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Abstract—Enterprises are facing increasing risks of insider
threats, while existing detection methods are unable to effectively
address these challenges due to reasons such as insufficient
temporal dynamic feature modeling, computational efficiency
and real-time bottlenecks and cross-modal information island
problem. This paper proposes a new insider threat detection
framework MambaITD based on the Mamba state space model
and cross-modal adaptive fusion. First, the multi-source log
preprocessing module aligns heterogeneous data through be-
havioral sequence encoding, interval smoothing, and statistical
feature extraction. Second, the Mamba encoder models long-
range dependencies in behavioral and interval sequences, and
combines the sequence and statistical information dynamically in
combination with the gated feature fusion mechanism. Finally,
we propose an adaptive threshold optimization method based
on maximizing inter-class variance, which dynamically adjusts
the decision threshold by analyzing the probability distribution,
effectively identifies anomalies, and alleviates class imbalance and
concept drift. Compared with traditional methods, MambaITD
shows significant advantages in modeling efficiency and feature
fusion capabilities, outperforming Transformer-based methods,
and provides a more effective solution for insider threat detection.

Index Terms—Mamba, Insider threat detection, Cross-modal
fusion, Behavioral interval analysis, Adaptive threshold optimiza-
tion

I. INTRODUCTION

In recent years, the complexity and concealment of internal
threats in enterprises have increased significantly, posing a
severe challenge to organizational security and business con-
tinuity [8]. According to the “2024 Insider Threat Report”
released by Cybersecurity Insiders [6], 83% of enterprises have
suffered at least one internal attack in the past year, while 52%
of enterprises admit that they lack effective defense tools. This
contradiction shows that existing detection technologies are
difficult to cope with new threat patterns and urgently need
to break through the limitations of traditional methods. The
shortcomings of current research are mainly reflected in the
following three aspects:

Insufficient temporal dynamic feature modeling : Main-
stream methods (such as sequence modeling based on Trans-
former or LSTM [5], [24], [28]) focus on the sequential
nature of user behavior, but ignore the semantic value of
the time interval between behaviors. For example, the time
interval between intensive abnormal logins or low-frequency
operations may imply attack intent, but the existing models do
not explicitly model such features, resulting in limited threat
perception sensitivity.

Computational efficiency and real-time bottlenecks :
Although methods based on pre-trained models such as
BERT [10], [13] can capture behavioral semantics, their
quadratic self-attention mechanism brings high computational
overhead, making it difficult to meet the real-time processing
requirements of large-scale log streams, limiting the feasibility
of deployment in industrial scenarios.

Cross-modal information island problem : Existing sys-
tems lack the ability to collaboratively analyze heterogeneous
data sources (such as network traffic, operation logs, and
resource status [14]), resulting in fragmented threat clues,
inability to build a global risk profile, and weakening the
situational awareness capability of the detection system.

To address these challenges, we present MambaITD, a novel
framework that integrates Mamba-based state space models
with cross-modal adaptive fusion for real-time insider threat
detection: 1) Based on the Mamba network modeling of user
behavior sequences, the time interval information between
behaviors is explicitly encoded for the first time in internal
threat detection, and the long-range dependency modeling
capability of SSM is used to capture the temporal correlation
of threat behaviors (such as the temporal clustering of intensive
abnormal operations), overcoming the limitation of traditional
methods that only focus on the order of events; 2) Mamba is
used to replace traditional Transformer/BERT, and the linear
complexity characteristics of the state space model are used to
reduce the computational overhead (compared with the square
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complexity of Transformer), support real-time detection under
large-scale data, and solve the bottleneck problems of high
deployment cost and large response delay of existing deep
learning models; 3) A gated feature fusion (GFF) mechanism
is designed to dynamically aggregate behavior sequences,
time intervals and multi-source statistical features based on
statistical priors to break the “information island”; an adap-
tive threshold optimization algorithm is further proposed to
dynamically adjust the detection threshold through probability
distribution analysis and inter-class variance maximization to
improve the generalization ability in complex scenarios.

