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Abstract

Generative models are increasingly adopted in high-stakes
domains, yet current deployments offer no mechanisms to
verify the origin of model outputs. We address this gap
by extending model fingerprinting techniques beyond the
traditional collaborative setting to one where the model
provider may act adversarially. To our knowledge, this is
the first work to evaluate fingerprinting for provenance at-
tribution under such a threat model. The methods rely
on a trusted verifier that extracts secret fingerprints from
the model’s output space, unknown to the provider, and
trains a model to predict and verify them. Our empiri-
cal evaluation shows that our methods achieve near-zero
FPR@95%TPR for instances of GAN and diffusion mod-
els, even when tested on small modifications to the origi-
nal architecture and training data. Moreover, the methods re-
main robust against adversarial attacks that actively modify
the outputs to bypass detection. Source codes are available at
https://github.com/PSMLab/authprint.

Introduction

Recent advances in generative Al have led to the widespread
deployment of generative models across various domains,
with providers of generative Al services increasingly mon-
etizing their models by offering subscription-based access.
However, this rapid adoption has raised serious concerns
about the risks posed by these models, particularly in high-
stakes and sensitive sectors, such as healthcare and defense,
where erroneous model outputs can have disastrous conse-
quences (Bommasani et al. 2021).

In response, policymakers are introducing legal frame-
works to regulate the use of Al and, in particular, the de-
ployment of generative models. For instance, the Euro-
pean Union’s Al Act mandates independent, periodic au-
dits for “high-risk” Al systems deployed in domains such
as healthcare, education, employment, and critical infras-
tructure (European Parliament and Council of the European
Union 2023). This requirement to pass or be certified by an
audit raises a critical question: How can users verify that
a given output indeed originated from the audited model?
Even if a model passes an audit, there is currently no guar-
antee that providers will adhere to the audited model and not
substitute it for a cheaper but potentially flawed version.

Without verification mechanisms, audits may fail to en-
force compliance. In particular, it becomes difficult to detect

whether the model deployed after an audit matches the one
audited. Similar challenges have been observed in other in-
dustries, where companies have deceived auditors by manip-
ulating a product’s performance only to pass an audit, while
deploying a product with detrimental effects on climate or
public health (US EPA 2015). In the context of Al, service
providers have similar intentions to reduce costs, possibly
disregarding negative societal outcomes (Valdarrama 2023).

This issue is exacerbated in current AI/ML systems,
where access to the model is offered through opaque APIs
that provide no verifiable information about which mod-
els are accessed. Users are left to blindly trust the model
provider: for any single query, the model provider can plau-
sibly deny having used a harmful or defective model, as
little evidence exists to disprove their claims. The lack of
accountability hinders oversight and diffuses responsibility
across the ML supply chain (Veale 2023). Therefore, tech-
nical means to track models through their lifecycle—from
certification to deployment—is critical, not only for law en-
forcement but also for maintaining trust in Al applications.

Prior work has proposed cryptographic commitment
schemes based on zero-knowledge proofs to verify that an
output is obtained by evaluating the committed model (Kang
et al. 2023; Lee et al. 2024). Alternatively, trusted execu-
tion environments have been explored to prevent unautho-
rized modifications of a model and verify that computations
originate from a specific model snapshot (Tramer and Boneh
2018). However, these technical approaches fall short of the
requirements for deployment, as they either do not scale to
the size of modern generative models, or require specialized
hardware, limiting their potential adoption. Most prior work
in this area targets small classifiers, overlooking the unique
challenges posed by modern generative models.

In this paper, we propose AUTHPRINT (Authentication
via Fingerprinting), a novel framework for detecting the
source model of generated images. AUTHPRINT relies on
a trusted third party (e.g., an auditor) to train a model that
learns to reconstruct secret fingerprints from images gener-
ated by the original audited model. During verification, the
reconstructed fingerprint is compared against the true finger-
print to determine whether the image was produced by this
authentic model. AUTHPRINT satisfies two key properties:
(i) it reliably detects deviations in the output distribution
from the original audited model; and (ii) it is robust against
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attacks attempting to forge images that pass verification.
Our main contributions are:

e We introduce AUTHPRINT, a black-box fingerprinting
framework for attributing image outputs to a specific gen-
erative model, even under a malicious provider.

¢ We demonstrate its effectiveness across architectures and
datasets, including StyleGAN2 (FFHQ, LSUN-Cat) and
multiple Stable Diffusion versions.

e We show that AUTHPRINT remains robust against adap-
tive attackers with full access to the original model, re-
ducing forgery success rates from 100% to zero.

* We provide a theoretical analysis of fingerprint recovery
attacks, showing such attacks are infeasible for attackers
with realistic constraints.

Background

In this section, we define the problem and introduce the nec-
essary background on model fingerprinting techniques.

Problem Statement

We consider a setting involving two entities: the model
provider and the verifier. The model provider maintains a
generative image model and monetizes it by offering remote
access (e.g., via a web API). We assume the model has been
trained and can be represented as a function mapping struc-
tured inputs to high-dimensional image outputs. More for-
mally, we define an image generation model as a function
Gy : E x C — R?, where 9 denotes its parameters, = is
the space of latent variables, C is the space of optional con-
ditioning inputs, such as class labels or text prompts, and
R? is the output space corresponding to images of dimen-
sion d = channels x height x width. The parameters v in-
clude all components required to fully specify the model for
evaluation. For example, if G is implemented as a neural
network, 1 would include its weights and architecture.

Before deployment, the model provider must grant the
verifier query access. We refer to this pre-deployment stage
as the certification phase. During this phase, the verifier may
issue a number of queries via the API, and the provider re-
sponds by evaluating G, on the verifier’s inputs and return-
ing the resulting output images. We refer to the period after
the model has been deployed as the verification phase. The
central question we investigate is: Given any output - € R?
at verification time, can the verifier determine whether it was
produced by the same model used during certification?

