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Abstract—Insider threat detection presents a significant chal-
lenge due to the deceptive nature of malicious behaviors, which
often resemble legitimate user operations. However, existing
approaches typically model system logs as flat event sequences,
thereby failing to capture the inherent frequency dynamics and
multiscale disturbance patterns embedded in user behavior. To
address these limitations, we propose Log2Sig, a robust anomaly
detection framework that transforms user logs into multivariate
behavioral frequency signals, introducing a novel representation
of user behavior. Log2Sig employs Multivariate Variational Mode
Decomposition (MVMD) to extract Intrinsic Mode Functions
(IMFs), which reveal behavioral fluctuations across multiple
temporal scales. Based on this, the model further performs joint
modeling of behavioral sequences and frequency-decomposed
signals: the daily behavior sequences are encoded using a Mamba-
based temporal encoder to capture long-term dependencies, while
the corresponding frequency components are linearly projected
to match the encoder’s output dimension. These dual-view rep-
resentations are then fused to construct a comprehensive user
behavior profile, which is fed into a multilayer perceptron for
precise anomaly detection. Experimental results on the CERT
r4.2 and r5.2 datasets demonstrate that Log2Sig significantly
outperforms state-of-the-art baselines in both accuracy and F1
score.

Index Terms—Insider Threat Detection, Signal Decomposition,
MVMD, Mamba, Multivariate Log Representation, User Behavior
Analysis

I. INTRODUCTION

Insider threats have emerged as a pressing security issue
in enterprise information systems due to their stealthy nature,
prolonged attack cycles, and fragmented behavioral patterns.
Unlike external attackers, insiders typically possess legitimate
credentials and authorized access to internal systems, enabling
them to bypass traditional perimeter defenses and camouflage
malicious behaviors as routine operations [1]. According to
the 2025 Ponemon Institute Global Cost of Insider Risk
report [2], organizations encounter an average of 23 insider-
related incidents annually, with most attacks taking weeks
or even months to detect and contain. These low-frequency,
multi-stage, and covert threats present significant challenges
to detection mechanisms, particularly in terms of temporal
modeling and fine-grained behavioral analysis.

In existing research, insider threat detection is primarily
addressed via behavior modeling based on machine learning
and deep learning techniques. Traditional machine learning
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methods extract statistical features, such as login frequency
and file access counts, and employ classifiers such as logis-
tic regression (LR), random forest (RF), and XGBoost [3]–
[5] to identify anomalous behaviors. As the sequential and
contextual nature of user activities gains increasing attention,
deep learning models including LSTM, Transformer, and graph
neural networks have been widely adopted for insider threat
modeling [6]–[9], thereby improving the ability to capture
complex behavior representations and contextual dependencies.

Despite recent advances in modeling accuracy, current ap-
proaches still face two key challenges in insider threat detec-
tion. One challenge lies in modeling behavioral frequency
perturbations across activity types. Insider threats often
involve gradual shifts between behavior types, accompanied by
evolving frequency patterns. Existing methods based on event
counts or discrete sequences struggle to capture such cross-type
frequency dynamics, leading to missed threat cues. Another
challenge is achieving efficient detection over long behavior
sequences. As insider attacks typically span extended time
windows, deep models such as Transformers and graph neural
networks incur high computational costs when processing long
logs, limiting their deployment in latency-sensitive or resource-
constrained environments.

To address these challenges, we propose Log2Sig, a novel
insider threat detection framework that integrates frequency-
aware modeling with efficient sequential representation learn-
ing. Log2Sig transforms raw user activity logs into multivariate
temporal signals and applies Multivariate Variational Mode
Decomposition (MVMD) [10] to jointly decompose system-
level signals into intrinsic mode functions (IMFs) that reveal
behavioral rhythms and multi-scale perturbation patterns. In
parallel, we adopt the Mamba [11] architecture, a structured
state space model, as the sequence encoder to capture long-
range behavioral dependencies with linear-time complexity,
ensuring both strong expressive capacity and deployment effi-
ciency. Finally, we combine the decomposed frequency features
with the original event sequences to construct a joint input
representation. This enables the model to simultaneously learn
temporal dynamics and frequency-domain anomalies, thereby
improving detection accuracy and scalability.

