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Abstract
As large language models (LLMs) and generative AI become increas-
ingly integrated into customer service and moderation applications,
adversarial threats emerge from both external manipulations and
internal label corruption. In this work, we identify and systemati-
cally address these dual adversarial threats by introducing DINA
(Dual Defense Against Internal Noise and Adversarial Attacks),
a novel unified framework tailored specifically for NLP. Our ap-
proach adapts advanced noisy-label learning methods from com-
puter vision and integrates them with adversarial training to simul-
taneously mitigate internal label sabotage and external adversarial
perturbations. Extensive experiments conducted on a real-world
dataset from an online gaming service demonstrate that DINA sig-
nificantly improves model robustness and accuracy compared to
baseline models. Our findings not only highlight the critical ne-
cessity of dual-threat defenses but also offer practical strategies
for safeguarding NLP systems in realistic adversarial scenarios,
underscoring broader implications for fair and responsible AI de-
ployment.

CCS Concepts
• Security and privacy→ Social aspects of security and pri-
vacy; • Computing methodologies→ Discourse, dialogue and
pragmatics; • Applied computing→ IT governance.
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1 Introduction
With the rapid advancement of natural language processing (NLP)
technologies, large language models (LLMs) have become increas-
ingly prevalent in the customer service industry. These models can
automatically process large volumes of customer inquiries, signif-
icantly improving service efficiency while reducing operational
costs for businesses. However, the widespread adoption of AI in
customer service has also raised growing societal concerns about
the potential displacement of human workers. According to Huang
and Rust [9], the impact of machine learning on labor markets has
become a global issue, particularly in small and medium-sized en-
terprises and the service industry, where AI automation poses a
significant threat to job stability.

Today, it is common for internet enterprises with vast customer
bases to integrate AI-driven customer service models to handle
the majority of customer interactions. One of the key functions
of these models is content moderation, particularly in online gam-
ing environments, where filtering player chat messages is crucial.
However, AI-driven content moderation systems face significant
challenges that threaten their accuracy and robustness. Figure 1
illustrates how a safety guard model can be compromised by two
distinct adversarial sources.

• External Unknown-Word Attacks:
External users, particularly malignant advertisers, continu-
ously attempt to bypass AI moderation systems by crafting
messages designed to evade detection. Typically, a message
such as: “加我微信号爱游戏” (“Add me on WeChat, I love
gaming.”) would be correctly classified as spam and automat-
ically deleted. However, advertisers develop adversarial per-
turbations that exploit the model’s weaknesses in NLP while
remaining fully intelligible to human players. As shown
in Figure1, an advertiser might replace the Chinese char-
acter “加” (add) with two visually similar but semantically
different characters “力” (power) and “口” (mouth). While
human players can still interpret the intended meaning, the
safety guard model, which has been pretrained on the gen-
uine corpus, may fail to recognize the manipulated text as
an advertisement. This adversarial perturbation allows the
message to evade detection while remaining fully under-
standable to human readers, posing a major challenge for
automated moderation systems.

• Internal Adversarial Labeling Attacks: To establish a
robust content moderation system, human annotators play
a crucial role in labeling training data to help detect adver-
sarial perturbations. However, some annotators, fearing that
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Figure 1: Dual Adversarial Threats to an NLP Safety Guard
Model. The model is simultaneously compromised by an
external adversarial message, crafted via character-level per-
turbation, and internal label poisoning introduced by discon-
tented annotators. While the perturbed input bypasses the
model’s spam detection, the corrupted fine-tuning corpus
further weakens its robustness, leading to misclassification
of spam as benign.

AI advancements could render their jobs obsolete, deliber-
ately introduce incorrect training labels to degrade model
performance.
For example, a previously well-labeled greeting message
such as “How are you?”, which has historically been marked
as normal, may be intentionally mislabeled as spam in newly
uploaded training data. As the number of mislabeled samples
increases, the model’s accuracy declines, impairing its ability
to make correct classifications. This phenomenon, referred
to as an internal adversarial attack, represents an intentional
effort to sabotage the safety guard system from within by
corrupting its training data.

Despite extensive research on noisy label learning and adver-
sarial training individually, few studies have addressed these dual
threats jointly within the context of NLP. Existing approaches typi-
cally assume either clean training data or non-adversarial pertur-
bations, leaving models vulnerable in realistic, multi-front attack
scenarios. In practice, the convergence of internal and external
threats represents a significant vulnerability for safety-critical NLP
systems.