We envision real-world scenarios where this problem is
relevant. Our running example is an Al audit, where the ver-
ifier is an auditor certifying the model’s compliance with Al
regulations, such as fairness and privacy. Depending on how
the regulations are implemented, the provider may grant the
auditor query access, or extend the access under legal pro-
tections for intellectual property. Next, we detail the goals
and capabilities of the model provider and verifier.

Threat Model

We consider a model provider aiming to maximize profit
from its image generation service. The main threat we ad-
dress is the provider acting maliciously and replacing the

model with one of inferior quality but cheaper to evaluate,
thereby reducing costs. The bogus model may produce im-
ages with flaws that are imperceptible to humans but may
have a significant impact (e.g., quality of medical images in
cancer diagnosis). In this paper, we focus on image quality
deterioration, as it is often a direct consequence of evaluat-
ing a cheaper model. However, there are more subtle model
flaws harder to detect on a single output, such as increased
privacy risk or overrepresentation of certain demographics.

Verifier’s goal and capabilities. The verifier is only permit-
ted black-box access to the model through a large number of
queries at certification time. They may use this information
to develop a detector D, such that D(z) accurately detects
whether or not x was sampled from the certified model.

Adversary’s goal. The goal of the attack is to craft an out-
put # € R? in such a way that & deviates from the certi-
fied model’s output distribution, but D incorrectly detects as
drawn from it. Borrowing terminology from the ML water-
marking literature, we call this attack a forgery attack, since
if successful, the attacker deceives the verifier by making the
sample appear to be drawn from the legitimate model.

Adversary’s capabilities. During certification, the provider
must consistently respond using the same model. Note that
the verifier’s goal is not to detect model defects, but to un-
cover a model swap. Moreover, the increased scrutiny during
certification would be a deterrent to such misconduct. Sec-
ond, the model provider will not spend more than the cost
of sampling from the certified model, as that is against their
goal of saving costs. Importantly, the adversary has full ac-
cess to the certified model, which gives them a significant
advantage in mounting forgery attacks.

Our approach to this problem is based on model finger-
printing techniques, which we introduce next.

Model fingerprinting techniques

Model fingerprinting refers to techniques that identify ML
models based on distinctive patterns in their outputs. These
methods are typically used to protect the intellectual prop-
erty of model owners when models are stolen or leaked. By
fingerprinting a model, unauthorized uses can be identified.
Most fingerprinting techniques fall into two categories:
passive and active. Passive fingerprinting relies solely on de-
tecting patterns in model outputs, while active fingerprinting
modifies the model to make its outputs more identifiable.
We focus on passive techniques, as we assume the verifier
only has query access during certification. While white-box
access could enable active methods, these are vulnerable in
adversarial settings: a provider with access to both original
and fingerprinted models could conduct side-by-side com-
parisons to uncover the fingerprint or mount forgery attacks.

Passive fingerprinting. Prior work has proposed passive
fingerprinting methods for model attribution. Marra et al.
apply denoising filters to extract noise residuals from im-
ages, showing that the average residuals of a GAN correlate
with its outputs and can serve as a fingerprint (Marra et al.
2019). Improving upon this, Yu et al. explore deep architec-
tures to extract more discriminative features (Yu, Davis, and



Fritz 2019). Corvi et al. identify patterns in the power spec-
tra and autocorrelation of noise residuals of latent diffusion
models (Corvi et al. 2023). Lastly, Song et al.’s geometric
approach improves detection by approximating the projec-
tion of generated images onto the data manifold as vectors
to their nearest counterparts in a real image dataset (Song,
Khayatkhoei, and AbdAlmageed 2024).

Our approach differs from these works in two key ways.
First, instead of a closed world of candidate models, we
tackle attribution in an open-world: whether or not an image
originates from the certified model. Second, we assume an
adversarial model provider, as opposed to a trusted one. To
our knowledge, we are the first to evaluate the susceptibility
of these techniques to adaptive forgery attacks.

AUTHPRINT: Authenticity Auditing via
Covert Fingerprinting

We introduce AUTHPRINT (Figure 1), a covert, passive fin-
gerprinting framework for verifying the outputs of image
generation models when providers of these models may be-
have adversarially. AUTHPRINT is run by the verifier to
build a fingerprint detector during the certification phase and
later use it to determine the authenticity of model outputs
during the verification phase.

AUTHPRINT could be offered as a service to users of the
model provider’s API, in which case the verifier operates as
a trusted third party. In many real-world scenarios, there are
trusted entities who could play the role of the verifier, such
as regulatory agencies or public interest auditors.

Certification Phase. As shown in Algorithm 1, the verifier
is granted black-box access to a generative model G, and its
input distribution P,;,. This input distribution defines a joint
prior over latent variables and optional conditioning inputs,
ie., (£ ¢) ~ Py, where ¢ € R¥ is typically sampled from a
normal distribution, and ¢ represents conditioning informa-
tion, such as prompts. The verifier selects a secret sequence
of [ pixel indices uniformly at random as a vector, s € [d]’,
where d is the image dimension. The vector s constitutes the
model’s fingerprint which, importantly, is output-dependent.

