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Abstract—Redacting Personally Identifiable Information (PII)
from unstructured text is critical for ensuring data privacy
in regulated domains. While earlier approaches have relied
on rule-based systems and domain-specific NER models, these
methods fail to generalize across formats and contexts. Recent
advances in Large Language Models (LLMs) offer a promising
alternative, yet the effect of architectural and training choices
on redaction performance remains underexplored. LLMs have
demonstrated strong performance in tasks that require contextual
language understanding, including the redaction of PII in free-
form text. Prior work suggests that with appropriate adaptation,
LLMs can become effective contextual privacy learners. However,
the consequences of architectural and training choices for PII
Redaction remain underexplored. In this work, we present
a comprehensive analysis of LLMs as privacy-preserving PII
Redaction systems. We evaluate a range of Large Language
Model (LLM) architectures and training strategies for their
effectiveness in PII Redaction. Our analysis measures redaction
performance, semantic preservation, and PII leakage, and com-
pares these outcomes against latency and computational cost.
The results provide practical guidance for configuring LLM-
based redactors that are accurate, efficient, and privacy-aware.
To support reproducibility and real-world deployment, we release
PRvL, an open-source suite of fine-tuned models, and evaluation
tools for general-purpose PII Redaction. PRvL is built entirely on
open-source LLMs and supports multiple inference settings for
flexibility and compliance. It is designed to be easily customized
for different domains and fully operable within secure, self-
managed environments. This enables data owners to perform
redactions without relying on third-party services or exposing
sensitive content beyond their own infrastructure.

Index Terms—Personally Identifiable Information, PII Redac-
tion, Large Language Models, Retrieval Augmented Generation

I. INTRODUCTION

PII refers to any data that may be used to directly or
indirectly identify an individual, such as names, addresses,
social security numbers, phone numbers, and financial and
health records. As digital systems manage increasing amounts
of sensitive textual data, accurate and scalable PII redaction
is more important than ever. This is especially important
in regulated industries such as healthcare, law, finance, and
education, where mishandling personal data can have seri-
ous legal, ethical, and financial consequences. For example,
HIPAA prohibits sharing electronic health records (EHRs) for
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research unless they are properly de-identified [1]. Inadequate
redaction can breach compliance and compromise patient
trust [2]. Legal documents like court transcripts also require
manual redaction which is subject to error, as evidenced
by the 2010 data breach at Legal Aid that exposed client
data [3]. However, the inclusion of unredacted personally
identifiable information (PII) in training data can lead to
memorization and unintended disclosure. For instance, Carlini
et al. [4] demonstrated that generative models such as GPT-2
and GPT-3 can reproduce exact strings of sensitive training
data, including phone numbers and email addresses, when
prompted adversarially. This raises serious concerns about the
privacy risks associated with unfiltered data corpora.

PII redaction has traditionally used rule-based or statis-
tical methods. These methods rely on deterministic pattern
matching or regular expression matching. While fast and in-
terpretable, their use case is extremely limited as PII redaction
requires language and context understanding. Patterns rarely
generalize across languages or domains. For e.g., U.S. phone
numbers are completely different from those in the UK. Con-
sequently, their regex patterns would also be different, making
these solutions unreliable at scale. Transformer-based Named
Entity Recognition (NER) models [5] trained on labeled
corpora like CoNLL-2003 [6] or OntoNotes [7] are frequently
used to identify entities such as people, places, organizations,
etc, and can be used for PII identification. However, these
models can only work on their training domain and lack cross-
domain generalization. For instance, a NER-based PII redactor
trained on English corpora performs poorly when applied to
Spanish texts, as demonstrated later in our experiments.

In recent years, proprietary services have attempted to fill
this gap with deep learning-based commercial PII Redaction
solutions. Offerings like AWS Comprehend [8], Microsoft
Presidio [9], and Google Cloud Data Loss Prevention [10]
provide APIs for detecting and redacting sensitive information
in documents. These services benefit from large-scale models,
achieving high accuracy in many settings. However, they
come with significant drawbacks. First, they are closed-source,
offering no transparency into the underlying models, data
handling practices, or redaction logic. The lack of auditability
makes them hard to adopt in compliance-heavy industries.
Second, they require organizations to trust third parties with
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sensitive internal data. This in itself can be a regulatory
violation. For example, hospitals or banks are legally restricted
from sharing unencrypted data with external platforms, even
for processing. These limitations motivate us to build an open-
source, generalizable, and customizable PII Redaction tool.

To address these challenges, we propose the use of LLMs as
customized PII Redaction tools. LLMs possess powerful lan-
guage understanding capabilities, enabling them to identify PII
types that evade pattern matching and traditional NER. LLMs
are pre-trained on diverse corpora, making them adaptable and
generalizable for redaction in multiple domains with minimal
task-specific tuning. Many high-performing LLMs such as
LLaMA, Falcon, Mixtral, etc., are open-source. These models
can be deployed within secure, self-managed infrastructure,
preserving data sovereignty and minimizing exposure of sen-
sitive information. The use of LLMs offers several technical
advantages: effective cross-domain transferability (e.g., apply-
ing knowledge from one language to another), robust handling
of diverse formats and registers without handcrafted rules,
and full transparency for auditing, retraining, and fine-tuning
within controlled environments.

In this work, we investigate the capabilities and limitations
of LLMs as privacy-preserving PII Redaction systems. While
prior efforts have demonstrated promising results using large
models as contextual privacy learners [11], there has been little
systematic study on how architectural class, training paradigm,
and inference strategy influence redaction performance across
diverse domains. Our goal is to establish empirical foundations
for choosing and adapting language models for high-accuracy,
customizable PII Redaction.

We focus on two core research questions:

1) Can large language models be effectively adapted into
generalizable and domain-agnostic systems for high accu-
racy PII Redaction?

2) What combinations of model architecture, training
paradigm, and inference strategy yield the best trade-offs
between redaction performance, latency, and cross-domain
generalization?