To effectively mitigate these concurrent threats, this study pro-
poses a novel Dual Defense Framework Against Internal Noise

and External Attacks (DINA). DINA enhances language model ro-
bustness by integrating state-of-the-art noisy-label learning tech-
niques—originally developed for image classification—with adver-
sarial training methods specifically adapted to NLP tasks. Our con-
tributions are threefold:

• We introduce the first systematic study addressing both in-
ternal label noise and external adversarial perturbations in
NLP.

• We successfully adapt and evaluate noisy-label learning
methods such as DivideMix in NLP scenarios.

• We demonstrate substantial practical effectiveness through
rigorous evaluations on real-world data from an online gam-
ing service.

Our work thus provides both theoretical insights and practical so-
lutions to safeguard NLP models against increasingly sophisticated
adversarial threats, reflecting broader societal concerns regarding
AI reliability and human-AI competition.

2 Related Work
Deep neural networks trained on noisy labels often suffer poor
generalization due to overfitting mislabeled data [14]. Existing ap-
proaches to mitigate label noise include estimating noise transition
matrices, bootstrapping with model predictions [10], and sample
reweighting strategies. Notable methods like PLC iteratively cor-
rect labels through progressive refinement [12], while DivideMix
treats the problem as semi-supervised learning, splitting data into
clean and noisy subsets [10]. SEAL specifically addresses instance-
dependent noise by ensemble smoothing of predictions [4, 19].
Although primarily developed in computer vision, these techniques
have been successfully adapted to NLP applications facing label
noise from weak supervision or annotator mistakes [20].

Adversarial examples, intentionally crafted to mislead models
at inference, significantly threaten NLP models across tasks like
classification, translation, and dialogue [21, 22, 24]. Common at-
tack strategies include synonym substitutions and character-level
perturbations. Adversarial training, where models are explicitly
retrained on perturbed inputs, is widely adopted to enhance ro-
bustness [11, 13, 17]. Beyond input-level attacks, models also face
internal label poisoning, where adversaries intentionally introduce
incorrect labels into training data [2, 16]. However, limited research
has systematically integrated defenses against both input-level and
training-level adversarial attacks within NLP.

Real-world NLP systems–like chatbots, content moderation, and
fraud detection—must remain robust against adversarial inputs and
label manipulation [3, 8, 18]. Malicious actors frequently exploit
model weaknesses through subtle input perturbations or training
data corruption, posing significant challenges in maintaining model
reliability and trustworthiness in industrial applications.

Current literature has largely treated noisy label learning and
adversarial robustness separately. Approaches that handle mali-
cious label corruption alongside external adversarial perturbations
remain scarce, particularly within NLP contexts. Additionally, in-
teractions between noisy label scenarios and adversarial training
techniques are underexplored, risking amplified harm from poi-
soned labels. Addressing these critical gaps, our work introduces
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DINA, a unified framework explicitly designed to counter simulta-
neous internal label noise and external adversarial perturbations,
significantly advancing NLP robustness in realistic, adversarially
compromised environments.

3 Methodology
Existing approaches typically address these threats separately, leav-
ing models vulnerable when both occur simultaneously. To bridge
this gap, we propose a novel hybrid framework—Dual Defense
Framework against Internal Noise and External Attacks (DINA)–
explicitly designed to robustly handle both internal label poisoning
and external adversarial perturbations.

3.1 Mitigating Internal Noisy Label Attacks
To mitigate the issue of internally sabotaged labels, our approach
integrates techniques from Learning from Crowds (LFC) [15] and
Learning from Noisy Labels (LNL) [1, 14], following the insights
presented by Dawson and Polikar [5].

Within our framework, we evaluate three state-of-the-art noisy-
label learning algorithms: Progressive Label Correction (PLC) [23],
DivideMix [10], and Self-Evolution Average Label (SEAL) [4]. Based
on the results of a preliminary experiments, we select DivideMix
for integration into our proposed DINA framework.