Algorithm 1: Certification Phase

Input: P, over Z x C, model Gy : = x C — R
Parameter: Fingerprint length [, batch size B, learning rate
7, training steps 7'

Qutput: Detector D

Sample secret index vector: s Eu ([d))
Initialize reconstructor parameters ¢
fort =1to T do
Sample batch {(&;,¢;)}2 & p,
Generate images: z; < Gy (&, ¢;)
Reconstruct fingerprint: r; <— Ry ()
Extract fingerprint: f; < (z;)s
Compute loss: £ « % Zf;l %HrZ — fill2
Update reconstructor: ¢ <— ¢ —n' V4L
end for
(R¢v s )

TRYR NS D

return detector D =

—_

The goal of the certification phase is to train a fingerprint
reconstructor model Ry : R? — R!—typically a deep neu-
ral network—that can predict the fingerprint values (i.e., the
pixel values at the secret indices s) directly from a gener-
ated image. To train the reconstructor, the verifier repeatedly
samples batches (&;, ¢;) from P, and generates correspond-
ing images z; = Gy (&;, ¢;). For each image, the reconstruc-
tor computes a prediction r; = R, (x;), and the true finger-
print f; = (z;)s is extracted according to s. The fingerprint
reconstructor is trained to minimize the mean squared error
(MSE) between prediction and ground truth fingerprint val-
ues over the batch, ie., L = 5 Zl 1 Hlri = fil13, where B
is the batch size. After training, the verifier outputs a finger-
print detector D = (R, s), consisting of the reconstructor
R4 and the secret indices s used for training 2.

Verification Phase. As shown in Algorithm 2, once trained,
the detector D = (Ry,s) is deployed as a black-box
verification API controlled by the verifier. At inference, a
user submits a test image z’; the reconstructor computes
= Ry(z'), and the verlﬁer also extracts the fingerprint
f’ = (a'),. The detection error e = ||’ — f’||3 is compared
to a pre-agreed threshold 7 (set by the provider and verifier
to yield low FNR). If e < 7, the image is deemed authentic,
meaning it originates from G,; otherwise, not authentic.

Algorithm 2: Verification Phase

Input: Test image z’, detector D =
Parameter: Threshold 7
Output: Binary decision

(R¢v 5)

1: Reconstruct fingerprint: r’ <— Ry(x’)

2: Extract fingerprint: f/ < (2'),

3: Compute detection error: e < 1" — f/||3

4: if e < 7 then

5:  return Authentic (i.e. 2’ originates from Gy)
6: else

7:  return Not authentic

8: end if

The core intuition behind AUTHPRINT lies in the fine-
grained pixel-level dependencies learned by modern genera-
tive models (van den Oord, Kalchbrenner, and Kavukcuoglu
2016; Theis and Bethge 2015). A reconstructor trained to
recover a secret subset of pixels from generated images per-
forms well when the images are drawn from the distribution
of training images (i.e., the certified model’s output distribu-
tion) but, if the provider substitutes the model with another
generator, even slight shifts in these statistical dependencies
result in prediction errors. AUTHPRINT exploits this out-of-
distribution sensitivity by training the reconstructor on am-
ple samples from the original model, enabling robust detec-
tion of distributional shifts without modifying the model or
images. It can be directly applied to a wide range of models
and learning algorithms, requires no retraining of the gen-
erator, is hardware-independent (unlike secure hardware-
based approaches (Tramer and Boneh 2018)), and remains
practical for high-capacity models where cryptographic ap-
proaches such as zero-knowledge proofs are infeasible.
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Figure 1: Overview of the AUTHPRINT pipeline. In the certification phase, a verifier with black-box access to the claimed
model selects secret pixel locations (channel-aware; simplified in figure for illustration) as a fingerprint and trains a private
reconstructor to predict them from generated images. After certification, the provider deploys the model via its black-box API,
while the verifier hosts a separate verification API with the reconstructor and secret indices. In the verification phase, a user
submits an image to this API, which applies the reconstructor, compares predicted and actual values at the secret locations,

computes a detection error, and returns the authenticity verdict.

The security of AUTHPRINT rests on the secrecy of the
detector, namely the reconstructor parameters ¢ and the in-
dex vector s. The model provider is aware of AUTHPRINT’s
algorithms and may query the detector during the verifica-
tion phase, e.g., impersonating a user of the verification API,
but the API only provides binary responses. Importantly, the
model provider has no access to gradients, logits, or aux-
iliary information about the reconstructor. Our evaluation
shows that this information asymmetry thwarts forgery and
reverse-engineering attacks, ensuring the robustness of AU-
THPRINT even when deployed in an adversarial setting.

Results
Detection Performance on Model Substitution

We first evaluate AUTHPRINT’s detection performance on
model substitution for both GAN-based (StyleGAN2) and
diffusion-based (SD) models (see Appendix A for experi-
ment details). To test rejection of negative models, we re-
port detection error as the FPR at 95% TPR, treating target
model samples as positives. As an ablation, we vary the fin-
gerprint length (i.e., number of secret pixels) to assess its
effect on detection error, holding all other factors constant!.

In the StyleGAN2 experiments, the target and negative
models share the same architecture but differ in training con-
figurations such as dataset size and data augmentation. This
setup probes AUTHPRINT’s sensitivity to subtle changes in
the training procedure that induces negligible image quality
shifts. We evaluate on FFHQ and LSUN-Cat, with results
shown in Figure 2. For SD, the target is SD 2.1, and neg-
atives are earlier versions (SD 1.5 to 1.1), introducing pro-
gressively larger distributional shifts due to architectural and
dataset differences. Results are shown in Figure 3.

"Variance across random seeds is < 1%; we report a single run.
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Figure 2: AUTHPRINT detection performance on model sub-
stitution for pre-trained StyleGAN2 models (left: FFHQ,
right: LSUN-Cat) across varying fingerprint lengths. Target
and negative models share the architecture but differ in train-
ing data size or augmentation, as detailed in the figure.

AUTHPRINT consistently achieves low detection error
across both model families, validating its robustness in dis-
tinguishing target from non-target outputs. Detection perfor-
mance peaks at fingerprint lengths of 16 and 32 for Style-
GAN2 and 64 for SD. Short fingerprints yield insufficient
signal, while overly long ones introduce redundancy that
limits reconstructor accuracy under fixed capacity.

