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Quantum Key Distribution (QKD) is an emerging cryptographic method designed for secure key
sharing. Its security is theoretically guaranteed by fundamental principles of quantum mechan-
ics, making it a leading candidate for future communication protocols. Quantum Random Walks
(QRWs), on the other hand, are quantum processes that exhibit intriguing phenomena such as in-
terference and superposition, enabling the generation of decentralized and asymmetric probability
distributions. Inspired by both fields of study, we propose a novel QKD protocol based on two
entangled quantum walkers. Our protocol exploits the unique correlations between the walkers at
extremal positions of the walk to establish secret keys shared exclusively by the two parties. The
security of the protocol is augmented by analyzing the joint probability distributions of the walkers’
measured positions and their associated coin states.

I. INTRODUCTION

Quantum Key Distribution (QKD) is a robust crypto-
graphic scheme devised to defend against eavesdropping
during secret communication. It leverages quantum
properties such as the no-cloning theorem and quantum
entanglement to ensure security. A variety of QKD
protocols have been proposed since its inception. For
instance, the pioneering BB84 protocol [1] introduced
the first example of a prepare-and-measure QKD
scheme. Any attempt at observation by an eavesdropper
disturbs the quantum state if the measurement basis
differs from the preparation basis, thereby revealing the
intrusion. The E91 protocol [2] laid the foundation for
entanglement-based QKD. E91 uses Bell’s theorem as a
security guarantee against eavesdropping. The strength

FIG. 1: Entangled walkers Alice and Bob obtain shared
secret keys at opposite corners of the joint quantum

walk.
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of the correlations between the measured keys can be
quantified using the CHSH test [3], which signals a
potential attack if the correlations fall below a certain
classical limit. Our proposed protocol can be categorized
as a prepare-and-double-measure QKD scheme that
incorporates entanglement to achieve secure and exclu-
sive key distribution. We begin the protocol with an
entangled ”coin” pair prepared by the sender and shared
with the receiver. Each coin is then entangled with a
”walker” at the respective end of the communication
channel. A specific connection between the walkers is
established via entanglement swapping [4], in which a
Bell state measurement (BSM) is performed on the coin
pair once it is reunited at the sender’s end. This process
creates an entangled state shared between the two
walkers, enabling the parties to derive a pair of secret
keys (Fig. 1). The security of our protocol relies on
quantum entanglement, though the verification method
differs from the standard CHSH formulation.

Quantum Random Walks (QRWs) [5] are the quantum
analog of classical random walks, which form the basis of
many stochastic algorithms. Due to quantum interfer-
ence and superposition, QRWs exhibit markedly differ-
ent behavior, often resulting in faster, ballistic spreading
of probability distributions compared to the centralized,
diffusive binomial distributions of classical walks (Fig. 2).
In this work, we focus on discrete coined quantum ran-
dom walks [6], where the evolution of the walker is gov-
erned by a quantum coin state and a unitary coin-flip
operator. Motivated by the properties of coined QRWs,
we investigate the behavior of joint QRWs involving two
entangled walkers. These joint walks show intriguing cor-
relations in position space, particularly at the edges of
the distribution. We demonstrate that these spatial cor-
relations allow both parties to share mutual information
about the measured positions, without revealing the ac-
tual outcomes. As a result, the walkers’ positions can be
effectively used to encode secret keys, making entangled
QRWs a promising building block for secure quantum
communication protocols.
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II. THEORY

A. Discrete Coined QRW

A discrete coined QRW is composed of several ele-
ments: the number of steps s ∈ Z+, the walker’s po-
sition state |x⟩ (with x ∈ Z), the coin state |c⟩, a uni-

tary coin-flip operator Û(θ, λ), and a shift operator Ŝ.
The entire system can be described by the product state
|ψ⟩ = |c⟩ ⊗ |x⟩. The QRW evolves by repeatedly apply-
ing the coin-flip operator to the coin, followed by the shift
operator applied to the position register, conditioned on
the coin state.