Our key contributions are summarized as follows:
• Log2Sig is proposed as the first framework to model user

activity logs as multivariate frequency signals. By intro-
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ducing a frequency-aware representation, the framework
enables the detection of subtle and multiscale anomalies
that are often missed by conventional sequence-based
methods.

• A frequency decomposition module based on MVMD is
developed to extract IMFs across behavioral channels.
This approach captures both periodic patterns and non-
stationary anomalies, and addresses a core limitation in
existing work, which is the inability to model cross-
behavioral frequency dynamics.

• A dual-view encoding strategy is proposed to model both
behavior sequences and frequency-decomposed signals.
The former is modeled using a Mamba-based temporal
encoder to capture long-range dependencies with linear-
time complexity, while the latter is linearly projected to
align with the sequence encoding. This design enhances
the framework’s ability to capture both temporal dynamics
and frequency-aware variations over extended time win-
dows.

• Extensive experiments on CERT r4.2 and r5.2 datasets
demonstrate the superiority of Log2Sig over state-of-
the-art baselines. Ablation and robustness studies further
confirm the individual contribution of each module and
the overall effectiveness of the proposed framework.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on insider threat detection and
signal-based modeling. Section III introduces the preliminaries
of multivariate signal decomposition and the Mamba encoder.
Section IV presents the proposed Log2Sig framework, includ-
ing behavior representation, signal decomposition, encoding,
and classification. Section V outlines the experimentaldataset,
ssetup, baselines, and evaluation metrics. Section VI reports the
empirical results and sensitivity analysis. Finally, Section VII
concludes the paper and discusses future directions.

II. RELATED WORK

In this section, we review relevant literature in two primary
dimensions: (i) insider threat detection based on machine
learning and deep learning architectures, and (ii) signal-based
methods for behavioral sequence modeling.

A. Insider Threat Detection

Insider threat detection has increasingly benefited from ma-
chine learning and deep learning approaches, which enable
the extraction of temporal, semantic, and structural patterns
from user behavior logs. This section presents representative
techniques, organized into classical machine learning models
and deep learning-based sequential architectures.

1) Classical Machine Learning Approaches: Traditional
machine learning methods for insider threat detection primarily
rely on discriminative feature extraction from structured audit
logs. Liu et al. [3] proposed Log2vec, a hybrid framework
that combines heterogeneous graph embeddings with heuristic
rule modeling to capture latent user behavior in enterprise
contexts. Le et al. [4] conducted a comparative evaluation of

supervised models, including Logistic Regression (LR), Ran-
dom Forest (RF), and XGBoost, demonstrating that engineered
behavioral features can be effectively mapped to risk scores.
Beyond model selection, feature engineering and reduction
have proven critical to robustness. Bin et al. [5] applied
Information Gain (IG) and Correlation-Based Feature Selection
(CFS) to eliminate redundancy and improve interpretability.
Their findings showed that RF and SVM consistently achieve
strong accuracy and generalization across feature subsets. In
unsupervised scenarios where labeled data is limited or un-
available, anomaly detection techniques have gained traction.
Bartoszewski et al. [12] compared unsupervised models such
as Local Outlier Factor (LOF), one-class SVMs (OCSVM),
Isolation Forest (IForest), and HMM under both ensemble
and single-model settings, emphasizing deployment feasibility
using CERT datasets. Le et al. [13] further proposed an
autoencoder-based reconstruction method for high-dimensional
behavior vectors, while Yousef et al. [14] employed Isolation
Forest to efficiently capture outliers in temporal user logs.

Although these approaches offer strong baselines, their re-
liance on handcrafted features and limited temporal modeling
capacity has motivated the shift toward deep learning.

