
Secure and practical Quantum Digital Signatures

Federico Grasselli,1 Gaetano Russo,1 and Massimiliano Proietti1
1Leonardo Innovation Labs – Quantum Technologies, Via Tiburtina km 12400, 00131 Rome, Italy

Digital signatures represent a crucial cryptographic asset that must be protected against quan-
tum adversaries. Quantum Digital Signatures (QDS) can offer solutions that are information-
theoretically (IT) secure and thus immune to quantum attacks. In this work, we analyze three
existing practical QDS protocols based on preshared secure keys (e.g., established with quantum
key distribution) and universal hashing families. For each protocol, we make amendments to close
potential loopholes and prove their IT security while accounting for the failure of IT-secure authen-
ticated communication. We then numerically optimize the protocol parameters to improve efficiency
in terms of preshared bit consumption and signature length, allowing us to identify the most efficient
protocol.

I. INTRODUCTION

Popular public-key digital signature (DS) protocols,
such as the digital signature algorithm (DSA) [1] and the
elliptic curves DSA [2], can be broken by large-scale fault-
tolerant quantum computers. The new post-quantum DS
standards FIPS 204 [3] and FIPS 205 [4] are not (yet) ef-
ficiently attackable by quantum computers, but their se-
curity is still based on computational assumptions. Con-
versely, the appeal of quantum digital signatures (QDS)
lies in their information-theoretic (IT) security, i.e., se-
curity against computationally unbounded adversaries,
analogously to quantum key distribution (QKD).

DSs based on a public-key infrastructure can be ver-
ified by any user by simply retrieving the public key of
the sender, which requires a trusted third party (a cer-
tificate authority) certifying that the public key actually
belongs to the sender. Conversely, QDS schemes aiming
at IT security do not rely on a trusted authority and may
require pairwise preshared keys between all users, which
can limit the number of users able to verify a signature.
For this reason, QDS schemes have been mostly analyzed
in the simplest non-trivial scenario, i.e. a tripartite sce-
nario with a sender, a receiver and an additional verifier.

The first QDS was proposed in 2001 by Gottesman and
Chuang [5], with challenging experimental requirements
such as quantum memories, secure quantum channels and
swap tests. Later protocols removed the requirement of
quantum memories but were still based on authenticated
– hence secure1– quantum channels [6]. In 2016, more
practical QDS schemes were proposed without the need
of secure quantum channels [7, 8]. However, the scheme
in Ref. [7] is not proved secure under the more general
type of attacks. Anyways, the main drawback of previous
QDS schemes, including Refs. [7, 8], is that they can only
sign single-bit messages, thus resulting inefficient for long
messages.

1 Note that an authenticated quantum channel must be also a pri-
vate channel. Indeed, any attempt to learn about the quantum
state traveling in the channel leads to a modification of the state,
which implies the channel is no longer authentic. Hence, authen-
ticity implies privacy for quantum channels.

To overcome the security and efficiency limitations of
previous QDS proposals, three promising QDS schemes
have been proposed, respectively by Yin et al. in Ref. [9],
by García Cid et al. in Ref. [10] and by Amiri et al. in
Ref. [11]. These schemes can sign arbitrarily long docu-
ments with relatively short signatures, thereby improving
on the efficiency of previous proposals by several orders
of magnitude. The quantum nature of these schemes lies
in leveraging preshared QKD keys (and universal hash-
ing families) to achieve IT security –except for Ref. [10],
due to the use of computationally secure hash functions.

Recently, the protocol by Yin et al. was further de-
veloped to remove the need for privacy amplification [12]
and also error correction [13] in the QKD protocols pre-
ceding the signature scheme. In parallel, the protocol by
García Cid et al. was improved in Ref. [14] in terms of se-
curity bounds and signature length, though still lacking
the IT security of the other two protocols. The proto-
col by Amiri et al. was modified in Ref. [15], where the
authors improve the scalability of the protocol for large
networks of receivers by introducing a smaller and rel-
atively trusted subnetwork that is tasked with verifying
the signatures on the proxy of all other nodes. In the
process, the authors also close a security loophole of the
original protocol [11] and prevent dishonest coalitions of
receivers from enforcing non-transferability by limiting
the number of dishonest users compared to Ref. [11].

On the experiments side, Refs. [16] and [17] report
the first experimental realization of a QDS protocol with
discrete and continuous variable encoding, respectively.
More recent experiments [9, 18, 19] implemented effi-
cient QDS schemes [11, 12] in realistic quantum networks,
demonstrating multiple contract signatures within one
second [19].

In this work, we perform an in-depth analysis of the
three seminal protocols from Refs. [9–11], by paying par-
ticular attention to the use of authenticated channels.
This entails, for each protocol, reviewing which commu-
nication steps require authentication in order to avoid
security loopholes, followed by proving their IT security
while taking into account the failure of IT-secure authen-
ticated channels, unlike previous works [9–15]. In the
process, we also tighten the security bounds compared

ar
X

iv
:2

50
8.

05
35

5v
1

 [
qu

an
t-

ph
]

 7
 A

ug
 2

02
5

https://arxiv.org/abs/2508.05355v1

2

to those derived in Refs. [9–11], where possible. In the
case of the protocol by García Cid et al. [10], we pro-
pose a modified protocol which achieves IT security by
replacing computationally secure hashes with ε-almost
XOR universal2 hash families [20]. For the protocol by
Amiri et al. [11], we address the security loophole raised
in Ref. [15] with a complementary approach to that of
Ref. [15].

After having established the IT security of the three
protocols from Refs. [9–11] on an equal footing, we com-
pare their performance in a tripartite scenario of one
sender and two receivers. In particular, we numerically
optimize their parameters when signing documents of
various sizes at a given security threshold and deduce
which protocol is more efficient in terms of consumed
preshared bits and length of the signature. In doing so,
we account for the preshared bits needed to agree on
universal hashing functions, to establish secret commu-
nication with one-time pad encryption, and to establish
the IT-secure authenticated channels.

The paper is organized as follows. In Sec. II we de-
scribe the adversarial scenario and summarize the uni-
versal families adopted by the QDS protocols. In Sec. III
we detail the analyzed QDS protocols and prove their
security. In Sec. IV we benchmark the performance of
the protocols. We provide concluding remarks in Sec. V.
Appendix A contains a proof of IT-secure message au-
thentication while Appendix B details the universal fam-
ilies used in the manuscript. Appendix C contains the
security proofs of the QDS protocol based on Ref. [11].

II. BACKGROUND

In order to analyze the three QDS protocols from
Refs. [9–11] in the tripartite scenario, we adopt a uniform
notation across the protocols to improve readability.

The document to be signed is indicated as Doc and
the corresponding signature is Sig. Together, they form
the document-signature pair {Doc, Sig}. The bit length
of Doc is bM .

In our tripartite scenario, Alice is the sender and pro-
duces the pair {Doc, Sig}, Bob is the receiver of the pair
{Doc, Sig} and Charlie is the honest the verifier. Alice
and Bob can be malicious, but not both at the same time.
Specifically, a malicious Alice can perform a repudiation
attack, in which she wants to convince Charlie that the
pair {Doc, Sig} verified by Bob is not authentic. Alter-
natively, a malicious Bob can perform a forgery attack
where he produces a forged pair {Doc′, Sig′} and wants
Charlie to accept the forged pair. We prove the security
of the analyzed QDS protocols against forgery and repu-
diation attacks, according to the following definitions.

Definition II.1. A QDS protocol is εfor-secure against
forgery attacks if the probability that the protocol does not
abort and that Charlie accepts a pair {Doc′, Sig′} forged
by Bob is at most εfor.

Definition II.2. A QDS protocol is εrep-secure against
repudiation attacks if the probability that the protocol does
not abort and that Charlie rejects a pair {Doc, Sig} ac-
cepted by Bob is at most εrep.

The analyzed QDS protocols [9–11] achieve IT se-
curity with respect to forgery and repudiation attacks
by extending IT-secure message authentication codes –
specifically, Wegman-Carter (WC) authentication based
on universal hashing [21]– to scenarios with multiple re-
ceivers, while making sure that no receiver can pretend
to be the sender. In the considered QDS protocols, Alice
generates the signature by hashing the bM -bit document
with hash functions derived from either an ε-almost XOR
universal2 family or an ε-almost strongly universal2 fam-
ily, generating hashes of bH bits each. We define both
families for completeness below.

Definition II.3. Let FASU = {f : M → B} be a fam-
ily of hash functions. Then, FASU is ε-almost strongly
universal2 (ε-ASU2) if:

∀m1 ̸= m2, ∀ b1, b2 ∈ B

Pr
f∈RFASU

[f(m1) = b1 ∧ f(m2) = b2] ≤
ε

2bH
, (1)

where f ∈R F indicates that the function f is sampled
randomly from the set F and where bH is the bit length
of the elements in B.