To this end, we make the following contributions:

• We present a comprehensive benchmark evaluating a
range of model architectures, including Dense LLM (e.g.,
LLaMA 3.1–8B [12], GPT-4 [13]), Small Language Model
(SLM) (e.g., T5 [14], LLaMA 3.2–3B [12]), Mixture of
Experts (MoE) (e.g., Mixtral [15]), Large Reasoning Model
(LRM) (e.g., DeepSeek-R1 [16], DeepSeek-Q1 [17]), Struc-
tured State Model (SSM) (e.g., FalconMamba [18]), and
a strong NER baseline (BERT-NER [5]). These models
are assessed under multiple training paradigms, including
vanilla (zero-shot), full fine-tuning, and instruction-tuning,
as well as inference strategies such as standard generation
and retrieval-augmented generation (RAG). Our evaluation
spans span-correct and label-exact redaction, and includes
metrics for redaction accuracy, and semantic preservation.

• We release PRvL (PII Redaction via Language Models), a
publicly available suite of fine-tuned models and evaluation

tools for general-purpose PII Redaction. PRvL is built on
open-source architectures and trained on a standardized
taxonomy of PII types, as described in Appendix VIII. The
models support instruction-tuned and RAG-based inference
settings and are designed for extensibility to unseen do-
mains. All code, model checkpoints, and evaluation scripts
are made available via GitHub (https://anonymous.4open.
science/r/PRvL-C1BF) to support reproducibility.
The remainder of this paper presents our Methodology

in Section III, Experimental Setup in Section IV, Evaluation
in Section V and Result and Analysis in Section VI.

II. RELATED WORK

A. PII Redaction and Privacy-Preserving NLP
The task of detecting and redacting PII has been widely

explored in domains such as healthcare [2], finance [19], and
social media [20]. Early approaches have primarily relied
on handcrafted rule-based systems [21]–[23] and regular-
expression-based pattern matching [24], [25]. These methods
are typically effective for structured or semi-structured data
where entity formats are predictable. However, their perfor-
mance tends to degrade on noisy, domain-specific, or context-
sensitive text, where lexical cues alone are insufficient to
distinguish PII from non-sensitive content [26].

More recently, [27] reviewed key advances in PII de-
identification, highlighting the shift toward deep learning ap-
proaches, particularly in clinical text processing. State-of-the-
art systems in this area now predominantly leverage neural ar-
chitectures, including recurrent neural networks (RNNs) [28],
long short-term memory (LSTM) networks, and gated re-
current units (GRUs) [29]. Transformer-based models have
also gained traction for their ability to capture long-range
dependencies and contextual cues more effectively [30], [31].
In parallel, hybrid systems that combine rule-based heuristics
with neural models, as well as ensemble approaches that
aggregate predictions across multiple architectures, continue
to be active areas of research due to their potential to improve
robustness and adaptability.

To overcome these limitations, researchers have explored
the adaptation of LLMs for contextual PII Redaction. Unlike
conventional models, LLMs exhibit strong generalization ca-
pabilities and nuanced language understanding, making them
well-suited for identifying context-dependent PII in diverse
domains. Recent work has proposed strategies to mitigate the
privacy risks associated with LLMs through (1) pretraining
corpus curation, (2) conditional or task-specific pretraining,
and (3) post-training alignment with privacy constraints [32]–
[35]. These methods aim to reduce the likelihood of memo-
rizing and regurgitating sensitive information while preserving
model utility. In parallel, efficient fine-tuning techniques have
emerged to enhance contextual privacy, focusing on aligning
model outputs with normative privacy expectations rather than
relying solely on explicit identifiers. This shift is informed
by theories of privacy as contextual integrity [11], [36] and
operationalized in recent empirical work evaluating LLMs
through this lens [35], [37].
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B. Adaptation and Training Strategies for LLMs

Adapting LLMs to downstream tasks like PII Redaction
requires strategies that balance performance, cost, and pri-
vacy constraints. Full fine-tuning remains effective but is
often infeasible at scale. Parameter-efficient methods such
as LoRA [38], prompt tuning [39], and prefix tuning [40]
allow targeted adaptation with minimal overhead. Instruction
tuning [41], [42] improves zero-shot generalization by aligning
models to task-formatted prompts, while RAG setups [43]
introduce external knowledge to aid contextual understanding.
Recent work has also explored reinforcement learning from
human feedback (RLHF) [44] to align LLM outputs with
human values, though its application to structured redaction
remains limited. Despite progress, there is limited comparative
understanding of how training paradigms interact with model
size and architecture in privacy-sensitive applications. Our
work evaluates these strategies across architectural families
to establish practical recommendations for scalable, accurate,
and compliant PII redaction.

C. Architectural Variants of Language Models

Recent advancements in language model architectures
have introduced diverse trade-offs between accuracy, latency,
and context capacity. Standard dense models (e.g., GPT-3,
LLaMA [12]) provide strong baselines but are computationally
intensive. Small language models (SLMs) such as LLaMA-3
3B and T5-small [45] offer efficiency with minimal accuracy
loss when task-aligned. Long-range models (LRMs), like
DeepSeek-R1 and OpenAI-o3 [46], extend context beyond
32K tokens, essential for document-level redaction. Mixture-
of-Experts (MoE) architectures (e.g., Mixtral [47], DeepSeek-
MoE) scale capacity while limiting active compute. State
space models (SSMs), including Mamba [48], show promise in
low-latency, long-sequence processing. RAG models such as
RETRO [49] incorporate external memory for grounded gen-
eration but remain underexplored in privacy contexts. These
diverse designs inform our evaluation of architecture-specific
strengths in generalizable PII Redaction.

D. Evaluation of Privacy in LLMs

As LLMs grow in scale and utility, their propensity to
memorize and leak sensitive data has become a central con-
cern. Carlini et al. [4] demonstrated that autoregressive models
like GPT-2 and GPT-3 can regurgitate training data verbatim
under adversarial prompting, prompting widespread investi-
gation into privacy risks. Subsequent studies [37], [50] have
proposed membership inference, extraction-based probing, and
contextual integrity analysis to quantify leakage. Metrics such
as exposure, precision of secret recall, and entropy reduc-
tion have become common tools for auditing memorization.
However, these metrics often fail to capture the subtleties
of contextual PII, which may not be explicitly memorized
but inferred through latent associations. Differential privacy
has been proposed as a training-time safeguard [51], but it
remains challenging to apply at LLM scale without sacrific-
ing performance. As a result, evaluating privacy remains an

Fig. 1: End-to-end decision workflow for training or deploying a
PII-aware redaction language model. The diagram outlines multiple
adaptation paths: Fine-Tuning, Instruction Tuning, and Retrieval-
Augmented Generation (RAG) and model selection spanning both
proprietary (P) and open-source (OS) architectures.

open problem—especially for downstream tasks like redaction,
where private information may surface implicitly through
model outputs or hallucinations.