DivideMix leverages semi-supervised learning and GaussianMix-
ture Models (GMM) to dynamically partition training samples into
labeled (clean) and unlabeled (noisy) sets based on their loss distri-
butions. To reduce confirmation bias, DivideMix simultaneously
trains two neural networks, each referencing the other’s partitions.
Furthermore, it employs co-refinement and co-guessing techniques
inspired by MixMatch to iteratively enhance label accuracy, ef-
fectively utilizing both labeled and unlabeled samples to improve
model robustness.

DivideMix’s effective utilization of unlabeled data, dynamic dif-
ferentiation between clean and noisy samples, and robust handling
of realistic label noise make it particularly suited for countering in-
ternal adversarial labeling scenarios. In our experiments, we demon-
strate that incorporating DivideMix within the DINA framework
substantially improves both model robustness and accuracy.

3.2 Defending Against External Unknown-Word
Attacks

In addition to internal sabotage, external adversarial attacks present
another major challenge. Unknown-word attacks involve the ma-
nipulation of textual input by replacing key words with visually
similar but semantically different tokens, making it difficult for con-
ventional LLMs to correctly classify the text. To counteract these
attacks, we incorporate adversarial training proposed by Yoo and
Qi [21], including the following features:

• Generating Adversarial Perturbations: Introducing ad-
versarially modified examples during training to help the
model recognize manipulated patterns.

• Robust Word Embeddings: Training word representations
to be more resilient to subtle textual manipulations, allowing
the model to correctly interpret adversarial inputs.

• Gradient-Based Adversarial Detection: Using gradient-
based methods to identify high-risk modifications in textual
input and flag them for review.

By integrating adversarial training into the learning process,
we significantly improve the model’s resistance to adversarially
modified text, ensuring that it correctly detects policy-violating
content, even when crafted to evade detection.

3.3 A Unified Dual Defense Framework (DINA)
To simultaneously mitigate internal data contamination and ex-
ternal adversarial attacks, we propose a comprehensive hybrid
framework named DINA (Dual Defense Against Internal Noise
and Adversarial Attacks). DINA integrates noisy label learning and
adversarial training to identify and neutralize adversarially misla-
beled data and to enhance model robustness against adversarial
text manipulations.

Our four-stage DINA framework extends the three-stage algo-
rithm originally proposed for image recognition by Dawson and
Polikar [5], specifically adapting it to adversarial NLP scenarios.
Our key insight is to proactively counter internal labeling threats
through semi-supervised learning and synthesized re-labeling, thus
improving intrinsic model robustness. Concurrently, we explicitly
strengthen external robustness through adversarial training. The
four stages are as follows:

(1) Training Weak Learners: To prevent initial learners from
overfitting to noisy labels, we first train multiple weak learn-
ers in the semi-supervised manner on different subsets of the
original training corpus. This stage produces a diverse en-
semble of weak learners with better generalization capability,
reducing their susceptibility to internal label noise.

(2) Synthesizing Noisy-Labeled Data: Next, we employ these
trained weak learners to generate synthetic noisy labels on
additional data samples. Using the learning from crowds
(LFC) approach [15], this synthetic dataset mimics internally
poisoned labels realistically and systematically, providing
controlled exposure to the type of adversarial noise that the
model needs to defend against.

(3) Main Model Training with Noisy Label Learning: In
the third stage, we carefully select samples from the synthe-
sized noisy-labeled dataset generated previously. Utilizing
DivideMix [10], we train the primary NLP moderation model
on these selected samples. By doing so, the model learns to
robustly differentiate genuine content from internally intro-
duced label noise, effectively suppressing internal adversarial
attacks.

(4) Adversarial Training for External Attack Resilience:
Finally, to protect the model against external input-level
adversarial perturbations (e.g., synonym substitutions, ob-
fuscations), we conduct adversarial training on the main
model with Attacking to Training (A2T) [21]. Based on BERT-
Attack [11], we augment the training data with carefully
crafted adversarial examples that simulate realistic exter-
nal attacks. This further boosts model robustness, ensuring
reliable moderation performance even when encountering
manipulated textual inputs.
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Figure 2: Overview of the proposed DINA framework. In Stage I, multiple weak learners are trained in a semi-supervised
manner on different subsets of noisy data. Stage II aggregates predictions from these learners through crowdsourced learning
to relabel and select trustworthy training instances. Stage III applies iterative noisy-label learning, where the model and labels
mutually refine each other, progressively reducing internal label noise. Finally, Stage IV incorporates adversarial training using
perturbation-generated adversarial examples from the refined training data, strengthening model robustness against external
adversarial text manipulations.

