA approach
through two primary aspects: coverage metrics and exception types. In terms of cover-
age metrics, the experiments assess how well the different configurations perform across
multiple benchmarks, highlighting areas where coverage improvements are observed.
The exception types section provides insights into the kind of exceptions triggered
during the experiments, along with the frequency and consistency of their occurrence.
The 100 JSON test files generated from each experimental configuration were executed
on the benchmark problems, producing two types of results: exceptions triggered and
a coverage report.

4.5.1 Coverage Metrics

The results compare the performance of the benchmark method with the weighted
fitness function, the new GA approach utilizing probabilistic input generation, and
the final implementation of the improved evolutionary algorithm-based method
across various experimental configurations. This analysis evaluates the effectiveness
of each method by examining their code coverage metrics and exception-triggering
capabilities.

Table 3 presents the coverage results comparing the weighted fitness function with
the benchmark method. It highlights metrics such as class, method, line, instruction,
and branch coverage. Each experiment’s maximum, mean, and standard deviation
(SD) values are provided, allowing for an in-depth comparison of the performance
across different configurations. The coverage values reported are not cumulative;
instead, they represent the average coverage achieved by a single test input when
executed on the benchmark problems.

Experiments 2, 3, and 4 represent the application of a weighted multi-objective
fitness function combining both feedback score (ability to trigger exceptions) and
structure score (complexity of input). These experiments apply different weight
configurations to explore the trade-offs between these objectives:

• Experiment 2: Equal weight distribution of (0.5, 0.5) between feedback and
structure.

• Experiment 3: Prioritizes feedback score with weights (0.9, 0.1).
• Experiment 4: Prioritizes structure score with weights (0.1, 0.9).

