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Abstract

Typical multiparty semi-quantum secret sharing (MSQSS) protocols require the dealer to
possess full quantum capabilities, while the classical users usually need to perform three op-
erations. To address this practical limitation, this paper introduces a new mediated MSQSS
protocol that enables Alice, a classical user, to share a secret with M classical Bobs, with the
assistance of an untrusted third party (TP) who may attempt any possible attack to steal
Alice’s secret. Furthermore, the classical participants require only two capabilities instead
of three, namely: (a) performing measurements in the Z basis; and (b) reordering qubits.
The proposed scheme offers significant advantages over existing mediated QSS protocols:
(1) it is the first mediated SQSS protocol to adopt single qubits, instead of entangled states,
as the quantum resource, which makes it more practical and easier to implement; (2) It
achieves higher qubit efficiency. Security analysis also demonstrates that the protocol is
secure against well-known attacks.

Keywords— Semi-quantum cryptography; Multiparty mediated semi-quantum secret sharing; sin-
gle qubits; Dishonest third party.

1 Introduction
Secret sharing is a procedure that allows a dealer to share a secret among several participants. Invented
independently by Shamir [19] and Blakley [2] in 1979, it involves splitting the secret into multiple
parts (called shadows) and distributing them to the participants. This is done in such a way that no
individual part reveals any intelligible information about the original secret. Only when a sufficient
number of participants combine their shadows can the secret be reconstructed. The security of classical
secret sharing (CSS) protocols relies on computational complexity and hard mathematical problems,
which makes them vulnerable to quantum computing attacks [6, 17]. On the other hand, quantum secret
sharing (QSS) can overcome this challenge by relying on the fundamental laws of quantum physics.

In 1999, Hillery et al. [9] introduced the first QSS protocol based on GHZ states. Since then,
numerous QSS protocols and experimental implementations have been proposed [34, 26, 1, 18, 12, 33,
20], leveraging the properties of various quantum resources. However, these protocols typically require
participants to possess full quantum capabilities, which is difficult to achieve in practice [7], as not
everyone can afford expensive quantum devices.

To address this issue, Boyer et al. [5] introduced the concept of a "semi-quantum environment", which
includes two types of users: quantum and classical. According to the definition, quantum users possess
full quantum capabilities, whereas classical users are restricted to performing the following operations:
(1) reflect particles without disturbance; (2) measure qubits in the Z basis {|0⟩ , |1⟩}; (3) prepare qubits
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in the Z basis; and (4) reorder qubits. In 2007, Boyer et al. [5, 3] proposed the first semi-quantum key
distribution (SQKD) protocol. Since then, various SQKD protocols have been developed [35, 4, 25, 27,
11], allowing a quantum user to share secret keys with a classical user. In 2015, Krawec [13] introduced
the mediated model, which involves an untrusted, fully quantum third party (TP) acting as a mediator
to help two classical participants establish a secure key, further reducing the quantum burden on the
users.

In 2011, Li et al. [15] proposed the first semi-quantum secret sharing (SQSS) protocol, in which
a quantum dealer can share secret information with two classical participants using GHZ-type states.
Following this, various SQSS protocols have been proposed [28, 14, 31, 22, 21, 10, 30, 8, 29, 16, 32],
many of which can accommodate multiple participants. Although these protocols are lighter than fully
quantum ones, they share a major restriction: the dealer must always be the quantum user. It is therefore
interesting, from both theoretical and experimental perspectives, to explore whether a classical user can
assume the role of the dealer.

This restriction was first tackled by Tsai et al. [23] in 2021. Their approach, based on the mediated
model and leveraging the properties of GHZ states, introduced the first mediated multiparty quantum
secret sharing (MQSS) protocol. It enables a classical user to securely share a secret with other classical
users, with the assistance of an adversarial, fully quantum third party (TP). However, this protocol
suffers from extremely low qubit efficiency. In 2023, Tsai et al. [24] proposed another mediated MQSS
protocol based on a measurement property of graph states. This new protocol achieves a qubit efficiency
that is 2M−1 times higher than the first scheme, where M is the number of participants. Although
both protocols place all participants on equal footing in terms of capabilities, the TP still requires heavy
quantum resources. In practice, the cost and complexity of generating and maintaining such entangled
states remain prohibitively high. Ideally, protocols where both the TP and the participants require only
minimal quantum capabilities, such as handling single-qubit states, would be far more practical.