Definition II.4. Let FAXU = {f : M → B} be a fam-
ily of hash functions. Then, FAXU is ε-almost XOR
universal2 (ε-AXU2) if:

∀m1 ̸= m2, ∀ b Pr
f∈RFAXU

[f(m1)⊕ f(m2) = b] ≤ ε.

(2)

Note that ε-ASU2 families are a subset of ε-AXU2 fam-
ilies since (1) implies (2).

In Table I we report the two specific families adopted
by the analyzed QDS protocols, summarizing their main
characteristics.

Table I. The two universal hashing families considered in this
manuscript, mapping messages of bM bits to tags of bH bits.
We report the number of preshared key bits consumed to agree
on a specific function of the family and the security parameter.
More details are found in Appendix B.

Family Preshared bits ε-security

FASU 3bH + 2 log2

(
bM
bH

− 1
)

21−bH

FAXU 2bH bM21−bH

Both universal families can be used in a WC authen-
tication scheme to attain IT-secure message authentica-
tion. In brief, suppose that a sender and a receiver share
a random secret string that uniquely identifies a hash
function f from FASU. Then, the sender wishing to send

3

a message m sends the tuple (m, t) to the receiver over
a public channel, where the tag is t = f(m). Let (m′, t′)
be the tuple received the by the receiver. The receiver
accepts the message as authentic if f(m′) = t′. By the
property (1) of ε-ASU2 families, we deduce that an at-
tacker trying to forge a pair (m′, t′) with m ̸= m′ that is
accepted by Bob only succeeds with probability ε [22].

An analogous result can be proved for f ∈ FAXU. In-
deed, if the sender and receiver additionally share a ran-
dom string r and the tag is computed as t = f(m) ⊕ r
(the symbol ⊕ indicates addition modulo 2), the property
(2) of ε-AXU2 families ensures that an attacker forging
a new pair only succeeds with probability ε [20].

Interestingly, as first proposed by WC [21], it is pos-
sible to authenticate n messages using the same hash
function from either family, FAXU or FASU, by OTP-
encrypting the tags with fresh random strings, such that
the attack probability on any of the n messages is still
ε [22]. This procedure is sometimes called key recycling
and we provide a proof of its security when employing
the ε-ASU2 family in Appendix A.

In each QDS protocol, it is implicitly assumed that if
a message sent over the authenticated channel is not suc-
cessfully authenticated, then the protocol aborts (which
is not equivalent to rejecting the signature). In order to
compare the QDS protocols on an equal footing while ac-
counting for the failure of IT-secure authenticated chan-
nels, we assume that all authenticated channels imple-
ment WC authentication with key recycling. Specifically,
we employ functions from the FAXU family (see Table I),
producing hashes of b′H bits that are protected by OTP
with fresh secret bits. Therefore, the number of pre-
shared bits consumed by sending n messages over an au-
thenticated channel is (2+n)b′H , where we also accounted
for the bits required to agree on a specific element from
FAXU.

III. QDS PROTOCOLS

In this section we analyze three practical QDS pro-
tocols based on the protocols introduced in Refs. [9–11].
For each protocol, we provide a detailed description high-
lighting the differences with respect to its original formu-
lation and a security proof against forgery and repudia-
tion attacks as defined in Sec. II. Our security proofs
account for the failure probability of WC authentication,
unlike their original derivations, while all preshared se-
cret bits are assumed to be perfectly secure.

A. QDS by Yin et al.

The QDS scheme introduced in Ref. [9] resembles a tri-
partite classical DS scheme, where the security is lifted
to IT security by replacing public-key cryptography with
the use of one-time pad (OTP) and one-time universal2

hashing (OTUH), i.e., hash functions from the FAXU

family that are renewed for each document signature.

1. The protocol

We modify the original formulation of the protocol
from [9] such that Charlie always verifies the signa-
ture after receiving the outcome of the verification of
Bob, regardless of Bob accepting it or not. In this
way, Charlie can detect if Bob is a liar who accepts
falsified signatures or rejects original signatures. We
believe this is an additional useful feature of the protocol.

Protocol 1 QDS protocol [9]

1. Distribution stage Alice, Bob and Charlie run a
QKD or quantum secret sharing protocol, in order to
establish secret keys XA for Alice, XB for Bob, and XC

for Charlie, with the property that XA = XB ⊕XC . We
partition each of the keys into two partitions. The first
bH bits of each key is labeled as XbH

A , XbH
B , and XbH

C ,
respectively, while the following 2bH bits are labeled as
X2bH

A , X2bH
B , and X2bH

C . It holds: XA = XbH
A ∪X2bH

A and
similarly for XB and XC .

2. Signing of Alice Alice generates a bH -bit random
string, pa, with elements (pa)i. After associating to pa
the following polynomial over GF(2): pa(x) = xbH +
(pa)bH−1x

bH−1 + · · ·+ (pa)1x+ (pa)0 of degree bH , Alice
checks whether pa(x) is irreducible (see algorithm in Sup-
plementary Material of [9]). If the test is negative, Alice
generates a new random string until the corresponding
polynomial is irreducible. From the irreducible polyno-
mial pa(x) and the key XbH

A , Alice defines a linear feed-
back shift register (LFSR) and obtains the associated
Toeplitz matrix T

pa,X
bH
A

, which is an element of FAXU

(see Appendix B). Then, she computes the bH -bit hash
value of the document: ha = T

pa,X
bH
A

· Doc and the di-
gest: Dig = (ha||pa) as the concatenation of the hash of
the document with the random string pa. Finally, Alice
derives the signature by encrypting the digest with the
secret key X2bH

A via OTP: Sig = Dig ⊕X2bH
A . The cou-

ple {Doc, Sig} is sent to the receiver, Bob, over a public
channel.

3. Verification of Bob Firstly, Bob sends via an authen-
ticated channel the received couple {Doc, Sig} and the
key XB to Charlie. Once Charlie receives the data from
Bob, he sends XC to Bob over the same authenticated
channel. Bob uses the key from Charlie to recover Alice’s
key, by computing: KB = XB⊕XC . Using K2bH

B Bob re-
covers the digest by computing K2bH

B ⊕Sig and retrieves,
in particular, the bit string pb and the hash hb produced
by Alice. Bob generates the LFSR-based Toepliz ma-
trix using pb and the string KbH

B , T
pb,K

bH
B

, and computes
the hash h′

b = T
pb,K

bH
B

·Doc. Bob accepts the signature
if hb = h′

b and informs Charlie by sending him the bit

4

VB = 0 over the authenticated channel. Otherwise, if
hb ̸= h′

b, Bob rejects the signature and sends VB = 1 to
Charlie.

4. Verification of Charlie Charlie uses his key and the
key received from Bob to compute KC = XC ⊕ XB .
Then, he employs K2bH

C and the Sig from Bob to acquire
an expected digest: K2bH

C ⊕Sig, i.e. the bit string pc and
the hash hc produced by Alice. Subsequently, Charlie
generates the LFSR-based Toeplitz matrix T

pc,K
bH
C

and
computes the hash h′

c = T
pc,K

bH
C

· Doc. Charlie accepts
the signature if hc = h′

c, otherwise he rejects it.

2. Security proof

In the following, we rederive the security of Protocol 1
with respect to forgery and repudiation. In doing so,
we account for the potential failure of the authenticated
channel between Bob and Charlie, which was not consid-
ered in the original paper [9]. Moreover, we show that
failing to renew the hash function from FAXU for each
document signature opens a security loophole.

Lemma III.1. Protocol 1 is εfor-secure against forgery
according to Definition II.1, with εfor = bM/2bH−1.

Proof. There are two cases of forgery attacks: 1) Alice
does not sign any document and Bob forges a new pair
{Doc′, Sig′}; 2) Alice sends {Doc, Sig} to Bob and Bob
forges a modified pair {Doc′, Sig′}.

In the first case, Bob has no information from Alice and
in particular no information on Alice’s key X2bH

A . Sup-
pose the worst-case scenario where Bob forwards to Char-
lie a document Doc′ and a digest Dig′ = (h′

a, p
′
a) that

is consistent with the document: h′
a = T

p′
a,X

bH
A

· Doc′.
Charlie will recover the digest Dig′ and hence validate
the signature if and only if Bob correctly guesses the en-
cryption key X2bH

A used to encrypt the digest. Therefore,
the attack will succeed with probability 2−2bH .

In the second case, Bob’s goal is to find a message m
and a hash t such that: t = T

pa,X
bH
A

· m. Indeed, if he
succeeds, he sends {Doc′, Sig′} with Doc′ = Doc⊕m and
Sig′ = Sig⊕(t||0). This pair will be validated by Charlie,
since the expected hash by Charlie is: hc = T

pa,X
bH
A

·
(Doc⊕m) = ha⊕t, which coincides with the hash sent by
Bob in Sig′. Therefore, the goal of Bob coincides with the
goal of an adversary in WC authentication implemented
with the family FAXU, where the tags are protected by
OTP. From Table I, we have that Bob’s attack succeeds
at most with probability bM/2bH−1.