Recent benchmarks, such as by Lukas et al. [35] and Shao
et al. [52] have begun to evaluate privacy leakage across
model scales and families systematically. However, few efforts
have connected these evaluations to real-world tasks like PII
redaction [53], leaving a gap in understanding practical privacy
guarantees.

III. METHODOLOGY

A. Task Definition

We formalize PII Redaction as a token-level transformation
task over a natural language sequence. Given an input sen-
tence, denoted as x = [x1, x2, . . . , xn], the goal is to generate
a masked sequence y = [y1, y2, . . . , yn] such that any span
corresponding to PII in x is replaced with a corresponding
type-specific placeholder, while non-PII tokens are preserved.

Each token xi is associated with a label li ∈ {0, 1}
indicating whether the token belongs to a PII span. Let T (x)
be a set of annotated spans (sj , ej , tj), where sj and ej are
token-level start and end indices of the jth PII entity, and tj is



TABLE I: Overview of model capabilities across architecture
types. A checkmark (✓) indicates support for the correspond-
ing capability.

Model Model
Type

Open
Source

Fine-
Tuned

Instruction-
Tuned RAG

BERT-NER NER ✓
Llama3.1-8b D-LLM ✓ ✓ ✓ ✓
T5 SLM ✓ ✓
Llama3.2-3B SLM ✓ ✓ ✓ ✓
DeepSeek-Q1 LRM ✓ ✓ ✓ ✓
Mixtral MoE ✓ ✓ ✓ ✓
GPT-4 D-LLM ✓
OpenAI-o3 LRM ✓
FalconMamba SSM ✓ ✓

its corresponding type (e.g., NAME, EMAIL, LOCATION). The
output sequence is defined by the following transformation:

yi =

{
[MASK_tj] if xi ∈ [xsj , . . . , xej ], for some j

xi otherwise

We emphasize that correct redaction requires not only
accurate entity recognition but also context-sensitive disam-
biguation, as certain terms may be PII in one context and not
in another (e.g., “Jordan” as a name vs. a country). Depending
on the model employed, the task is modeled as a conditional
sequence generation or classification task.

B. PII Redaction via Language Models (PRvL)

Building on this definition, we develop PRvL, a modular
redaction framework that adapts diverse language models to
the PII redaction task through targeted training and inference
strategies. PRvL is an open-source suite of fine-tuned models,
inference templates, and evaluation tools for general-purpose
PII redaction. PRvL supports multiple model architectures
and is compatible with both instruction-tuned and RAG-based
inference workflows. All models are trained on a standardized
taxonomy of PII types (see Appendix VIII) and designed for
extensibility across domains such as healthcare, legal, and
finance. PRvL enables deployment within secure, self-hosted
environments, allowing users to redact sensitive content with-
out relying on third-party APIs. The toolkit includes redaction
benchmarks, evaluation metrics, and integration utilities for
downstream pipelines. An end-to-end workflow is illustrated
in Figure 1. All code, trained checkpoints, and documentation
are available at: Anonymous-GitHub.

C. Model Architectures

We evaluate six families of model architectures, chosen to
reflect a broad range of design principles, including param-
eter count, sparsity, retrieval integration, and computational
efficiency.
1) Dense Large Language Model (D-LLM): Dense LLMs

are typically transformer-based architectures with billions
of parameters, trained on large-scale corpora using self-
supervised learning. Their size allows them to generalize
well across tasks, but they require significant compute

for training and inference. Models of this class include
Llama3.1-8b, GPT-4 etc.

2) Small Language Model (SLM): SLMs use simplified or
pruned transformer architectures, sometimes with quanti-
zation or knowledge distillation to reduce size and com-
plexity. While they sacrifice some performance, they are
ideal for edge devices and low-latency applications due to
reduced memory and compute demands. Models of this
class include Llama3.2-3B etc.

3) Mixture-of-Expert (MoE): MoE architectures consist of
many parallel subnetworks (“experts”), with a gating net-
work dynamically selecting a few to activate per input. This
sparse activation allows scaling to hundreds of billions of
parameters with relatively constant compute per forward
pass, offering high capacity without proportional cost.
Models of this class include Mixtral, etc.

4) Long-Range Model (LRM): LRMs are designed to han-
dle extended contexts by modifying attention mechanisms
(e.g., sparse, linear, or memory-based attention) or by using
recurrence/state structures. They can outperform standard
transformers on tasks requiring deep context understanding
while often using less memory. Models of this class include
DeepSeek-Q1, OpenAI-o3, etc.

5) Structured State Model (SSM): SSMs use linear dynam-
ical systems to model sequences, replacing self-attention
with state transitions that evolve over time. Architectures
like Mamba or S4 offer efficient long-range modeling with
sub-quadratic complexity, making them faster and more
scalable than transformers in some tasks.

6) NER Baseline: As a point of comparison, we include a
strong NER baseline based on a BERT classifier fine-tuned
for span-level entity recognition. While not generative, this
model is fast and interpretable, and provides a traditional
reference point for PII Redaction tasks.

We include an overview of model capabilities across ar-
chitecture types, along with their compatibility with training
(fine-tuned and instruction-tuned) and inferencing (RAG) ca-
pabilities (see Table I).

D. Training Strategies

We employ two primary adaptation strategies to configure
language models for contextual redaction. In both cases,
we use parameter-efficient fine-tuning via LoRA, enabling
scalable model updates without modifying the full weight
matrices.