The main contributions of this work are as follows:

• Multi-source heterogeneous spatiotemporal feature
reconstruction : the first log fusion paradigm for be-
havioral interval perception, which aligns the scattered
original logs (network traffic, system audit, etc.) in time
and normalizes the granularity, extracts three-dimensional
structured features (behavior sequence, interval sequence,
statistical indicators), and breaks through the limitations
of traditional single-dimensional event flow modeling;

• Dual-channel temporal semantic embedding : Through
differentiated embedding strategies, behavioral semantics
(such as operation type, object sensitivity) and temporal
dynamics (such as operation interval density, abnormal
time period distribution) are encoded respectively, and
behavior-time coupling representation is constructed in
low-dimensional space;

• Lightweight state space modeling and dynamic fusion
: The state transition equation of the Mamba network is
used to model long-range behavioral dependencies, and
the threat aggregation pattern in the interval sequence
(such as high-frequency data access late at night) is cap-
tured synchronously, and a statistical prior-driven gating
fusion mechanism is designed to dynamically balance
the contribution weights of behavioral semantics and
temporal dynamics;

• Probability-driven adaptive decision engine : Based
on the probability distribution characteristics of threat
behavior, the detection threshold is dynamically opti-
mized through the principle of maximizing inter-class
separability, realizing the evolution of detection strategies
from “static rules” to “environmental perception”, effec-
tively coping with the concept drift problem in enterprise
operations.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on insider threat detection and
discusses the relevance of the Mamba architecture. Section III
introduces key preliminaries, including exponential weighted
moving averages, state space models, and Otsu’s thresholding
method. Section IV presents our proposed framework, cov-
ering data preprocessing, feature embedding, Mamba-based
encoding, and the adaptive threshold optimization module.
Section V outlines the experimental setup, including datasets,
baselines, and evaluation metrics. Section VI reports experi-
mental results with comparisons, ablation studies, and param-

eter analyses. Finally, Section VII concludes the paper.

II. RELATED WORK

A. Insider Threat Detection

Early research on insider threat detection (ITD) primar-
ily relied on manually defined statistical features (e.g., user
login/logout frequency, email interaction volume) to construct
feature sets, combined with traditional classifiers such as Hid-
den Markov Models (HMMs) [26] and Isolation Forests [20]
for anomaly detection. Although these methods achieved mod-
erate success in user-level anomaly screening, they exhibited
significant limitations: the inability to model the temporal
dynamics of user behavior hindered their capability to detect
complex threats [7], [22].

To capture the complex dependencies between users
and activities, researchers introduced graph neural networks
(GNNs) [1], [18], modeling organizational interactions as
communication or heterogeneous graphs. For instance, edge-
centric anomaly scoring methods demonstrated preliminary
effectiveness in heterogeneous graphs. However, these meth-
ods face two major challenges [7]: first, the computational
overhead increases quadratically with graph size, and second,
heuristic graph construction methods may introduce human
biases, limiting their applicability in real-world scenarios.
Consequently, despite being a recent advancement, the high
resource consumption of graph-based methods has shifted the
research focus back to sequence modeling techniques.

Current research frontiers focus on sequence modeling
techniques, which significantly enhance detection efficiency
and accuracy by automatically learning the spatiotemporal
evolution patterns of user behavior. This progression be-
gan with the integration of temporal point processes with
LSTM [24], [28] to identify anomalous segments in fine-
grained behavior sequences. The Transformer model, with
its powerful self-attention mechanism and parallel processing
capabilities, has gradually been introduced into the field of
ITD. For example, the use of Transformer encoders allows
for the learning of temporal dependencies and patterns in
user behavior sequences [30]. Additionally, pre-trained BERT
models [13] are employed to extract cross-session behavioral
semantics, combined with bidirectional LSTMs to capture
long-term dependencies.

Despite their strengths in capturing the temporal behavior
of users, sequence modeling techniques still face the following
shortcomings: Single-Perspective Modeling: Most existing
methods mainly focus on user behavior time series, overlook-
ing the synergistic effects of temporal intervals between be-
haviors and statistical features, resulting in a narrow modeling
perspective. Insufficient Feature Fusion: Existing methods
typically analyze behavioral sequences, temporal intervals, and
statistical features independently before aggregating results.
They fail to achieve deep integration of multi-scale features
at the modeling level, which restricts further improvements in
detection performance.



B. Mamba for Detection

Mamba is a novel sequence modeling architecture based
on Structured State Space Models (SSM) [9], specifically
designed to address the limitations of traditional methods
in anomaly detection [12], [15]. Compared to Transformer-
based models, Mamba achieves linear complexity, enabling
it to handle long sequences more efficiently—making it par-
ticularly suitable for insider detection tasks that require real-
time responses [25]. Its key features include linear scalability
for processing large datasets and a mechanism for selective
state updates, which allows it to dynamically focus on critical
segments related to insider threats.

Research has shown that Mamba has broad applicability in
the field of computer vision [16] and anomaly detection [23],
especially in scenarios that require session feature modeling
and low computational costs [17]. These characteristics po-
sition Mamba as an ideal choice for insider threat detection,
enhancing its ability to detect local anomalies effectively.