In conclusion, by putting together the two cases, Bob’s
forgery attacks succeed with probability at most εfor =
bM/2bH−1, which concludes the proof.

Lemma III.2. Protocol 1, with bM > bH , is εrep-secure
against repudiation according to Definition II.2, with
εrep = (2bH + bM)/2b

′
H−1.

Proof. Since Bob and Charlie communicate via an au-
thenticated channel and behave honestly, Charlie obtains
the same pair {Doc, Sig} received by Bob and the key
XB . Bob in turn obtains XC . Thus, both Bob and Char-
lie recover Alice’s key: KB = KC = XA. Using XA and
the pair {Doc, Sig}, both Bob and Charlie will reach the
same conclusion about Alice’s signature. Therefore, it is
impossible that they disagree, unless Alice successfully
tampers with the authenticated channel.

Given the implementation of the authenticated chan-
nel described in Sec. II, the probability that Alice suc-
cessfully modifies Bob’s message {Doc, Sig} and XB is
at most (2bH + bM)/2b

′
H−1 and 3bH/2b

′
H−1, respectively.

Similarly, the probability of a successful attack on the
message XC from Charlie is 3bH/2b

′
H−1. Since the pro-

tocol aborts when Alice fails to tamper with the mes-
sages exchanged by Bob and Charlie over the authenti-
cated channel, the maximum probability that the pro-
tocol does not abort and Alice successfully changes an
authenticated message –thereby causing a repudiation–
is given by: εrep = max{(2bH + bM)/2b

′
H−1, 3bH/2b

′
H−1},

which concludes the proof.

Although forgery attacks in Protocol 1 are related to
attacks in WC authentication, there is an important dif-
ference. While in WC authentication a given hash func-
tion can be reused for subsequent messages (key recy-
cling) when the tags are protected by OTP, in Proto-
col 1 this is not possible since the hash function becomes
known to Bob after the protocol execution and Bob is a
potential adversary. This implies that Alice must employ
a new function from FAXU for every new signature, i.e.,
both the initial vector XbH

A and the irreducible polyno-
mial pa must be renewed.

In the following we prove that renewing XbH
A without

renewing pa opens a security loophole. Indeed suppose
Alice chooses the same value for pa to sign multiple doc-
uments. Then, Bob will know pa when he receives the
second document signed by Alice. This enables Bob to
forge a {Doc′, Sig′} pair that will be validated by Char-
lie, thereby making the protocol vulnerable to forgery
attacks.

Lemma III.3. If pa is known to Bob, then he can always
perform a successful forgery attack, i.e., Charlie validates
the pair {Doc′, Sig′} forged by Bob with unit probability.

Proof. To see this, we observe that Bob’s goal is to find a
bM -bit message m and a hash t such that: t = T

pa,X
bH
A

·m.
If he succeeds, he can send {Doc′, Sig′} with Doc′ =
Doc⊕m and Sig′ = Sig⊕ (t||0), which will be validated
by Charlie, since the expected hash by Charlie is: hc =
T
pa,X

bH
A

· (Doc ⊕m) = ha ⊕ t, which coincides with the
hash sent by Bob in Sig′. Now, from the knowledge of
pa, it is easy for Bob to find a valid hash t and message m

5

that satisfy t = T
pa,X

bH
A

·m. For instance, Bob can choose
t = 0 (the null vector). From Theorem 8 in Ref. [20], we
have that:

t = T
pa,X

bH
A

·m

= BDB−1 ·XbH
A , (3)

where B is a non-singular bH × bH matrix that only de-
pends on pa and D is a diagonal matrix with elements
m(λi), where m(x) is the polynomial associated to the
message m and λ1, λ2, . . . , λbH are the bH roots of the ir-
reducible polynomial pa(x) over GF(2bH). Having fixed
t = 0, it is enough for Bob to find a polynomial m(x) such
that BDB−1 is the null matrix, i.e. such that m(λi) = 0
for every i. In other words, Bob wants that every root
of pa(x) (over GF(2bH)) is also a root of m(x). This can
be readily achieved by choosing a message m such that
pa(x) divides m(x), i.e. a polynomial that can be decom-
posed as: m(x) = pa(x) · g(x), where g(x) is an arbitrary
polynomial over GF(2) of degree bM − bH . Then, the
pair t = 0 and the message associated to the polynomial
m(x) = pa(x) · g(x) are such that t = T

pa,X
bH
A

·m holds,
which concludes the proof.

B. QDS by García Cid et al.

In Ref. [10], García Cid et al. propose a tripartite
QDS scheme that combines QKD symmetric keys with
NIST-recommended hash functions, which, however, are
not IT secure, thus preventing the whole QDS scheme
from being so. To make a fair comparison with the other
QDS protocols addressed in this manuscript, we describe
a modified version of the protocol from [10], where we
replace the computationally-secure hash functions with
the FAXU family of hash functions described in Sec. II.
Moreover, we require that Bob forwards the document-
signature pair to Charlie via an authenticated channel,
otherwise Alice could easily enforce a repudiation.

We point out that, in a recent work [23], the authors
modified the original protocol from [10] in order to in-
crease its security and efficiency. Although the scheme
from Ref. [23] closely resembles the version we propose
below, it is still not IT-secure as successful forgery attacks
are always possible by exhaustive search, while this is not
possible in our modified version.

1. The modified protocol

Similarly to the protocol by Yin et al., Alice estab-
lishes symmetric keys with Bob and Charlie with QKD.
However, rather than combining the two keys via the
XOR operation, she concatenates the two keys into a
single key. Similarly to the protocol by Amiri et al., the
protocol requires Bob and Charlie to communicate via
authenticated secret channels and exchange a random

subset of their symmetric keys. In this way, Alice cannot
easily force a repudiation attack by adding noise in
the signature destined to one specific receiver, since
she does not know anymore the key held by each receiver.

Protocol 2 QDS protocol (modified from [10])

1. Distribution stage Alice establishes symmetric keys
with Bob and Charlie. Bob and Charlie exchange random
key blocks.

1.1. Alice runs a QKD protocol with Bob (Charlie) and
establishes a shared secret key XB (XC) of length
3nbH bits, which can be divided into n blocks of
length 3bH each: XB = X1

B ||X2
B ||. . . ||Xn

B for Bob’s
key and as XC = X1

C ||X2
C ||. . . ||Xn

C for Charlie’s
key, where the ” ||” symbol indicates concatenation.
Each block in Bob’s key (Charlie’s key) can be de-
composed as: Xj

B = sjB ||r
j
B (Xj

C = sjC ||r
j
C), where

sjB (sjC) is bH bits long and rjB (rjC) is 2bH bits long.

1.2. Bob (Charlie) selects a random permutation γB ∈
Sn (γC ∈ Sn) from the set Sn of permutations of
n elements and applies the permutation on their
key blocks. Bob obtains the reshuffled key: X ′

B :=

X
γB(1)
B ||XγB(2)

B ||. . . ||XγB(n)
B and Charlie obtains the

reshuffled key: X ′
C := X

γC(1)
C ||XγC(2)

C ||. . . ||XγC(n)
C .

1.3. Bob sends the first n/2 blocks of X ′
B to Charlie

through the authenticated secret channel, together
with their positions: γB(1), . . . , γB(n/2). The posi-
tions can be encoded into (n/2) log2 n bits sent over
the authenticated secret channel. Likewise, Charlie
sends the first n/2 blocks of X ′

C to Bob, together
with the positions γC(1), . . . , γC(n/2).

2. Messaging stage Alice sends the signed message to
Bob, who verifies it and forwards its to Charlie for veri-
fication.

2.1. The message Doc is signed by 2n different hash func-
tions from FAXU, generating 2n signatures. Each
hash function is obtained from a block of Bob’s
or Charlie’s key. For generating the j-th signa-
ture (1 ≤ j ≤ n), Alice generates an LFSR-based
Toeplitz matrix Tpj

B ,sjB
, i.e. an element of FAXU

(see Appendix B), where the initial vector sjB is
taken from the j-th block of Bob’s key XB and
the irreducible polynomial pjB is obtained by ran-
domly selecting a bH -bit string and by checking that
the corresponding polynomial over GF(2), pjB(x) =
xbH + (pjB)n−1x

bH−1 + · · ·+ (pjB)1x+ (pjB)0, is irre-
ducible (see algorithm in Supplementary Material of
[9]). Similarly, for signing the n+ j-th block, Alice
generates the Toeplitz matrix Tpj

C ,sjC
, where pjC(x)

is an irreducible polynomial of degree bH and sjC is
taken from the j-th block of Charlie’s key XC .

6

2.2. Alice generates the signature Sig = Sig1||. . . ||Sig2n
by repeatedly hashing the document and encodes
the hashes with the rjB and rjC keys from Bob’s and
Charlie’s keys. The first n signatures are given by:

Sigj := (Tpj
B ,sjB

·Doc||pjB)⊕ rjB j = 1, . . . , n, (4)

while the following n signatures are given by:

Sigj+n := (Tpj
C ,sjC

·Doc||pjC)⊕ rjC j = 1, . . . , n. (5)

Alice sends the pair {Doc, Sig} to Bob over a public
channel.