1) Fine-Tuning: In this approach, models are trained on
parallel corpora consisting of original sequences containing
PII and corresponding fully redacted outputs. Each target
output replaces annotated spans with consistent, type-aware
placeholder tokens (e.g., <NAME>, <EMAIL>), while pre-
serving all non-sensitive tokens. Training is conducted in
a supervised manner, where the model is optimized to
generate the redacted output sequence conditioned on the
original text. The prompt template for PII Redaction with
fine-tuning is provided below.

https://anonymous.4open.science/r/PRvL-C1BF


Fine-Tuning Example

Instruction:
Mask the PII in the following text:

Example Input:
Dear [Sejd], I am writing to inform you of an important ...

ExampleOutput:
Dear [[GIVENNAME1]], I am writing to inform you of an
important ...

2) Instruction Tuning: Instruction tuning reframes redaction
as a prompt-driven task using natural language instructions.
Instead of training on the entire corpus, this approach uses
a curated set of examples that demonstrate how unredacted
inputs should be transformed into redacted outputs. Each
instance consists of a prompt, a small number of illustrative
input-output pairs, and a new input to redact.
The model is trained to follow the instruction and im-
itate the demonstrated behavior, thereby learning redac-
tion patterns through alignment with task-level intent.
Unlike full fine-tuning, this strategy emphasizes behavior
induction over memorization and is particularly effective
in low-resource or cross-domain settings where explicit
instructions and exemplars guide the model to generalize
from limited supervision. The instruction template for PII
Redaction with instruction-tuning is provided below.

Instruction-Tuning Example

Instruction:
Below is a sentence. Sensitive information in the sentence
should be replaced by placeholders like [NAME], [EMAIL],
[DATE], etc.
Write:
(1) a privacy-protected version of the sentence.

### Input
team addressed concerns from diverse participants, including
students with Biesenkamp and Verdiani

### Response
(1) a privacy-protected version of the sentence: team ad-
dressed concerns from diverse participants, including students
with [LASTNAME] and [LASTNAME]

Example Input:
Dear [Sejd], I am writing to inform you of an important ...

ExampleOutput:
Dear [[GIVENNAME1]], I am writing to inform you of an
important ...

E. Inference Strategies

At inference time, we employ two strategies for apply-
ing trained models to redaction tasks: (1) standard genera-
tion (vanilla), and (2) retrieval-augmented generation (RAG).
While vanilla decoding directly maps raw input to redacted
output, RAG augments the model input with retrieved exam-
ples or policies to guide more accurate and context-sensitive
redaction.

Fig. 2: Overview of the RAG-based redaction pipeline: retrieved
examples inform context-aware masking.

1) Retrieval-Augmented Generation (RAG): RAG enhances
redaction performance by explicitly conditioning the model on
retrieved context relevant to the input. This enables the model
to resolve ambiguous cases, handle rare PII types, and follow
domain-specific redaction conventions.

The RAG pipeline involves three stages (illustrated in Figure
2):

1) Query Construction: Given an input sequence x, a query
q is generated to retrieve relevant redaction examples. In
the default case, q = x, but optionally we encode x with a
dense retriever to emphasize redaction-critical spans (e.g.,
suspected PII markers or tags). An example of the RAG
prompt used for retrieval is provided in Appendix.

2) Document Retrieval: Using q, we retrieve the top-k redac-
tion exemplars {d1, d2, . . . , dk} from a pre-encoded index.
The retrieval corpus includes previously annotated redac-
tion pairs or curated templates representing valid redaction
behavior across domains. Retrieved documents may be
filtered by entity type overlap or similarity thresholds.

3) Contextualized Generation: The model input is con-
structed as a concatenation of retrieved examples and the
original query:

x′ = [CONTEXT] ∥ d1 ∥ . . . ∥ dk ∥[INPUT] ∥ x

The model generates a redacted output conditioned on
x′. Instruction-tuned models additionally receive prompts
specifying the redaction task (e.g., “Redact all PII based
on the examples above”) to align behavior with retrieved
demonstrations.

We use static retrieval during evaluation for consistency, but
the setup supports real-time dynamic retrieval for deployment.
The RAG mechanism is architecture-agnostic and applies to
both encoder-decoder and decoder-only models within their
context limits.



IV. EXPERIMENTAL SETUP

A. Training and Inference Setup

1) Supervision Format: For token-classification-compatible
models (e.g., BERT), we use BIO or span-label encod-
ing for each token. During postprocessing, identified PII
spans are replaced with type-specific placeholders such as
<NAME> or <EMAIL>. For generative models (e.g., GPT-
style), we format inputs as described in Section III-D

2) Optimization: All models are optimized using AdamW
with linear warmup and cosine learning rate decay. We
apply parameter-efficient fine-tuning (PEFT) via LoRA,
updating only a small subset of adapter parameters while
keeping the base model frozen. Hyperparameters are se-
lected via grid search per model class, and early stopping
is based on validation loss and task-specific redaction
accuracy.

3) Infrastructure: All training was conducted on NVIDIA
RTX 6000 GPUs with 48GB of memory. Larger MoE mod-
els were distributed across 2 nodes using model parallelism.
Experiments were run in Dockerized environments with
identical software stacks to eliminate confounding from
infrastructure heterogeneity.

B. Dataset

We evaluate models on three variants of the AI4Privacy-
300K dataset [54]—English, Spanish and Italian and
AI4Privacy-500K [55]—each comprising synthetic English
text augmented with rich, contextually embedded PII annota-
tions. All datasets share a common schema with fine-grained
entity labels (full list provided in Appendix VIII), enabling
both token-level and generative-style redaction evaluations.
Larger dataset variants increase diversity, entity density, and
narrative complexity, providing a scalable benchmark for
studying model generalization across redaction strategies. For
all reported evaluations, we use a held-out test split of 1K
examples.

V. EVALUATION

To assess the effectiveness of LLM-based PII Redaction
systems, we conduct a systematic evaluation across domains,
languages, and model configurations. Our analysis focuses
on measuring redaction accuracy, semantic preservation, and
privacy leakage.