16

T
a
b
le

3
:
B
en
ch
m
a
rk

v
s
W
ei
g
h
te
d
F
it
n
es
s
F
u
n
ct
io
n

S
U
T

A
p
p
ro

a
ch

C
la
ss

M
e
th

o
d

L
in
e

In
st
ru

c
ti
o
n

B
ra

n
ch

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

A
rg
o

B
en

ch
m
a
rk

M
et
h
o
d

5
7
.8
9

3
1
.7
8

6
.6
4

3
5
.6
0

1
6
.8
0

4
.6
5

4
2
.4
9

2
0
.1
3

5
.8
5

3
7
.8
1

1
6
.4
4

4
.3
8

3
5
.9
1

1
5
.6
0

5
.6
6

E
x
p
er
im

en
t
2

5
7
.8
9

3
1
.8
6

7
.0
0

3
5
.9
2

1
6
.8
7

4
.8
8

4
2
.6
8

2
0
.2
7

6
.2
6

3
8
.2
4

1
6
.5
5

4
.7
3

3
6
.1
0

1
5
.9
9

6
.1
4

E
x
p
er
im

en
t
3

5
7
.8
9

3
1
.5
6

7
.0
0

3
6
.0
8

1
6
.6
8

4
.8
9

4
3
.8
0

2
0
.0
2

6
.2
5

3
9
.0
7

1
6
.3
5

4
.7
2

3
6
.6
5

1
5
.7
1

6
.1
0

E
x
p
er
im

en
t
4

5
7
.8
9

3
4
.4
3

6
.8
4

3
5
.7
6

1
8
.5
9

4
.7
6

4
2
.8
7

2
2
.4
9

6
.4
1

3
8
.4
8

1
8
.1
9

4
.8
8

3
6
.2
8

1
8
.1
8

6
.4
6

F
a
st
J
so
n

B
en

ch
m
a
rk

M
et
h
o
d

2
6
.3
6

8
.1
5

2
.1
1

1
0
.8
0

3
.7
2

0
.9
1

5
.4
6

1
.7
7

0
.5
3

7
.3
3

1
.5
4

0
.6
3

2
.8
4

1
.1
7

0
.4
0

E
x
p
er
im

en
t
2

2
6
.3
6

8
.1
8

2
.1
1

1
0
.7
5

3
.7
3

0
.9
0

5
.4
0

1
.7
8

0
.5
4

7
.2
5

1
.5
6

0
.6
3

2
.7
4

1
.1
8

0
.4
0

E
x
p
er
im

en
t
3

2
6
.3
6

8
.1
9

2
.1
1

1
0
.7
5

3
.7
4

0
.9
0

5
.4
6

1
.7
9

0
.5
3

7
.3
2

1
.5
6

0
.6
3

2
.8
4

1
.1
9

0
.4
0

E
x
p
er
im

en
t
4

2
6
.3
6

8
.2
1

2
.1
1

1
0
.8
9

3
.7
6

0
.9
0

5
.5
2

1
.8
0

0
.5
3

7
.4
0

1
.5
7

0
.6
3

2
.8
8

1
.2
0

0
.4
0

G
en

so
n

B
en

ch
m
a
rk

M
et
h
o
d

1
9
.0
3

6
.6
3

1
.3
1

9
.8
8

3
.8
9

0
.7
1

1
5
.8
7

5
.1
9

1
.2
9

8
.1
3

2
.4
1

0
.6
7

6
.7
6

1
.6
1

0
.5
8

E
x
p
er
im

en
t
2

2
0
.3
5

7
.1
3

1
.4
6

1
0
.3
5

4
.2
7

0
.8
5

1
7
.1
1

6
.0
3

1
.6
4

8
.6
8

3
.0
2

0
.9
1

7
.4
7

2
.2
3

0
.8
4

E
x
p
er
im

en
t
3

1
9
.9
1

7
.1
6

1
.4
8

1
0
.4
8

4
.3
1

0
.8
5

1
7
.2
5

6
.1
0

1
.6
4

8
.8
4

3
.0
7

0
.9
0

7
.6
8

2
.2
7

0
.8
4

E
x
p
er
im

en
t
4

2
0
.3
5

7
.1
5

1
.4
8

1
0
.4
1

4
.3
0

0
.8
6

1
6
.8
5

6
.0
8

1
.6
5

8
.6
5

3
.0
6

0
.9
1

7
.5
3

2
.2
7

0
.8
5

G
so
n

B
en

ch
m
a
rk

M
et
h
o
d

3
3
.3
3

1
5
.0
0

3
.5
2

2
2
.6
7

1
1
.1
7

3
.1
4

2
4
.5
5

1
1
.5
5

3
.0
5

2
1
.7
6

9
.6
8

2
.5
2

1
9
.8
2

8
.3
8

2
.5
3

E
x
p
er
im

en
t
2

3
3
.3
3

1
4
.9
9

3
.5
1

2
2
.6
7

1
1
.1
7

3
.1
4

2
4
.8
5

1
1
.5
4

3
.0
5

2
1
.8
2

9
.6
7

2
.5
2

2
0
.3
9

8
.3
6

2
.5
3

E
x
p
er
im

en
t
3

3
3
.3
3

1
5
.0
0

3
.5
0

2
2
.6
7

1
1
.1
8

3
.1
6

2
4
.3
7

1
1
.5
3

3
.0
6

2
1
.5
1

9
.6
6

2
.5
2

1
9
.6
2

8
.3
4

2
.5
3

E
x
p
er
im

en
t
4

3
3
.3
3

1
4
.9
8

3
.5
7

2
2
.5
6

1
1
.2
0

3
.1
8

2
4
.4
8

1
1
.6
1

3
.0
8

2
1
.6
3

9
.7
3

2
.5
4

1
9
.8
6

8
.4
4

2
.5
3

J
so
n
F
la
tt
en

er
B
en

ch
m
a
rk

M
et
h
o
d

4
6
.1
5

3
7
.1
1

6
.8
4

6
1
.8
6

3
2
.3
5

7
.6
1

7
0
.2
7

2
8
.0
2

6
.7
9

6
1
.1
2

2
1
.0
7

5
.4
0

6
8
.6
7

1
8
.9
2

6
.4
8

E
x
p
er
im

en
t
2

4
6
.1
5

3
4
.5
1

1
0
.4
5

6
2
.8
9

3
0
.2
3

1
1
.8
1

7
1
.2
1

2
6
.8
8

1
0
.6
0

6
1
.7
3

2
0
.1
9

8
.3
2

7
1
.0
8

1
9
.8
8

9
.6
4

E
x
p
er
im

en
t
3

4
6
.1
5

3
4
.7
3

1
0
.1
6

6
2
.8
9

3
0
.4
4

1
1
.5
0

6
9
.1
3

2
7
.0
3

1
0
.3
3

6
1
.2
2

2
0
.2
9

8
.1
2

6
8
.6
7

1
9
.9
6

9
.4
3

E
x
p
er
im

en
t
4

4
6
.1
5

3
3
.5
4

1
1
.1
3

6
2
.8
9

2
9
.1
4

1
2
.6
1

6
9
.7
0

2
5
.9
6

1
1
.3
0

6
1
.1
6

1
9
.4
6

8
.8
6

6
9
.0
8

1
9
.3
4

1
0
.1
7

J
S
O
N
J
av
a

B
en

ch
m
a
rk

M
et
h
o
d

4
2
.8
6

2
5
.2
8

1
1
.1
8

2
0
.2
1

9
.7
9

3
.8
7

1
6
.3
6

6
.5
5

2
.5
2

1
5
.5
6

5
.7
7

2
.3
6

1
4
.1
9

4
.3
4

2
.0
1

E
x
p
er
im

en
t
2

4
2
.8
6

2
4
.9
7

1
1
.2
0

1
9
.5
1

9
.7
1

3
.8
7

1
6
.0
4

6
.5
2

2
.5
1

1
5
.4
5

5
.7
4

2
.3
4

1
3
.9
3

4
.3
3

1
.9
9

E
x
p
er
im

en
t
3

4
2
.8
6

2
5
.1
5

1
1
.2
2

1
9
.1
6

9
.7
7

3
.8
8

1
5
.5
9

6
.5
4

2
.5
2

1
4
.6
5

5
.7
7

2
.3
6

1
2
.8
7

4
.3
4

2
.0
0

E
x
p
er
im

en
t
4

4
2
.8
6

2
5
.1
1

1
1
.1
6

1
9
.5
1

9
.7
2

3
.8
6

1
6
.4
0

6
.4
9

2
.5
0

1
5
.6
2

5
.7
1

2
.3
4

1
3
.7
3

4
.2
9

1
.9
8

J
so
n
-s
im

p
le

B
en

ch
m
a
rk

M
et
h
o
d

7
5
.0
0

6
1
.2
0

6
.0
7

4
3
.7
5

2
7
.5
5

4
.9
4

5
5
.5
0

3
0
.4
3

6
.5
0

7
8
.1
6

1
6
.8
4

6
.2
3

4
9
.4
5

2
6
.3
8

7
.4
0

E
x
p
er
im

en
t
2

7
5
.0
0

6
1
.2
1

6
.2
4

4
3
.7
5

2
7
.5
2

5
.0
0

5
5
.1
3

3
0
.4
3

6
.6
0

7
7
.8
2

1
6
.8
3

6
.2
5

4
8
.6
3

2
6
.3
4

7
.4
9

E
x
p
er
im

en
t
3

7
5
.0
0

6
1
.2
0

6
.1
2

4
3
.7
5

2
7
.5
5

4
.9
5

5
5
.8
8

3
0
.4
2

6
.5
2

7
8
.1
6

1
6
.8
2

6
.2
3

4
8
.9
0

2
6
.3
3

7
.4
0

E
x
p
er
im

en
t
4

7
5
.0
0

6
1
.0
4

6
.0
5

4
3
.7
5

2
7
.4
5

4
.9
3

5
6
.3
8

3
0
.3
2

6
.5
3

7
8
.6
3

1
6
.7
7

6
.2
5

5
1
.1
0

2
6
.1
6

7
.4