We consider a general coin-flip operator Û(θ, λ) given
by:

Û(θ, λ) =

[
cos( θ2 ) −eiλ sin( θ2 )
sin( θ2 ) eiλ cos( θ2 )

]
The conditional shift operator Ŝ is defined as:

Ŝ = |0⟩ ⟨0| ⊗
∑
i

|i− 1⟩ ⟨i|+ |1⟩ ⟨1| ⊗
∑
i

|i+ 1⟩ ⟨i| (1)

Assume the walker starts from an initial position |x0⟩
and the coin is prepared in a state |c0⟩ = k0 |0⟩+ k1 |1⟩,
with k1 = eiϕ

√
1− k20, resulting in the initial product

state |ψ0⟩ = |c0⟩ |x0⟩. After one step of QRW, the state
becomes:

|ψ1⟩ = Ŝ(Û ⊗ Î) |ψ0⟩

= |0⟩ ⊗ (k0 cos(
θ

2
)− k1e

iλ sin(
θ

2
)) |x0 − 1⟩

+ |1⟩ ⊗ (k0 sin(
θ

2
) + k1e

iλ cos(
θ

2
)) |x0 + 1⟩

(2)

After s steps, the state evolves to:

|ψs⟩ = |0⟩⊗
s−2∑
i=−s

A
(s)
i |x0 + i⟩+ |1⟩⊗

s∑
j=−s+2

B
(s)
j |x0 + j⟩

(3)

where the amplitudes A
(s)
i and B

(s)
j vanish at positions

where the shift from −s or s is odd (i.e., i, j = −s +
1,−s + 3, . . . , s − 1 ). The amplitudes can be computed
recursively by:{

A
(s+1)
i = A

(s)
i+1 · cos( θ2 )−B

(s)
i+1 · eiλ sin( θ2 )

B
(s+1)
i = A

(s)
i−1 · sin( θ2 ) +B

(s)
i−1 · eiλ cos( θ2 )

with initial conditions A
(0)
i = k0δi0 and B

(0)
i = k1δi0.

B. Entangled Quantum Walks

In our proposed QKD protocol, two QRWs are im-
plemented with a shared entangled coin pair |cA, cB⟩ =
k0 |00⟩ + k1 |11⟩. Both walkers start at the origin, x0 =
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FIG. 2: Probability distribution after 20 steps of a
discrete coined QRW.

y0 = 0, and evolve for the same number of steps using
publicly agreed coin-flip operators, ÛA and ÛB , respec-
tively. This results in a joint position distribution over
the basis states |x⟩A |y⟩B at the end of the walk. The
state after s steps is given by:

|ψs⟩ = |00⟩ ⊗
s−2∑
x=−s

s−2∑
y=−s

A(s)
xy |x⟩A |y⟩B

+ |01⟩ ⊗
s−2∑
x=−s

s∑
y=−s+2

B(s)
xy |x⟩A |y⟩B

+ |10⟩ ⊗
s∑

x=−s+2

s−2∑
y=−s

C(s)
xy |x⟩A |y⟩B

+ |11⟩ ⊗
s∑

x=−s+2

s∑
y=−s+2

D(s)
xy |x⟩A |y⟩B

(4)

where the amplitudes A
(s)
xy , B

(s)
xy , C

(s)
xy and D

(s)
xy again

vanish at positions where the shift from −s or s is odd.
Similar to a single-walker QRW, these amplitudes can be
computed recursively. First we transform the amplitudes
for the same positions (x, y) with the composite coin-flip
operator: 

A
′(s)
xy

B
′(s)
xy

C
′(s)
xy

D
′(s)
xy

 = (ÛA ⊗ ÛB)


A

(s)
xy

B
(s)
xy

C
(s)
xy

D
(s)
xy

 (5)

Then, the recursive relations can be formulated as:
A

(s+1)
xy = A

′(s)
x+1,y+1

B
(s+1)
xy = B

′(s)
x+1,y−1

C
(s+1)
xy = C

′(s)
x−1,y+1

D
(s+1)
xy = D

′(s)
x−1,y−1

(6)

with initial conditions A
(0)
xy = k0δx0δy0, B

(0)
xy = 0, C

(0)
xy =

0, and D
(0)
xy = k1δx0δy0.