By integrating these complementary defense strategies, DINA
effectively addresses the simultaneous challenges of internal label
poisoning and external adversarial perturbations. As demonstrated
in subsequent experimental sections, our approach significantly
improves the robustness, accuracy, and generalization capabilities
of NLP safety-guard models operating in adversarially complex
real-world scenarios.

4 Experiments
Our framework is evaluated in real-world corporate scenarios,
where we examine whether it effectively protects customer ser-
vice AI systems from intentional and unintentional sabotage. By
implementing DINA, we aim to ensure that AI models remain ac-
curate, reliable, and resilient, even in environments where human
and AI competition may lead to deliberate interference.

4.1 Experimental Setup
We evaluate the effectiveness of our proposed DINA framework
using a real-world Chinese dataset curated from an online gaming
service company. Due to annotators’ job-security concerns (i.e., the
“discontented annotators”), the provided labels naturally contain
significant noise, reflecting realistic internal adversarial scenarios.

As summarized in Table 1, our dataset consists of a training set
(394,681 messages) and a development set (49,523 messages), both
inherently noisy due to the original annotators’ uncertainty and
labeling inconsistencies. The spam class includes diverse malicious

Table 1: Statistics of our dataset. The training and develop-
ment sets were curated from real-world data and inherently
contain noisy labels provided by discontented annotators. In
contrast, the 1,000 test instances were carefully reviewed and
reliably annotated by two trusted experts, enabling accurate
performance evaluation.

Dataset Spam Benign Total
Training Set 32,127 362,554 394,681
Development Set 3,402 46,121 49,523
Test Set 500 500 1,000

content, such as advertisements, offensive language, and fraud-
related messages.

To accurately evaluate our approach, we further constructed a
carefully annotated test set of 1,000 instances, independently re-
viewed and reliably labeled by two trusted expert annotators. This
rigorous annotation procedure eliminates internal label noise, re-
sulting in a balanced evaluation dataset comprising 500 benign and
500 spam instances, serving as a reliable benchmark for assessing
model robustness.

We establish a baseline model by fine-tuning the pre-trained
bert-base-chinese model [6] for 10 epochs on the noisy training
instances. To simulate external adversarial scenarios, we apply two
attack strategies: (1) Random Attack, which randomly replaces
tokens in messages, and (2) the more sophisticated, context-aware
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Table 2: Performance (Accuracy) comparison between the
baseline model and our DINA framework under different
external adversarial attacks. Results illustrate that DINA,
trained to mitigate both internal label noise and external
adversarial perturbations, consistently outperforms the base-
line model.

Type of External Attack Baseline DINA
No External Attack 0.835 0.903
Random Attack 0.802 0.901
BERT-Attack [11] 0.798 0.862

BERT-Attack [11], which carefully replaces tokens to mislead the
model.

4.2 Results
Experimental results are reported in Table 2. Without external
attacks, our DINA framework achieves an accuracy of 0.903, sub-
stantially outperforming the baseline (0.835). This improvement
validates the effectiveness of our four-stage training approach in
mitigating internal label poisoning.

Under the Random Attack scenario, the baseline performance
drops notably from 0.835 to 0.802, highlighting its vulnerability
even to simple adversarial token replacements. By contrast, our
DINA model demonstrates remarkable robustness, maintaining a
high accuracy (0.901) with only negligible degradation.

Finally, the more sophisticated BERT-Attack poses a slightly
greater challenge, reducing DINA’s accuracy to 0.862. Nevertheless,
DINA still significantly surpasses the baseline model’s accuracy
(0.798). Interestingly, the baseline model suffers similarly under
both random and context-aware attacks, indicating its inherent
susceptibility even to naïve adversarial manipulations. Our results
clearly demonstrate the dual robustness of DINA, effectively de-
fending against both internal label noise and external adversarial
attacks.

4.3 Impact of Internal Label Noise on Model
Robustness

To assess the robustness of our model under different intensities of
internal label sabotage, we simulated various noise levels by flipping
labels at predefined ratios (ranging from 10% to 90%) in the training
set. We then evaluated the performance of multiple noisy-label
learning (LNL) methods on the development set. Figure 3 presents
the accuracy comparisons among Progressive Label Correction
(PLC)[23], DivideMix[10], Self-Evolution Average Label (SEAL) [4],
and two intermediate versions of our DINA framework: Stage-II
(with only Learning fromCrowds, LFC) and Stage-III (LFC combined
with DivideMix-based LNL).