1

M
in
im

a
lJ
so
n

B
en

ch
m
a
rk

M
et
h
o
d

8
1
.8
2

5
9
.5
1

7
.5
6

4
1
.0
7

2
3
.8
6

5
.8
2

5
0
.7
2

2
7
.7
9

7
.4
6

4
5
.5
8

2
3
.0
6

5
.8
6

3
5
.9
6

1
7
.9
9

5
.6
2

E
x
p
er
im

en
t
2

8
1
.8
2

5
9
.7
3

7
.5
4

4
1
.0
7

2
3
.9
9

5
.8
0

4
9
.5
0

2
7
.9
6

7
.4
2

4
4
.4
5

2
3
.1
9

5
.8
4

3
6
.8
0

1
7
.9
9

5
.5
7

E
x
p
er
im

en
t
3

8
1
.8
2

5
9
.8
0

7
.5
8

4
1
.0
7

2
4
.0
5

5
.8
2

5
0
.1
7

2
8
.0
3

7
.4
5

4
5
.0
7

2
3
.2
6

5
.8
6

3
6
.2
4

1
8
.0
6

5
.5
9

E
x
p
er
im

en
t
4

8
1
.8
2

5
9
.7
3

7
.5
3

4
1
.4
3

2
4
.0
4

5
.8
1

5
0
.1
7

2
8
.0
2

7
.4
4

4
4
.6
9

2
3
.2
4

5
.8
6

3
6
.2
4

1
8
.1
2

5
.6
3

P
o
jo

B
en

ch
m
a
rk

M
et
h
o
d

4
2
.6
7

2
4
.2
8

4
.1
1

3
5
.6
7

1
5
.5
6

6
.1
4

3
0
.7
8

1
0
.6
4

5
.8
5

2
8
.2
6

8
.5
9

5
.6
4

1
7
.7
6

5
.4
0

3
.9
6

E
x
p
er
im

en
t
2

4
2
.6
7

2
4
.6
5

5
.0
2

3
6
.1
1

1
6
.3
3

7
.0
2

3
0
.8
2

1
1
.4
0

6
.1
4

2
8
.1
1

9
.4
0

5
.8
3

1
7
.9
6

6
.0
6

4
.1
8

E
x
p
er
im

en
t
3

4
2
.6
7

2
4
.7
1

4
.9
6

3
6
.1
1

1
6
.4
3

6
.9
8

3
0
.9
6

1
1
.4
9

6
.1
6

2
8
.2
5

9
.4
8

5
.8
6

1
8
.0
6

6
.1
1

4
.1
8

E
x
p
er
im

en
t
4

4
2
.6
7

2
4
.6
2

5
.2
5

3
6
.1
1

1
6
.3
5

7
.3
2

3
1
.4
1

1
1
.4
8

6
.3
6

2
8
.6
6

9
.5
0

6
.0
2

1
7
.9
6

6
.1
3

4
.3
1

17

The bolded values indicate the cases where the performance of a method stood out,
either by achieving the highest coverage. The results indicate that the weighted fitness
function generally outperforms the benchmark method across all coverage metrics,
with the exception of JsonFlattener and JSONJava. Most SUTs showed measurable
gains with the introduction of weighted objectives, reflecting the effectiveness of bal-
ancing feedback and structural complexity. Notably, Experiment 3, which assigns
greater weight to the feedback score (0.9 feedback, 0.1 structure), achieved consis-
tently higher coverage across several metrics. This configuration proved particularly
effective at guiding the search toward inputs that trigger exceptions and expose vul-
nerabilities by prioritizing meaningful execution paths. Overall, emphasizing feedback
over structural complexity facilitated the exploration of fault-prone code regions and
contributed to improved test effectiveness. However, the choice of weight configura-
tion should be guided by the specific objectives of the study. For example, if the goal
is to trigger exceptions and explore runtime behavior, a feedback-focused weighting
is ideal; whereas, for studies targeting structural diversity or grammar conformance,
greater emphasis on input complexity may be beneficial.

The results presented in Table 4, compares the benchmark method against the GA
approach incorporating crossover (Experiment 5) and both crossover and mutation
(Experiment 6). The findings demonstrate that our approach significantly outperforms
the benchmark method across most coverage metrics.

Substantial improvements were observed in other SUTs, particularly Argo, Json-
Flattener, JSONJava, and Json-simple, where GA-based approach achieved signifi-
cantly higher coverage metrics. The introduction of one-point crossover in Experiment
5 produced marked improvements over the benchmark method. For instance, in
JSONJava and Json-simple, the mean branch coverage reached 66.77% and 49.49%,
respectively, confirming the effectiveness of crossover in exploring new input spaces
and increasing coverage.

The combination of crossover and mutation in Experiment 6 provided further
improvements for certain SUTs. In JsonFlattener, Gson, and Pojo, the addition of
mutation slightly boosted the mean branch coverage. However, in some cases, such
as Argo and Json-simple, the results were comparable to or slightly lower than
Experiment 5.

Overall, the results in Table 4 highlight the superiority of the new evolutionary
algorithm. The inclusion of genetic operators, particularly crossover, enhances the
exploration and exploitation of the input space, increasing the likelihood of discover-
ing unique execution paths and software vulnerabilities. Mutation further contributes
to input diversity by introducing structural randomness, enabling the discovery of
previously untested paths.

The coverage metrics of the benchmark method, the evolutionary algorithm with
probabilistic input generation (Experiments 5 and 6), and the final evolutionary algo-
rithm with random input generation (Experiment 7) are compared in Table 5. Both
Experiments 6 and 7 implement the proposed genetic algorithm-based approach, incor-
porating genetic operators such as crossover and mutation. The primary difference
between these two configurations lies in their input generation strategy: Experiment