III. PRELIMINARIES

A. Exponential Weighted Moving Average

The Exponential Weighted Moving Average (EWMA) [27]
is a smoothing technique that assigns exponentially decreasing
weights to past observations, making it particularly useful
for capturing recent trends while mitigating noise. Given a
time series {z1, z2, ..., zT }, the EWMA at time t is computed
recursively as:

qt = αzt + (1− α)qt−1, 0 < α ≤ 1, (1)

where qt represents the smoothed value at time t, zt is the
raw observation, and α is the smoothing factor that controls
the decay rate of past values. A higher α gives more weight
to recent observations, making the model more responsive to
changes, while a lower α results in a smoother but slower-
reacting trend.

B. State Space Model

The State Space Sequence Models (SSM) [9] designed to
map a one-dimensional input sequence x(t) ∈ R to an output
sequence y(t) ∈ R. Its dynamics are governed by the following
linear ordinary differential equations:

h(t) = Ah(t) +Bx(t), (2)

y(t) = Ch(t), (3)

where A ∈ RN×N and B,C ∈ RN are state matrices, and
h(t) ∈ RN represents the hidden latent state.

Structured state space models (SSM) have recently gained
attention as a powerful class of sequence modeling architec-
tures, demonstrating remarkable performance across various
tasks.

C. Otsu’s Thresholding

Otsu’s method [11] is a classical non-parametric algorithm
originally designed for gray-level image segmentation. It aims
to find an optimal threshold that separates a histogram into
two classes by maximizing their inter-class variance. Given a
normalized histogram p(k) over L discrete levels, the threshold
t∗ is selected by:

t∗ = argmax
t

[
ω0(t)ω1(t)(µ0(t)− µ1(t))

2
]
, (4)

where ω0(t) and ω1(t) are the cumulative probabilities of
the two classes, and µ0(t) and µ1(t) are their respective means.
This strategy ensures that the separation between the two
classes is statistically significant.

IV. PROPOSED FRAMEWORK

A. Data Preprocessing

The preprocessing module integrates multi-source hetero-
geneous logs and aligns temporal granularity across different
sources. Since numerical scales and semantics vary across
log sources, raw data cannot be directly used for subsequent
analysis. Thus, this module transforms logs into a structured
format to effectively model user behavior dynamics within a
session. The feature generation process includes behavior se-
quences, interval sequences, and statistical features, which
are essential for capturing user activity patterns.

1) Behavior Sequence: To model user behavior dynamics
within a session, we encode each action using a Mapping ID,
which integrates three key factors: Behavior, Device, and Time
Segments [30]. The full encoding strategy and its detailed
computation are presented in Appendix A.

For each session, the final Behavior Sequence is represented
as:

Sb = [b1, b2, . . . , bT ], (5)

where each bi uniquely encodes the semantic and contextual
aspects of user activity.

2) Interval Sequence: To capture temporal dynamics within
a session, we construct an Interval Sequence that represents
the time intervals between consecutive actions. To align the
length of the Interval Sequence with the Behavior Sequence,
we introduce a virtual initial interval c0 = 0, representing
the immediate occurrence of the first action at the session
start time t0. The raw time intervals ∆ti = ti − ti−1 for i =
1, . . . , T are smoothed using Exponential Weighted Moving
Average (EWMA):

ci = α∆ti + (1− α)ci−1, i = 1, . . . , T, (6)

where α = 0.2 controls the decay rate. The final Interval
Sequence is given by:

Sc = [c1, c2, . . . , cT ]. (7)

By truncating c0, we obtain Sc with length T , ensuring
alignment with the Behavior Sequence. This approach captures
both short-term and long-term temporal dependencies within
a session.
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Fig. 1. The overview of MambaITD architecture. It uses the Mamba encoder to capture complex patterns in both behavioral and temporal features, which are
then integrated through Gated Feature Fusion (GFF). An Otsu-based adaptive thresholding mechanism is applied for anomaly detection, classifying behaviors
as either normal or anomalous.

3) Statistical Features: User behavior can be further char-
acterized through statistical features across three dimensions:
Behavior, Device, and Time Segments. These features capture
the frequency and execution time characteristics of actions
within these dimensions. Within a session, they provide a high-
level summary of user activities, complementing the sequential
and temporal information captured by the behavior sequence
Sb and the interval sequence Sc. The specific feature details
are presented in Appendix B.