Detection on SD models appears weaker than on GANSs,
largely due to practical limitations in computational re-
sources. Generating a 10241024 image from SD 2.1 (25
denoising steps) is roughly 50x slower than a 256x256
StyleGAN2 image, which constrains the volume of training
data. As shown in later sections, reconstructor capacity and
training set size play a crucial role in performance.

Another contributor to the performance gap is the gener-
ative process itself. GANs leave subtle artifacts or statistical
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Figure 3: AUTHPRINT detection performance on model sub-
stitution for SD models across varying fingerprint lengths.
The target is SD 2.1; negative models are earlier versions
(SD 1.5, 1.4, 1.3, 1.2, 1.1) with lower image qualities. The
Japanese café prompt is used throughout.

footprints that AUTHPRINT may implicitly exploit (Marra
et al. 2019). Diffusion models, by contrast, suppress such ar-
tifacts through iterative denoising. As shown in Figure 9 in
Appendix B, reducing denoising steps substantially lowers
detection error in SD—suggesting that shallower sampling
may preserve more model-specific traces.

Scaling Up Training Enhances Detection

Motivated by the performance gap between StyleGAN2 and
SD models, we examined whether increased training re-
sources improve detection. We focused on two factors: (1)
reconstructor model size and (2) number of samples for
training the reconstructor, both of which significantly af-
fected detection performance.

Reconstructor Sizes Num of Training Samples

I 32M params
3 187M params
I 674M params

I 128k samples
[ 320k samples
I 512k samples

FPR@95%TPR

0 SD1.5SD1.4SD1.3SD 1.2SD 1.1 SD1.5SD1.4SD1.3SD1.2SD 1.1
Figure 4: Effect of reconstructor size (left) and reconstructor
training set size (right) on AUTHPRINT performance for SD
models. Both experiments use the Japanese café prompt and
a fingerprint length of 1024. Left: reconstructor size com-
parison (32M, 187M, 674M) using 512k training samples.
Right: training set size comparison (128k, 320k, 512k sam-
ples) using a 674M-parameter reconstructor.

As shown in Figure 4, we evaluated reconstructors with
32M, 187M, and 674M parameters on SD models, holding
all other variables constant. The smallest (32M) failed to re-
ject negative samples, indicating insufficient capacity for the
fingerprinting task. In contrast, performance improved sub-
stantially with larger reconstructors, and the 674M model
achieved near-perfect detection error on SD 1.1.

We also varied reconstructor’s training set size (128k,
320k, 512k samples) and observed vanishing detection error

with more data. These results show that scaling both recon-
structor capacity and training volume significantly improves
performance. In our most demanding setting (674M recon-
structor, 512k samples), training took ~240 GPU hours on
an NVIDIA H200—costly for academic clusters but feasible
in industrial or governmental settings. Importantly, training
is only needed once per target model.

For comparison, our StyleGAN2 experiments used 96
million samples—~200x more than the largest SD train-
ing set—indicating substantial headroom for improving SD
fingerprinting via data scaling. With sufficient resources, the
detection performance of AUTHPRINT for SD may approach
that for GANs.

Boosting Performance with Ensemble Detection

To reduce FPR, AUTHPRINT can be naturally extended with
an ensemble detection scheme, where multiple reconstruc-
tors are independently trained using different fingerprint in-
dex vectors. At verification, each image is evaluated by all
reconstructor-index pairs, and the final detection error is
defined as the worst-case MSE across the ensemble, i.e.,
e(z") = max;c;ny) MSE(Ry, ('), (z')s,), where each Ry,
is trained on s;, and [V is the ensemble size. This conserva-
tive strategy boosts sensitivity: while a negative sample may
yield low error on one reconstructor-index pair, it is unlikely
to do so across all, thereby reducing false acceptances.

Performance of Ensemble Detection
0.20

0.16
0.12
0.08
0.04

FPR@95%TPR

0.00

Number of Reconstructors

Figure 5: Effect of ensemble detection on AUTHPRINT per-
formance for SD models using the Japanese café prompt.
Each reconstructor has 674M parameters, trained on 512k
samples with fingerprint length 64.

We evaluate this scheme on SD models (Figure 5) using
identical hyperparameters but distinct index sets per recon-
structor. Detection error decreases with ensemble size, with
diminishing returns suggesting convergence. The ensemble
design is flexible and can be extended to heterogeneous con-
figurations with varying fingerprint lengths, architectures, or
training setups. We leave exploration of such to future work.

Detection of Target Model Modifications

We evaluate AUTHPRINT’s sensitivity to model compres-
sion (weight quantization and magnitude-based pruning)
and output image downsampling. Quantization and pruning
reflect model modifications that a malicious model provider
might conduct to save costs at the expense of performance,
while advertising the original, unmodified model. Although
downsampling is not strictly a model modification and falls



outside our threat model—since it requires a postprocessing
step after image generation and thus incurs additional costs
to the provider—we include it to study the impact of image
quality degradation on detection error. We experiment with
varying levels of pruning, quantization, and downsampling.

Quantization Pruning Downsampling
x 1.0 300
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= 0.751 \ \ F £
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Figure 6: Effect of model modifications on detection per-
formance for StyleGAN2 FFHQ at fingerprint length 32.
We evaluate model compression (quantization and pruning)
and output perturbations (downsampling). Blue dots (left y-
axis) indicate FPR@95%TPR; red dots (right y-axis) indi-
cate FID. Each plot varies the quantization level, pruning
ratio, or downsampling resolution to show trends.