18

T
a
b
le

4
:
B
en
ch
m
a
rk

v
s
N
ew

E
vo
lu
ti
o
n
a
ry

A
lg
o
ri
th
m

S
U
T

A
p
p
ro

a
ch

C
la
ss

M
e
th

o
d

L
in
e

In
st
ru

c
ti
o
n

B
ra

n
ch

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

A
rg
o

B
en

ch
m
a
rk

M
et
h
o
d

5
7
.8
9

3
1
.7
8

6
.6
4

3
5
.6
0

1
6
.8
0

4
.6
5

4
2
.4
9

2
0
.1
3

5
.8
5

3
7
.8
1

1
6
.4
4

4
.3
8

3
5
.9
1

1
5
.6
0

5
.6
6

E
x
p
er
im

en
t
5

5
7
.8
9

4
6
.3
7

1
.5
2

3
4
.7
9

2
7
.6
0

0
.9
7

4
3
.1
1

3
7
.1
6

1
.3
5

3
8
.3
2

2
9
.0
2

1
.2
7

3
6
.4
6

3
5
.0
9

1
.7
4

E
x
p
er
im

en
t
6

5
7
.8
9

4
6
.2
1

1
.7
4

3
4
.7
9

2
7
.4
9

1
.1
1

4
3
.1
1

3
7
.0
3

1
.6
0

3
8
.3
2

2
8
.9
1

1
.4
4

3
6
.4
6

3
4
.9
5

2
.0
9

F
a
st
J
so
n

B
en

ch
m
a
rk

M
et
h
o
d

2
6
.3
6

8
.1
5

2
.1
1

1
0
.8
0

3
.7
2

0
.9
1

5
.4
6

1
.7
7

0
.5
3

7
.3
3

1
.5
4

0
.6
3

2
.8
4

1
.1
7

0
.4
0

E
x
p
er
im

en
t
5

2
6
.3
6

1
0
.5
7

1
.6
2

1
0
.8
4

5
.1
4

0
.6
0

5
.7
8

3
.1
4

0
.3
1

7
.5
9

2
.7
2

0
.5
0

3
.1
7

2
.4
4

0
.1
8

E
x
p
er
im

en
t
6

2
6
.3
6

1
0
.5
7

1
.6
2

1
0
.8
4

5
.1
4

0
.6
0

5
.8
5

3
.1
6

0
.3
2

7
.6
5

2
.7
3

0
.5
1

3
.2
4

2
.4
5

0
.1
9

G
en

so
n

B
en

ch
m
a
rk

M
et
h
o
d

1
9
.0
3

6
.3
6

1
.3
1

9
.8
8

3
.8
9

0
.7
1

1
5
.8
7

5
.1
9

1
.2
9

8
.1
3

2
.4
1

0
.6
7

6
.7
6

1
.6
1

0
.5
8

E
x
p
er
im

en
t
5

1
9
.9
1

8
.0
6

1
.1
1

9
.8
8

5
.5
0

0
.4
6

1
6
.2
2

8
.7
3

0
.7
9

8
.3
1

4
.6
0

0
.4
1

7
.0
7

3
.7
2

0
.3
7

E
x
p
er
im

en
t
6

1
9
.4
7

8
.0
6

1
.1
1

9
.8
8

5
.5
0

0
.4
6

1
6
.2
2

8
.7
1

0
.8
0

8
.3
1

4
.5
8

0
.4
2

7
.0
7

3
.7
1

0
.3
9

G
so
n

B
en

ch
m
a
rk

M
et
h
o
d

3
3
.3
3

1
5
.0
0

3
.5
2

2
2
.6
7

1
1
.1
7

3
.1
4

2
4
.5
5

1
1
.5
5

3
.0
5

2
1
.7
6

9
.6
8

2
.5
2

1
9
.8
2

8
.3
8

2
.5
3

E
x
p
er
im

en
t
5

3
3
.3
3

1
9
.2
4

1
.4
8

2
2
.6
7

1
6
.1
7

0
.7
9

2
4
.7
9

1
8
.4
5

0
.8
5

2
1
.8
8

1
5
.3
8

0
.8
0

2
0
.5
9

1
4
.8
9

0
.8
3

E
x
p
er
im

en
t
6

3
3
.3
3

1
9
.2
3

1
.4
8

2
2
.6
7

1
6
.1
7

0
.7
9

2
4
.7
9

1
8
.4
2

0
.8
7

2
1
.8
8

1
5
.3
4

0
.8
2

2
0
.5
5

1
4
.8
3

0
.8
6

J
so
n
F
la
tt
en

er
B
en

ch
m
a
rk

M
et
h
o
d

4
6
.1
5

3
7
.1
1

6
.8
4

6
1
.8
6

3
2
.3
5

7
.6
1

7
0
.2
7

2
8
.0
2

6
.7
9

6
1
.1
2

2
1
.0
7

5
.4
0

6
8
.6
7

1
8
.9
2

6
.4
8

E
x
p
er
im

en
t
5

4
6
.1
5

4
6
.0
4

1
.5
2

5
9
.7
9

5
8
.0
5

3
.6
6

7
2
.5
4

6
6
.9
3

4
.7
8

6
3
.8
7

5
8
.0
8

4
.8
8

7
2
.2
9

6
6
.2
3

5
.0
3

E
x
p
er
im

en
t
6

4
6
.1
5

4
6
.0
7

1
.4
3

5
9
.7
9

5
8
.7
1

3
.2
1

7
2
.7
3

6
7
.9
2

4
.5
1

6
3
.8
7

5
9
.2
6

4
.4
4

7
3
.0
9

6
6
.7
7

5
.3
1

J
S
O
N
J
av
a

B
en

ch
m
a
rk

M
et
h
o
d

4
2
.8
6

2
5
.2
8

1
1
.1
8

2
0
.2
1

9
.7
9

3
.8
7

1
6
.3
6

6
.5
5

2
.5
2

1
5
.5
6

5
.7
7

2
.3
6

1
4
.1
9

4
.3
4

2
.0
1

E
x
p
er
im

en
t
5

4
2
.8
6

4
2
.8
2

0
.8
4

1
7
.7
7

1
6
.8
6

0
.3
9

1
6
.9
0

1
5
.5
0

0
.6
8

1
4
.9
6

1
3
.7
3

0
.6
0

1
2
.4
8

1
1
.7
2

0
.5
5

E
x
p
er
im

en
t
6

4
2
.8
6

4
2
.7
8

0
.9
6

1
7
.7
7

1
6
.9
5

0
.4
4

1
6
.9
5

1
5
.6
1

0
.8
2

1
5
.0
0

1
3
.8
5

0
.7
3

1
2
.6
7

1
1
.7
8

0
.7
1

J
so
n
-s
im

p
le

B
en

ch
m
a
rk

M
et
h
o
d

7
5
.0
0

6
1
.2
0

6
.0
7

4
3
.7
5

2
7
.5
5

4
.9
4

5
5
.5
0

3
0
.4
3

6
.5
0

7
8
.1
6

1
6
.8
4

6
.2
3

4
9
.4
5

2
6
.3
8

7
.4
0

E
x
p
er
im

en
t
5

7
5
.0
0

7
4
.7
9

1
.6
4

4
3
.7
5

3
5
.3
9

1
.2
0

5
8
.2
5

4
9
.8
5

2
.0
0

7
9
.2
0

2
6
.3
1

5
.3
1

5
1
.6
5

4
6
.2
1

1
.8
9

E
x
p
er
im

en
t
6

7
5
.0
0

7
4
.9
5

0
.8
7

4
3
.7
5

3
5
.4
7

0
.9
8

5
8
.2
5

4
9
.9
8

1
.8
2

7
9
.2
0

2
6
.3
9

5
.3
0

5
1
.6
5

4
6
.2
7

1
.7
6

M
in
im

a
lJ
so
n

B
en

ch
m
a
rk

M
et
h
o
d

8
1
.8
2

5
9
.5
1

7
.5
6

4
1
.0
7

2
3
.8
6

5
.8
2

5
0
.7
2

2
7
.7
9

7
.4
6

4
5
.5
8

2
3
.0
6

5
.8
6

3
5
.9
6

1
7
.9
9

5
.6
2

E
x
p
er
im

en
t
5

8
1
.8
2

7
7
.1
9

1
.2
6

4
1
.0
7

3
7
.6
9

0
.9
7

5
1
.5
0

4
7
.1
2

1
.3
1

4
6
.6
4

3
8
.6
4

1
.2
1

3
5
.9
6

3
4
.3
2

1
.2
0

E
x
p
er
im

en
t
6

8
1
.8
2

7
7
.1
8

1
.3
0

4
1
.0
7

3
7
.6
1

1
.0
6

5
1
.5
0

4
7
.2
2

1
.5
4

4
6
.6
4

3
8
.7
5

1
.3
7

3
5
.9
6

3
4
.4
6

1
.5
1

P
o
jo

B
en

ch
m
a
rk

M
et
h