2.3. Bob discards all the signatures except those that
he can legitimately verify, i.e. the 3n/2 signa-
tures for which he holds the decryption key, namely,
Sig1, . . . , Sign and Sign+γC(1), . . . , Sign+γC(n/2).
For each signature Sigj , with 1 ≤ j ≤ n, Bob uses
Xj

B to recover the hash of the document and the
irreducible polynomial, by computing Sigj ⊕ rjB =

(h′
j ||p′

j
B). Then, he verifies the signature by check-

ing whether h′
j = Tp′j

B ,sjB
· Doc is satisfied. If not,

Bob rejects Alice’s signature and sends the symbol
⊥ to Charlie over an authenticated channel. Anal-
ogously, for each signature of the form Sign+γC(i),
Bob uses the key X

γC(i)
C received from Charlie to

recover the hash and the irreducible polynomial:
Sign+γC(i) ⊕ r

γC(i)
C = (h′

n+γC(i)||p
′γC(i)
C). Now, Bob

verifies that h′
n+γC(i) = T

p′γC (i)

C ,s
γC (i)

C

·Doc. If this is
not true, Bob aborts and sends ⊥ to Charlie. If Bob
finds no error during verification, he accepts Doc as
original and forwards the pair {Doc, Sig} to Charlie
over an authenticated channel.

2.4. Charlie verifies the signatures independently of
Bob in an analogous way. In particular, he
only verifies the signatures Sign+1, . . . , Sig2n and
SigγB(1), . . . , SigγB(n/2) for which he holds the de-
cryption keys. If Charlie observes more than emax

mismatches out of the 3n/2 verified signatures, he
rejects Alice’s signature, otherwise he accepts the
document as original.

2. Security proof

We prove the security of the modified protocol that we
introduced, Protocol 2, against forgery and repudiation.
In doing so, we account for the potential failure of the
authenticated channel between Bob and Charlie.

Lemma III.4. Protocol 2 is εfor-secure against forgery
according to Definition II.1, with

εfor = Ξ(n/2− emax, n/2, bM21−bH), (6)

where

Ξ(k, n, p) :=

n∑
j=k

(
n

j

)
pj(1− p)n−j . (7)

Proof. There are two cases of forgery attacks: 1) Alice
does not sign any document and Bob forges a new pair
{Doc′, Sig′}; 2) Alice sends {Doc, Sig} to Bob and Bob
forges a modified pair {Doc′, Sig′}.

Let us first discuss case 1). In this case, Bob gen-
erates a document Doc′ and needs to provide Char-
lie with the correct signature. In particular, since
Charlie only verifies a subset of signatures, given
by: Sig′n+1, . . . , Sig

′
2n and Sig′γB(1), . . . , Sig

′
γB(n/2), Bob

needs to provide valid signatures for this subset. For the
signatures Sig′γB(1), . . . , Sig

′
γB(n/2), Bob knows the cor-

responding decryption keys from XB , in particular the
strings rγB(i)

B , which he passed to Charlie in the distribu-
tion stage. Thus, Charlie will see no error when verifying
these signatures.

In contrast, for the n signatures Sig′n+1, . . . , Sig
′
2n,

Bob only knows n/2 decryption keys, i.e. the keys XγC(i)
C

(for i = 1, . . . , n/2) that he received from Charlie. In
particular, Bob does not know the strings rjC for the n/2
keys that he did not receive from Charlie and needs to
guess them in order for Charlie to approve his forged sig-
natures. However, we recall that Charlie is allowed up
to emax errors during verification. Therefore, Bob only
needs to correctly guess the string rjC at least n/2−emax

times out of n/2 possibilities. Since each string rjC is 2bH
bits long, the probability for k ≥ n/2 − emax successes
out of n/2 trials reads:

Ξ(n/2− emax, n/2, 2
−2bH), (8)

where the function Ξ(k, n, p) in (7) represents the prob-
ability of obtaining at least k successes in n trials with
success probability p for each trial. Thus, the quantity
in (8) represents the probability of a successful forgery
attack by Bob for case 1).

We now discuss case 2). Here, Bob receives a valid
pair {Doc, Sig} from Alice and wants to forge a new
pair {Doc′, Sig′} where Doc′ ̸= Doc. Like before, Bob
can produce new valid signatures Sig′γB(1), . . . , Sig

′
γB(n/2)

since Bob holds the corresponding keys and overrides Al-
ice’s choices of irreducible polynomials with his choices
of polynomials. Likewise, Bob can forge the signa-
tures Sig′n+γC(i) corresponding to the keys X

γC(i)
C (for

i = 1, . . . , n/2) that he received from Charlie.
For the remaining n/2 signatures Sigj+n received from

Alice for which Bob does not hold the corresponding key,
Bob has two possibilities.

He can act as in case 1), by neglecting the signatures
sent by Alice and forging new signatures. However, this
strategy requires Bob to guess some of the encryption
keys rjC . The probability of correctly guessing one of
these keys is 2−2bH .

The second possibility is also Bob’s best strategy since
it succeeds with a higher probability: Bob wants to guess
a message-tag pair (mj , tj), with mj ̸= 0, such that tj =
Tpj

C ,sjC
·mj is satisfied. In doing so, note that Bob does

not know either parameter of the Toeplitz matrix Tpj
C ,sjC

7

and that the tag in Sigj+n is protected by OTP. If Bob
succeeds, he can forge the signature Sig′j+n = Sigj+n ⊕
(tj ||0) and choose the document Doc′ = Doc ⊕mj such
that Charlie will validate the forged signature with unit
probability. The probability that Bob finds the correct
pair (mj , tj) is the probability of a successful attack on
WG authentication implemented with the FAXU family
and reads bM/2bH−1 (see Table I), where bM is the length
of the document. Let us assume that Bob chooses the
same message m1 = m2 = · · · = m for each of the n/2
signatures, such that the forged document is uniquely
defined by Doc′ = Doc ⊕m. Then, the probability that
Bob correctly guesses at least n/2 − emax pairs (m, tj),
out of n/2 signatures, is given by:

Ξ(n/2− emax, n/2, bM21−bH), (9)

and represents the probability of a successful forgery at-
tack in the case 2).

By comparing the probability of successful attacks
from cases 1) (8) and 2) (9), we deduce that the at-
tack from case 2) is always more likely to occur since
bM21−bH > 2−2bH . This concludes the proof.

Lemma III.5. Protocol 2, with bM + 4nbH >
(n/2) log2 n, is εrep-secure against repudiation according
to Definition II.2, with

εrep = max

{
emax∏
i=0

n/2− i

n− i
,
bM + 4nbH

2b
′
H−1

}
. (10)

Proof. Let us first assume that the the authenticated
channel between Bob and Charlie is ideal. In this case,
Alice’s only chance to force a rejection at Charlie is to de-
liberately introduce errors in some of the signatures veri-
fied by Charlie, namely Sign+1, . . . Sig2n, such that Char-
lie observes emax +1 errors in verification, thus rejecting
the signature. However, Bob verifies n/2 of these signa-
tures, namely Sign+γC(1), . . . , Sign+γC(n/2), through the
keys X

γC(i)
C (for i = 1, . . . , n/2) received from Charlie.

Since Bob accepts no error in verification and since the
n/2 key blocks sent by Charlie to Bob are randomly se-
lected, the probability that Alice distributes the emax+1
errors in the n/2 signatures that are not verified by Bob
is given by:

ε =

(
n/2

emax+1

)(
n

emax+1

)
=

emax∏
i=0

n/2− i

n− i
. (11)

Note that if only one error is introduced by Alice in the
signatures verified by Bob, Bob will reject the signature
and the protocol aborts.

Let us now consider the failure of the authenticated
channel between Bob and Charlie, which we recall is im-
plemented with an ε-AXU2 family based on LFSRs with

hashes of b′H bits. In order to force a repudiation, Alice
can attempt to modify enough key blocks sent to Charlie
by Bob. The probability that Alice successfully modi-
fies the key blocks from X ′

B sent by Bob through the au-
thenticated channel is at most (3bHn/2)/2b

′
H−1. Alterna-

tively, Alice can modify the positions γB(1), . . . , γB(n/2)
sent by Bob, such that Charlie will hold the right blocks
but in the wrong positions. In this case, the probability
of a successful attack is ((n/2) log2 n)/2

b′H−1. Finally,
Alice could attempt to modify the pair {Doc, Sig} when
forwarded by Bob, with a success probability of at most
(bM + 4nbH)/2b

′
H−1. Since the protocol aborts when a

message from Bob is not authenticated by Charlie, the
maximum probability of a successful repudiation attack
based on the failure of authentication is:

ε′ =
max {3bHn/2, (n/2) log2 n, bM + 4nbH}

2b
′
H−1

= (bM + 4nbH)/2b
′
H−1. (12)

By combining (11) and (12), the maximal probability
that the protocol does not abort and that Charlie rejects
the signature while Bob does not is max{ε, ε′}, which
concludes the proof.