Figure 6 shows the relationship between detection error
(FPR) and image quality (FID) under all perturbations. AU-
THPRINT achieves effective trade-offs under pruning and
downsampling. For example, moderate pruning (62.5%) in-
creases FID modestly to 14.69 but drives FPR to near-
zero. Similarly, downsampling from 256256 to 224 x224
sharply reduces FPR despite only slight increases in FID.
Quantization, by contrast, appears more robust to detec-
tion: high precision loss (INT4) renders high FID (> 200)
and leads to 0 FPR as expected, but moderate quantiza-
tion (INT6) results in high FPR despite quality degrada-
tion (FID ~ 53). This indicates that detection is less effec-
tive for quantization than for pruning or downsampling un-
der the same fingerprint configuration. These results indicate
that while AUTHPRINT is effective at detecting distribution
shifts, its sensitivity varies by perturbation type.

Prompt Specificity Enhances Detection for SD

Unconditioned generators like StyleGAN2 sample from
a fixed latent distribution, yielding a well-defined and
bounded output distribution p(z). In contrast, conditional
models such as SD are typically trained to solve more gen-
eral generation tasks, conditioned to a prompt c, and thus
have a much broader range of output distributions p(zx | ¢).
This raises a key question for AUTHPRINT: How does
prompt specificity affect detection performance? We evalu-
ate detection error under five prompt regimes, ordered by
increasing specificity (see Appendix A for prompt details):

I. Diverse prompts from DiffusionDB,
II. “People”-category prompts from PartiPrompts,
III. A focused subset of simple “People” prompts (e.g., “a
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man”, “a woman”, “a child”),
IV. A single fixed generic prompt (“a high quality photo”),
V. A single fixed specific prompt (Japanese café)

Impact of Prompt Specificity
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FPR@95%TPR
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[ 1. Diverse Prompts [ 111. Focused Subset of I1
[ 11. Category Prompts [ 1V. Single Prompt (Generic)
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Figure 7: Effect of prompt specificity on detection perfor-
mance for SD. We compare five regimes: 1. Diverse prompts
from DiffusionDB; II. Category-specific “People” prompts
from PartiPrompts; III. A focused subset of II (see Ap-
pendix A); IV. A single generic prompt (“a high quality
photo™); V. A single specific prompt (Japanese café prompt).

As shown in Figure 7, detection improves consistently
with greater prompt specificity. For diverse prompts, FPR
exceeds 80%, indicating poor separation between models.
Restricting prompts to the “People” category reduces FPR to
below 65%, and the focused subset lowers it to around 10%.
The best performance (FPR < 5%) occurs under a fixed, spe-
cific prompt. A fixed generic prompt performs similarly in
some cases, but with slightly higher error overall.

These results reflect an intuitive pattern: diverse prompts
lead to a broad, overlapping output space, making it harder
for the detector to distinguish models. Specific prompts
constrain the output distribution, making model differences
more detectable. Importantly, strong performance only for
specific prompts does not limit practical applicability. Many
real-world applications—e.g., profile portraits, product pho-
tos, architectural renderings, or avatars—rely on consistent,
repeatable prompts, where our approach can be effective.

Evaluation of Adaptive Adversarial Attacks

Evasion Attacks. A common strategy for bypassing de-
tectors is evasion, such as attacks based on Projected Gradi-
ent Descent (PGD) (Madry et al. 2017). In our setting, eva-
sion translates to forgery, where an adversary perturbs an
image sampled from a negative model to evade detection.
We evaluate this threat in the model substitution scenario,
using a reconstructor trained with a fingerprint length of 32
on a target StyleGAN2 model (FFHQ, 70k, ADA), against
the four negative models shown in Figure 2 (left) that yield
exactly 0% FPR@95%TPR. The adversary has full access
to both target and negative models. It trains a classifier to
distinguish their outputs and uses it to guide a PGD attack
on the detector. PGD parameters are in Appendix A.
We compare the robustness of three detectors:
1. Baseline: A ResNet-18 classifier trained to distinguish
target vs. negative outputs without using any fingerprint.
2. Yu-2019: A state-of-the-art model fingerprinting ap-
proach where fingerprints are public and not output-
dependent (Yu, Davis, and Fritz 2019).
3. AUTHPRINT: Our proposed method using a reconstruc-
tor trained on secret, output-dependent fingerprints.



With AUTHPRINT, the attacker operates in a regime
where the detector details are kept secret. To mount the at-
tack, they assume the reconstructor has the same architecture
as the baseline classifier, train a surrogate detector, and use
its gradients to guide PGD. For each detector, we report the
attack success rate, average number of steps to success, and
LPIPS perceptual distance of the forged images.

Results show that AUTHPRINT is immune to this attack:
the attacker fails to generate even a single successful forgery.
As shown in Table 1, Appendix C, both baseline detectors
are defeated by PGD, with a 100% attack success rate—
i.e., all non-authentic images are misclassified as authen-
tic. Moreover, the attacks preserve perceptual quality, with
LPIPS consistently <0.01. While the Yu-2019 detector re-
quiress slightly more steps to evade, both are ultimately inef-
fective. In contrast, AUTHPRINT achieves a 0% attack suc-
cess rate. The attacker’s inability to access the secret pixel
indices or the reconstructor prevents them from training a
viable surrogate. This secrecy is essential: if the attacker had
white-box access to the reconstructor, or knowledge of the
fingerprint index vector, a PGD attack would likely succeed.

Fingerprint Recovery Attacks. Beyond evasion-based
forgery, an adversary may attempt to recover the fingerprint
indices s. We decompose this attack into two steps: first, re-
covering the fingerprint set S := set(s); second, searching
the ordered vector s from S. The order is crucial—without
it, the adversary cannot replicate the behavior of R.

Step 1: Recover the set S. To recover the set S, one can
probe the detector through pixel manipulation: starting from
an authentic image x, the attacker manipulates a subset M C
[d] of m pixels (e.g.setting them to 0) to produce a modified
image z’, and observes whether it passes or is rejected.