To reduce TP’s quantum burden, this paper introduces the first mediated multiparty semi-quantum
secret sharing protocol (MSQSS) based on single qubits. In the proposed scheme, TP is only required to:
(1) generate qubits in the state |+⟩, and (2) measure qubits in the Z = {|0⟩ , |1⟩} and X = {|+⟩ = (|0⟩ +
|1⟩)/

√
2, |−⟩ = (|0⟩ − |1⟩)/

√
2} bases. As for the classical participants, they only need two capabilities:

(a) measuring qubits in the Z basis, and (b) reordering qubits. As a result, our protocol is more practical
for real-world implementation. Furthermore, the use of the qubit reordering operation minimizes the
number of discarded particles in the protocol, resulting in higher qubit efficiency compared to previous
mediated QSS protocols. Our protocol also adopts a circular qubit transmission method, making it
more scalable than tree-based methods, especially in multiparty scenarios. Finally, security analyses
shows that the protocol is secure and can resist well-known attacks, such as the intercept-resend attack,
fake-state attack, entanglement-measure attack, Trojan horse attacks, and collusion attacks.

The remainder of this paper is organized as follows. Section 2 describes the proposed protocol in
detail. Section 2.2 provides a concrete example of the protocol. The security analysis is presented
in Section 3. Section 4 discusses the efficiency analysis and provides a comparison with other similar
schemes. Finally, a conclusion is given in section 5.

2 The proposed protocol
In this paper, we propose a new mediated semi-quantum QSS scheme, where Alice, a classical entity
wants to share a secret with M classical Bobs with the help of an untrusted third-party (TP) who might
attempt any possible attack to steal Alice’s secret without being detected. Namely, Alice is capable to
perform the following operations:

1. Generate and measure qubits in the Z = {|0⟩ , |1⟩} basis.

2. Reorder qubits via different delay lines.

On the other hand, the classical Bobs are only capable of performing two operations, namely:

• Measuring qubits in the Z basis.

• Reordering qubits.

As for TP, he is only required to perform the following operations:
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1. Generate qubits in the state |+⟩ = 1√
2 (|0⟩ + |1⟩).

2. Measure qubits in the X and Z basis, such as

X = {|+⟩ = 1√
2

(|0⟩ + |1⟩), |−⟩ = 1√
2

(|0⟩ − |1⟩)} (1)

The proposed protocol adopts a circular qubit transmission method. Additionally, there exist a
public authenticated classical channel between the participants. Since the TP is considered adversarial,
the classical channel between him and the participants do not necessarily need to be authenticated.

2.1 Steps of the protocols
Let S be a classical bit string that Alice wants to share, with L its length. The procedure of our proposed
MSQSS protocol unfolds as follows:

2.1.1 Step 01: (Preparation by TP)
TP generates a sequence ST P of N = 4L(1 + Mϵ) qubits, where:

• L is the desired length of the final secret key.

• M is the number of participants.

• ϵ is a parameter that satisfies ϵ < 1.

Each qubit in the sequence is prepared in the state |+⟩, and the sequence is then transmitted to
Alice.

2.1.2 Step 02: (Alice’s operations)
Upon receiving the sequence ST P , Alice randomly selects half of the qubits to measure in the Z basis.
She then replaces those qubits with newly generated ones in the same state she found. For convenience,
we refer to those qubits as SIFT particles, and the remaining ones as CTRL particles. Alice ends up
with a new sequence, denoted as SA. Before transmitting the sequence to Bob1, Alice reorders randomly
the N qubits. Note that the specific rearrangement order of the qubits is only known to Alice. The
resulting sequence, denoted as S′

A, is then sent to Bob1.

2.1.3 Step 03: (Participants’ operations)
After receiving the sequence S′

A from Alice, Bob1 randomly selects a fraction of size 4Nϵ of the sequence
and performs a Z basis measurement on those qubits. He saves the positions of the measured qubits
along with the corresponding measurement outcomes in his classical register. Next, Bob1 randomly
reorders the remaining qubits, creating a new sequence SB1 , which he sends to Bob2. Upon receiving
the sequence, Bob2 performs the same operations as Bob1 and sends his resulting sequence to the next
Bob. Each subsequent Bob follows the same procedure, except for the last one who sends his sequence
SBM

back to TP.
Note that when N is large enough, it is sufficient for each Bob to select a subset approximately half

the length of the secret to estimate the error rate with Alice. Therefore, setting ϵ = 1/8 or less, for
example, is a choice that is both valid and reasonable.

2.1.4 Step 04: (TP’s operations)
When TP receives the sequence SBM

from BobM , he randomly chooses to measure each qubit in either the
X basis or the Z basis. After performing the measurements, he publicly announces both the measurement
basis and the corresponding outcome for each qubit.
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2.1.5 Step 05: (Eavesdropping check)
In this step, Alice conducts an eavesdropping check with the M participants using the authenticated
public channel. Alice requests all classical participants to reveal the positions of the qubits they measured,
along with their corresponding measurement outcomes as follows:

• Bob1 announces the positions of the qubits he measured as well as the measurement outcome for
each qubits.