2) Deep Learning-Based Approaches: Recent advance-
ments in deep learning have enabled more expressive repre-
sentations of user behavior, improving insider threat detection
through modeling of sequential, semantic, and structural de-
pendencies. Early efforts predominantly addressed temporal
patterns. He et al. [6] introduced an attention-augmented
LSTM framework designed to highlight critical behavioral
transitions. Building on this, Huang et al. [7] combined pre-
trained BERT embeddings with a bidirectional LSTM to jointly
learn contextual semantics and sequential evolution. Pal [15]
employed LSTM and GRU networks for temporal represen-
tation learning, while Xiao et al. [16] integrated CNNs to
extract statistical features and Transformers to capture long-
range chronological dependencies. Beyond sequential mod-
eling, representation enhancement techniques have emerged.
Budžys et al. [17] proposed GAFMAT, applying Gabor filtering
to transform keystroke dynamics into time–frequency repre-
sentations, thereby improving CNN-based identity modeling.
Concurrently, Gayathri et al. [18] developed SPCAGAN, a
GAN-based framework that generates synthetic insider activity
traces via linear manifold learning, mitigating data scarcity
in security contexts. To further capture higher-order relational
and structural dependencies, recent works have adopted graph-
based paradigms. Xiao et al. [9], Roy et al. [8], and Cai et
al. [19] leveraged graph neural networks (GNNs) to jointly
model temporal dynamics and inter-user relationships embed-
ded in behavior graphs.

Complementing architectural advances, large language mod-
els (LLMs) have recently emerged as a versatile paradigm
for log-based anomaly detection. LogGPT [20] and Log-
Prompt [21] utilize handcrafted prompts for zero-shot or few-
shot detection using pre-trained LLMs. In contrast, fine-tuning
approaches [22] adapt LLMs to specific behavioral distribu-
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(b) MVMD-Decomposed Frequency Signal

Fig. 1. Illustrative example of MVMD-based decomposition of user behavior
frequency signals.

tions, enhancing alignment and performance under domain
shifts.

Despite the architectural advances and high detection ac-
curacy, many deep learning models suffer from high com-
putational overhead due to complex encoding and training
processes.

B. Signal-Based Modeling for Detection

Signal decomposition techniques have been applied in vari-
ous domains, such as wind power forecasting [23] and bearing
fault diagnosis in mechanical systems [24].However, their
use in cybersecurity, particularly for modeling user activity
sequences from audit logs, remains underexplored.

Recent efforts have introduced wavelet-based techniques to
capture behavioral anomalies. Feng et al. [25] combined graph-
based outlier scoring with Discrete Wavelet Transform (DWT)
to detect temporal deviations in user behavior on cloud-sharing
platforms. Randive and Ramasundaram [26] proposed MW-
CapsNet, which integrates multi-level 2D wavelet decomposi-
tion with capsule networks for image-based behavior modeling,
achieving high precision on the CERT dataset. Kim et al. [27]
applied DWT to denoise behavioral features and leveraged
fuzzy clustering with OCSVM to reduce false positives. While
these approaches benefit from wavelet analysis, they often rely
on fixed basis functions and univariate representations.

In contrast, our work employs MVMD [10] to decompose
behavior frequency signals in a data-adaptive manner, enabling
fine-grained and modality-preserving anomaly detection in
multichannel activity streams.

III. PRELIMINARIES

This section briefly reviews two background techniques used
in our framework: MVMD for multiscale signal decomposition
and Mamba for sequence encoding. We introduce their core
principles to support the design of Log2sig.

A. Multivariate Variational Mode Decomposition
MVMD [10] extends the classical Variational Mode Decom-

position (VMD) framework to multichannel settings, enabling
joint frequency decomposition across multiple behavioral cat-
egories.

Let y(t) = [y1(t), . . . , yC(t)]
⊤ ∈ RC×1 denote the C-

channel input signal at time t, where each yc(t) corresponds to
the observed activity frequency in the c-th behavior category.
We adopt a column-vector convention, in which each multi-
variate observation is stacked channel-wise.

The goal of MVMD is to decompose y(t) into K multi-
variate intrinsic mode functions (IMFs) {uk(t)}Kk=1, each cap-
turing a narrowband component with shared spectral structure
across all channels. Formally, we have:

y(t) =

K∑
k=1

uk(t), uk(t) ∈ RC×1. (1)

The decomposition is obtained by solving the following
variational optimization problem:

min
{uk,c},{ωk}

α

K∑
k=1

C∑
c=1

∥∥∂t [uk,c(t)e
−jωkt

]∥∥2
2

s.t. yc(t) =

K∑
k=1

uk,c(t),

(2)

where uk,c(t) is the c-th channel of the k-th mode, ωk is
the center frequency of the k-th component, and α > 0 is
a regularization parameter controlling spectral compactness.