o
d

4
2
.6
7

2
4
.2
8

4
.1
1

3
5
.6
7

1
5
.5
6

6
.1
4

3
0
.7
8

1
0
.6
4

5
.8
5

2
8
.2
6

8
.5
9

5
.6
4

1
7
.7
6

5
.4
0

3
.9
6

E
x
p
er
im

en
t
5

4
2
.6
7

3
7
.2
7

1
.0
5

3
6
.1
1

3
2
.3
3

1
.3
0

3
1
.5
4

2
6
.3
1

1
.4
3

2
8
.8
7

2
3
.5
7

1
.3
6

1
8
.4
7

1
7
.5
6

1
.0
1

E
x
p
er
im

en
t
6

4
2
.6
7

3
7
.2
3

1
.2
6

3
6
.1
1

3
2
.2
4

1
.5
4

3
1
.5
4

2
6
.2
2

1
.5
7

2
8
.8
7

2
3
.5
1

1
.4
9

1
8
.3
7

1
7
.4
0

1
.1
4

19

T
a
b
le

5
:
B
en
ch
m
a
rk

v
s
F
in
a
li
ze
d
E
v
o
lu
ti
o
n
a
ry

A
lg
o
ri
th
m

S
U
T

A
p
p
ro

a
ch

C
la
ss

M
e
th

o
d

L
in
e

In
st
ru

c
ti
o
n

B
ra

n
ch

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

M
a
x

M
ea
n

S
D

A
rg
o

B
en

ch
m
a
rk

M
et
h
o
d

5
7
.8
9

3
1
.7
8

6
.6
4

3
5
.6
0

1
6
.8
0

4
.6
5

4
2
.4
9

2
0
.1
3

5
.8
5

3
7
.8
1

1
6
.4
4

4
.3
8

3
5
.9
1

1
5
.6
0

5
.6
6

E
x
p
er
im

en
t
5

5
7
.8
9

4
6
.3
7

1
.5
2

3
4
.7
9

2
7
.6
0

0
.9
7

4
3
.1
1

3
7
.1
6

1
.3
5

3
8
.3
2

2
9
.0
2

1
.2
7

3
6
.4
6

3
5
.0
9

1
.7
4

E
x
p
er
im

en
t
6

5
7
.8
9

4
6
.2
1

1
.7
4

3
4
.7
9

2
7
.4
9

1
.1
1

4
3
.1
1

3
7
.0
3

1
.6
0

3
8
.3
2

2
8
.9
1

1
.4
4

3
6
.4
6

3
4
.9
5

2
.0
9

E
x
p
er
im

en
t
7

5
7
.8
9

5
2
.3
6

1
.5
7

3
6
.4
1

2
9
.2
3

1
.0
9

4
6
.5
3

4
0
.6
4

1
.3
8

4
0
.6
3

3
1
.3
6

1
.2
8

4
0
.7
0

3
9
.7
6

1
.5
7

F
a
st
J
so
n

B
en

ch
m
a
rk

M
et
h
o
d

2
6
.3
6

8
.1
5

2
.1
1

1
0
.8
0

3
.7
2

0
.9
1

5
.4
6

1
.7
7

0
.5
3

7
.3
3

1
.5
4

0
.6
3

2
.8
4

1
.1
7

0
.4
0

E
x
p
er
im

en
t
5

2
6
.3
6

1
0
.5
7

1
.6
2

1
0
.8
4

5
.1
4

0
.6
0

5
.7
8

3
.1
4

0
.3
1

7
.5
9

2
.7
2

0
.5
0

3
.1
7

2
.4
4

0
.1
8

E
x
p
er
im

en
t
6

2
6
.3
6

1
0
.5
7

1
.6
2

1
0
.8
4

5
.1
4

0
.6
0

5
.8
5

3
.1
6

0
.3
2

7
.6
5

2
.7
3

0
.5
1

3
.2
4

2
.4
5

0
.1
9

E
x
p
er
im

en
t
7

2
6
.3
6

1
0
.9
4

1
.6
5

1
0
.9
9

5
.3
0

0
.6
4

6
.1
5

3
.4
8

0
.3
4

8
.0
2

3
.0
8

0
.5
2

3
.5
6

2
.7
9

0
.2
0

G
en

so
n

B
en

ch
m
a
rk

M
et
h
o
d

1
9
.0
3

6
.3
6

1
.3
1

9
.8
8

3
.8
9

0
.7
1

1
5
.8
7

5
.1
9

1
.2
9

8
.1
3

2
.4
1

0
.6
7

6
.7
6

1
.6
1

0
.5
8

E
x
p
er
im

en
t
5

1
9
.9
1

8
.0
6

1
.1
1

9
.8
8

5
.5
0

0
.4
6

1
6
.2
2

8
.7
3

0
.7
9

8
.3
1

4
.6
0

0
.4
1

7
.0
7

3
.7
2

0
.3
7

E
x
p
er
im

en
t
6

1
9
.4
7

8
.0
6

1
.1
1

9
.8
8

5
.5
0

0
.4
6

1
6
.2
2

8
.7
1

0
.8
0

8
.3
1

4
.5
8

0
.4
2

7
.0
7

3
.7
1

0
.3
9

E
x
p
er
im

en
t
7

2
0
.3
5

8
.6
6

1
.1
6

1
0
.5
5

5
.9
7

0
.5
4

1
7
.8
8

1
0
.0
9

0
.9
4

9
.1
7

5
.3
2

0
.4
7

8
.3
5

4
.7
6

0
.4
7

G
so
n

B
en

ch
m
a
rk

M
et
h
o
d

3
3
.3
3

1
5
.0
0

3
.5
2

2
2
.6
7

1
1
.1
7

3
.1
4

2
4
.5
5

1
1
.5
5

3
.0
5

2
1
.7
6

9
.6
8

2
.5
2

1
9
.8
2

8
.3
8

2
.5
3

E
x
p
er
im

en
t
5

3
3
.3
3

1
9
.2
4

1
.4
8

2
2
.6
7

1
6
.1
7

0
.7
9

2
4
.7
9

1
8
.4
5

0
.8
5

2
1
.8
8

1
5
.3
8

0
.8
0

2
0
.5
9

1
4
.8
9

0
.8
3

E
x
p
er
im

en
t
6

3
3
.3
3

1
9
.2
3

1
.4
8

2
2
.6
7

1
6
.1
7

0
.7
9

2
4
.7
9

1
8
.4
2

0
.8
7

2
1
.8
8

1
5
.3
4

0
.8
2

2
0
.5
5

1
4
.8
3

0
.8
6

E
x
p
er
im

en
t
7

3
3
.9
5

1
9
.1
8

1
.6
7

2
2
.9
0

1
6
.3
7

0
.8
8

2
6
.3
8

1
9
.9
9

0
.8
5

2
3
.5
3

1
6
.9
7

0
.8
1

2
2
.9
1

1
7
.2
9

0
.8
0

J
so
n
F
la
tt
en

er
B
en

ch
m
a
rk

M
et
h
o
d

4
6
.1
5

3
7
.1
1

6
.8
4

6
1
.8
6

3
2
.3
5

7
.6
1

7
0
.2
7

2
8
.0
2

6
.7
9

6
1
.1
2

2
1
.0
7

5
.4
0

6
8
.6
7

1
8
.9
2

6
.4
8

E
x
p
er
im

en
t
5

4
6
.1
5

4
6
.0
4

1
.5
2

5
9
.7
9

5
8
.0
5

3
.6
6

7
2
.5
4

6
6
.9
3

4
.7
8

6
3
.8
7

5
8
.0
8

4
.8
8

7
2
.2
9

6
6
.2
3

5
.0
3

E
x
p
er
im

en
t
6

4
6
.1
5

4
6
.0
7

1
.4
3

5
9
.7
9

5
8
.7
1

3
.2
1

7
2
.7
3

6
7
.9
2

4
.5
1

6
3
.8
7

5
9
.2
6

4
.4
4

7
3
.0
9

6
6
.7
7

5
.3
1

E
x
p
er
im

en
t
7

4
6
.1
5

4
5
.8
3

2
.9
3

5
9
.7
9

5
6
.1
4

6
.2
1

7
0
.2
7

6
3
.3
3

8
.9
0

6
2
.1
9

5
4
.5
4

9
.1
3

7
1
.8
9

6
2
.4
0

9
.6
7

J
S
O
N
J
av
a

B
en

ch
m
a
rk

M
et
h
o
d

4
2
.8
6

2
5
.2
8

1
1
.1
8

2
0
.2
1

9
.7
9

3
.8
7

1
6
.3
6

6
.5
5

2
.5
2

1
5
.5
6

5
.7
7

2
.3
6

1
4
.1
9

4
.3
4

2
.0
1

E
x
p
er
im

en
t
5

4
2
.8
6

4
2
.8
2

0
.8
4

1
7
.7
7

1
6
.8
6

0
.3
9

1
6
.9
0

1
5
.5
0

0
.6
8