• For the remaining participants (Bobi, i ≥ 2), the information must be revealed in the following
manner:

1. Bobi first reveals the positions of the measured qubits.
2. The previous participants, starting from Bobi−1 and moving in reverse order, disclose the

transposition order of these announced qubits, so Alice can accurately perform her security
check.

3. After that, Bobi reveals the corresponding measurement outcome for each qubit.

For each participant, Alice compares the announced measurement outcomes with the corresponding
states in her original sequence.

• For the SIFT particles, Bobi’s (i ≥ 1) outcomes must match the states that Alice found in step
02.

• For CTRL particles, Alice verifies if Bobi’s outcomes are evenly distributed between |0⟩ and |1⟩.

If the error rate for the SIFT qubits or the deviation rate for the CTRL qubits exceeds a preset
threshold, Alice aborts the protocol.

2.1.6 Step 06: (TP’s honesty check)
In this step, Alice verifies the honesty of TP. She begins by requesting BobM to reveal the transposition
order of the qubits that TP measured in the X basis. Each remaining participant, starting from the
last and proceeding in reverse order, then publicly announces the transposition order of these qubits.
Once this is over, Alice publicly announces the position of the CTRL particles in her sequence S′

A.
Following this, Bob1 reveals the transposition order of these qubits, and each remaining participant, in
turn, publicly announces the transposition order for these qubits.

It is important to emphasize that Alice does not reveal her measurement outcomes for the SIFT
qubits, nor does she disclose the correct reordering for these qubits.

Depending on the operation performed by TP and the specific qubit involved, four equally likely
cases arise:

1. Case 01: (X-CTRL) TP performed an X basis measurement on a CTRL qubit. This case is
used for eavesdropping detection. For TP to pass the check, he must consistently announce the
measurement result |+⟩; otherwise, Alice and the participants will abort the protocol.

2. Case 02: (X-SIFT) TP performed an X basis measurement on a SIFT qubit. In this case,
Alice and the participants expect TP to announce both the measurement results |+⟩ and |−⟩ with
equal probability. Alice checks whether the results are evenly distributed, and if the deviation rate
exceeds a predetermined threshold, she aborts the protocol.

3. Case 03: (Z-CTRL) TP performed a Z basis measurement on a CTRL qubit. In this case, Alice
and the participants expect TP to announce both the measurement results |0⟩ and |1⟩ with equal
probability. Alice verifies whether the results are evenly distributed, and if the deviation exceeds
a predetermined threshold, she aborts the protocol.

4. Case 04: (Z-SIFT) TP performed a Z basis measurement on a SIFT qubit. The qubits in this
case are used to establish the secret sharing key. The measurement outcomes announced by TP
correspond to Alice’s original measurement outcomes, that we denoted as KA

i , but are randomly
shuffled due to the reordering performed by Alice and the participants. Alice’s secret key can only
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be reconstructed if Alice and all classical participants cooperate by sharing their transposition
order of these qubits.
To ensure security, Alice randomly selects a few of these bits and reveals their positions. Bob1
then discloses the transposition order of these bits, followed by each remaining participant. Alice
compares TP’s outcomes with her own and if they do not align, the protocol is aborted and
restarted. It is important to note that Alice only reveals the positions of those bits and not the
outcomes.

2.1.7 Step 08: (Secret sharing)
Once Alice confirms the absence of any eavesdropping or dishonest behavior from TP, she discloses
her rearrangement order for the SIFT qubits belonging to Case 04. However, she does not reveal the
corresponding measurement outcomes.

Alice now possess a random bit string KA of length L, which serves her as a secret key. She then
uses Ki to encrypt her secret bit string S as follows:

Ci = Si ⊕ KA
i , for each i ∈ {1, 2, · · · , N} (2)

Alice then announces C through the authenticated classical channel to share her secret information.
When all classical Bobs cooperate by sharing their rearrangement orders, they can reconstruct Alice’s
secret key KA from TP’s measurement outcomes and decrypt C to retrieve her final secret.

2.2 An example
Now, we present an example of the proposed multiparty MSQSS protocol, where Alice intends to share
a secret of length N = 5 with two participants, Bob and Charlie. We take ϵ = 1

6 . In this example, we
suppose that TP and the participants are honest.