By enforcing spectral alignment across channels, MVMD
effectively decomposes multivariate time series into inter-
pretable frequency components. This facilitates robust behavior
modeling by capturing both periodic structures and frequency
anomalies. The number of modes K and the bandwidth control
factor α act as key hyperparameters to adjust decomposition
granularity.

To illustrate this decomposition process, Fig. 1 provides
an example on two behavior types: HTTP visits and Email
contacts. The extracted IMFs highlight distinct oscillation
patterns, separating high-frequency spikes from slower, trend-
like variations. This multiscale view facilitates downstream
detection of both local anomalies and global drifts.

B. Mamba Encoder
Mamba [11] is a structured state space model (SSM) de-

signed for efficient long-range sequence modeling with lin-
ear time complexity. Unlike attention-based models, Mamba
leverages selective state dynamics and content-aware gating to
model temporal dependencies effectively.

Let X = [x1; . . . ;xL] ∈ RL×d denote the input sequence
of L behavior tokens, where each xt ∈ R1×d is a row vector
representing the t-th token in d-dimensional embedding space.

Mamba computes context-aware representations Z =
[z1; . . . ; zL] ∈ RL×d via a selective state-space recurrence
defined as:

ht = ht−1A+ x̂tB, zt = htC, (3)
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Fig. 2. Overview of the Log2Sig framework. (a) User activity logs are transformed into a C-channel behavior frequency signal over T days and decomposed
by Multivariate Variational Mode Decomposition (MVMD) into multi-scale components. These are fused with the original signal via residual concatenation. (b)
In parallel, daily behavior sequences and frequency-based components are embedded and encoded, with temporal patterns captured by a Mamba-based encoder.
(c) The combined features are passed through a multi-layer classifier for anomaly detection.

where ht ∈ R1×d is the hidden state at time step t, and
A,B,C ∈ Rd×d are learnable parameter matrices.

To enable content-dependent modulation, each input token
is transformed through a dynamic gating mechanism:

x̂t = (xtWu)⊙ σ(xtWv), (4)

where Wu,Wv ∈ Rd×d are learnable projection matrices,
σ(·) denotes the sigmoid activation function, and ⊙ denotes
element-wise multiplication. The output Z ∈ RL×d maintains
the original sequence length and embedding dimension.

IV. THE LOG2SIG FRAMEWORK

This section introduces the architecture and workflow of the
Log2sig framework, which consists of three main components:
(1) Behavior Signal Decomposition, (2) Behavior Encoding,
and (3) Anomaly Detection. Additionally, a preliminary mod-
ule Behavior Representation Construction is included to stan-
dardize raw activity logs into structured behavior inputs. An
overview of the full framework is depicted in Fig. 2.

A. Behavior Representation Construction

User activity logs originate from heterogeneous sources such
as authentication servers, web proxies, and file access sys-
tems, each exhibiting distinct structural formats and semantic
conventions. To enable consistent downstream modeling, we
employ rule-based mapping strategies [28] to transform raw
logs into a unified schema. Each event is assigned a high-level
behavior type (e.g., login, file access), and key attributes—such
as timestamps, user identifiers, and action categories—are
extracted accordingly.

To preserve both the fine-grained action semantics and the
aggregated behavioral statistics, we construct two complemen-
tary representations for each user on each day:

a) Behavior Sequence: Let st = [b
(t)
1 , b

(t)
2 , . . . , b

(t)
L ] de-

note the ordered sequence of user u’s actions on day t,
where each b

(t)
i ∈ B is a token from the behavior vocabulary

B. This vocabulary, defined through rule-based aggregation,
consolidates heterogeneous events into a compact semantic
space. The sequence st retains both the temporal and contextual
structure of user activities and is subsequently encoded using



a Mamba-based sequential model.
b) Behavior Frequency single: In parallel, we compute

a daily frequency vector f(t) = [f1(t), f2(t), . . . , fC(t)]
⊤ ∈

RC×1, where fc(t) denotes the count of behavior type c
observed on day t. Over a span of T days, this forms a
multichannel time series:

F = [f(1), . . . , f(T )] ∈ RC×T , (5)

where each row traces the temporal evolution of a single
behavior category. This structured signal is then passed to
the signal decomposition module to extract latent frequency
characteristics.