A. Correctness: Span-Correct and Label-Exact

Standard span-level metrics for NER or PII Redaction
assume exact token-label alignment, which breaks down in
generative redaction where models may obfuscate PII correctly
but diverge syntactically from references. To better capture
practical privacy behavior, we design a custom evaluation
using structural edit distance with semantic interpretation
of errors. Our objective is to quantify both the correctness
of redaction (i.e., whether all PII was masked) and the fidelity
of redaction (i.e., whether the right label was applied). We
compute the minimum sequence of edit operations needed to

transform the model-generated output into the ground truth
redacted output. The valid operations include the following:
• Insertions: A missing masked token is added. This corre-

sponds to a false negative (FN), where a PII span was not
masked.

• Deletions: A spurious masked token is removed. This is a
false positive (FP), indicating a non-PII span was incorrectly
masked.

• Substitutions: A token is changed—this is interpreted as a
misclassification, either:
– A correct PII span masked with the wrong label (e.g.,
<EMAIL> → <NAME>)

– A spurious or hallucinated redaction label.
We define:
• TP (True Positives) = Correctly masked spans with cor-

rect labels
• FP (False Positives) = Non-PII spans incorrectly masked

(deletion)
• FN (False Negatives) = PII spans not masked (insertion)
• TN (True Negatives) = Correctly identified Non-PII spans
From these, we compute standard metrics:
• Precision = TP / (TP + FP)
• Recall = TP / (TP + FN)
• Accuracy = TP + TN / (TP + FP + FN +TN)
We introduce two complementary evaluation settings:

• Span-Correct Evaluation: In this setting, a redaction op-
eration is counted as correct if the model identifies the
correct span of PII, regardless of whether the assigned
label matches the gold-standard tag. For example, if a
model masks “Google” as <NAME> instead of <ORG>, it
is still treated as a true positive under relaxed evaluation.
This setting reflects practical goals of privacy preservation:
the PII was successfully obscured, even if its type was
misclassified.

• Label-Exact Evaluation: Here, both the span and the label
must match the ground truth. Using the previous exam-
ple, redaction “Google” as <NAME> would be penalized, as
the correct tag is <ORG>. Mislabels are treated as type-level
errors and penalized accordingly. This setting reflects ap-
plications where tag semantics matter (e.g., typed redaction
for auditability or compliance).
Mislabel Count: To further distinguish error modes, we

report the raw number of mislabeling errors—cases where the
span is masked, but the tag is incorrect. These are counted sep-
arately from insertions or deletions and help isolate semantic
confusion from redaction omission or overreach.

B. Sequence Level Overlap

Since our models generate entire masked outputs, not just
labels or token tags, it is essential to assess whether the
redacted text maintains structural and semantic fidelity to the
intended form. To this end, we use two common sequence-
level overlap metrics: ROUGE and BLEU. These metrics are
not used to measure redaction performance per se, but rather



to assess the linguistic quality and structural preservation of
the output compared to the reference redacted sentence.

ROUGE: ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) measures n-gram overlap between the model
output and the reference output. We report three variants:

• ROUGE-1: Overlap of unigrams (single words).
• ROUGE-2: Overlap of bigrams (two-word sequences).
• ROUGE-L: Longest common subsequence (LCS) be-

tween the two sequences, capturing structural similarity.
Each variant is reported as an F1 score:

ROUGE-F1 = 2× Precision × Recall
Precision + Recall

where precision and recall are defined over overlapping n-
grams between the hypothesis and reference.

BLEU: BLEU (Bilingual Evaluation Understudy) measures
n-gram precision of the model output against the reference and
incorporates a brevity penalty to penalize overly short outputs.
BLEU is defined as:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
where pn is the precision of n-grams, wn are weights

(typically uniform), and BP is the brevity penalty:

BP =

{
1 if c > r

e(1−r/c) if c ≤ r

with c and r representing candidate and reference lengths,
respectively.

C. Privacy Leakage: SPriV

To directly quantify residual privacy risk in model outputs,
we use the SPriV (Sensitive Privacy Violation) score [11].
SPriV measures the proportion of ground-truth PII tokens that
remain unmasked in the generated output, normalized by the
total number of output tokens.

Let G = [g1, g2, . . . , g|G|] be the generated output sequence
of length |G|, and let T ⊆ {1, 2, . . . , |G|} denote the set of
token indices corresponding to PII tokens in the ground-truth
annotations.

We define an indicator function mi ∈ {0, 1} for each token
gi as:

mi =

{
1 if i ∈ T and gi is not masked
0 otherwise

Then, the SPriV score is computed as:

SPriV =

∑|G|
i=1 mi

|G|
A SPriV score of 0 indicates perfect masking of all sensitive

content, while higher values reflect greater privacy leakage.
This makes SPriV a critical metric for evaluating redaction
systems deployed in compliance-sensitive or high-risk envi-
ronments.

D. Cross-Domain Generalization:

To evaluate the generalization capability of PII Redaction
models, we perform a cross-domain assessment in which
models trained solely on English-language data from the
Ai4Privacy-300K dataset are tested on novel domains and
languages without any additional fine-tuning. The training data
consists of PII-annotated English text drawn from structured
domains such as email, chat logs, and customer service
records. For evaluation, we use the more diverse Ai4Privacy-
500K benchmark, which includes documents from hetero-
geneous domains such as legal, medical, web, and social
media. In addition to domain variation, we assess cross-
lingual transfer by evaluating model performance on manually
annotated Spanish and Italian subsets. These examples are
either professionally translated or synthetically generated from
English templates, with PII spans verified and re-aligned for
language-specific morphology. All evaluations are conducted
using the same span-level and sequence-level metrics defined
in Section V. Results are discussed in Section VI-H.

TABLE II: Span-Correct Evaluation: Metrics reflect detection
of correct PII spans regardless of label accuracy. Precision and
recall are computed from edit-distance alignment with span-
only matching.