2.2.1 TP’s preparation
Suppose TP prepares a sequence of 26 qubits, each in the state |+⟩ and sends it Alice.

2.2.2 Alice’s operations
Upon receiving the sequence, Alice applies the a Z basis measurement to the qubits in positions
(1, 2, 3, 6, 7, 10, 13, 15, 16, 18, 19, 23, 24, 25, 26). After her operations, she can end up with the following
sequence:

SA = {|0⟩1 , |1⟩2 , |1⟩3 , |+⟩4 , |+⟩5 , |0⟩6 , |1⟩7 , |+⟩8 , |+⟩9 , |0⟩10 , |+⟩11 , |+⟩12 ,

|0⟩13 , |+⟩14 , |1⟩15 , |0⟩16 , |+⟩17 , |0⟩18 , |0⟩19 , |+⟩20 , |+⟩21 , |+⟩22 , |1⟩23 , |1⟩24 , |0⟩25 , |1⟩26}. (3)

She shuffles this sequence by the following table:

 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26

 −→

 22 19 15 5 12 14 3 21 4 20
16 6 11 1 8 7 9 13 23 17
18 24 10 2 26 25


(4)

This should read as: first qubit was displaced to position 22, second qubit to position 19, third qubit
to position 15 · · · etc. Therefore, the sequence of qubits turns into:

S′
A = {|+⟩14 , |1⟩24 , |1⟩7 , |+⟩9 , |+⟩4 , |+⟩12 , |0⟩16 , |1⟩15 , |+⟩17 , |1⟩23 , |0⟩13 , |+⟩5 ,

|0⟩18 , |0⟩6 , |1⟩3 , |+⟩11 , |+⟩20 , |+⟩21 , |1⟩2 , |0⟩10 , |+⟩8 , |0⟩1 , |0⟩19 , |+⟩22 , |1⟩26 , |0⟩25}. (5)
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The subscript in each vector refers to the initial position of the qubit in Alice’s original sequence SA. In
the rest of the example, we keep those subscripts to keep track of how Alice’s original qubits are being
reordered.

Alice sends the sequence S′
A to Bob.

2.2.3 Bob’s operations
When Bob receives S′

A, he randomly selects the qubits at the position 3, 25, and 26 to measure in the Z
basis. Therefore, he obtains:

|1⟩7
Measure−→ |1⟩7 , (6)

|1⟩26
Measure−→ |1⟩26 , (7)

|0⟩25
Measure−→ |0⟩25 . (8)

After discarding those qubits from S′
A, Bob ends up with the following sequence:

SB = {|+⟩14 , |1⟩24 , |+⟩9 , |+⟩4 , |+⟩12 , |0⟩16 , |1⟩15 , |+⟩17 , |1⟩23 , |0⟩13 , |+⟩5 ,

|0⟩18 , |0⟩6 , |1⟩3 , |+⟩11 , |+⟩20 , |+⟩21 , |1⟩2 , |0⟩10 , |+⟩8 , |0⟩1 , |0⟩19 , |+⟩22}. (9)

Bob shuffles this sequence by the order:

 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23

 −→

 13 17 15 8 4 5 21 14 12 19
3 2 18 23 10 6 16 9 11 1
22 7 20


(10)

This should read as: first qubit in SB was displaced to position 13, second qubit to position 17 · · · etc.
Therefore, the sequence of qubits turns into:

S′
B = {|+⟩8 , |0⟩18 , |+⟩5 , |+⟩12 , |0⟩16 , |+⟩20 , |0⟩19 , |+⟩4 , |1⟩2 , |+⟩11 , |0⟩10 , |1⟩23 ,

|+⟩14 , |+⟩17 , |+⟩9 , |+⟩21 , |1⟩24 , |0⟩6 , |0⟩13 , |+⟩22 , |1⟩15 , |0⟩1 , |1⟩3}. (11)

Bob proceeds to send this sequence to Charlie.

2.2.4 Charlie’s operations
Charlie randomly selects the qubits at positions 2, 6, and 13 of S′

B to measure in the Z basis, which
means that Charlie measures the qubits |0⟩18, |+⟩20, and |+⟩14, respectively. Charlie can obtain the
following outcomes:

|0⟩18
Measure−→ |0⟩18 , (12)

|+⟩20
Measure−→ |1⟩20 , (13)

|+⟩14
Measure−→ |0⟩14 . (14)

After discarding those qubits from S′
B , she ends up with the following sequence:

SC = {|+⟩8 , |+⟩5 , |+⟩12 , |0⟩16 , |0⟩19 , |+⟩4 , |1⟩2 , |+⟩11 , |0⟩10 , |1⟩23 ,

|+⟩17 , |+⟩9 , |+⟩21 , |1⟩24 , |0⟩6 , |0⟩13 , |+⟩22 , |1⟩15 , |0⟩1 , |1⟩3}, (15)

which she shuffles by the following order:
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(
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

)
−→

(
7 5 1 20 8 18 12 6 15 9
13 10 11 17 16 4 3 19 2 14

)
(16)

Therefore, Charlie ends up with the sequence S′
C as follow:

S′
C = {|+⟩12 , |0⟩1 , |+⟩22 , |0⟩13 , |+⟩5 , |+⟩11 , |+⟩8 , |0⟩19 , |1⟩23 , |+⟩9 ,

|+⟩21 , |1⟩2 , |+⟩17 , |1⟩3 , |0⟩10 , |0⟩6 , |1⟩24 , |+⟩4 , |1⟩15 , |0⟩16}. (17)

Charlie sends this sequence to TP.