After standardization, these features form a numerical vec-
tor:

X = [x1, x2, ..., xN ], (8)

where xi represents the i-th feature value, reflecting the user’s
behavior within the corresponding dimension, and N is the
total number of statistical features.

B. Feature Embedding and Representation

To effectively model user behavior, we construct three types
of input data: the behavior sequence Sb, the interval sequence
Sc, and the statistical feature vector X . These heterogeneous
features are projected into a unified latent space to facilitate

joint representation learning, enabling the framework to cap-
ture multi-dimensional information for downstream tasks.

The embedding process is defined as follows:

Eb = Embed(Sb), (9)
Ec = FC(log(1 + Sc)), (10)
Ex = BN(FC(X)). (11)

Here, Embed(·) denotes a trainable embedding lookup table
that maps each behavior ID bi to a dense vector representation,
resulting in Eb ∈ RT×dmodel . The function FC(·) represents
a fully connected layer that projects log-transformed interval
values into the embedding space, producing Ec ∈ RT×dmodel .
This transformation captures temporal dependencies while
mitigating scale variations. For the statistical feature vector
X , which has N dimensions corresponding to the number of
statistical features, BN(·) applies batch normalization before
mapping the features into a dmodel-dimensional space, resulting
in Ex ∈ RN×dmodel . This ensures stability and consistency in
feature distribution.
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Fig. 2. Gated Feature Fusion mechanism. which integrates behavioral and
temporal features (Hb and Hc) using a gating vector G. The vector is
computed from session statistics (Ex) and regulates the fusion of the two
feature types.

C. Mamba Encoder and Feature Fusion

1) Mamba Block Encoder: In the initial phase of Cross-
Model Learning, the behavioral feature embeddings Eb and
temporal interval embeddings Ec are fed into the Mamba
framework to learn the hierarchical pattern information of the
sequences. Mamba, a state-space model, excels at capturing
long-term dependencies and complex patterns in sequential
data. After processing through Mamba, we obtain two types
of latent state representations:

Hb = Mamba(Eb) = [hb1 ;hb2 ; . . . ;hbT ] ∈ RT×dmodel , (12)

Hc = Mamba(Ec) = [hc1 ;hc2 ; . . . ;hcT ] ∈ RT×dmodel . (13)

In this framework, each hbi and hci represents a high-
dimensional embedding derived from the long-term informa-
tion modeling facilitated by Mamba.

2) Cross-Model Gated Feature Fusion: To effectively inte-
grate behavioral latent states Hb and temporal interval latent
states Hc, we propose a Gated Feature Fusion (GFF) mech-
anism. This module dynamically adjusts the contributions of
these features based on statistical priors, ensuring a balanced
and informative fusion process.

We first extract session statistical information from Ex using
average pooling:

esession
x =

1

N

N∑
i=1

Ex[i, :]. (14)

This vector captures overarching statistical patterns, such
as mean frequency and interval variance, providing essential
prior knowledge for feature fusion.

G = σ
(
Wge

session
x + bg

)
, (15)

where σ is the Sigmoid activation function, and Wg and bg

are trainable parameters. The gating vector G assigns weights

to each feature dimension, dynamically balancing behavioral
and temporal interval information.

The fused representation Ffusion is then computed as:

Ffusion[t, j] = gjhbt,j + (1− gj)hct,j , (16)

where dimensions dominated by behavioral patterns (high gj)
retain more information from Hb, while those sensitive to
temporal dynamics (low gj) emphasize Hc.

To preserve original sequence information and enhance
training stability, we apply residual connections and layer
normalization:

Ffusion = LayerNorm(Ffusion +Hb +Hc). (17)

Finally, we extend esession
x across the sequence length T and

concatenate it with Ffusion to obtain the final representation:

Ffinal = Concat(Ffusion, esession
x ⊗ 1T ), (18)

where 1T is an all-ones vector of length T , and ⊗ denotes the
outer product.

D. ITD with Adaptive Threshold Optimization

1) MLP-based Probability Estimation: The fused temporal-
spatial representation Ffinal ∈ RT×2dmodel is passed through a
Multi-Layer Perceptron (MLP) to estimate the anomaly prob-
abilities. The probability sequence P ∈ [0, 1]T is computed
using two fully connected layers, with ReLU activation on the
hidden layer and a sigmoid activation on the output layer. The
process is defined as follows:

Hhidden = ReLU(FfinalW1 + b1), (19)
P = σ(HhiddenW2 + b2), (20)

where σ(x) = 1
1+exp(−x) is the Sigmoid activation function,

which maps the input to a value between 0 and 1. Here, W1 ∈
R2dmodel×H and W2 ∈ RH×1 are learnable weight matrices,
where H denotes the number of hidden units in the MLP. b1

and b2 are bias terms that help enhance the expressiveness of
the model.