1
4
.9
6

1
3
.7
3

0
.6
0

1
2
.4
8

1
1
.7
2

0
.5
5

E
x
p
er
im

en
t
6

4
2
.8
6

4
2
.7
8

0
.9
6

1
7
.7
7

1
6
.9
5

0
.4
4

1
6
.9
5

1
5
.6
1

0
.8
2

1
5
.0
0

1
3
.8
5

0
.7
3

1
2
.6
7

1
1
.7
8

0
.7
1

E
x
p
er
im

en
t
7

4
2
.8
6

4
2
.7
9

1
.2
1

1
8
.4
7

1
7
.7
4

0
.4
9

1
8
.2
1

1
7
.4
6

0
.6
6

1
6
.4
2

1
5
.7
3

0
.6
3

1
5
.0
5

1
4
.6
0

0
.6
6

J
so
n
-s
im

p
le

B
en

ch
m
a
rk

M
et
h
o
d

7
5
.0
0

6
1
.2
0

6
.0
7

4
3
.7
5

2
7
.5
5

4
.4
9

5
5
.5
0

3
0
.4
3

6
.5
0

7
8
.1
6

1
6
.8
4

6
.2
3

4
9
.4
5

2
6
.3
8

7
.4
0

E
x
p
er
im

en
t
5

7
5
.0
0

7
4
.7
9

1
.6
4

4
3
.7
5

3
5
.3
9

1
.2
0

5
8
.2
5

4
9
.8
5

2
.0
0

7
9
.2
0

2
6
.3
1

5
.3
1

5
1
.6
5

4
6
.2
1

1
.8
9

E
x
p
er
im

en
t
6

7
5
.0
0

7
4
.9
5

0
.8
7

4
3
.7
5

3
5
.4
7

0
.9
8

5
8
.2
5

4
9
.9
8

1
.8
2

7
9
.2
0

2
6
.3
9

5
.3
0

5
1
.6
5

4
6
.2
7

1
.7
6

E
x
p
er
im

en
t
7

7
5
.0
0

7
4
.8
2

1
.6
2

4
3
.7
5

3
5
.4
0

1
.2
9

6
0
.2
5

5
3
.1
3

2
.1
5

8
0
.6
8

2
8
.3
7

5
.3
3

5
6
.0
4

5
1
.5
7

2
.1
2

M
in
im

a
lJ
so
n

B
en

ch
m
a
rk

M
et
h
o
d

8
1
.8
2

5
9
.5
1

7
.5
6

4
1
.0
7

2
3
.8
6

5
.8
2

5
0
.7
2

2
7
.7
9

7
.4
6

4
5
.5
8

2
3
.0
6

5
.8
6

3
5
.9
6

1
7
.9
9

5
.6
2

E
x
p
er
im

en
t
5

8
1
.8
2

7
7
.1
9

1
.2
6

4
1
.0
7

3
7
.6
9

0
.9
7

5
1
.5
0

4
7
.1
2

1
.3
1

4
6
.6
4

3
8
.6
4

1
.2
1

3
5
.9
6

3
4
.3
2

1
.2
0

E
x
p
er
im

en
t
6

8
1
.8
2

7
7
.1
8

1
.3
0

4
1
.0
7

3
7
.6
1

1
.0
6

5
1
.5
0

4
7
.2
2

1
.5
4

4
6
.6
4

3
8
.7
5

1
.3
7

3
5
.9
6

3
4
.4
6

1
.5
1

E
x
p
er
im

en
t
7

8
1
.8
2

7
7
.1
7

1
.4
8

4
1
.4
3

3
8
.1
5

1
.0
0

5
3
.2
8

4
9
.5
1

1
.3
4

4
8
.8
2

4
1
.4
3

1
.2
6

4
2
.1
3

4
1
.1
6

1
.4
0

P
o
jo

B
en

ch
m
a
rk

M
et
h
o
d

4
2
.6
7

2
4
.2
8

4
.1
1

3
5
.6
7

1
5
.5
6

6
.1
4

3
0
.7
8

1
0
.6
4

5
.8
5

2
8
.2
6

8
.5
9

5
.6
4

1
7
.7
6

5
.4
0

3
.9
6

E
x
p
er
im

en
t
5

4
2
.6
7

3
7
.2
7

1
.0
5

3
6
.1
1

3
2
.3
3

1
.3
0

3
1
.5
4

2
6
.3
1

1
.4
3

2
8
.8
7

2
3
.5
7

1
.3
6

1
8
.4
7

1
7
.5
6

1
.0
1

E
x
p
er
im

en
t
6

4
2
.6
7

3
7
.2
3

1
.2
6

3
6
.1
1

3
2
.2
4

1
.5
4

3
1
.5
4

2
6
.2
2

1
.5
7

2
8
.8
7

2
3
.5
1

1
.4
9

1
8
.3
7

1
7
.4
0

1
.1
4

E
x
p
er
im

en
t
7

4
2
.6
7

3
6
.5
4

2
.3
8

3
6
.5
4

3
1
.4
4

3
.1
4

3
1
.9
0

2
4
.8
9

3
.1
9

2
9
.0
8

2
2
.2
9

3
.0
7

1
9
.0
7

1
6
.6
5

2
.2
0

20

6 leverages probabilistic grammar learned from initial samples, while Experiment 7
directly employs random input generation from a well-defined JSON grammar.

Across nearly all coverage metrics, Experiment 7 consistently outperforms both
the benchmark and probabilistic grammar setups. The advantage of random genera-
tion stems from its unbiased nature, where each production rule in the grammar has
an equal probability of being selected. This uniform randomness facilitates broader
structural diversity, allowing the evolutionary process to explore input regions that
may be entirely missed in probabilistic approaches, which tend to favor frequently
observed patterns from the initial training samples. As a result, random generation
helps prevent premature convergence and promotes exploration of rarely exercised
program paths.

The experimental results demonstrate substantial improvements over the bench-
mark method. On average, class coverage increased by 39.8%, with strong performance
in JSONJava and MinimalJson. Method coverage improved by 62.4%, particularly in
Argo and Genson. Even greater gains were seen in line coverage (105.0%) and instruc-
tion coverage (114.0%), with JsonFlattener and Genson showing notable advances.
The most significant improvement occurred in branch coverage, which rose by 166.0%,
underscoring the effectiveness of the approach in exploring complex conditional logic
and uncovering deeper execution paths. These findings validate the robustness of the
evolutionary algorithm in achieving comprehensive and high-quality software testing.

4.5.2 Exceptions Triggered

This section provides an analysis of the exception types triggered in the benchmark
problems and identifies the specific locations where these exceptions occurred under
different experimental configurations.