C. Amiri et al.

The authors in [11] construct an IT-secure QDS scheme
with N + 1 participants, i.e. a sender and N receivers,
P1, . . . , PN . The protocol is guaranteed to be secure if
there is an honest majority of participants and it does
not require a fixed party to be honest.

In the N -partite scenario, the concept of security
against repudiation is more nuanced. Informally, the
QDS protocol guarantees that if an honest receiver ac-
cepts a signature, then any other other honest receiver
accepts it with high probability; this property is called
transferability. However, there are scenarios where trans-
ferability cannot be guaranteed. In these cases, the valid-
ity of a signature is collectively established by a majority
vote resolution process. A successful repudiation attack
would cause the majority vote process to reject a signa-
ture that was previously accepted by an honest receiver.

Nevertheless, when analyzing the same tripartite sce-
nario of the other two QDS protocols, i.e. N = 2, the
concepts of transferability and non-repudiation basically
reduce to the same requirement, namely, the sender can-
not force the two receivers to disagree on the validity of
the signature.

1. The protocol

The main idea of the protocol is the following. In the
distribution stage, the sender distributes to each receiver
a subset of hash functions from the FASU family of Sec. II

8

(see Appendix B for more details), through pairwise se-
cret channels. Since this communication is secret, no
receiver can play the part of the sender (security against
forgery). Afterwards, each receiver partitions the set of
received hash functions and sends different partitions to
each other receiver through authenticated secret chan-
nels. This step shuffles around the set of hash functions
held by each receiver, thus preventing the sender from
knowing the hash functions held by a given receiver.

In the messaging stage, the sender signs a document
with all the hash functions previously distributed to the
receivers and appends the corresponding tags. Each re-
ceiver counts the number of mismatches between the hash
values obtained with their set of hash functions and the
corresponding tags, and only accepts the document if
the number of mismatches is below threshold. Since the
sender does not know the set of hash functions held by a
given receiver, they cannot force certain receivers to re-
ject and others to accept the signature (security against
repudiation/transferability).

However, in a N -user scenario, the sender could col-
lude with a subset of malicious receivers. In that case,
the colluding coalition could determine a subset of the
hash functions held by a given receiver, thus causing
mismatches between the tags and their computed hash
values. In order to still guarantee transferability, the au-
thors introduce verification levels, which correspond to
different error thresholds: the lower the verification level,
the higher the error threshold. The protocol guarantees
that if a document is verified by an honest receiver at
verification level l, any other honest receiver will verify
the signature at level l − 1, with high probability.

We now formally describe the protocol. The protocol
fixes a maximum number of dishonest participants it can
tolerate, ω, which must be inferior to the majority of
participants: ω < (N + 1)/2. The maximum fraction
of dishonest receivers it can tolerate when colluding with
the sender is dR and is given by: dR = (ω−1)/N . Finally,
the protocol fixes the maximum verification level at lmax,
where (lmax + 1)dR < 1/2.

Importantly, we explicitly specify which protocol steps
require authenticated communication, a fact which is
not clear from the original formulation of the protocol
[11]. This helps clarifying the actual amount of resources
(e.g. preshared key bits) consumed by the protocol,
but also closes potential security loopholes preventing
transferability and non-repudiation.

Protocol 3 QDS protocol [11]

1. Distribution stage The hash functions randomly se-
lected by the sender are distributed to the receivers.

1.1. The sender selects uniformly at random (and with
replacement) N2k hash functions (f1, . . . , fN2k)
from FASU (see Appendix B), where k is a security
parameter.

1.2. Each receiver Pi receives via a secret channel the
Nk functions: (f(i−1)Nk+1, . . . , fiNk).

1.3. Each receiver Pi randomly partitions the set of in-
dexes corresponding to the received hash functions,
{(i − 1)Nk + 1, . . . , iNk}, into N sets of size k de-
noted Ri→1, . . . , Ri→N . The receiver then sends the
set Ri→j and the set of corresponding hash func-
tions, Fi→j := {fr : r ∈ Ri→j}, to Pj , using authen-
ticated secret channels [Note that the sets Ri→i and
Fi→i are kept by Pi]. In this way, each participant
Pi holds Nk functions, given by: Fi := ∪N

j=1Fj→i,
and their positions, given by: Ri := ∪N

j=1Rj→i.

2. Messaging stage The sender sends the signed mes-
sage and each receiver independently verifies the signa-
ture.

2.1. The sender sends the pair {Doc, Sig} to the desired
recipient, Pi, over a public channel, where

Sig := (f1(Doc), f2(Doc), . . . , fN2k(Doc))

= (t1, . . . , tN2k). (13)

2.2. Participant Pi verifies the signature Sig received by
the sender for decreasing verification levels l, until
it either accepts the signature or it runs out of levels
(l = 0 is the last level of verification).
Initially, Pi sets the verification level to l = lmax.
For a fixed j, participant Pi tests if the k tags gen-
erated from the hash functions received by Pj match
the tags received by the sender. Thus, receiver Pi

defines the test:

TDoc
i,j,l =

{
1 if

∑
r∈Rj→i

g(tr, fr(Doc)) < slk

0 else
(14)

where g(x, y) = 0 (g(x, y) = 1) if x = y (x ̸= y)
and 1/2 > s−1 > s0 > · · · > slmax

> 0 are param-
eters fixed by the protocol. The test is passed if
TDoc
i,j,l = 1.

The participant Pi performs the tests TDoc
i,j,l for each

j at verification level l. The output of the verifica-
tion at level l is given by:

Veri,l(Doc, Sig) =

{
True if

∑N
j=1 T

Doc
i,j,l > Nδl

False else
(15)

where δl = 1/2+ (l+1)dR. If the verification failed
(Veri,l(Doc, Sig) = False), the participant Pi de-
creases by one the verification level and attempts a
new verification. The verification process ends when
Veri,l(Doc, Sig) = True for some l ≥ 0, in which
case participant Pi accepted the signature at level
l. Otherwise, Pi rejected the signature.

2.3. If the receiver Pi accepted the signature at some
level l ≥ 0, they forward the pair {Doc, Sig} to the
next participant via an authenticated channel. Oth-
erwise, the receiver forwards ⊥ to all remaining par-
ticipants, flagging that the signature was rejected.

9

2. Security definitions

Here we report and comment on the security definitions
adopted in Ref. [11]. They can be seen as a generalization
of Definitions II.1 and II.2 presented in Sec. II.

Definition III.1. [Forgery] Let C ⊂ {P1, . . . , PN} be
a coalition of malicious users, not including the sender,
which knows a valid pair {Doc, Sig}. Then, the QDS pro-
tocol is εfor-secure against forgery if, for every forged pair
{Doc′, Sig′} produced by C with Doc′ ̸= Doc, it holds:

Pr [∃Pi /∈ C : Veri,0(Doc′, Sig′) = True] ≤ εfor. (16)

Definition III.2. [Non-transferability] Let C ⊂
{P0, P1, . . . , PN} be a coalition of malicious users includ-
ing the sender. Then, the QDS protocol is εtransf-secure
against non-transferability if, for every pair {Doc, Sig}
produced by C and every verification level l ≥ 1, it holds:

Pr [∃Pi, Pj /∈ C : Veri,l(Doc, Sig) = True

∧Verj,l′(Doc, Sig) = False] ≤ εtransf , (17)

where 0 ≤ l′ < l.

We observe that, according to the description of Pro-
tocol 3, if a signature is verified at level l, then it would
be verified also at any lower level. That is,

Veri,l(Doc, Sig) = True =⇒
Veri,l′(Doc, Sig) = True, ∀ l′ < l. (18)

Thus, the condition in (17) can be checked for l′ = l − 1
only.

Moreover, we argue that the transferability definition
reported in Definition III.2 does not capture transfer-
ability in a meaningful way. Indeed, it only requires
that if an honest receiver accepts a message-signature
pair {Doc, Sig}, then another honest receiver accepts the
same pair {Doc, Sig} with high probability. The defini-
tion does not account for attacks that may modify the
pair {Doc, Sig} to be verified by the second receiver.
This attack is easily carried out by, e.g., a dishonest
receiver who forwards a modified pair to an honest re-
ceiver. The protocol has no way to avoid this attack
from happening. Alternatively, an attacker could alter
the {Doc, Sig} pair in the transmission between two hon-
est receivers, by attacking their authenticated channel.
We remark that, in the original paper [11], this channel
is not explicitly required to be authenticated, hence the
attack would always succeed.

When there are disputes caused e.g. by the sender re-
fusing to recognize a signature validated by a legitimate
receiver, the participants can invoke a majority vote dis-
pute resolution method, MV(Doc, Sig), whose outcome
is the official accepted outcome. A repudiation attack
is successful if the outcome of the majority vote dispute
resolution contradicts the outcome of an honest receiver
that accepted the signature.