2.2.5 TP’s operations
Upon receiving S′

C , TP performs the X basis measurement in the positions (1, 2, 3, 5, 8, 10, 14, 17, 18)
and the Z basis measurement in the remaining positions. Then TP announces his measurement basis for
each qubit as well as his measurement outcomes. If TP is honest, he announces the following sequence:

S′
T P = {|+⟩12 , |−⟩1 , |+⟩22 , |0⟩13 , |+⟩5 , |1⟩11 , |0⟩8 , |+⟩19 , |1⟩23 , |+⟩9 ,

|1⟩21 , |1⟩2 , |0⟩17 , |+⟩3 , |0⟩10 , |0⟩6 , |−⟩24 , |+⟩4 , |1⟩15 , |0⟩16}. (18)

2.2.6 Eavesdropping check
Following Alice’s request, Bob and Charlie announces the positions and outcomes of their selected qubits
as indicated in the steps of the protocol. Alice verifies if their outcomes on the SIFT qubits are aligned
with her own, which is the case in the following situation. and that Charlie’s outcomes on the CTRL
qubits are evenly distributed, which is also satisfied.

It is important to note that Bob must take into account his discarded qubits on SB to determine the
correct corresponding positions of Charlie’s selected qubits.

Based on this verification, Bob and Charlie pass the public discussion.

2.2.7 TP’s honesty check
By using their respective transposition tables (Tables 10 and 16), Bob and Charlie publicly announce, in
reverse order, the correct transposition of the qubits that TP measured in the X basis. Note that they
must account for the discarded qubits in order to determine the correct reordering. Then, after Alice
announces the positions of the CTRL particles, Bob and Charlie publish their transposition orders for
the qubits at those corresponding positions. Based on the operations of Alice and TP, we obtain the
following four subsequences of S′

T P :

1. Subset where TP measured the CTRL qubits in the X basis:

SCX = {|+⟩12 , |+⟩22 , |+⟩5 , |+⟩9 , |+⟩4}. (19)

As we can see, all TP’s measurement results are the state |+⟩ as they should be.
2. Subset where TP measured the SIFT qubits in the X basis:

SSX = {|−⟩1 , |+⟩19 , |+⟩3 , |−⟩24}. (20)

As we can see, we have an even distribution for the states |+⟩ and |−⟩.
3. Subset where TP measured the CTRL qubits in the Z basis:

SCZ = {|1⟩11 , |0⟩8 , |1⟩21 , |0⟩17}. (21)

As we can see, we have an even distribution for the states |0⟩ and |1⟩.
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4. Subset where TP measured the SIFT qubits in the Z basis:

SSZ = {|0⟩13 , |1⟩23 , |1⟩2 , |0⟩10 , |0⟩6 , |1⟩15 , |0⟩16}. (22)

Alice uses the measurement outcomes of the 2nd and 6th qubits of her sequence SA as test bits,
which correspond to the 3rd and 5th qubits of SSZ . As we can see, TP announced the correct
measurement results.

After the eavesdropping detection passes, TP, Bob, and Charlie have access to the following result
(′01010′). By sharing their own rearrangement order, Bob and Charlie can obtain Alice’s bit string
K =′ 00101′.

3 Security analysis
In this section, we examine the security of the proposed protocol. Given that TP possesses greater
capabilities than any external or internal eavesdropper, we focus on the scenario where TP acts as the
primary adversary. To steal Alice’s secret, TP might employ various attacks. Our analysis demonstrates
that the protocol remains secure against well-known strategies, including the fake states attack, intercept-
resend attack, entanglement-measure attack, and Trojan horse attacks. Additionally, we address the
potential threat of collusion, where TP collaborates with one or more participants to compromise Alice’s
secret.

3.1 Fake states attack
In this attack, TP prepares qubits in states other than |+⟩, as required of him in step 1 of the protocol.
Suppose TP prepares his sequence in the Z basis {|0⟩ , |1⟩}. Although this strategy allows him to control
the content of Alice’s secret key, he cannot distinguish the SIFT particles from the CTRL particles.
As a result, although TP’s attack goes undetected during the initial eavesdropping check between Alice
and the participants, it will be detected with probability 1 − (7/8)L during the honesty check. This
probability converges to 1 as L becomes sufficiently large.