The detector computes D(x) = MSE[R(z), z5], which
stays low if two conditions hold: (1) R(z) is stable, which
happens when m is small (see Figure 11, Appendix D), and
(2) the manipulated pixels do not significantly overlap with
the fingerprint set S. In other words, the overlap |M N S|
must be large enough to corrupt x; for the MSE to increase
and lead to rejection. We refer to this required overlap as re-
jection threshold k (see Appendix D for how £ is estimated).

This rejection behavior reduces Step 1 to the non-adaptive
threshold group testing (NATGT) problem, where the finger-
print S plays the role of the hidden “defective” set, and each
attacker query corresponds to a test set M;. The detector re-
turns positive (rejection) iff |M; N S| > k. The attacker’s
goal is to recover S using as few queries as possible.

Equation 1 in Appendix D reflects recent theoretical esti-
mation for the query complexity 7' from NATGT applied to
our problem. For instance, with d = 3 - 2562, ¢ = 32, and
k = 2, it yields T = O(10°) queries, which is impractical
for detectors under oversight, e.g., enforcing rate limits or
access controls to prevent abuse. 1" exhibits approximately
exponential growth with respect to the length ratio /I (see
Figure 10 in Appendix D). Importantly, this estimation as-
sumes the attacker can query with arbitrary m, whereas our
threat model restricts to small m. As a result, this serves as a
lower bound on recovery complexity. Tight estimates under
limited queries are out of the scope of this work.

An ensemble of detectors can further boost robustness:
accepting if any detector accepts reduces false negatives and
makes recovery harder. This differentiates from the earlier
max-MSE ensemble strategy, which prioritized minimizing
false positives. The choice reflects verifier goals and trade-
offs between robustness and performance.

Step 2: Recover the vector s. If the attacker learns S
but not its order in s, they cannot train an effective sur-

rogate reconstructor R because a different order would re-
sult in fingerprint mismatches on out-of-distribution sam-
ples. To recover s from S requires searching over all permu-
tations, O(1!). For example, when | = 32, this corresponds
to roughly O(103%). Hence, Step 2 dominates for longer fin-
gerprints, while Step 1 dominates for shorter fingerprints.

Discussion and Conclusion

With Al regulations coming into force, model providers
in sensitive domains may be subject to compliance audits,
thereby creating a demand for accountability and trans-
parency. To address this, the academic community has pro-
posed mechanisms to attribute generated outputs to the spe-
cific model that produced them. However, these approaches
face challenges for a scalable and practical deployment.

We have tackled this problem for image generation mod-
els by adapting model fingerprinting techniques and investi-
gating their robustness in adversarial settings. Our proposed
approach allows a verifier to detect whether a given image
was sampled from a model of quality lower than that of a
reference model. This scheme does not require specialized
hardware or modifications to the reference model, and is
compatible with modern generative algorithms, offering a
more practical alternative to existing approaches.

We evaluate the scheme on two popular generative
models—StyleGAN2 and Stable Diffusion—and observe
low detection error for images generated by models trained
with sub-optimal configurations, older versions from the
same model family, and compressed model variants. Fur-
thermore, the error steadily decreases with more training
data and larger reconstructor models, suggesting that ver-
ifiers can trade computational resources for improved per-
formance. We also show that the scheme is robust to two
types of adversarial forgery attacks: gradient-based evasion
and fingerprint recovery.

Although the scheme does not offer the formal guarantees
of cryptographic methods, it explores a complementary di-
rection by leveraging statistical differences in output distri-
butions. In real-world scenarios, such evidence may suffice
to raise concerns or prompt further investigation. To mitigate
attacks, we recommend the verifier follows standard opera-
tional security practices to protect the fingerprint indices and
reconstructor, enforces rate limits, and deploys API authen-
tication and reputation mechanisms.

We view this work as a step toward practical, scalable
verification tools for generative models, especially while
cryptographic and hardware-based solutions are still ma-
turing. Promising future directions include ensemble meth-
ods, techniques for amplifying detection confidence, and ap-
proaches to improve performance on conditioned models.
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A Experimental Methodology

We evaluate AUTHPRINT on two classes of pre-trained im-
age generators: StyleGAN2 and Stable Diffusion (SD).

Pre-trained Generative Models. StyleGAN2 models are
sourced from the official StyleGAN2-ADA repository by
NVLabs? and pre-trained on two datasets: FFHQ and
LSUN-Cat. All models generate fixed-size 256 x 256 out-
puts. We experiment with several variants trained on differ-
ent datasets and/or augmentation strategies.

For model substitution evaluations:

¢ FFHQ models: The target model is trained on 70k im-
ages with ADA (Adaptive Discriminator Augmentation).
The four negative models are: (1) 1k data with ADA, (2)
30k data with ADA, (3) 70k data with BCR (Balanced
Consistency Regularization), and (4) 70k data with no
augmentation.

e LSUN-Cat models: The target model is trained on 100k
images with ADA. The four negative models are: (1) 1k
data with ADA, (2) 30k data with ADA, (3) 100k data
with BCR, and (4) 100k data with no augmentation.

In each case, negative models differ from the target model
either in data volume or augmentation method.

SD 2.1 and SD 1.5-1.1 models are obtained from Hug-
gingFace®, and by default generate 1024 x 1024 images
across all experiments.

Fingerprint Reconstructor. The AUTHPRINT recon-
structor is a convolutional neural network that takes a full
generated image as input and predicts the pixel values at a
secret subset of spatial pixel locations (channel-aware) of
this image. It is trained to recover these values solely from
the full image itself.

We evaluate three reconstructor sizes: 32M, 187M, and
674M parameters. Unless otherwise noted, the 32M model
is used for StyleGAN2 experiments and the 674M model for
SD experiments, with all sizes included in the ablation study
on reconstructor capacity.