Definition III.3. [Repudiation] Let C ⊂
{P0, P1, . . . , PN} be a coalition of malicious users
including the sender. Then, the QDS protocol is εrep-
secure against repudiation if, for every pair {Doc, Sig}
produced by C and every verification level l ≥ 0, it holds:

Pr [∃Pi /∈ C : Veri,l(Doc, Sig) = True

∧MV(Doc, Sig) = Invalid] ≤ εrep. (19)

The MV(Doc, Sig) method is invoked, for example,
when a receiver validates a signature at verification level
l = 0 (this can happen if a malicious coalition forces the
failure of all other verification levels, except at l = 0)
and wishes that other receivers would validate the signa-
ture as well. The protocol, however, does not guarantee
that the next receiver will validate the signature, since
transferability is only guaranteed up to level l = 1 (c.f.
Definition III.2). In this case, the MV(Doc, Sig) allows
the receiver to gain confirmation from the other users
that the signature is authentic.

The majority vote dispute resolution method is defined
following the the original protocol [11],

MV(Doc, Sig) ={
Valid if |{i : Veri,−1(Doc, Sig) = True}| ≥ ⌊N/2⌋+ 1
Invalid else,

(20)

in contrast to the amendment made in Ref. [15], where
the verification level used in the dispute resolution is l =
0, that is, Veri,−1 is replaced by Veri,0.

In Ref. [15], the authors argue that a security loophole
arises if the verification is carried out at level l = −1,
since this case is not guaranteed secure against forgery
(c.f. Definition III.1). A malicious receiver could forge a
signature and claim that they verified it at level l = 0,
thus invoking the dispute resolution method, hoping that
the signature is accepted by the majority of users if
the verification occurs at level l = −1. Indeed, Defini-
tion III.1 does not guarantee that the protocol can detect
forgeries when the forged signature is verified at l = −1.

As said, the authors in Ref. [15] close the loophole
by raising the verification level of the dispute resolution
method from l = −1 to l = 0. However, in doing so, they
lose the original meaning of security against repudiation.
Indeed, now it could happen that the first receiver of a
pair {Doc, Sig} verifies at level l = 0 and whishes to in-
voke MV(Doc, Sig). Since the verification therein occurs
at the same level as the first receiver, the protocol can-
not guarantee that the dispute resolution will agree with
the first user with high probability – as a matter of fact,
transferability is only guaranteed between different veri-
fication levels (c.f. Definition III.2). In other words, se-
curity against repudiation, as defined in Definition III.3,
is lost.

To avoid losing this aspect of the protocol, we solve the
loophole issue by computing the probability of success of
the above-described forgery attack and by showing that

10

it remains small and of the order of εfor in the scenarios
of interest, thus removing the need for a redefinition of
(20) (see Lemma III.6).

3. Security proof

We prove the security of Protocol 3 with respect to
Definitions III.1, III.2, and III.3, improving the security
parameters where possible while accounting for the fail-
ure of IT-secure authenticated channels, unlike the orig-
inal paper [11]. In particular, a transferability attack
is enabled by altering the hash functions destined to a
given participant via successful attacks on the authen-
ticated channels in step 1.3. Note that, in the original
paper [11], these channels are not explicitly required to
be authenticated.

In the proofs, we assume that the protocol parame-
ters s−1, s0, . . . , slmax

are equally spaced in the interval
[0, 1/2], with spacing ∆s = sl−1−sl, and we assume that
∆s is maximal. This choice is optimal to reduce the at-
tack probability on transferability and non-repudiation
[11]. Moreover, we note that the constraints on the pa-
rameters sl imply the following constraint on the spacing:
(lmax + 1)∆s < 1/2.

Lemma III.6. Protocol 3 is εfor-secure against forgery
according to Definition III.1, with:

εfor = (N − ω) Ξ(⌊N/2⌋, N − ω, pt), (21)

where pt is defined as:

pt = Ξ(⌊k(1− s0)⌋+ 1, k, 21−bH), (22)

Moreover, the forgery attack based on the security loop-
hole discussed in Ref. [15], where a dishonest receiver
forges the pair {Doc′, Sig′} and invokes the dispute res-
olution method for the other parties to accept the pair,
succeeds with probability:

pattack = Ξ(⌊N/2⌋+ 1− ω,N − ω, p−1), (23)

with:

p−1 = Ξ(⌊N/2⌋+ 1− ω,N − ω, pt). (24)

Lemma III.7. Protocol 3 is εtransf-secure against non-
transferability according to Definition III.2 and it is εrep-
secure against repudiation according to Definition III.3,
with:

εtransf = εrep =

(
N(1− dR)

2

)
max{εi,j , εauth, εhyb},

(25)

where

εi,j = N(1− dR) exp

(
− k

8(lmax + 1)2

)
(26)

εauth =

(
ky + k log2(Nk)

2b
′
H−1

)N [1/2−(lmax+1)dR]

(27)

εhyb =
ky + k log2(Nk)

2b
′
H−1

Ξ

(⌊
N

2

⌋
+ 1, N(1− dR), exp

(
− k

8(lmax + 1)2

))
.

(28)

The function Ξ(k, n, p), already defined in (7), repre-
sents the probability of at least k successes out of n tri-
als with probability p. We present the security proofs of
Lemmas III.6 and III.7 in Appendix C.

IV. PERFORMANCE OPTIMIZATION

In this section we compare the performance of the three
QDS protocols, presented in Sec. III, in a tripartite sce-
nario with one sender and two receivers.

Specifically, given a document of fixed length (bM),
we optimize the performance of each protocol over their
free parameters, such that the number of preshared se-
cret key bits per receiver (ℓP) and the length of the
signature (ℓS) are minimized, under the constraint that
εrep+εfor ≤ 10−10 (c.f. Definitions II.1 and II.2). In par-
ticular, Protocol 1 (based on the protocol by Yin et al.
[9]) is optimized over the parameters bH , b′H . Protocol 2
(a modified version of the protocol by García Cid et al.
[10]) is optimized over n, bH , b′H , emax. Protocol 3 (based
on the protocol by Amiri et al. [11]) is optimized over
k, bH , b′H .

In Table II we report the security parameters, the num-
ber of preshared key bits per receiver and the signature
length of each protocol that are used in our optimiza-
tions. Note that Protocol 3 is studied for N = 2. In this
case, the maximum number of dishonest parties is ω = 1,
the fraction of dishonest receivers that collude with the
sender is dR = 0 and the maximum number of transfers
between receivers is lmax = 1. Moreover, with the opti-
mal choice of spacing between the sl variables, we have:
s0 ≈ 1

2 −∆s = 1
2 − 1

2(lmax+1) =
1
4 .

It is interesting to notice that, for N = 2, the suc-
cess probability (pattack) of the forgery attack based on
the loophole noted in Ref. [15] coincides with the regu-
lar forgery probability (εfor). Thus, in reality, the attack
mentioned in Ref. [15] does not give rise to a security
loophole in the analyzed scenario.

A. Calculation of ℓP

In order to achieve a fair comparison, we consider that
every secret channel is implemented via OTP, thus re-
quiring a number of preshared key bits equal to the length
of the message. Moreover, every authenticated channel is
implemented as described in Sec. II, via WC authentica-
tion with key recycling and tags of b′H bits. In the follow-
ing, we illustrate how to obtain the number of preshared
key bits (ℓP) reported for each protocol in Table II.

11

Protocol ℓP ℓS εfor εrep

Protocol 1 from Ref. [9] 3bH + 5b′H 2bH bM/2bH−1 (2bH + bM)/2b
′
H−1

Protocol 2 modified from
Ref. [10]

6nbH + n log2 n+ 7b′H 4nbH Ξ(n/2− emax, n/2, bM21−bH) max
{∏emax

i=0
n/2−i
n−i

, bM+4nbH

2
b′
H

−1

}

Protocol 3 from Ref. [11] 3ky + k log2(2k) + 7b′H 4kbH Ξ
(⌊

3
4
k
⌋
+ 1, k, 21−bH

)
max

{
2e−k/32, ky+k log2(2k)

2
b′
H

−1

}
Table II. For each analyzed protocol, we report the security parameters against forgery (εfor) and repudiation attacks (εrep),
as well as the consumed preshared secret key bits per receiver (ℓP) and the length of the signature (ℓS). Each protocol is used
to sign a document of bM bits with hash functions drawn from either the FAXU family (Protocols 1 and 2) or the FASU family
(Protocol 3), producing hashes of bH bits. The parameter y represents the number of bits required to specify an element of
FASU and is given in Appendix B. The function Ξ is given in (7).

Protocol 1 The protocol requires each receiver to
hold a preshared secret key of length 3bH . Moreover,
to establish the authenticated channel between Bob and
Charlie, each receiver consumes 2b′H preshared bits. The
three messages that are sent over the authenticated chan-
nel amount to additional 3b′H consumed preshared bits
(needed to encrypt the tags).