2) Loss Function with Gating Regularization: To optimize
anomaly detection, we employ a hybrid loss function that
integrates classification accuracy with feature fusion regular-
ization. The objective function is formulated as:

L = LBCE + λLG, λ = 0.01, (21)

where the Binary Cross-Entropy (BCE) loss ensures effec-
tive anomaly classification, and the gating regularization loss
prevents the gating mechanism from collapsing into extreme
values. The BCE loss is defined as:

LBCE = − 1

T

T∑
t=1

(yt logPt + (1− yt) log(1− Pt)) , (22)

where yt represents the ground truth label, and Pt is the pre-
dicted anomaly probability. This loss minimizes the divergence
between predicted and actual labels, guiding the model to



effectively distinguish between normal and anomalous behav-
iors. To ensure a balanced integration of behavioral and tem-
poral interval features, we introduce the gating regularization
loss, which is defined as:

LG =
1

Tdmodel

T∑
t=1

dmodel∑
j=1

Gt,j(1−Gt,j). (23)

This term discourages the gating values from collapsing into
purely binary states (all 0s or all 1s), maintaining the model’s
ability to adaptively weigh the importance of behavioral rep-
resentations Hb and temporal interval representations Hc. By
setting λ = 0.01, the model preserves interpretability while
ensuring that neither feature type dominates excessively.

3) Adaptive Threshold Optimization: To perform unsuper-
vised anomaly classification at the user level, we adapt the
classical Otsu’s thresholding strategy (see Section III-C) to
the domain of per-user probability sequences. For each user
u, we collect a daily sequence of anomaly scores P =
[P1, P2, ..., PT ].

We first construct a normalized histogram H(k) with 100
bins to approximate the empirical distribution of P:

H(k) =
1

T

T∑
t=1

I
(⌊

Pt −min(P)

max(P)−min(P)
· 100

⌋
= k

)
, (24)

We then apply the Otsu criterion to this histogram to derive
the optimal bin-level threshold τ∗, and map it back to the
probability space via:

τ∗u =
τ∗

100
· (max(P)−min(P)) + min(P). (25)

This yields a dynamic, user-specific threshold that separates
probable anomalies from benign activities. The final classifi-
cation decision is given by:

yt =

{
1, Pt ≥ τ∗u (Anomaly)
0, Pt < τ∗u (Normal)

for t ∈ {1, 2, . . . , T}.

(26)
This user-aware binarization enables a data-driven threshold-
ing mechanism that is sensitive to personalized behavioral
patterns and avoids fixed or globally shared cutoffs.

V. EXPERIMENTAL SETUP

A. Datasets

We utilize the CERT Insider Threat Test Dataset [19], an
open-source dataset that provides comprehensive user activity
logs and realistic insider threat scenarios. To evaluate the
robustness and generalizability of our method, we employ
both the r4.2 and r5.2 versions of the CERT dataset. Specifi-
cally, the r4.2 dataset contains 32,770,222 event records from
1,000 users, spanning from January 2010 to May 2011, with
7,323 labeled anomalous instances. The r5.2 dataset comprises
79,856,699 operations from 2,000 users, covering the period
from January 2010 to June 2011, and includes 10,328 anoma-
lies. For behavior modeling, we organize user activities into

daily session units and adopt an 8:2 split for training and
testing. To address the inherent class imbalance in the dataset,
we apply the Synthetic Minority Over-sampling Technique
(SMOTE) [24] on the training set, thereby improving the
representation of rare but critical anomalous behaviors.

B. Comparison with Baseline Models

To evaluate the Mamba framework, we compare it against a
range of baselines, including deep learning models and state-
of-the-art techniques. This includes time-series models like
LSTM [28] and Transformer [29], which capture long-term
dependencies; advanced methods such as Deep Isolated Forest
(DIF) [2] and Filter-Enhanced MLP (FMLP) [31], which
integrate traditional algorithms with deep learning; and leading
models like DeepLog [4], ITDBERT [13], OITP [21], and
CATE [30], specializing in log data, insider threat detection,
and anomaly detection in large-scale systems.