Model Accuracy Precision Recall

BERT-NER 0.986 0.907 0.982

Fine-Tuned

Llama3.1-8B 0.986 0.915 0.969
T5 0.883 0.727 0.830
Llama3.2-3B 0.843 0.429 0.689
DeepSeek-Q1 0.993 0.963 0.978
Mixtral 0.988 0.940 0.957

Instruction-Tuned

Llama3.1-8B 0.992 0.975 0.962
Llama3.2-3B 0.983 0.942 0.909
DeepSeek-Q1 0.994 0.973 0.981
Mixtral 0.973 0.937 0.834

RAG

Llama3-8B 0.930 0.827 0.717
Llama3.2-2B 0.919 0.751 0.657
DeepSeek-Q1 0.878 0.628 0.521
Mixtral 0.939 0.803 0.776
GPT-4 0.975 0.886 0.900
OpenAI-o3 0.970 0.880 0.860
FalconMamba 0.884 0.688 0.443

VI. RESULTS AND ANALYSIS

We analyze our experimental findings along four practical
axes: training efficiency, inference latency, architectural trade-
offs between scale and efficiency, and the impact of different
adaptation paradigms. These results illuminate the operational
and strategic implications of deploying PII Redaction systems



across real-world environments with varying resource con-
straints.

TABLE III: Label-Exact Evaluation: Metrics reflect strict
matching of both span and entity label. Mislabel # indicates
type errors on correctly identified spans.

Model Mislabel # Accuracy Precision Recall

BERT-NER 195 0.986 0.904 0.982

Fine-Tuned

Llama3.1-8B 2974 0.985 0.835 0.936
T5 1211 0.884 0.700 0.825
Llama3.2-3B 2005 0.836 0.269 0.513
DeepSeek-Q1 3033 0.992 0.925 0.953
Mixtral 4324 0.987 0.773 0.831

Instruction-Tuned

Llama3.1-8B 2968 0.992 0.949 0.922
Llama3.2-3B 2673 0.982 0.889 0.832
DeepSeek-Q1 3047 0.994 0.945 0.960
Mixtral 3640 0.972 0.785 0.553

RAG

Llama3-8B 869 0.926 0.780 0.653
Llama3.2-3B 768 0.916 0.683 0.578
DeepSeek-Q1 818 0.874 0.509 0.400
Mixtral 865 0.936 0.750 0.718
GPT-4 1209 0.974 0.873 0.857
OpenAI-o3 1035 0.970 0.851 0.830
FalconMamba 468 0.883 0.620 0.366

A. Summary of Evaluation Results

We analyze model performance across span-level correct-
ness, label fidelity, output fluency, and privacy leakage, draw-
ing from Table II, Table III, and Table IV. Instruction-
tuned models, particularly DeepSeek-Q1 and Llama3.1-8B,
consistently demonstrate strong span-level accuracy. In Span-
Correct evaluation, instruction-tuned DeepSeek-Q1 achieves
the highest overall accuracy (0.994) and recall (0.981), while
Llama3.1-8B attains the highest precision (0.975), highlighting
its conservative masking behavior. These results indicate that
with instruction tuning, models can reliably identify PII spans
even under relaxed evaluation criteria.

Under the stricter Label-Exact evaluation, which penal-
izes incorrect type assignments, performance drops across
the board. Nonetheless, instruction-tuned DeepSeek-Q1 re-
tains top performance with the highest accuracy (0.994)
and recall (0.960), and Llama3.1-8B again leads in preci-
sion (0.949). Mislabeling errors are substantial for fine-tuned
models—DeepSeek-Q1 (fine-tuned) shows over 3,000 mis-
labels—while instruction-tuned variants reduce this number,
suggesting better semantic understanding of entity types.

Sequence-level metrics highlight the generative fluency and
structure of the redacted outputs. T5 achieves the highest
ROUGE-1/2/L scores (0.940 / 0.857 / 0.934), indicating
close structural alignment with reference outputs. However,
instruction-tuned DeepSeek-Q1 achieves the best BLEU score
(0.908) and the lowest SPriV score (0.002), balancing fluency
with privacy robustness. SPriV results show that some models,

such as Llama3.2-3B (RAG) and FalconMamba, exhibit signif-
icant leakage despite producing grammatically fluent outputs.

Overall, instruction tuning proves critical to redaction ef-
fectiveness. Instruction-tuned models outperform fine-tuned
and retrieval-augmented counterparts across all dimensions,
demonstrating superior span detection, label precision, struc-
tural fidelity, and minimized privacy leakage.

TABLE IV: Sequence-Level Metrics: ROUGE and BLEU
measure structural fidelity of the masked output; SPriV quan-
tifies proportion of redacted PII tokens.

Model ROUGE-1/2/L BLEU SPriV

Fine-Tuned

Llama3.1-8B 0.915 / 0.847 / 0.915 0.872 0.003
T5 0.940 / 0.857 / 0.934 0.830 0.024
Llama3.2-3B 0..602 / 0.544 / 0.598 0.497 0.036
DeepSeek-Q1 0.915 / 0.845 / 0.915 0.906 0.002
Mixtral 0.876 / 0.781 / 0.876 0.864 0.004

Instruction-Tuned

Llama3.1-8B 0.910 / 0.842 / 0.910 0.882 0.004
Llama3.2-3B 0.911 / 0.843 / 0.911 0.882 0.010
DeepSeek-Q1 0.915 / 0.846 / 0.915 0.908 0.002
Mixtral 0.855 / 0.750 / 0.854 0.837 0.019

RAG

Llama3.1-8B 0.841 / 0.777 / 0.837 0.743 0.028
Llama3.2-3B 0.792 / 0.713 / 0.784 0.740 0.205
DeepSeek-Q1 0.645 / 0.556 / 0.631 0.607 0.027
Mixtral 0.840 / 0.769 / 0.835 0.799 0.028
GPT-4 0.928 / 0.881 / 0.929 0.900 0.011
OpenAI-o3 0.810 / 0.688 / 0.800 0.720 0.016
FalconMamba 0.734 / 0.649 / 0.721 0.659 0.024

B. Taxonomy of redaction Errors

To understand model behavior beyond aggregate scores, we
analyze common failure modes observed across model outputs.
These error patterns correspond to specific degradations in
performance in the metrics reported in Tables II, III, and IV.

1) Overredaction (False Positives): Redacting non-PII con-
tent due to superficial lexical signals (e.g., capitalization,
rarity) leads to reduced precision.
Input: I met them at Quantum Bistro near the
coast.
Prediction: I met them at <ORG> near the
coast.

This is frequent in low-capacity models such as Mixtral-
RAG and FalconMamba, whose relaxed precision scores
fall below 0.71 in Table II.