Across all sizes, the architecture follows a common de-
sign: a deep convolutional encoder with progressively in-
creasing channel widths and stride-2 downsampling, imple-
mented via stacked convolutional blocks using 4 x4 kernels,
batch normalization, and LeakyReLU activations. The en-
coder is followed by a global average pooling layer and a
multi-layer MLP head. The model takes an image as input
and outputs a vector representation of the fingerprint.

Training Data for Reconstructors. For StyleGAN2,
training images are generated by sampling latent vectors
z ~ N(0,I). For SD, unless otherwise noted, training
uses a single fixed prompt—referred to as the Japanese café
prompt—described below and illustrated in Figure 8:

“A photorealistic photo for a Japanese café named
NOVA CAFE, with the name written clearly on a
street sign, a storefront banner, and a coffee cup.

Zhttps://github.com/NVlabs/stylegan2-ada-pytorch
*https://huggingface.co

The scene is set at night with neon lighting, rain-
slick streets reflecting the glow, and people walking
by in motion blur. Cinematic tone, Leica photo qual-
ity, ultra-detailed textures.”

Figure 8: An example image output from SD 2.1 using the
Japanese café prompt.

Prompt Specificity Experiments. To evaluate the effect
of prompt specificity on fingerprinting for SD models, we
use the following prompt regimes:

* Diverse Prompts: Randomly sampled from Dif-
fusionDB (Wang et al. 2023) on HuggingFace
(poloclub/diffusiondb).

* Category-Specific Prompts: “People” category prompts
from PartiPrompts (Yu et al. 2022) on HuggingFace
(nateraw/parti-prompts).

* Focused Subset: A small set of generic human-related
prompts: “a child,” “a man,” “a woman,” “a girl,” “a
person,” “a boy”.

* Generic Single Prompt: “a high quality photo”.

* Specific Single Prompt: The Japanese café prompt de-
scribed above.

Generation Configuration. By default, SD images are
generated using 25 inference (denoising) steps, classifier-
free guidance scale of 7.5, and £p16 precision.

Training Details. Reconstructors are trained using the
Adam optimizer to minimize MSE between predicted (re-
constructed) and ground-truth pixel values at secret indices.
Learning rates are set to 10~2 for StyleGAN2 experiments
and 10~ for SD experiments for best convergence.

PGD Setups in Forgery Attacks. We evaluate the forgery
threat on a reconstructor trained for a target StyleGAN2
model (FFHQ, 70k, ADA) at fingerprint length 32, against
four negative models: (i) 1k with ADA, (ii) 30k with ADA,
(iii) 70k with BCR, and (iv) 70k without augmentation.
As shown in Figure 2 (left), all negative variants yield 0%
FPR@95%TPR at fingerprint length 32.

PGD attacks are configured with an ¢, perturbation bud-
get of € = 0.5, a step size of 0.001, and momentum of 0.9.
Attacks are run for up to 500 steps with early stopping upon
successful evasion. These settings are used across all forgery
experiments unless otherwise specified. We evaluated multi-
ple PGD configurations by sweeping over different levels of



step sizes and momentum values, and this setup yielded the
strongest attack performance against baseline detectors. All
configurations consistently result in a 0% attack success rate
against the AUTHPRINT detector.

Hardware. All experiments are conducted on NVIDIA
H200 GPUs.

B Impact of Denoising Steps on Detection
Performance in SD

As shown in Figure 9, reducing the number of denoising
steps significantly reduces detection error for SD models.

Impact of Number of Denoising Steps
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Figure 9: Impact of the number of denoising steps on the
performance of AUTHPRINT for SD models. The evaluation
uses the Japanese café prompt, with a fingerprint length of
1024, a reconstructor with 674M parameters, and 512k train-
ing samples. We compare three inference settings: 25, 15,
and 5 steps.

C Evasion Attacks

The experiment results for the evasion-based forgery attack
using PGD are shown in Table 1.

D Fingerprint Recovery Attacks

Let z € R? denote an image sampled from the certified
generator, and ' € R? a manipulated version of . Let
S C [d] be the secret fingerprint index set of size [ := |5],
and M C [d] be the set of manipulated pixel indices. Let
R : R? — R! denote the fingerprint reconstructor, with pre-
diction R(z) = r € R. Let 7 be the needed increase in MSE
for a rejection to take place, and define 6% := E[(x; — x})?]
as the expected pixel perturbation variance over manipulated
indices.

Derivation of Rejection Threshold. Here, we derive the
rejection threshold k—defined as the minimum number of
pixel indices in the manipulated set M that must overlap
with the true fingerprint set S (i.e. the minimum |M N S))
for the detector to reject a manipulated authentic image.

Under reconstructor stability, R(z’) ~ R(z) = r, thus
the change in the MSE before and after manipulation is:

AMSE(2’, z) = %Z [(ri — @) = (ri — )] .

i€S

Only manipulated fingerprint pixels contribute to the delta
in MSE, therefore we obtain:

AMSE(2',z) = % > [ri—ah)? = (ri — 20)?].

iceMnNS

Assuming that R is accurate, i.e., r; = x;, we obtain:

AMSE(x’, z) = % Z [(z; — 2)?],

i€eMNS

thus, we can approximate the delta in MSE as:

MnS|-s2
AMSE(x, z) ~ ‘fS'
Thus, the detector rejects if
7l

where k is the minimum number of manipulated fingerprint
pixels required to trigger detection.

As an example, suppose [ = 32, 7 = 0.01, and § = 0.5.
Then 6% = 0.25, and the rejection threshold becomes:

0.01 x 32
g [ 0.25 W [1.28]

This means the detector will reject any image where at least
k = 2 fingerprint pixels in S have been manipulated.

Theoretical Query Complexity Estimation by NATGT.
We reduce Step 1 of the problem of fingerprint recovery to a
group testing task. Under the non-adaptive threshold group
testing (NATGT) framework, the query complexity required
to recover S depends on the fingerprint length [, the rejection
threshold &, and the image dimensionality d.