C. Evaluation Metrics

To assess the effectiveness of the proposed method, we
utilize four key performance metrics: Precision, Recall, F1
Score (F1), and False Positive Rate (FPR) [24], [30]. Precision
indicates the accuracy of positive predictions, while Recall
measures the sensitivity in detecting actual malicious activities.
The F1 Score balances Precision and Recall for a comprehen-
sive evaluation, and FPR assesses the rate of false alarms.
Together, these metrics provide a thorough overview of the
model’s performance, highlighting its reliability and detection
capabilities.

D. Implementation

Our experiments were conducted on a platform running
Windows 10, equipped with an Intel i7-11700 processor, 32GB
of DDR4 RAM, and an NVIDIA GeForce RTX 3070 GPU
with 8GB of VRAM. The machine learning-based models
were implemented using the Python library Scikit-learn, while
the deep learning-based models were developed using Py-
Torch. In our experiments, the Mamba network was configured
with 2 layers, and the MLP detection layer was set to 3 layers.
The parameter learning process can be found in VI-C.

VI. EXPERIMENTAL RESULTS

A. Comparison results

Table I presents the performance comparison across multiple
algorithms on Cert r4.2 and Cert r5.2. MambaITD achieves
the highest F1-scores of 91.31 and 91.83, outperforming all
baseline models in both datasets. This demonstrates its ability
to effectively balance Precision and Recall while maintaining
strong anomaly detection performance. Additionally, Mam-
baITD exhibits a competitive False Positive Rate (FPR) of
7.89 and 6.05, outperforming models like Transformer (FPR
= 19.40, 19.69) and FMLP (FPR = 18.74, 12.19), which suffer
from higher false positives. While CATE achieves the lowest
FPR (4.85 and 4.92), its F1-score is lower than MambaITD,
indicating a potential trade-off where it reduces false posi-
tives at the cost of missing more true anomalies. DeepLog



TABLE I
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS.

Method Cert r4.2 Cert r5.2

Precision Recall F1 FPR Precision Recall F1 FPR

LSTM 77.32 74.32 75.79 12.62 79.87 78.41 79.13 16.46
Transformer 79.32 75.22 77.22 19.40 82.87 80.24 81.53 19.69
DIF 86.32 83.92 85.10 10.39 87.87 85.31 86.57 11.60
FMLP 83.32 81.32 82.31 18.74 86.87 84.71 85.78 12.19
DeepLog 84.54 83.22 83.87 10.11 89.43 87.73 88.57 9.07
ITDBERT 80.77 75.32 77.95 18.99 83.89 80.41 82.11 13.70
OITP 77.25 70.69 73.82 13.46 82.41 80.38 81.38 12.12
CATE 91.32 85.71 88.43 4.85 92.87 89.41 91.11 4.92

MambaITD 91.79 90.83 91.31 7.89 92.54 91.13 91.83 6.05

and ITDBERT maintain strong Recall but fail to achieve
comparable F1-scores, highlighting MambaITD’s advantage in
simultaneously achieving high Precision and Recall.

Compared to Transformer and DIF, which demonstrate good
performance in Precision and Recall, MambaITD provides
a more stable and robust detection capability, with a better
balance across all metrics. The results indicate that MambaITD
effectively reduces false positives while achieving superior
detection accuracy, making it a more practical and efficient
solution for insider threat detection.

B. Ablation studies

TABLE II
PERFORMANCE COMPARISON OF ABLATION STUDIES.

Model Cert r4.2 Cert r5.2

F1 FPR F1 FPR

MambaITD w/o ME + GFF + AT 81.34 13.57 83.42 16.21
MambaITD w/o GFF + AT 83.21 11.85 85.56 14.64
MambaITD w/o ME + AT 84.12 10.72 86.32 13.81
MambaITD w/o ME + GFF 82.58 14.01 84.67 15.35
MambaITD w/o AT 85.02 9.14 87.76 12.59
MambaITD w/o GFF 86.29 8.44 88.13 11.96
MambaITD w/o ME 87.38 7.08 89.54 10.75

MambaITD 91.28 7.89 91.88 6.05

The ablation study results in Table II evaluate the impact of
three key components—Mamba Encoder (ME), Gated Feature
Fusion (GFF), and Adaptive Threshold (AT)—on the per-
formance of MambaITD across the Cert r4.2 and Cert r5.2
datasets. The results highlight the contribution of each module
in improving detection accuracy while reducing false positives.

• Baseline (w/o ME + GFF + AT): Removing all com-
ponents results in the lowest F1 scores (81.34, 83.42)
and the highest FPR (13.57, 16.21), demonstrating the
necessity of each module.