Together, the representation (st, f(t)) captures both sym-
bolic action dependencies and quantitative trends, enabling
more robust and multiscale behavior modeling.

B. Behavior Signal Decomposition

While the frequency vector f(t) provides a compact sum-
mary of daily behavior, it lacks the capacity to capture un-
derlying temporal rhythms and frequency-specific patterns. To
enrich this representation, we apply MVMD to uncover band-
limited components for each behavior type.

a) Multiscale Behavior Decomposition: As previously
defined, the multichannel behavior frequency signal F ∈ RC×T

consists of daily frequency vectors for C behavior types over
T days. We apply MVMD along the time axis to extract K
intrinsic mode functions (IMFs) per behavior channel. The
result is a three-dimensional tensor:

U = DMVMD(F) ∈ RC×K×T , (6)

where Uc,k,t denotes the contribution of the k-th frequency
component for behavior type c at time t.

At each time step t, the decomposed frequency components
are grouped as:{

mk(t) = U:,k,t ∈ RC×1
}K

k=1
, (7)

where each mk(t) represents a multichannel behavior vector
oscillating at frequency level k.

b) Residual Channel Fusion: To construct a frequency-
enriched representation at each time t, we concatenate the
original signal f(t) with all K decomposed components:

z(t) = Concat[f(t),m1(t), . . . ,mK(t)] ∈ RC(K+1)×1. (8)

By stacking these residual-enhanced vectors over the entire
time window, we obtain:

Z = [z(1), . . . , z(T )] ∈ RC(K+1)×T , (9)

which retains the channel-major layout while embedding rich
multiscale frequency information. This representation is then
fed into the subsequent encoder for anomaly detection.

C. Behavior Encoding

To jointly model symbolic behavior sequences and
frequency-based statistical patterns, we introduce a dual-view
encoding strategy. Each view independently processes one
modality, and the resulting embeddings are concatenated to
form a comprehensive daily representation. We denote t as the
index of the current day in the behavior timeline.

a) Behavior Sequence Encoding: The discrete action
sequence st = {b(t)1 , . . . , b

(t)
L } is first mapped into a d-

dimensional embedding space:

est = Embedding(st) ∈ RL×d, (10)

where each token b
(t)
i corresponds to a user action occurring

on day t. The sequence is then passed through a Mamba
encoder [11] to capture fine-grained temporal dynamics:

hst = Mamba(est) ∈ RL×d. (11)

Each vector in hst represents a contextualized embedding
of the corresponding behavior token.

b) Behavior Components Encoding: The frequency-
enriched vector z(t) ∈ RC(K+1)×1, constructed from the
original and MVMD-decomposed behavior signals, is treated
as a set of pseudo-tokens. Each scalar is projected into the
embedding space as:

hz(t) = Linear(z(t)) ∈ RC(K+1)×d, (12)

where each row reflects one behavior-frequency component at
day t.

c) Representation Fusion: To construct the final daily
representation, we concatenate the outputs from both encoding
branches along the sequence dimension:

ht = Concat(hst ,hz(t)) ∈ R(L+C(K+1))×d. (13)

This unified representation integrates symbolic behavior dy-
namics and frequency-aware statistical patterns, providing a
rich embedding for downstream anomaly detection.

D. Anomaly detection

Based on the fused representation ht, we employ a
lightweight classification module to detect behavioral anoma-
lies on a daily basis.

a) Representation Flatten: To enable standard classifica-
tion, we flatten the representation into a single vector:

at = Flatten(ht) ∈ R(L+C(K+1))d×1. (14)

This transformation preserves both the sequential structure
and the multiscale statistics in a high-dimensional feature
space. The flattened vector is then passed to a multi-layer
perceptron (MLP) classifier:

ŷt = MLP(at), ŷt ∈ (0, 1), (15)

where ŷt indicates the predicted likelihood of anomalous
behavior on day t.