Protocol 2 The protocol requires each receiver to
share a 3nbH -bit secret key with Alice. Then, it con-
sumes 3nbH +n log2 n preshared bits to exchange half of
the key blocks between Bob and Charlie, together with
their positions. To establish the authenticated channel
between Bob and Charlie, each receiver consumes 2b′H
preshared bits. Bob and Charlie exchange 4 authenti-
cated messages in the distribution stage; moreover, Bob
forwards the {Doc, Sig} pair on the authenticated chan-
nel in the messaging stage, for a total of 5 authenticated
messages.

Protocol 3 To carry out step 1.2 of Protocol 3,
each receiver must hold Nky preshared key bits with
the sender, where y is the number of bits required to
specify one element of the FASU family and is provided
in Appendix B. For step 1.3 of the protocol, each re-
ceiver Pi sends to another receiver, Pj , k hash functions
from FASU and their positions, thus consuming a total
of (N − 1)(ky+ k log2(Nk)) preshared secret bits. More-
over, this communication is also authenticated. Hence, it
requires each receiver to share, with any other receiver,
2b′H bits to agree on the hash function and additional
4b′H bits to exchange the hash functions and their posi-
tions. Finally, b′H preshared bits are consumed to forward
the {Doc, Sig} pair to the next recipient in an authen-
ticated manner. The resulting number of preshared key
bits reads: ℓP = Nky+(N − 1)(ky+k log2(Nk))+ (N −
1)6b′H + b′H . In Table II we specify it for N = 2.

B. Optimization results

The results of our numerical optimizations for the three
protocols are presented in Figs. 1 and 2, for documents
of bM bits, with: bM ∈ [102, 1010].

In Fig. 1 we plot the signature length (ℓS) as a function
of the document size (bM). We observe that Protocol 1
requires much shorter signatures compared to the other
two protocols. Moreover, while Protocol 1 and Protocol 2
require signatures with length scaling linearly in log2 bM
(though with very different slopes), Protocol 3 requires
large, but constant, signature lengths.

In Fig. 2 we plot the number of preshared key bits (ℓP)
as a function of the document size (bM). We observe that
all three protocols require a number of preshared bits
that scales sub-linearly with respect to bM , hence be-
coming more efficient as the size of the document grows.
However, there are important gaps in absolute magni-
tude between the protocols and Protocol 3 appears to be
the least efficient. For instance, to sign a document of
bM = 106 bits, Protocol 3 requires ℓP ≈ 1.1 · 105 pre-
shared secret bits, while Protocol 2 uses ℓP ≈ 104 bits
and Protocol 1 only uses ℓP = 441 bits.

In order to explain the observations regarding Figs. 1
and 2, we analyzed the optimal parameters returned by
our optimizations. In particular, in the numerical opti-
mizations for Protocol 1, we obtain the following approx-
imate optimal values for the optimization parameters bH
and b′H :

bH ≈ log2

(
bM

3.75 · 10−11

)
+ 1 (29)

b′H ≈ log2

(
bM + 2bH
6.25 · 10−11

)
+ 1. (30)

By comparing these values with Table II, we deduce that
both ℓP and ℓS scale logarithmically with the document
size, ℓP , ℓS ∼ log2 bM , with relatively small prefactors.
This explains the superior performance of Protocol 1

12

3000

5000

7000

9000

102 104 106 108 1010
60

100

140

Doc size (bM)

S
ig
na
tu
re
si
ze

(l S
)

εrep+εfor≤10
-10

Protocol 1

Protocol 2

Protocol 3

FIG. 1. The optimal signature length (ℓS) as a function of
the document size (bM) for the three analyzed QDS protocols,
when minimized under the constraint: εrep + εfor ≤ 10−10.

εrep+εfor≤10
-10

Protocol 1

Protocol 2

Protocol 3

Doc size

102 104 106 108 1010

103

105

107

Doc size (bM)

P
re
sh
ar
ed
se
cr
et
bi
ts

(l
P
)

FIG. 2. The optimal number of preshared secret bits (ℓP) as
a function of the document size (bM) for the three analyzed
QDS protocols, when minimized under the constraint εrep +
εfor ≤ 10−10.

both in terms of consumed preshared keys and signature
lengths compared to the other two protocols.

A similar scaling is observed for the optimization pa-
rameters bH and b′H in Protocol 2, i.e., bH , b′H ∼ log2 bM ,
such that ℓP and ℓS also scale logarithmically with the
document size. However, due to the large values acquired
by the parameter n ≈ 50, the resulting ℓP and ℓS of Pro-
tocol 2 display large prefactors (≈ 300 for ℓP and ≈ 200
for ℓS) compared to Protocol 1. This explains the steep
increase in signature length compared to the other two
protocols observed in Fig. 1.

In the numerical optimization for Protocol 3, we ob-
serve that:

bH = 2 (31)

is optimal for every tested document length, recovering
the observation made in Ref. [11]. Moreover, we observe

that the optimal b′H is such that:

2e−k/32 =
ky + k log2(2k)

2b
′
H−1

(32)

is satisfied, which implies:

b′H = log2(ke
k/32) + log2 (y + log2(2k)) . (33)

By making the ansatz that (31) and (33) hold, the opti-
mization of Protocol 3 runs over only one parameter, k,
which is fixed by the constraint:

εrep + εfor = 10−10

⇐⇒ 2e−k/32 + Ξ

(
3

4
k, k,

1

2

)
= 10−10

⇐⇒ k ≈ 759. (34)

Recalling that y ∼ log2 bM (see Appendix B), we deduce
that ℓP scales logarithmically with the document size al-
beit with a very large prefactor: ℓP ∼ 3 × 759 log2 bM ,
thus explaining the worst performance among the three
protocols as noted in Fig. 2. Conversely, the signature
length is constant for any document size: ℓS ≈ 6072 as
observed in Fig. 1.

In summary, from our performance analysis in the tri-
partite scenario, we conclude that Protocol 1 [9] is the
most efficient protocol in terms of consumed preshared
bits, with a consumption up to three orders of magnitude
smaller than the other two protocols and in the range
ℓP ∈ [102, 103] for document sizes up to bM = 1010 bits.
At the same time, Protocol 1 is the one that generates
signatures with the shortest lengths, scaling with the log-
arithm of the size of the document and beating the other
protocols by more than one order of magnitude.

V. CONCLUSION

In this work we investigated three practical quantum
digital signature protocols from Refs. [9–11], capable of
signing large documents with relatively small signatures,
while only requiring previously-established secret keys
(e.g. through quantum key distribution). The secret keys
are primarily used to agree on hash functions from uni-
versal families and to establish secret channels protected
by one-time pad.

We carefully reviewed the security of each protocol
(and in particular the use of authenticated communica-
tion) and made modifications where deemed necessary,
in order to prove their information-theoretic security and
avoid potential loopholes.

We then numerically optimized each protocol in the tri-
partite scenario to reduce the consumption of preshared
secret bits as well as the signature lengths, for a fixed se-
curity threshold. We found that the QDS protocol from
Ref. [9] is the most efficient among the three protocols in
terms of consumed preshared bits and signature length,
both scaling with the logarithm of the size of the docu-
ment and decreasing by more than one order of magni-
tude compared to the other protocols.

13

[1] N. I. of Standards and T. (NIST), “Digital signature stan-
dard (dss),” Federal Information Processing Standards
Publication (FIPS) 186-5, 2023.

[2] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic
curve digital signature algorithm (ecdsa),” International
Journal of Information Security, vol. 1, pp. 36–63, Aug
2001.

[3] N. I. of Standards and T. (NIST), “Module-lattice-based
digital signature standard,” Federal Information Process-
ing Standards Publication (FIPS) 204, 2024.

[4] N. I. of Standards and T. (NIST), “Stateless hash-based
digital signature standard,” Federal Information Process-
ing Standards Publication (FIPS) 205, 2024.

[5] D. Gottesman and I. L. Chuang, “Quantum Digital Sig-
natures,” 5 2001.

[6] V. Dunjko, P. Wallden, and E. Andersson, “Quantum
digital signatures without quantum memory,” Phys. Rev.
Lett., vol. 112, p. 040502, Jan 2014.

[7] H.-L. Yin, Y. Fu, and Z.-B. Chen, “Practical quantum
digital signature,” Phys. Rev. A, vol. 93, p. 032316, Mar
2016.

[8] R. Amiri, P. Wallden, A. Kent, and E. Andersson, “Se-
cure quantum signatures using insecure quantum chan-
nels,” Phys. Rev. A, vol. 93, p. 032325, Mar 2016.

[9] H.-L. Yin, Y. Fu, C.-L. Li, C.-X. Weng, B.-H. Li, J. Gu,
Y.-S. Lu, S. Huang, and Z.-B. Chen, “Experimental quan-
tum secure network with digital signatures and encryp-
tion,” National Science Review, vol. 10, p. nwac228, 10
2022.