We proceed to implement entanglement swapping on
the state |ψs⟩ to establish correlations between the two
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walkers’ position distributions. This is achieved by per-
forming a Bell state measurement (BSM) on the entan-
gled coin pair |cA, cB⟩. The BSM is realized by applying
a CNOT gate to the pair, followed by a Hadamard gate
on the control coin qubit, resulting in the state |ψ′s⟩ prior
to measuring the coin pair. For notational convenience,
we define the summations in Eq. (4) as:

A(s) =

s−2∑
x=−s

s−2∑
y=−s

A(s)
xy |x⟩A |y⟩B

B(s) =

s−2∑
x=−s

s∑
y=−s+2

B(s)
xy |x⟩A |y⟩B

C(s) =

s∑
x=−s+2

s−2∑
y=−s

C(s)
xy |x⟩A |y⟩B

D(s) =

s∑
x=−s+2

s∑
y=−s+2

D(s)
xy |x⟩A |y⟩B

(7)

This allows us to express Eq. (4) more compactly such
that the transformed state |ψ′s⟩ becomes:

|ψ′s⟩ = 1√
2
|00⟩ ⊗

[
A(s) +D(s)

]
+

1√
2
|10⟩ ⊗

[
A(s) −D(s)

]
+

1√
2
|01⟩ ⊗

[
B(s) +C(s)

]
+

1√
2
|11⟩ ⊗

[
B(s) −C(s)

]
(8)

The Bell measurement collapses the state, projecting
the coin pair onto one of the four possible outcomes:
|00⟩ , |01⟩ , |10⟩ , |11⟩.
We observe that the expansion of A(s)+D(s) (and like-

wise A(s)−D(s)) contains the terms A
(s)
−s,−s |−s⟩A |−s⟩B

and D
(s)
s,s |s⟩A |s⟩B , while the terms |−s⟩A |s⟩B and

|s⟩A |−s⟩B are absent. This implies that if the BSM out-
come is |00⟩ (or |10⟩), the probability of the two walkers
being on opposite ends of the distribution is zero (see
Fig. (4a)). In other words, if both walkers are found at
the extremities of their distributions, they must be at the
same extremity (either both at −s or both at s). A simi-

lar argument holds for the expansions of B(s) +C(s) and

B(s) −C(s). In these cases, if the measurement outcome
is |01⟩ or |11⟩ and both walkers are at their extremi-
ties, then they cannot be located at the same end of the
distribution—only opposite ends are possible in such a
scenario (see Fig. (4b)).

III. QKD VIA ENTANGLED QUANTUM
WALKERS

Given the exclusive correlations between two entangled
quantum walkers, as described by Eq. (8), a secure QKD

protocol can be designed by utilizing the two extremi-
ties of the position distribution as secret keys. Based on
this idea, we propose a robust quantum communication
scheme between two parties—Alice and Bob—consisting
of the following steps:

1. Entangled coin pair preparation: Alice chooses
an initial coin state |cA⟩ = k0 |0⟩+k1 |1⟩, with which
she prepares an entangled coin pair |cA, cB⟩ =
k0 |00⟩+ k1 |11⟩.

2. Transmission: Alice sends one qubit from the en-
tangled coin pair to Bob via a quantum channel.

3. Distribution of QRW parameters: Alice and
Bob communicate over a classical channel to agree
on the parameters of the QRWs, including the coin-
flip operators ÛA(θ1, λ1) and ÛB(θ2, λ2), and the
number of steps s. Choosing phase angles such that
|θ1| < 1 and |θ2| < 1 increases the probability at the
extremities of the position distribution (see Fig. 2),
thereby improving the likelihood of successful key
generation.

4. QRW implementation: Alice and Bob indepen-
dently implement the QRW using the agreed-upon
parameters.

5. Entanglement swapping: Bob sends his coin
qubit back to Alice, who then performs a BSM to
transfer the entanglement to the walkers’ position
states. The BSM outcome is kept by Alice as a
reference for key inference.

6. Position measurement: Both parties measure
the positions of their walkers, obtaining values
a, b ∈ {−s,−s+ 2, . . . , s}.

7. Announcement: After multiple rounds of steps
1 to 6, Alice and Bob announce the rounds in
which their walkers were found at extremal po-
sitions (without revealing which extremity). In
rounds where either Alice or Bob did not find their
walker at an extremal position, Bob discloses the
measured position to Alice.

8. Key generation: Using the BSM outcomes and
her own measurement results, Alice infers which
position Bob measured in the rounds where both
observed extremal values. Bob’s measured posi-
tions (±s) are then used as the sifted keys.

9. Security check: The protocol includes two layers
of security verification. First, Alice checks whether
the BSM outcomes follow the expected probability
distribution of the coin pair, allowing a deviation
up to ϵc based on a predefined metric. Second,
the joint distribution of measured positions is com-
pared against the theoretical model. If either test
fails, the protocol is aborted.
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FIG. 3: Joint probability distribution of Alice and
Bob’s positions, considering all BSM outcomes. The

four corners of the distribution correspond to scenarios
where key pairs can be generated. Yellow dots denote
the shared key value -2, while white dots indicate the

key value 2.