3.2 Intercept-resend attack
In this attack, TP attempts to learn the rearrangement order of each participant. To do so, he intercepts
the sequence S′

A sent by Alice to Bob1 and stores it in his quantum memory. He then sends a fake
sequence of particles to each Bobi in turn. After a participant completes his operations, TP intercepts
the fake sequence and measures it in an attempt to deduce the participant’s rearrangement order. Once
TP has retrieved and measured all the fake sequences, he applies the inferred rearrangement orders to
the stored sequence S′

A and sends it back to Alice. However, this attack is bound to fail. To demonstrate
this, we examine the following two strategies:

• The fake sequences are composed of qudits: without loss of generality, suppose that TP prepares
the qubits in his fake sequences in the Z basis. In this scenario, TP cannot distinguish whether two
qubits in the same state but at different positions have been exchanged. For example, consider
the sequence {|1⟩ , |1⟩ , |0⟩ , |0⟩}. If it is reordered to {|1⟩ , |0⟩ , |1⟩ , |0⟩}, TP cannot tell whether
the first |1⟩ remained in place or was moved to the third position. When the sequence is large,
the probability of correctly guessing the transposition order becomes negligible. Furthermore,
this attack would inevitably be detected during the eavesdropping check between Alice and the
participants, since TP’s fake sequences do not match Alice’s original sequence S′

A. As a result, the
participants’ measurement outcomes in step 3 of the protocol would not necessarily align with the
outcomes Alice recorded in step 2. Therefore, TP cannot gain any useful information using this
strategy.

• The fake sequences are composed of qubits: in this strategy, TP uses n-level quantum states to
prepare his fake sequences. To deduce Bob1’s rearrangement order, for instance, TP prepares the
sequence {|0⟩N , |1⟩N , |2⟩N , · · · , |N − 1⟩N }, where the subscript N is to denote that they are N
dimensional vectors. After Bob1 completes his operations, TP retrieves the sequence and measures
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the particles in the Z(N) = {|0⟩N , |1⟩N , · · · , |N − 1⟩N } basis. Since all the states in the sequence
are mutually orthogonal, TP can determine Bob1’s rearrangement order with certainty. If Bob1’s
actions consisted solely of reordering the particles, TP’s strategy would succeed. However, Bob1
also randomly selects a subset of particles to measure in the two-level Z basis {|0⟩ , |1⟩}. In that
case, TP’s attack is bound to be detected since Bob1’s outcomes won’t be aligned with Alice’s
results in step 02 of the protocol. The same reasoning applies to the other Bobs, meaning that
TP cannot obtain any useful information using this strategy without being detected.

3.3 Entanglement-measure attack
The entanglement-measure attack of TP is modeled by the unitary operations (UF , UR), where UF is
used to attack the particles sent by Alice to Bob1, and UR is used to attack the particles sent by BobM

to TP. Note that TP does not attack the particles he sends to Alice, as they do not carry any information
about Alice’s secret or the participants’ secret shadows. Furthermore, TP uses a different auxiliary probe,
denoted as F and R respectively, for each unitary operation. The reason is that, since the sequence sent
by Alice is reordered by the participants, TP cannot determine which ancilla F corresponds to each
retrieved particle.

Theorem 1. Suppose TP performs an attack (UF , UR) on the particles traveling from Alice to Bob1
and from BobM back to him, where F and R are TP’s auxiliary probes. TP introduces no error during
the eavesdropping check if and only if the final states of his probes are independent of his measurement
results on the qubits received by BobM . As a result, TP gains no information about Alice’s shared secret.

Proof. TP intercepts S′
A from Alice and applies UF to each traveling qubit along with its associated

ancilla F , initially prepared in some arbitrary normalized state |f⟩. The composite system then evolves
as follows:

UF (|0⟩ |f⟩) = α |0⟩ |f0⟩ + β |1⟩ |f1⟩ , (23)
UF (|1⟩ |f⟩) = β |0⟩ |f2⟩ + α |1⟩ |f3⟩ , (24)

such as |α|2 + |β|2 = 1, and |fi⟩ are states that TP can distinguish. By linearity, we obtain

UF (|+⟩ |f⟩) = 1√
2

|0⟩
(
α |f0⟩ + β |f2⟩

)
(25)

+ 1√
2

|1⟩
(
β |f1⟩ + α |f3⟩

)
(26)

In order for TP to pass the eavesdropping check between Alice and the participants in Step 05
of the protocol, he must adjust UF accordingly. Specifically, TP must set β = 0 to ensure that the
participants do not obtain invalid outcomes, and α = 1 to satisfy the normalization condition. Under
these constraints, the above equations reduce to:

UF (|0⟩ |f⟩) = |0⟩ |f0⟩ , (27)
UF (|1⟩ |f⟩) = |1⟩ |f3⟩ , (28)

UF (|+⟩ |f⟩) = 1√
2

(
|0⟩ |f0⟩ + |1⟩ |f3⟩

)
(29)

When BobM sends his sequence, TP attaches to each qubit a new probe, initially prepared in some
arbitrary normalized state |r⟩. He then applies the operation (UR ⊗ IF ) to the composite system, which
evolves as follows:

(UR ⊗ IF )(UF |0⟩ |f⟩) = γ |0⟩ |r0⟩ |f0⟩ + δ |1⟩ |r1⟩ |f0⟩ , (30)
(UR ⊗ IF )(UF |1⟩ |f⟩) = δ |0⟩ |r2⟩ |f3⟩ + γ |1⟩ |r3⟩ |f3⟩ , (31)

(32)
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where |γ|2 + |δ|2 = 1, and |ri⟩ are states that TP can distinguish. By linearity, we obtain

(UR ⊗ IF )(UF |+⟩ |f⟩) = 1√
2

|0⟩
(
γ |r0⟩ |f0⟩ + δ |r2⟩ |f3⟩

)
(33)

+ 1√
2

|1⟩
(
δ |r1⟩ |f0⟩ + γ |r3⟩ |f3⟩

)
(34)

If TP wants to pass the honesty check, then the final state of the first register must be identical
to the original state sent by Alice. This implies that TP must satisfy the conditions δ = 0 and γ = 1.
Therefore, UR is now defined as follows:

(UR ⊗ IF )(UF |0⟩ |f⟩) = |0⟩ |r0⟩ |f0⟩ , (35)
(UR ⊗ IF )(UF |1⟩ |f⟩) = |1⟩ |r3⟩ |f3⟩ , (36)

(37)

By linearity

(UR ⊗ IF )(UF |+⟩ |f⟩) = 1
2 |+⟩

(
|r0⟩ |f0⟩ + |r3⟩ |f3⟩

)
(38)

+ 1
2 |−⟩

(
|r0⟩ |f0⟩ − |r3⟩ |f3⟩

)
(39)

To go undetected, TP must set the incorrect terms as a zero vector, specifically:

|r0⟩ |f0⟩ = |r3⟩ |f3⟩ , (40)

which means that

|f0⟩ = |f3⟩ = |F ⟩ , (41)
|r0⟩ = |r3⟩ = |R⟩ . (42)

After inserting Eq. (41) into Eqs. (35-38), we obtain


(UR ⊗ IF )(UF |0⟩ |f⟩) = |0⟩ |R⟩ |F ⟩ ,

(UR ⊗ IF )(UF |1⟩ |f⟩) = |1⟩ |R⟩ |F ⟩ ,

(UR ⊗ IF )(UF |+⟩ |f⟩) = |+⟩ |R⟩ |F ⟩ .

(43)

According to Eq. (43), when TP remains undetected during both the eavesdropping check with the
participants and the honesty check, not only can he not distinguish the final states of his ancillary probes,
but these states are also always independent of the CTRL and SIFT particles. As a result, TP obtains
no information about Alice’s shared secret key.

3.4 Trojan horse attack
Quantum Trojan horse attacks are common implementation attacks, in which TP inserts invisible or
delayed photons into the particles he transmits to Alice. After retrieving these Trojan horse photons,
TP can measure them to extract information about Alice’s operations. He can use the same strategy
with the other participants to obtain their secret shadows. Fortunately, the participants can easily
defend against this attack by using a photon number splitter (PNS) and a wavelength filter device (WF).
Therefore, the proposed protocol is secure against quantum Trojan horse attacks.
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3.5 Collusion attack
In this attack, TP collaborates with some dishonest participants to obtain Alice’s secret. Without loss
of generality, consider the extreme scenario where only Bobi (along with Alice of course) is honest.
A first strategy is to guess Bobi’s reordering. However, since the permutation is chosen randomly and
independently of the other Bobs, the probability of guessing it correctly is 1/n!, which becomes negligible
as n grows large.

A second strategy is for TP to still apply the attacks previously described, while the M −1 dishonest
Bobs announce fake transposition orders in an attempt to avoid detection during the eavesdropping and
honesty checks. However, this strategy will inevitably fail. First, TP and the dishonest Bobs do not know
which qubits Bobi will choose to measure in the Z basis, nor their states. Furthermore, they cannot
distinguish the CTRL qubits from the SIFT qubits in Alice’s sequence S′

A, as Alice only discloses this
information after all Bobs have revealed the transposition orders of the X-CTRL qubits. As a result,
the fake transposition orders will introduce errors during both the eavesdropping and honesty checks,
causing the protocol to be aborted.