• Single-Component Additions:
– Adding ME (w/o GFF + AT) improves F1 to 83.21 and

85.56, reducing FPR slightly, indicating that feature ex-
traction alone enhances detection but lacks refinement.

F1

PrecisionGPU

Time

FPR Recall
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(a) Mamba layer

F1

PrecisionGPU

Time

FPR Recall
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(b) MLP layer

Fig. 3. Impact of Mamba and MLP Layer Variations on Model Performance.

– Adding GFF (w/o ME + AT) further boosts F1 to 84.12
and 86.32 while lowering FPR, highlighting its role in
feature integration.

– Adding AT (w/o ME + GFF) provides limited im-
provement (F1: 82.58, 84.67), suggesting threshold
optimization alone is insufficient.

• Two-Component Combinations:
– Keeping ME and GFF (w/o AT) improves F1 to 85.02

and 87.76, but FPR remains relatively high, showing
that AT refines decision boundaries.

– Keeping ME and AT (w/o GFF) achieves F1 scores of
86.29 and 88.13, confirming GFF’s role in enhancing
feature fusion.

– Keeping GFF and AT (w/o ME) achieves the best
F1 among ablated models (87.38, 89.54) but still lags
behind the full model.

• Full Model Performance: The complete MambaITD
model achieves the highest F1 scores (91.28, 91.88) and
the lowest FPR (7.89, 6.05), confirming the effectiveness
of integrating ME, GFF, and AT.

C. Parameter Selection

As shown in the Fig. 3, we conducted experiments to
explore the impact of different Mamba and MLP layer con-
figurations on model performance. We evaluated the model
using six key metrics. Notably, the left half of the radar chart
(Time, GPU, and FPR) represents cost-related factors, where
lower values indicate better efficiency. In contrast, the right



TABLE III
COMPATIBILITY ANALYSIS OF DIFFERENT ENCODER MODEL.

Dataset Encoder Model F1 FPR Time(s) GPU(MB)

Cert r4.2

LSTM 70.58 7.14 5.04 14.41
GRU 77.17 7.14 4.78 11.16

Transformer 87.50 2.38 3.71 9.46
Mamba 87.50 2.38 2.73 8.20

Cert r5.2

LSTM 76.63 6.31 7.51 14.83
GRU 79.73 6.93 7.47 10.46

Transformer 89.86 3.71 5.70 9.69
Mamba 92.29 3.71 4.98 7.27

half (Precision, F1, and Recall) reflects performance-based
indicators, where higher values signify better results.

Observing the impact of Mamba layers, we find that when
the number of layers is set to 2, the performance-oriented
metrics (Precision, F1, and Recall) reach their optimal values,
surpassing all other configurations. Additionally, the cost-
related metrics (Time, GPU, and FPR) remain more favorable
compared to layer settings of 1 and 4, making 2 layers the
most balanced choice.

Similarly, for MLP layers, we observe that setting the MLP
depth to 3 yields the best overall performance. Although
the cost-related factors increase slightly, the significant im-
provement in Precision, F1, and Recall makes MLP with 3
layers the optimal configuration for achieving high accuracy
while maintaining a reasonable trade-off with computational
efficiency.

D. Compatibility Analysis

To evaluate model compatibility, we conducted experi-
ments on two user samples: “AAF0535” from the Cert r4.2
dataset and BYO1846” from the Cert r5.2 dataset. Table III
presents the results, comparing Mamba [9], Transformer [29],
LSTM [28], and GRU [3] in terms of F1 Score, False Positive
Rate (FPR), computation time, and GPU usage.

The results show that Mamba and Transformer achieve the
highest F1 Scores, with 87.50 on Cert r4.2 and 92.29 on Cert
r5.2, outperforming LSTM (70.58, 76.63) and GRU (77.17,
79.73). In FPR, Mamba and Transformer maintain the lowest
rates (2.38 and 3.71, respectively), significantly outperforming
LSTM and GRU, which exhibit higher false positive rates
(6.31–7.14). Mamba surpasses Transformer in computational
efficiency, running 1.36× faster (2.73s vs. 3.71s) on Cert r4.2
and 1.14× faster (4.98s vs. 5.70s) on Cert r5.2, translating to
a 12.7% reduction in runtime. In GPU memory consumption,
Mamba also demonstrates better efficiency, requiring 8.20MB
and 7.27MB, which is 13% lower than Transformer (9.46MB
and 9.69MB). In contrast, LSTM and GRU demand signifi-
cantly more memory (10.46–14.83MB), further emphasizing
their inefficiency.