TABLE I
STATISTICS OF THE CERT INSIDER THREAT DATASETS

Property CERT r4.2 CERT r5.2

Time Range Jan 2010 – May 2011 Jan 2010 – Jun 2011
Number of Users 1,000 2,000
Anomalous Users 70 99
Total Events 32,770,222 79,856,699
Anomalous Events 7,323 10,328
Anomaly Ratio (%) 0.022% 0.013%

TABLE II
HYPERPARAMETER CONFIGURATION OF LOG2SIG

Component Configuration

MVMD Decomposition

Bandwidth α: 500
Initialization: 0
Number of Modes K: 3
Tolerance: 1e-3

Mamba Encoder
Number of Layers: 2
Embedding Dimension: 64
Normalization: RMSNorm

MLP Classifier

Number of Layers: 3
Hidden Units: 256-128-32
Activation: LeakyReLU
Dropout: 0.3
Optimizer: Adam
Learning Rate: 5e-4
Epochs: 200
Batch Size: 32

b) Training Objective: Given a labeled training set
{(at, yt)}Tt=1, where yt ∈ {0, 1} denotes the ground-truth
anomaly label, we optimize the binary cross-entropy loss:

LBCE = − 1

T

T∑
t=1

[yt log ŷt + (1− yt) log(1− ŷt)] . (16)

All parameters in the encoder and classifier are trained end-
to-end using the Adam optimizer with appropriate learning rate
scheduling.

V. EXPERIMENTAL CONFIGURATION

This section describes the datasets, implementation settings,
baseline models, and evaluation metrics used in the experi-
ments.

A. Datasets

We evaluate our method on the publicly available CERT In-
sider Threat Datasets [29], a widely used benchmark for insider
threat detection. The r4.2 and r5.2 datasets contain detailed
time-stamped logs from 1,000 and 2,000 users respectively,
spanning activities such as logon, file access, email, and web
usage. Each record is annotated with user IDs and threat labels
covering scenarios like data theft and privilege misuse. Dataset
statistics are summarized in Table I.

B. Implementation Settings

Experiments are conducted on the CERT Insider Threat
datasets (r4.2 and r5.2, Scenario 2), focusing on 30 users
with verified anomalous behaviors. Daily logs are segmented
into behavior sessions comprising behavior sequences and
multivariate frequency signals, which are jointly fed into the
proposed model. An 80/20 train-test split is employed for
evaluation. To mitigate class imbalance, Synthetic Minority
Over-sampling Technique (SMOTE) with a sampling ratio of
0.5 and adaptive neighbor selection is applied, followed by
Tomek Links to eliminate borderline instances.

Log2Sig employs a dual-path architecture consisting of a
Mamba-based sequence encoder and an MVMD-based fre-
quency decomposition branch. The fused representation is
passed through a multi-layer perceptron (MLP) classifier. All
modules are trained in an end-to-end manner. Hyperparameter
settings are detailed in Table II, with tuning procedures dis-
cussed in Section VI-C.

C. Baselines Methods

Log2Sig is evaluated against a diverse set of baseline meth-
ods, categorized into three major groups: (1) Traditional mod-
els, including IForest [12], OCSVM [12], and XGBoost [13],
which serve as representative unsupervised and supervised
learning approaches, respectively; (2) Deep learning mod-
els, such as ITDBERT [7] and CATE [16], which employ
Transformer-based or graph-enhanced architectures to capture
semantic and structural properties in user logs; (3) Large Lan-
guage Model (LLM)-based methods, including LogGPT [20]
and ITDLM [22], which leverage prompt-driven inference with
pretrained LLMs to perform log anomaly detection under zero-
shot or few-shot settings.

D. Evaluation Metrics

Detection performance is assessed using four standard eval-
uation metrics derived from the confusion matrix: Recall,
Precision, Accuracy, and F1-score, defined as follows:

Recall =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

F1-score = 2× Precision × Recall
Precision + Recall

(20)

Here, TP , TN , FP , and FN denote the numbers of true
positives, true negatives, false positives, and false negatives, re-
spectively. Recall quantifies the model’s ability to detect actual
threats, while Precision measures the proportion of true threats
among all positive predictions. Accuracy reflects the overall
correctness of predictions. F1-score combines Precision and
Recall into a single measure, providing a balanced evaluation.