Overall, our protocol is secure against collusion attacks.

4 Efficiency analysis and comparison
In this section, we analyze the efficiency of the proposed protocol and compare its performance with
existing multiparty mediated QSS protocols. The efficiency of our scheme, as well as those presented in
Refs. [23, 24], can be calculated using the following formula:

η = c

q + b
, (44)

where c is the length of the final secret key, q is the number of qubits generated by TP, and b is the number
of qubits generated by the classical participants. In the proposed scheme, TP generates q = 4L(1 + Mϵ)
qubits. Alice measures approximately half of these qubits in the Z basis and replaces them with newly
generated ones in the same states she observed. Since she is the only classical participant who generates
qubits, we have b = 2L(1 + Mϵ). As for the M Bobs, they select altogether 4LMϵ qubits to measure
and forward the rest to TP. At the end, only the Z-SIFT qubits are used as the final secret key, thus
c = L. The qubit efficiency becomes:

η = 1
6 + Mϵ

, (45)

We now compare the proposed protocol with other multiparty mediated QSS protocols. The com-
parison is drawn from four perspective: quantum resources, quantum capabilities of the participants,
communication structure, and qubit efficiency. The results are summarized in Table 1.

Table 1: Comparison of proposed protocol with other Mediated MQSS schemes.

Protocol Quantum
resources

Capabilities of
classical participants

Communication
structure

Qubit
efficiency

Tsai et al. [23] GHZ states 1. Measure {|0⟩ , |1⟩}
2. Perform Hadamard H

One-way
1

2M+1(M + 1)

Tsai et al. [24] Graph states
1

4(M + 1)

Our protocol Single qubits 1. Measure {|0⟩ , |1⟩}
2. Reorder qubits Circular

1
6(1 + Mϵ)

In terms of quantum resources, the protocols of Tsai et al. [23, 24] require TP to generate multi-
particle GHZ states and complete graph states, which are difficult to produce and maintain. In contrast,
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our protocol requires TP only to prepare |+⟩ states and to perform single-qubit measurements in the
X and Z bases. This significantly reduces TP’s quantum overhead, making the proposed protocol more
practical and feasible in terms of implementation.

Figure 1: Qubit efficiency of the different schemes for different numbers of Bobs.

Regarding communication structure, our protocol uses a circular qubit transmission method, whereas
Tsai et al.’s protocols adopt a one-way transmission method. This gives Tsai et al.’s protocols certain
advantages, such as reduced qubit transmission distance. Additionally, it prevents the classical partic-
ipants from needing additional devices to defend against quantum Trojan horse attacks. However, in
terms of qubit efficiency, our protocol exhibits a significant advantage, especially over the protocol that
is based on GHZ states. In Figure 1, we can more clearly compare the efficiency of our protocol for
different values of ϵ with that of Tsai et al.’s protocols as a function of the number of classical Bobs.
Specifically, for the protocol based on GHZ states, the qubit efficiency drops below 1% (i.e. 0.625%)
when the number of classical Bobs reaches 4, which makes the protocol extremely inefficient. As for the
protocol based on graph states, the efficiency of our protocol remains superior regardless of the number
of Bobs when ϵ ≥ 1/2. Note that setting ϵ to this value is an extreme choice. In an ideal case, and
especially when N is large, each Bob taking a small subset no larger than half the length of the secret is
enough to evaluate the error rate with Alice. Therefore, setting ϵ = 1/8 is a very reasonable choice.

Overall, even though Tsai et al.’s protocols shorten the qubit transmission distance and naturally
ward off quantum Trojan horse attacks, our protocol demonstrates higher qubit efficiency and utilizes
far cheaper quantum resources that are easier to handle, making it more feasible and efficient in terms
of implementation. Furthermore, the circular communication structure gives our protocol an advantage
in terms of scalability in the multiparty scenarios.

5 Conclusion
This study introduces the first mediated MSQSS protocol based on single qubits. The protocol allows
classical Alice to share a secret with M classical Bobs. Compared to similar approaches, the quantum
overhead of TP is significantly reduced, and the qubit efficiency is notably improved. As a result, the
proposed scheme is more feasible and efficient in terms of implementation. It is also more practical
than typical standard multiparty SQSS protocols, as (1) Alice does not need to possess full quantum
capabilities, and (2) the classical participants only need to perform two operations (i.e. measuring in
the Z basis and reordering qubits). Furthermore, security analysis shows that the protocol can resist
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common attacks. In future work, it would be interesting to study the behavior of the protocol in the
presence of noise.
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