2) Underredaction (False Negatives): Failure to redact
valid PII—often due to ambiguous phrasing or domain-
specific patterns—leads to direct privacy leakage.
Input: Here’s what Jordan emailed on the 22nd.
Prediction: Here’s what Jordan emailed on
<DATE>.



Models like Llama3.2-3B exhibit high SPriV scores (0.75
in Table IV), indicating incomplete coverage despite
fluent output.

3) Mislabeling (Type Confusion): Models correctly iden-
tify PII spans but assign incorrect labels, which affects
strict evaluation metrics.
Input: You can reach me at stanford.edu
Prediction: You can reach me at <ORG>
Ground truth: <EMAIL>

Finetuned models like Llama3.1-8B and DeepSeek-Q1
show high mislabel counts (3120 and 2764 in Table III)
and strict precision below 0.92 despite high span accu-
racy.

4) Mask Drift and Hallucination: Some generative models
hallucinate mask tokens in contexts that contain no actual
PII, often due to weak grounding.
Input: Thank you for your interest.
Prediction: Thank you for your interest,
<NAME>!

These errors inflate SPriV and reduce relaxed precision,
particularly in RAG variants (Table IV).

C. Training Resource Requirements

We benchmark GPU time against F1 score to evaluate
fine-tuning efficiency across models and tuning strategies. All
experiments were conducted on two 48GB NVIDIA RTX 6000
GPUs. As shown in Fig. 3, and detailed in Table VIII, mod-
els like DeepSeek-Q1(IT), LLaMA 3.1–8B(IT), and LLaMA
3.2–3B(IT) lie in the top-left quadrant, demonstrating strong
performance with low GPU time. Mixtral(IT) achieves high F1
but incurs the largest compute cost. T5(FT), despite moderate
GPU usage, underperforms significantly in F1. Fine-tuned
variants such as DeepSeek-Q1(FT) and LLaMA 3.2–3B(FT)
strike a good balance, while instruction-tuned models tend to
yield better F1 efficiency.

D. Inference Latency and Cost

We evaluate a range of model architectures across fine-
tuning and instruction-tuning setups by measuring their F1
score against average inference latency for generating 150
tokens. The trade-off is visualized in Fig. 4, with results
detailed in Table IX. Models in the top-left quadrant, such
as LLaMA 3.1–8B(FT), LLaMA 3.2–3B(FT), and DeepSeek-
Q1(FT), achieve strong performance with low latency, rep-
resenting the best efficiency-accuracy trade-off. GPT-4 and
Mixtral(FT) exhibit high F1 but at higher computational cost.
Instruction-tuned models generally show reduced F1, with
T5(FT) notably underperforming in both metrics.

E. Model Scale vs. Efficiency

We analyze the relationship between model size (in bil-
lions of parameters) and F1 score across both fine-tuned and
instruction-tuned setups. As shown in Fig. 5, the x-axis is
log-scaled to capture size differences across multiple orders
of magnitude. Several smaller models—such as DeepSeek-
Q1(IT), DeepSeek-Q1(FT), and LLaMA 3.2–3B(FT)—achieve

Fig. 3: This graph visualizes the trade-off between GPU usage
and model performance. All experiments were run on two 48GB
NVIDIA RTX 6000 GPUs. The plot is divided into quadrants:
the top-left represents the optimal trade-off—high performance with
low GPU usage. The top-right indicates high performance at high
computational cost, while the bottom-left reflects both low resource
usage and low performance.

Fig. 4: This plot illustrates the trade-off between inference latency
(ms) and F1 score for generating 150 tokens. Models are categorized
by training strategy (FT: fine-tuned, IT: instruction-tuned). The top-
left quadrant indicates the optimal balance—high F1 with low latency.
The top-right captures high-performing but slower models, while the
bottom-right reflects both high latency and low performance, notably
T5(FT).

strong F1 scores, demonstrating that compact architectures can
yield highly competitive performance. GPT-4 and Mixtral(FT),
while significantly larger, also deliver high F1, illustrating
that size still correlates with top-end performance. T5(FT)
and instruction-tuned LLaMA models underperform relative
to their size, appearing in the lower quadrants. Overall, fine-
tuned variants show better efficiency, and some small models
rival larger counterparts, suggesting that optimal tuning and
architecture selection may outweigh raw scale for certain tasks.



Fig. 5: This plot illustrates the trade-off between model size (in bil-
lions of parameters) and F1 score. The x-axis uses a log scale. Models
in the top-left quadrant achieve high F1 with compact architectures,
including DeepSeek-Q1(IT), LLaMA 3.2–3B(FT), and DeepSeek-
Q1(FT). The top-right quadrant includes larger, high-performing
models such as GPT-4 and Mixtral(FT). T5(FT) and instruction-
tuned LLaMA variants lie in the lower quadrants, reflecting reduced
performance despite varied model size.

F. Impact of Training and Inference Paradigm

We analyze how different training strategies affect model
performance under equal parameter budgets. Table V shows
a side-by-side comparison of Llama3.2-3B and DeepSeek-Q1
under all adaptation methods. Instruction tuning consistently
improves both span and label accuracy, while reducing misla-
bels and SPriV. RAG methods improve structural fluency but
provide less consistent gains in label fidelity or privacy pro-
tection, highlighting the importance of task-specific instruction
design over raw retrieval.

TABLE V: Effect of training paradigms on redaction perfor-
mance. FT = Fine-Tuned, IT = Instruction-Tuned, RAG =
Retrieval-Augmented Generation. Metrics include span-level
accuracy, label-level accuracy, number of mislabels, and SPriV
score.

Model (Adaptation) Span Acc. Label Acc. Mislabels SPriV

Llama3.2-3B (FT) 0.843 0.836 2005 0.036
Llama3.2-3B (IT) 0.992 0.992 2968 0.010
Llama3.2-3B (RAG) 0.919 0.916 768 0.028

DeepSeek-Q1 (FT) 0.993 0.992 3033 0.002
DeepSeek-Q1 (IT) 0.994 0.994 3047 0.002
DeepSeek-Q1 (RAG) 0.878 0.874 818 0.027

G. Comparison with Baseline (Vanilla)

We analyze the performance of vanilla open-source models
as baselines, observing their difficulty in consistently adhering
to instructions and producing format-compliant outputs. Fre-
quently, these models failed to generate the requested masked
sentences, indicating limitations in their raw pretrained capa-
bilities without targeted fine-tuning. Consequently, evaluation
was restricted to sequence-level metrics such as ROUGE and

BLEU due to the inconsistency of generated responses. Ta-
ble VI summarizes these baseline results, providing context
to the improvements observed through fine-tuning, instruction
tuning, and RAG.