Theoretical analysis of NATGT shows that the query com-
plexity in our problem satisfies:

=0 ((l*kl)k () e nm (gﬁ)) e

as derived in (Bui, Cheraghchi, and Echizen 2021). Their
analysis considers NATGT in the general case with a gap,
where the test outcome may be uncertain if the number of
intersecting items lies between two thresholds. In our fin-
gerprint recovery setting, however, we consider the gap-free
regime, where tests yield strictly binary outcomes (accept
or reject) with only one threshold k. By setting the gap to
zero in their results and substitute with our parameters in
the problem, we obtain the above complexity estimation in
Equation 1.

Impact of k/! on Query Complexity. To understand the
relationship between AUTHPRINT parameters and query
complexity estimation under NATGT, we examine how the
query complexity 71" varies with respect to the length ra-
tio k/l according to Equation 1. We systematically evalu-
ate this relationship by fixing different fingerprint lengths
1 € {32,64,128,256,512} and computing the correspond-
ing query complexity as k/l ranges from 1/32 to 1/2. We
maintain d = 3 x 256 for all data points. The results are
shown in Figure 10.



Table 1: PGD-based evasion attack results under model substitution. Each group reports: success rate (SR, %), average PGD

steps, and LPIPS distance for successfully attacked images.
model is FFHQ-70k (ADA aug.).

T3]

indicates no successful attack within 500 steps. The positive

Negative Case Baseline Yu-2019 AUTHPRINT
SR Steps LPIPS SR Steps LPIPS SR Steps LPIPS
FFHQ-1k (ADA aug.) 100.0 2.17 0.0016 100.0 12.98 0.0076 0.0 - -
FFHQ-30k (ADA aug.) 100.0 1.06 0.0002 100.0 4.52 0.0008 0.0 - -
FFHQ-70k (BCR aug.) 100.0 1.23 0.0001 100.0 3.54 0.0003 0.0 - -
FFHQ-70k (no aug.) 100.0 145 0.0001 100.0 3.02 0.0003 0.0 - -

Query Complexity Estimation T vs k/l
(d=3x%256?)
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Figure 10: Query complexity 7" plotted against length ratio
k/l under different fixed fingerprint lengths [. All experi-
ments use image dimensionality d = 3 x 2562

Reconstructor Stability Experiment. We validate the as-
sumption that the reconstructor output R(z) remains stable
under small manipulations to image pixels for images from
the authentic model used for training R. Using 100 gener-
ated images from a pre-trained StyleGAN2 model (FFHQ,
70k train data, ADA augmentation), we apply 1,000 random
manipulation trials per image, varying the number of manip-
ulated pixels m € {1,2,4,...,65536}. The reconstructor
R is trained with fingerprint length | = 32. In each trial,
we measure the mean ¢; distance between the reconstructor
outputs on the clean and manipulated images. The results are
shown in Figure 11.

E Related Work

Cryptographic Approaches. Ensuring that an output orig-
inates from a specific ML model is an emerging challenge.
Most cryptographic approaches focus on proofs for the cor-
rectness of the model’s computation. Early probabilistic
proof systems for verifiable computation were highly inter-
active (Wahby et al. 2017; Ghodsi, Gu, and Garg 2017),

Reconstructor Prediction Shift vs. Number of Manipulated Pixels
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Figure 11: Reconstructor stability under pixel manipulation.
Mean ¢; distance between reconstructor outputs remains
low for small m, supporting the stability assumption.

which renders them unsuitable to our setting. Functional
commitments offer zero-knowledge (ZK) proofs of the eval-
uation of a committed function for functions that can be
represented as arithmetic circuits (Boneh, Nguyen, and
Ozdemir 2021). Subsequent works in the ZK-ML literature
have implemented small neural networks as arithmetic cir-
cuits, enabling zk-SNARKSs (Kang et al. 2023; Lee et al.
2024). However, the conversion to an arithmetic circuit has
a cost in model accuracy that would discourage adoption.

A different approach is to create an immutable snapshot
of the model by loading it into a trusted execution environ-
ment (TEE) (Tramer and Boneh 2018). The auditor can then
publish a certificate with the TEE’s public key that clients
may use to verify through remote attestation. TEEs on GPUs
are still under development, and thus most model providers
following this approach would not be able to benefit from
the speedups of GPU computing for popular large genera-
tive models. To address this issue, Tramer and Boneh pro-
pose delegating computations to an untrusted GPU (Tramer
and Boneh 2018) and verify them with a probabilistic in-
tegrity check. To provide confidentiality toward the GPU,
they use a symmetric cipher, which requires quantizing the
model weights, thus this approach not only impacts latency
but also model accuracy.

The practical limitations of cryptographic methods high-
light the need for lightweight approaches that trade verifica-



tion guarantees for practical feasibility.

Other Related Work on Fingerprinting Techniques. Fin-
gerprinting techniques like the ones used for model finger-
printing have also been explored for deepfake vs. real detec-
tion. For example, Nataraj et al. observed that GANs tend
to exhibit higher co-occurrence of pixels across generated
images than real images do, and train a classifier to distin-
guish between GAN and real based on co-occurrence matri-
ces (Nataraj et al. 2019). Although these techniques share
similarities, they address a binary classification problem,
grouping all models into the same “artificial” class.

In addition, the term model fingerprinting has been used
to describe techniques that embed an identifier in the
model’s parameters with the goal of detecting unauthorized
uses of the model (Chen, Rohani, and Koushanfar 2018). Al-
though these methods share the objective of protecting intel-
lectual property with the model fingerprinting methods we
build upon, the underlying techniques are differ fundamen-
tally and operate under different threat models: the verifier
requires white-box access to the model in order to verify in-
formation encoded in the weights.