TABLE III
BASELINE PERFORMANCE COMPARISON

Method CERT r4.2 CERT r5.2

Rec Prec Acc F1 Rec Prec Acc F1

IForest 0.818 0.905 0.964 0.846 0.789 0.943 0.966 0.843
XGBoost 0.827 0.957 0.973 0.871 0.854 0.973 0.978 0.899
OCSVM 0.928 0.507 0.861 0.639 0.912 0.557 0.887 0.677
ITDBERT 0.884 0.912 0.960 0.898 0.889 0.914 0.961 0.901
CATE 0.904 0.936 0.980 0.911 0.893 0.972 0.983 0.926
LogGPT 0.920 0.880 0.959 0.899 0.925 0.891 0.963 0.907
ITDLM 0.852 0.906 0.950 0.879 0.930 0.843 0.951 0.884

Log2Sig (Ours) 0.929 0.990 0.990 0.956 0.918 0.986 0.988 0.946

TABLE IV
IMPACT OF DECOMPOSITION AND SEQUENCE ENCODING

Variant Rec Prec Acc F1

w/o MVMD & Mamba 0.822 0.915 0.967 0.856
w/o MVMD 0.833 0.979 0.977 0.890
w/o Mamba 0.916 0.963 0.984 0.929
Full Model 0.929 0.990 0.990 0.956

VI. RESULTS AND DISCUSSIONS

This section reports the experimental results of Log2Sig. We
first compare its overall performance against baseline models,
then conduct ablation studies to assess key component contri-
butions. We further analyze core hyperparameter sensitivity and
evaluate the efficiency of different decomposition and encoding
strategies.

A. Baseline Comparison

As shown in Table III, Log2Sig achieves the highest overall
performance across both CERT r4.2 and r5.2 datasets. On r4.2,
it outperforms all baselines in every metric, achieving an F1-
score of 0.956. On r5.2, it maintains strong results with a
leading F1-score of 0.946 and slightly lower recall.

Traditional models like IForest and XGBoost perform rea-
sonably but lack adaptability to evolving behavioral dynam-
ics. OCSVM exhibits high recall yet suffers from very low
precision, indicating excessive sensitivity to benign anomalies.
This stems from its static feature assumptions, which fail to
model temporal or structured user behavior. Deep learning
models such as ITDBERT and CATE offer more balanced
performance, with CATE benefiting from enhanced structural
modeling. However, both rely on static training paradigms that
may limit generalization. LLM-based models (e.g., LogGPT
and ITDLM) exhibit improved adaptability to unseen logs.
While LogGPT offers balanced precision-recall, its effective-
ness diminishes under dynamic conditions.

In contrast, Log2Sig integrates multiscale frequency de-
composition with sequence modeling, enabling robust, high-
precision detection of subtle threats. These results demonstrate
its superiority in both static and dynamic insider threat scenar-
ios.

B. Ablation Study
As shown in Table IV, we conduct an ablation study on

the CERT r4.2 dataset to evaluate the individual contributions
of each core component in the Log2Sig framework. The full
model integrates behavior encoding via the Mamba sequence
encoder and multiscale decomposition through MVMD. This
configuration achieves the best overall performance, with an
F1-score of 0.956 across all evaluation metrics.

To assess component-wise impact, we test several reduced
variants. Removing the Mamba encoder (w/o Mamba) while
retaining MVMD leads to a moderate decline in performance
(F1 = 0.929), indicating the importance of intra-day sequential
modeling. Excluding the frequency decomposition module
(w/o MVMD) results in a larger decrease in recall and F1-
score, highlighting the role of multiscale signal modeling.
When both components are omitted (w/o MVMD and Mamba),
the model exhibits the weakest performance (F1 = 0.856), con-
firming that both components are essential for robust anomaly
detection.

C. Parameter Sensitivity Analysis
a) MVMD Mode Number K: As shown in Fig. 3(a),

increasing the number of decomposition modes generally im-
proves accuracy and precision, with performance peaking at
K = 7. This indicates that moderate multiscale resolution
enhances the model’s ability to capture meaningful frequency
components. However, when K exceeds 10 (e.g., K = 13 or
15), performance degrades, particularly in recall and F1-score,
likely due to the introduction of redundant or noisy modes.
Based on this observation, K = 7 is selected as the optimal
setting.

b) MVMD Bandwidth α: Fig. 3(b) presents the sensitivity
to the bandwidth parameter α. The model remains relatively
stable in the range of 300 to 1000, but larger values (e.g., α ≥
2000) cause noticeable drops in recall. This degradation may
stem from excessive smoothing, which reduces decomposition
fidelity. A value of α = 500 is therefore adopted as it offers a
robust trade-off between precision and generalization.