TABLE VI: Baseline (Vanilla) performance comparison. Met-
rics include ROUGE-1/2/L and BLEU scores.

Model ROUGE-1/2/L BLEU

LLama3.1-8B (Vanilla) 0.431/0.338/0.405 0.286
LLama3.1-8B (IT) 0.910/0.842/0.910 0.882

DeepSeek-Q1 (Vanilla) 0.272/0.179/0.236 0.163
DeepSeek-Q1 (FT) 0.915/0.845/0.915 0.906

GPT-4 (Vanilla) 0.540/0.342/0.529 0.325
GPT-4 (RAG) 0.928/0.881/0.929 0.900

H. Cross-Domain Generalization

We evaluate the robustness of models to cross-domain
generalization by testing on three out-of-distribution datasets: a
smaller held-out Spanish set, a smaller held-out Italian set, and
an external English dataset that was not used during training
or RAG construction. Across domains, LLMs demonstrated
strong generalization on Spanish and Italian sets, benefiting
from structural and semantic alignment with the original
training data. Furthermore, BERT-NER limitations on unseen
languages and sentence structures during training are reflected
in its low performance compared to the more robust LLMs.
However, SPriV is not seen to be affected because of the
tendency of BERT-NER to over-mask. Table VII summarizes
these results.

TABLE VII: Cross-Domain generalization performance using
span-exact evaluation.

Model Accuracy Precision Recall SPriV

Spanish

BERT-NER 0.845 0.408 0.885 0.013
Llama3.1-8B (IT) 0.984 0.981 0.878 0.014
DeepSeek-Q1 (FT) 0.984 0.927 0.942 0.006
GPT-4 (RAG) 0.974 0.856 0.942 0.006

Italian

BERT-NER 0.721 0.301 0.915 0.012
Llama3.1-8B (IT) 0.993 0.964 0.966 0.002
DeepSeek-Q1 (FT) 0.993 0.996 0.989 0.001
GPT-4 (RAG) 0.967 0.865 0.921 0.011

External Dataset

BERT-NER 0.878 0.663 0.737 0.053
Llama3.1-8B (IT) 0.922 0.826 0.700 0.046
DeepSeek-Q1 (FT) 0.915 0.866 0.687 0.064
GPT-4 (RAG) 0.934 0.914 0.776 0.045

VII. CONCLUSION

We present a comprehensive study of large language models
(LLMs) for contextual redaction of personally identifiable
information (PII) in unstructured text. Our evaluation across
model architectures, training paradigms, and inference strate-
gies reveals that instruction-tuned and fine-tuned open-source



models achieve high accuracy, low latency, and minimal pri-
vacy leakage. Instruction tuning emerges as the most effective
adaptation strategy, while smaller models like DeepSeek-Q1
offer strong performance at lower computational cost. RAG
improves fluency but is less reliable for strict redaction needs.
Cross-lingual and cross-domain evaluations confirm that LLM-
based redactors generalize well with minimal task-specific
tuning. As a core contribution, we release PRvL, a fully
open-source toolkit that includes fine-tuned models, evaluation
metrics, and deployment-ready utilities for secure, compliant
redaction. PRvL supports instruction tuning, RAG, and domain
customization, enabling end-to-end privacy-preserving work-
flows without relying on third-party services. Our findings
establish a strong empirical foundation for building accurate,
efficient, and trustworthy redaction systems using open LLMs.
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VIII. APPENDIX

TABLE VIII: Training resource requirements: GPU hours and
peak memory usage per model

Model (Adaptation) GPU Hours Peak Memory (GB)

T5 4 h 19 GB
Llama3.2-3B 1 h 10 mins 5.5 GB
Llama3.1-8B 2 h 30 mins 10 GB
DeepSeek-Q1 3h 10 mins 14 GB
Mixtral 13 h 43 GB

TABLE IX: Inference latency per model. Latency is average
milliseconds per 150 tokens.

Model (Adaptation) Latency (ms) Tokens/sec

T5 3000 50
Llama3.2-3B 1667 90
Llama3.1-8B 1648 91
DeepSeek-Q1 1456 102
Mixtral 5000 30
OpenAI-o3 1546 97
Falcon-Mamba- 7B 2500 60
GPT-4 7895 19

LIST OF SUPPORTED PII LABELS
[STREET] [USERNAME]
[GEOCOORD] [GIVENNAME1]
[SOCIALNUMBER] [GIVENNAME2]
[TEL] [CARDISSUER]
[TITLE] [EMAIL]
[PASSPORT] [BUILDING]
[PASS] [IP]
[COUNTRY] [CITY]
[SEX] [POSTCODE]
[BOD] [SECADDRESS]
[LASTNAME3] [STATE]
[TIME] [LASTNAME1]
[LASTNAME2] [DATE]
[IDCARD] [DRIVERLICENSE]

RAG Prompt Example

Instruction:
Below is a sentence-to-mask and examples of unmasked
- masked sentences. Based on the examples, write a privacy
protection version of sentence-to-mask in the form of a
masked-sentence.
Sensitive information should be replaced by placeholders like
[NAME], [EMAIL], [ORG], etc.
Always put your response after masked-sentence:

Examples:
Example 1:
unmasked: Alice went to Stanford University.
masked: [NAME] went to [ORG].

Example 2:
unmasked: Bob emailed me at bob@gmail.com.
masked: [NAME] emailed me at [EMAIL].

Example 3:
unmasked: Carla was born on May 4, 1990.
masked: [NAME] was born on [DATE].

End of examples

Sentence-to-mask:
John registered for the app with email 1909@gmail.com

masked-sentence:
[NAME] registered for the app with email [EMAIL]
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