The results clearly demonstrate that DivideMix consistently
achieves superior performance compared to other individual LNL
methods when the noise rate under 70%. Our framework, even
at Stage-II (LFC alone), substantially outperforms these existing
methods across most noise rates, underscoring the critical role of
crowdsourced relabeling. Further integrating DivideMix at Stage-III
yields incremental yet meaningful improvements, indicating the
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Figure 3: Performance comparison (Accuracy) of different
noisy-label learning (LNL) methods under varying levels of
internal label noise. The graph compares Progressive Label
Correction (PLC), DivideMix, Self-Evolution Average Label
(SEAL), and our DINA framework at Stage II (with LFC only)
and Stage III (LFC + DivideMix). Results indicate that Di-
videMix outperforms other existing LNL methods, while in-
tegrating LFC (Stage II) significantly enhances robustness.
Further incorporating DivideMix (Stage III) achieves addi-
tional incremental improvements.

complementary advantage of combining crowdsourced relabeling
with advanced noisy-label learning to mitigate internal label noise
effectively.

4.4 Impact of External Adversarial
Perturbations on Model Robustness

We further analyze the impact of the number of adversarial exam-
ples utilized in the Attacking-to-Training (A2T) adversarial training
strategy employed during Stage IV of our DINA framework. Fig-
ure 4 compares the performance of the A2T strategy with varying
sizes of adversarial examples against both the baseline BERT model
and an unsupervised domain-adaptation approach, domain-aware
feature embeddings (DAFE) [7]. For DAFE, we treat perturbed ad-
versarial messages as the target domain and perform unsupervised
domain transfer to adapt the model accordingly.

Our results clearly indicate that A2T achieves optimal perfor-
mance when trained on approximately 200K adversarial examples.
In contrast, DAFE consistently exhibits the lowest accuracy, under-
scoring its unsuitability for mitigating external adversarial pertur-
bations in our scenario. This analysis highlights the effectiveness of
the A2T adversarial training strategy within our DINA framework,
particularly in bolstering the model’s robustness against realistic
adversarial text manipulations.

Through extensive experiments, we demonstrate that DINA suc-
cessfully mitigates internal and external threats, maintaining high
performance despite adversarial disruptions. Our research provides
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Figure 4: Analysis of the impact of adversarial example quan-
tity on model performance under the Attacking-to-Training
(A2T) strategy [21]. We report accuracy for our DINA frame-
work with different quantities of adversarial examples, com-
pared to the baseline BERT model and the unsupervised
domain-transfer approach DAFE [7]. A2T achieves optimal
performance at approximately 200K adversarial examples,
demonstrating its effectiveness in enhancing model robust-
ness.

a practical and scalable defense strategy for real-world NLP appli-
cations, offering valuable insights into the challenges of AI-human
competition and adversarial robustness.

5 Conclusion
In this paper, we introduced DINA (Dual Defense Against Internal
Noise and Adversarial Attacks), a unified framework designed to si-
multaneously counteract internal adversarial labeling and external
adversarial text perturbations in NLP applications. By integrating
semi-supervised learning, crowdsourced relabeling, advanced noisy-
label learning, and adversarial training, DINA effectively addresses
the dual threats posed by human-driven adversarial behaviors.

Experimental results on real-world data from an online gaming
service demonstrate that DINA significantly outperforms baseline
models, effectively mitigating both internal label noise and external
adversarial attacks. Specifically, our framework achieved optimal
robustness when trained with approximately 200K adversarial ex-
amples, highlighting the practical applicability of our approach.

Overall, this study underscores the critical importance of explic-
itly addressing simultaneous adversarial threats in NLP systems.
By providing a comprehensive and novel integration of noisy label
learning and adversarial training, our approach not only enhances
model robustness, accuracy, and stability under realistic adversarial
conditions but also offers practical solutions to societal tensions
between human workers and AI systems. Future work includes
extending our dual-defense framework to additional NLP tasks and
exploring broader classes of adversarial perturbations.
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