Out of the 9 benchmark problems tested, 4 triggered exceptions: Argo, Genson,
JsonFlattener, and Pojo. Table 6 summarizes the exception types triggered in each
benchmark, along with their occurrence locations. Each benchmark revealed distinct
exception types, providing valuable insights into their underlying issues.

The Argo benchmark triggered the argo.saj.InvalidSyntaxException, indicating
parsing issues in the input data. In Genson, the java.lang.NullPointerEx-ception was
consistently triggered, reflecting potential problems with null reference handling. Json-
Flattener exhibited multiple exceptions, including java.lang-.NullPointerException,
java.lang.ClassCastException, and java.lang.Runtime-Exception, highlighting type
casting errors and general runtime issues during the JSON flattening process. In Pojo,
the java.lang.StringIndexOutOfBounds-Exception occurred, pointing to problems with
string handling during data transformation.

The experiment was conducted 30 times, and Table 6 shows the frequency
of each exception under various configurations. For instance, in Argo, the
argo.saj.InvalidSyntaxException at nS2:50 was triggered in 27 runs when using EvoG-
Fuzz. When applying the weight-based method with equal weighting or prioritizing
the feedback score, the exception was triggered in all 30 runs. However, in Experiment
4, where more weight was assigned to the structure score, the exception occurred in
only 26 runs. These findings emphasize the importance of balancing fitness objectives

21

T
a
b
le

6
:
E
x
ce
p
ti
o
n
D
et
ec
te
d
A
cr
o
ss

B
en
ch
m
a
rk

P
ro
b
le
m
s

B
e
n
c
h
m

a
r
k

P
r
o
b
le
m

E
x
c
e
p
ti
o
n

T
y
p
e
s

L
o
c
a
ti
o
n

E
v
o
G
F
u
z
z

W
e
ig
h
t

(0
.5
,
0
.5
)

W
e
ig
h
t

(0
.9
,
0
.1
)

W
e
ig
h
t

(0
.1
,
0
.9
)

A
rg
o

In
v
a
li
d
S
y
n
ta
x
E
x
ce
p
ti
o
n

a
rg
o
.s
a
j.
In
v
a
li
d
S
y
n
ta
x
R
u
n
ti
m
e

3
0

3
0

3
0

3
0

E
x
ce
p
ti
o
n
n
S
1
:4
1

a
rg
o
.s
a
j.
In
v
a
li
d
S
y
n
ta
x
R
u
n
ti
m
e

2
7

3
0

3
0

2
6

E
x
ce
p
ti
o
n
n
S
1
:5
0

a
rg
o
.s
a
j.
In
v
a
li
d
S
y
n
ta
x
R
u
n
ti
m
e

3
0

3
0

3
0

3
0

E
x
ce
p
ti
o
n
n
S
1
:6
0

G
en

so
n

N
u
ll
P
o
in
te
rE

x
ce
p
ti
o
n

co
m
.o
w
li
k
e.
g
en

so
n
.s
tr
ea

m
.

3
0

3
0

3
0

3
0

J
so
n
W

ri
te
r:
4
1
4

J
so
n
F
la
tt
en

er
C
la
ss
C
a
st
E
x
ce
p
ti
o
n

co
m
.g
it
h
u
b
.w

m
n
a
m
el
es
s.
js
o
n
.b
a
se
.

3
0

3
0

3
0

3
0

J
a
ck

so
n
J
so
n
V
a
lu
e:
7
4

co
m
.g
it
h
u
b
.w

m
n
a
m
el
es
s.
js
o
n
.b
a
se
.

3
0

3
0

3
0

3
0

J
a
ck

so
n
J
so
n
V
a
lu
e:
7
9

N
u
ll
P
o
in
te
rE

x
ce
p
ti
o
n

co
m
.g
it
h
u
b
.w

m
n
a
m
el
es
s.
js
o
n
.

3
0

3
0

3
0

3
0

u
n
fl
a
tt
en

er
.J
so
n
U
n
fl
a
tt
en

er
:5
3
2

R
u
n
ti
m
eE

x
ce
p
ti
o
n

co
m
.g
it
h
u
b
.w

m
n
a
m
el
es
s.
js
o
n
.b
a
se
.

3
0

3
0

3
0

3
0

J
a
ck

so
n
J
so
n
C
o
re
:4
9

P
o
jo

S
tr
in
g
In
d
ex

O
u
tO

f
o
rg
.j
so
n
sc
h
em

a
2
p
o
jo
.u
ti
l.

3
0

3
0

3
0

3
0

B
o
u
n
d
sE

x
ce
p
ti
o
n

N
a
m
eH

el
p
er
:4
6

22

in the multi-objective fitness function, as prioritizing specific objectives can influence
the consistency of exception detection.

Based on these findings, it is evident that deciding the appropriate weights between
multiple objectives in the fitness function is crucial to optimizing performance and
maximizing exception detection.

All the experiments successfully triggered all the exceptions listed in the Table 6.

5 Conclusion and Future Work

This study introduces a novel GA-based framework for software vulnerability detec-
tion, showcasing the effectiveness of adaptive, feedback-driven learning in guiding
input generation. By leveraging execution feedback from the SUT, the evolutionary
process dynamically refines test inputs over successive generations, enabling targeted
exploration of previously untested execution paths. The use of genetic operators plays
a pivotal role in this adaptive search: crossover facilitates exploration by fundamentally
altering input structures and generating entirely new combinations of test features,
thus navigating a broader search space; in contrast, mutation provides finer-grained
adjustments, allowing localized exploitation around promising solutions. This bal-
ance between exploration and exploitation ensures both diversity and depth in test
input generation. Furthermore, by shifting from probabilistic input generation to ran-
dom derivation from a well-defined JSON grammar, the approach eliminates inherent
biases and guarantees comprehensive coverage of complex input structures. Experi-
mental results demonstrate consistent improvements across all key coverage metrics,
underscoring the robustness and generalizability of the proposed framework.

Building on the strengths of the proposed GA-based method, future work can
focus on broadening its applicability and enhancing its robustness. As modern soft-
ware systems grow more complex, with increasingly intricate logic and interactions,
improving the algorithm’s ability to handle highly dynamic and deeply nested exe-
cution paths will make it even more effective and broadly applicable. Additionally,
exploring adaptive control over the genetic operators could further help maintain a
strong balance between exploring new input spaces and refining promising solutions
throughout the evolutionary process. These directions represent natural progressions
of the current work, aimed at maximizing its impact in advancing secure and reliable
software systems.