IV. 2-STEP QRW PROTOCOL

In this section, we demonstrate a QKD protocol based
on 2-step QRWs, i.e., with s = 2. The 2-step setup
strikes a balance between hardware feasibility and com-
plexity, making it suitable for near-term implementation.
It requires only four qubits in total for the coin and po-
sition registers per party, which aligns well with current
hardware limitations. Furthermore, the 2-step protocol is
statistically efficient for security verification, as it yields
only nine possible outcomes in the joint position distribu-
tion. This small outcome space reduces the number of re-
quired protocol rounds to obtain a meaningful match be-
tween the observed and theoretical distributions. While
a 1-step QRW protocol is also viable for practical real-
ization, its limited structure may not adequately demon-
strate the features of generic s-step schemes. In con-
trast, the increased complexity of the 2-step QRW allows
for a more representative example, and potentially offers
stronger security guarantees against eavesdropping, due
to the higher-dimensional correlations available for veri-
fication.

Assume Alice and Bob choose the same coin-flip op-
erator, ÛA(θ, λ) = ÛB(θ, λ), to perform the 2-step QRW
with the following parameters: θ = 0.635, λ = 0, and
initial coin state |cA⟩ = 0.85 |0⟩ + 0.527ei

π
4 |1⟩. The

joint probability distribution of all possible measured po-
sitions, aggregated over all BSM outcomes, is summa-
rized in Fig. 3. The four corners of the heatmap cor-
respond to measurement outcomes that enable key gen-
eration. In this instance, a valid key pair can be gen-
erated with a probability of approximately 81%. Other
measurement results, while not used for key generation,

(a) |cA, cB⟩ = |00⟩

(b) |cA, cB⟩ = |01⟩

FIG. 4: Joint probability distribution of measured
positions when the BSM outcome is (a) |cA, cB⟩ = |00⟩
and (b) |cA, cB⟩ = |01⟩. Empty grid cells indicate zero
probability for the corresponding position pair. The

parity of the BSM outcome determines the correlation
pattern of the two walkers, allowing Alice to infer Bob’s

key.

serve as references for security verification. Fig. 4a shows
the joint distribution of Alice’s and Bob’s positions when
the BSM outcome is |00⟩, which occurs with probabil-
ity 39%. The heatmap reveals that when Bob measures
−2 (respectively, 2), Alice has zero probability of mea-
suring 2 (respectively, −2), ensuring the exclusivity of
the shared key. Similarly, Fig. 4b shows the distribution
when |cA, cB⟩ = |01⟩, which occurs with probability 11%.
In this case, when Bob measures −2 (2), Alice has zero
probability of measuring −2 (2), maintaining exclusivity
under a different correlation pattern.
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V. CONCLUSION AND OUTLOOK

We have shown that the unique correlations between
two entangled quantum walkers, established via entan-
glement swapping, can be harnessed as a secure resource
for quantum communication, enabling the development
of a powerful QKD protocol. The behavior of the walkers
at their spatial extremities, together with the Bell state
measurement outcomes, provides both parties with exclu-
sive information about the position states. Furthermore,
the BSM results and the joint position distributions of
the QRWs serve as a foundation for security verification,

enhancing the robustness of the protocol.
For future research, the impact of noisy quantum chan-

nels and specialized attacks on this new protocol should
be a primary focus. Additionally, incorporating CHSH
tests or other security verification methods into the pro-
tocol may offer valuable enhancements. Experimental
realizations, alongside suitable error reconciliation and
privacy amplification schemes, will be essential for evalu-
ating the practical viability of the proposed protocol. Fi-
nally, we emphasize the innovative and interdisciplinary
nature of this work: the integration of entangled quan-
tum random walks into quantum cryptography not only
showcases a novel application of QRWs but also enriches
the landscape of QKD protocols.
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A. Peres, and W. K. Wootters, Teleporting an unknown
quantum state via dual classical and Einstein-Podolsky-
Rosen channels, Physical Review Letters 70, 1895 (1993).

[5] Y. Aharonov, L. Davidovich, and N. Zagury, Quantum
random walks, Physical Review A 48, 1687 (1993).

[6] T. A. Brun, H. A. Carteret, and A. Ambainis, Quantum
random walks with decoherent coins, Physical Review A
67, 032304 (2003).