Overall, Mamba matches Transformer in accuracy while
significantly reducing computational cost and memory usage,
making it a superior choice for large-scale, real-time anomaly
detection in behavioral modeling.

VII. CONCLUSION

In this study, we proposed a comprehensive approach
to modeling multimodal user behavior logs to address the
challenges posed by heterogeneous data sources and the
complexity of sequential and non-sequential features. Our
proposed framework integrates effective preprocessing, an
innovative Mamba network encoder, and an adaptive threshold
optimization mechanism, achieving significant improvements
in both performance and interpretability. Results show that
our approach achieves 1.14 times faster inference speed than
Transformer, thereby reducing computation time by 12.7%.
These findings highlight the potential of our framework for
applications in fraud detection and personalized recommen-
dation systems, and the critical importance of efficient and
interpretable analysis for building systems.

However, our study also has some limitations, including
reliance on synthetic datasets, which may not fully capture
the nuances of real-world behavior. Future work should focus
on validating our approach using real user data and exploring
further enhancements to the model, such as incorporating more
advanced machine learning techniques or expanding the scope
of user behavior analyzed.
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APPENDIX

A. Behavior Sequence Encoding Strategy

To ensure consistent representation of user behavior, we
define a unique Mapping ID for each action by integrating
three contextual attributes: Behavior (B), Device (D), and Time
Segment (TS). As detailed in Table IV, our encoding strategy
covers various log types with corresponding ID allocations
across activity categories. Each action i is encoded using the
following formula:

TABLE IV
SEQUENTIAL BEHAVIOR ENCODING STRATEGY.

Behavior (B) Device (D) Time Segment (TS) ID Range

0–1: Logon / Logoff 0: Personal
1: Department
2: Supervisor
3: Other

1: Working Hours
2: Non-Working Hours

1–16
2–3: Connect / Disconnect 17–32
4–15: File Operations 33–128
16–19: Email Operations 129–160
20–23: Web Activity 161–192

bi = Bi× (ND×NTS)+Di×NTS +TSi, i = 1, 2, . . . , T,
(27)

where Bi represents the behavior type, such as logon events,
file operations, email exchanges, and web activities. The
variable Di ∈ {0, 1, 2, 3} denotes the device category, distin-
guishing between personal, department-assigned, supervisor-
assigned, and other devices. The variable TSi ∈ {1, 2}
captures the temporal context, identifying whether the action
occurred during working hours or non-working hours. This
formulation guarantees that each behavior is mapped into
a unique semantic-contextual index space, reflecting both
operational intent and situational context.

To further refine the disambiguation of behaviors, we subdi-
vide each behavior category into semantically meaningful sub-
types. Specifically, for file operations (behavior codes 4–15),
we account for two primary actions—open and write—applied
across six common file formats: ZIP, DOC, PDF, EXE, TXT,
and JPG, yielding a total of 12 distinct encoding positions. For
email communications (behavior codes 16–19), we distinguish
four types of message exchanges based on sender and recipient
roles: Internal to Internal (I–I), Internal to External (I–E),
External to Internal (E–I), and External to External (E–E).
For web browsing activity (behavior codes 20–23), we classify
accesses into four categories reflecting potential security con-
cerns and benign behavior: cloud storage, hacktivist websites,
job hunting, and neutral browsing.

By capturing this rich semantic and contextual structure,
the proposed behavior encoding strategy offers a fine-grained
yet compact representation of user activity sequences, thereby
enabling effective learning of behavioral dynamics and facili-
tating accurate anomaly detection in downstream models.

B. Statistical Feature Definitions

The statistical features are designed to capture user behavior
patterns from three perspectives: Behavior (B), Device (D),



TABLE V
STATISTICAL FEATURES DERIVED FROM USER BEHAVIOR, DEVICE, AND

TIME SEGMENTS.

Category Factors Info

Behavior (B)

Logon/Logoff

Count
Duration

Connect/Disconnect
File Operations
Email Operations
Web Activity

Device (D)

Personal
Department
Supervisor
Other

Time Segments (TS) Working Hours
Non-Working Hours

and Time Segment (TS). Each feature is constructed by
combining a specific factor from one of these categories
with an associated statistical metric, forming a structured
representation of user activities.

We adopt a Factor + Info formulation, where each feature
consists of a semantic aspect (e.g., Logon, File, Personal
Device) and an associated statistic such as frequency (Count)
or temporal span (Duration). For example, the feature Logon
+ Count quantifies the total number of logon events within a
given session. This structured encoding facilitates fine-grained
behavioral analysis across contextual dimensions.

Table V summarizes the statistical features used in our
framework.