References

[1] Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security
testing. Communications of the ACM 55(3), 40–44 (2012)

[2] Guo, N., Li, X., Yin, H., Gao, Y.: Vulhunter: An automated vulnerability
detection system based on deep learning and bytecode. In: Information and Com-
munications Security: 21st International Conference, ICICS 2019, Beijing, China,
December 15–17, 2019, Revised Selected Papers 21, pp. 199–218 (2020). Springer

23

[3] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., Zhong, Y.: Vuldeep-
ecker: A deep learning-based system for vulnerability detection. arXiv preprint
arXiv:1801.01681 (2018)

[4] Li, Z., Zou, D., Tang, J., Zhang, Z., Sun, M., Jin, H.: A comparative study of deep
learning-based vulnerability detection system. IEEE Access 7, 103184–103197
(2019) https://doi.org/10.1109/ACCESS.2019.2930578

[5] Li, X., Chen, J., Lin, Z., Zhang, L., Wang, Z., Zhou, M., Xie, W.: A min-
ing approach to obtain the software vulnerability characteristics. In: 2017 Fifth
International Conference on Advanced Cloud and Big Data (CBD), pp. 296–301
(2017). IEEE

[6] Niu, W., Zhang, X., Du, X., Zhao, L., Cao, R., Guizani, M.: A deep learning based
static taint analysis approach for iot software vulnerability location. Measurement
152, 107139 (2020)

[7] Godefroid, P.: Fuzzing: Hack, art, and science. Communications of the ACM
63(2), 70–76 (2020)

[8] Shin, Y., Williams, L.: Can traditional fault prediction models be used for
vulnerability prediction? Empirical Software Engineering 18(1), 25–59 (2011)
https://doi.org/10.1007/s10664-011-9190-8

[9] Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. Cybersecurity 1, 1–13 (2018)

[10] Veggalam, S., Rawat, S., Haller, I., Bos, H.: Ifuzzer: An evolutionary interpreter
fuzzer using genetic programming. In: Computer Security–ESORICS 2016: 21st
European Symposium on Research in Computer Security, Heraklion, Greece,
September 26-30, 2016, Proceedings, Part I 21, pp. 581–601 (2016). Springer

[11] Liu, G.-H., Wu, G., Tao, Z., Shuai, J.-M., Tang, Z.-C.: Vulnerability analysis for
x86 executables using genetic algorithm and fuzzing. In: 2008 Third International
Conference on Convergence and Hybrid Information Technology, vol. 2, pp. 491–
497 (2008). IEEE

[12] Zheng, W., Deng, P., Gui, K., Wu, X.: An abstract syntax tree based static
fuzzing mutation for vulnerability evolution analysis. Information and Software
Technology 158, 107194 (2023)

[13] Ponta, S.E., Plate, H., Sabetta, A.: Detection, assessment and mitigation of vul-
nerabilities in open source dependencies. Empirical Software Engineering 25(5),
3175–3215 (2020)

[14] Wang, X., Hu, C., Ma, R., Tian, D., He, J.: Cmfuzz: context-aware adaptive
mutation for fuzzers. Empirical Software Engineering 26, 1–34 (2021)

24

https://doi.org/10.1109/ACCESS.2019.2930578
https://doi.org/10.1007/s10664-011-9190-8

[15] Wen, M., Wang, Y., Xia, Y., Jin, H.: Evaluating seed selection for fuzzing
javascript engines. Empirical Software Engineering 28(6), 133 (2023)

[16] Natella, R.: Stateafl: Greybox fuzzing for stateful network servers. Empirical
Software Engineering 27(7), 191 (2022)

[17] Kim, K., Jeong, D.R., Kim, C.H., Jang, Y., Shin, I., Lee, B.: Hfl: Hybrid fuzzing
on the linux kernel. In: NDSS (2020)

[18] Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: {QSYM}: A practical concolic exe-
cution engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium
(USENIX Security 18), pp. 745–761 (2018)

[19] He, D., Gu, H., Li, T., Du, Y., Wang, X., Zhu, S., Guizani, N.: Toward hybrid
static-dynamic detection of vulnerabilities in iot firmware. IEEE Network 35(2),
202–207 (2020)

[20] Pham, V.-H., Chuong, N.P., Thai, P.T., Duy, P.T., et al.: A coverage-guided
fuzzing method for automatic software vulnerability detection using reinforcement
learning-enabled multi-level input mutation. IEEE Access (2024)

[21] Zhu, Y., Lin, G., Song, L., Zhang, J.: The application of neural network for
software vulnerability detection: a review. Neural Computing and Applications
35(2), 1279–1301 (2023)

[22] Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
Application-aware evolutionary fuzzing. In: NDSS, vol. 17, pp. 1–14 (2017)

[23] Duchene, F., Rawat, S., Richier, J.-L., Groz, R.: Kameleonfuzz: evolutionary
fuzzing for black-box xss detection. In: Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy, pp. 37–48 (2014)

[24] Eberlein, M., Noller, Y., Vogel, T., Grunske, L.: Evolutionary grammar-based
fuzzing. In: Search-Based Software Engineering: 12th International Symposium,
SSBSE 2020, Bari, Italy, October 7–8, 2020, Proceedings 12, pp. 105–120 (2020).
Springer

[25] Soremekun, E., Pavese, E., Havrikov, N., Grunske, L., Zeller, A.: Inputs from hell.
IEEE Transactions on Software Engineering 48(4), 1138–1153 (2020)

[26] Mark Slater: Argo. https://sourceforge.net/projects/argo/. [Version 5.4] (2018)

[27] Alibaba: FastJson. https://github.com/alibaba/fastjson. [Version 1.2.51] (2018)

[28] Eugen Cepoi: Genson. https://github.com/owlike/genson. [Version 1.4.] (2017)

[29] Eamonn McManus: Gson. https://github.com/google/gson. [Version 2.8.5]
(2017)

25

https://sourceforge.net/projects/argo/
https://github.com/alibaba/fastjson
https://github.com/owlike/genson
https://github.com/google/gson

[30] wmw: JsonFlattener. https://github.com/wnameless/json-flattener. [Version
0.6.0] (2018)

[31] Sean Leary: JsonJava. https://github.com/stleary/JSON-java. [Version
20180813] (2017)

[32] Davin Loegering: Json-Simple. https://github.com/cliftonlabs/json-simple. [Ver-
sion 1.1.1] (2014)

[33] Ralf Sternberg: Minimal-json. https://github.com/ralfstx/minimal-json. [Version
0.9.5.] (2017)

[34] Joe Littlejohn: Pojo. https://github.com/joelittlejohn/jsonschema2pojo. [Version
0.5.1.] (2017)

[35] Tang, M., Yao, X.: A memetic algorithm for vlsi floorplanning. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 37(1), 62–69 (2007)

[36] Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evo-
lutionary algorithms: A survey. ACM computing surveys (CSUR) 45(3), 1–33
(2013)

26

https://github.com/wnameless/json-flattener
https://github.com/stleary/JSON-java
https://github.com/ralfstx/minimal-json
https://github.com/joelittlejohn/jsonschema2pojo

	Introduction
	Related Work
	Fuzzing Approaches
	Evolutionary Computation in Fuzzing

	Design of the New GA-based Approach
	Initial Input Generation
	Genetic Operators
	Crossover Mechanism
	Mutation Mechanism

	Fitness Function
	Selection

	Evaluation
	Benchmark Problems
	Benchmark Method - Comparative Analysis
	Experimental Setup
	Evaluation Metrics
	Results and Analysis
	Coverage Metrics
	Exceptions Triggered

	Conclusion and Future Work