c) Mamba Encoder Layers: According to Fig. 3(c), using
2 layers in the Mamba encoder achieves the most balanced
performance. This depth is sufficient to model temporal de-
pendencies while avoiding overfitting. Deeper configurations
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(a) Effect of MVMD Mode Number K
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(b) Effect of MVMD Bandwidth Parameter α
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(c) Effect of Mamba Encoder Layer Depth
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(d) Effect of MLP Classifier Layer Depth

Fig. 3. Impact of key hyperparameters on model performance: MVMD decomposition settings (K, α), Mamba encoder depth, and MLP classifier depth.

TABLE V
COMPARISON OF MULTICHANNEL DECOMPOSITION METHODS (PER USER

AVERAGE).

Method Acc F1 Memory (MB) Time (s)

MEMD 0.965 0.911 1.17 6.37
MVMD 0.984 0.928 9.89 0.49

(3 or 4 layers) lead to performance declines, suggesting that
additional layers may introduce overparameterization or van-
ishing gradients. Thus, a 2-layer encoder is used in our final
setup.

d) MLP Classifier Layers: As depicted in Fig. 3(d), in-
creasing the depth of the MLP classifier enhances performance
up to 3 layers, particularly in terms of recall and F1-score.
However, further deepening to 4 layers results in performance
drops, likely due to training instability or overfitting in the final
classification stage. A 3-layer MLP is therefore adopted for the
final architecture.

D. Comparison of Decomposition and Encoder Strategies

Table V and Table VI summarize the performance and effi-
ciency of different multichannel decomposition and sequence
encoding strategies under a unified classification pipeline.
All methods are evaluated with consistent preprocessing and
training configurations to ensure fair comparison.

TABLE VI
COMPARISON OF SEQUENCE ENCODER METHODS (PER USER AVERAGE).

Method Acc F1 GPU(MB) Time (s)

LSTM 0.947 0.897 11.24 6.67
Transformer 0.963 0.912 8.89 6.11
Mamba 0.981 0.931 6.33 4.67

For decomposition, MVMD [10] outperforms MEMD [30]
with higher accuracy (0.984 vs. 0.965), F1-score (0.928 vs.
0.911), and dramatically lower computation time (0.49s vs.
6.37s), at the cost of slightly increased memory usage (9.89
MB vs. 1.17 MB). Note that both memory and time mea-
surements refer solely to the decomposition stage, excluding
downstream processing.

In terms of sequence encoding, Mamba achieves the
best results across all metrics, with the highest accuracy
(0.981) and F1-score (0.931), while also being the most ef-
ficient—consuming the least GPU memory (6.33 MB) and
achieving the fastest inference speed (4.67s per user). These
measurements are isolated to the encoder stage during per-
user sequence modeling, excluding input preprocessing or
classification layers.

In summary, the experimental results consistently demon-
strate that MVMD and Mamba are the most effective and



efficient components within their respective modules. MVMD
significantly accelerates the multichannel decomposition pro-
cess while improving classification performance, making it
well-suited for real-time applications. Similarly, the Mamba
encoder not only surpasses LSTM and Transformer in predic-
tive accuracy but also offers superior computational efficiency
with reduced GPU memory usage and inference time.

VII. CONCLUSION

In this work, we proposed Log2Sig, a novel frequency-
aware framework for insider threat detection that combines
multivariate signal decomposition with deep sequence mod-
eling. Unlike traditional methods that treat user logs as flat
event sequences, Log2Sig transforms multichannel behavioral
data into temporal signals and applies MVMD to extract
frequency-localized intrinsic mode functions. These decom-
posed components, when fused with daily behavior statistics,
reveal subtle and multiscale variations often overlooked by
conventional models. We further design a hybrid encoding
architecture, where the daily behavior sequence is processed by
a lightweight Mamba-based temporal encoder to capture long-
range dependencies, while frequency-derived components are
embedded and directly fused at the feature level. This enables
efficient integration of semantic and spectral behavior cues for
accurate anomaly detection. Experiments on the CERT r4.2 and
r5.2 datasets show that Log2Sig achieves consistently strong
performance across different versions of the dataset.
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