[10] M. I. García-Cid, R. Martín, D. Domingo, V. Martín,
and L. Ortiz, “Design and implementation of a quantum-
assisted digital signature,” Cryptography, vol. 9, no. 1,
2025.

[11] R. Amiri, A. Abidin, P. Wallden, and E. Andersson, “Ef-
ficient unconditionally secure signatures using universal
hashing,” in Applied Cryptography and Network Security
(B. Preneel and F. Vercauteren, eds.), (Cham), pp. 143–
162, Springer International Publishing, 2018.

[12] B.-H. Li, Y.-M. Xie, X.-Y. Cao, C.-L. Li, Y. Fu, H.-L.
Yin, and Z.-B. Chen, “One-time universal hashing quan-
tum digital signatures without perfect keys,” Phys. Rev.
Appl., vol. 20, p. 044011, Oct 2023.

[13] J.-Q. Qin, Z.-W. Yu, and X.-B. Wang, “Efficient quan-
tum digital signatures over long distances with likely bit
strings,” Phys. Rev. Appl., vol. 21, p. 024012, Feb 2024.

[14] A. Giorgetti, N. Andriolli, M. Ferrari, E. Storelli, G. D.
Paduanelli, A. Cacicia, R. P. Paganelli, A. Tarable,
E. Paolini, G. Sajeva, M. Brunero, A. Gagliano,
P. Martelli, P. Noviello, G. Schmid, and A. Gatto,
“Generalized quantum-assisted digital signature service
in an sdn-controlled quantum-integrated optical net-
work,” Journal of Optical Communications and Network-
ing, vol. 17, no. 2, pp. A155–A164, 2025.

[15] E. O. Kiktenko, A. S. Zelenetsky, and A. K. Fe-
dorov, “Practical quantum multiparty signatures us-
ing quantum-key-distribution networks,” Phys. Rev. A,
vol. 105, p. 012408, Jan 2022.

[16] P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson,
J. Jeffers, and G. S. Buller, “Experimental demonstra-
tion of quantum digital signatures using phase-encoded
coherent states of light,” Nature Communications, vol. 3,

p. 1174, Nov 2012.
[17] C. Croal, C. Peuntinger, B. Heim, I. Khan, C. Mar-

quardt, G. Leuchs, P. Wallden, E. Andersson, and
N. Korolkova, “Free-space quantum signatures using
heterodyne measurements,” Phys. Rev. Lett., vol. 117,
p. 100503, Sep 2016.

[18] Y. Pelet, I. V. Puthoor, N. Venkatachalam,
S. Wengerowsky, M. Lončarić, S. P. Neumann, B. Liu,
v. Samec, M. Stipčević, R. Ursin, E. Andersson, J. G.
Rarity, D. Aktas, and S. K. Joshi, “Unconditionally
secure digital signatures implemented in an eight-user
quantum network*,” New Journal of Physics, vol. 24,
p. 093038, oct 2022.

[19] C.-X. Weng, R.-Q. Gao, Y. Bao, B.-H. Li, W.-B. Liu,
Y.-M. Xie, Y.-S. Lu, H.-L. Yin, and Z.-B. Chen, “Beat-
ing the fault-tolerance bound and security loopholes for
byzantine agreement with a quantum solution,” Research,
vol. 6, p. 0272, 2023.

[20] H. Krawczyk, “Lfsr-based hashing and authentication,”
in Advances in Cryptology — CRYPTO ’94 (Y. G.
Desmedt, ed.), (Berlin, Heidelberg), pp. 129–139,
Springer Berlin Heidelberg, 1994.

[21] M. N. Wegman and J. Carter, “New hash functions and
their use in authentication and set equality,” Journal of
Computer and System Sciences, vol. 22, no. 3, pp. 265–
279, 1981.

[22] E. O. Kiktenko, A. O. Malyshev, M. A. Gavreev, A. A.
Bozhedarov, N. O. Pozhar, M. N. Anufriev, and A. K. Fe-
dorov, “Lightweight authentication for quantum key dis-
tribution,” IEEE Transactions on Information Theory,
vol. 66, p. 6354–6368, Oct. 2020.

[23] A. Tarable, R. P. Paganelli, E. Storelli, A. Gatto, and
M. Ferrari, “Generalized quantum-assisted digital signa-
ture,” 2024. arXiv:2406.19978.

[24] J. Bierbrauer, T. Johansson, G. Kabatianskii, and
B. Smeets, “On families of hash functions via geometric
codes and concatenation,” in Advances in Cryptology —
CRYPTO’ 93 (D. R. Stinson, ed.), (Berlin, Heidelberg),
pp. 331–342, Springer Berlin Heidelberg, 1994.

14

APPENDIX A: Wegman-Carter authentication

Hash functions map larger domains to smaller sets such that, with high probability, if the hashed values of two
quantities are equal, then the two quantities are also equal. Authenticated classical channels with information-
theoretic (IT) security can be built from ε-ASU2 hash families (Definition II.3) through the Wegman-Carter (WC)
authentication method [21] with key recycling. In this Appendix, we first illustrate the WC method with key
recycling and then prove its IT security.

Protocol 4 WC authentication [21]

1. Let M be the set of possible messages and B the set of hashes, or tags. Let F be a publicly-known ε-ASU2 family
of hash functions from M to B.

2. Alice and Bob agree on the total number of messages n they want to authenticate and they agree on a uniformly
random secret key (k0, (k1, . . . , kn)). The subkey k0 identifies a unique hash function fk0

∈ F used to generate the
tags of each of the n authenticated messages.

3. For i ∈ {1, 2, . . . , n}, do the following:

(a) Alice chooses a message mi ∈ M to be sent and generates the corresponding tag ti as: ti = fk0(mi) ⊕ ki. She
sends the message mi, the tag ti and the index i to Bob.

(b) Bob uses the subkey ki, corresponding to the received index from Alice, to extract the hash from the received
tag by computing: hi = ti ⊕ ki. Bob then compares hi with the hash resulting from applying the selected hash
function on the received message: fk0

(mi). If they match, Bob authenticates Alice’s message mi.

Here we prove the IT security of the WC authentication method implemented with an ε-ASU2 family.

Theorem A.1. Let (k0, (k1, . . . , kn)) be a randomly chosen key known to Alice and Bob and let m1, . . . ,mn be n
messages sent by Alice to Bob via the WC authentication method. Suppose the attacker, Eve, knows the ε-ASU2

family F , the set of messages M , the messages m1, . . . ,mn, their tags t1, . . . , tn and indexes. Then, there is no forged
message mE (for any index i) for which Eve can guess the correct tag tE with a probability larger than ε.

Proof. Suppose, without loss of generality, that Eve wants to replace the first message m1 with a forged message mE .
Then, the correct tag such that Bob authenticates the forged message would be: tE = fk0

(mE)⊕ k1. Note that Eve
does not know the preshared key (k0, (k1, . . . , kn)), hence she needs a strategy to correctly guess tE . An optimal
strategy consists in fixing a value for the tag, t, and consider all the possible keys (k0, (k1, . . . , kn)) for which the
observed message-tag pairs (mi, ti) and the forged pair (mE , t) are successfully authenticated. Let us denote this set
S(t):

S(t) = {(k0, (k1, . . . , kn)) : t = fk0
(mE)⊕ k1, t1 = fk0

(m1)⊕ k1, ti = fk0
(mi)⊕ ki for i = 2, . . . , n} . (A1)

Then, Eve’s guess of the tag corresponds to the value for which there are most key combinations allowed, i.e.,

tguess := argmax
t∈B

|S(t)| , (A2)

where |S| is the cardinality of S. Indeed, this guess maximizes Eve’s probability of guessing the correct tag. In
particular, given messages m1, . . . ,mn, tags t1, . . . , tn and a forged message mE , Eve’s guess is deterministic and
given by tguess. The probability that tguess is correct corresponds to the probability that the key (k0, (k1, . . . , kn)),
randomly chosen by Alice and Bob, is such that tE = fk0(mE) ⊕ k1 = tguess, conditioned on the compatibility with
the observed message-tag pairs. Then, we have that Eve’s guessing probability is given by:

pguess = Pr
(k0,(k1,...,kn))

[tE = tguess|ti = fk0
(mi)⊕ ki for i = 1, . . . , n] =

|S(tguess)|
|F|

, (A3)

where we used the fact that the keys are chosen randomly by Alice and Bob and that their total number (given that
(mi, ti) are authenticated) is

|{(k0, (k1, . . . , kn)) : ti = fk0
(mi)⊕ ki for i = 1, . . . , n}| = |F| . (A4)

As a matter of fact, once we fix k0, then all other keys are fixed by the equations ki = ti ⊕ fk0
(mi).

15

In the following, we compute Eve’s guessing probability starting from the cardinality of S(t), |S(t)|. For a fixed k1,
there are at most ε |F| /|B| possible choices of f ∈ F such that f(mE) = t⊕ k1 ∧ f(m1) = t1⊕ k1 due to the property
(1) of an ε-ASU2 family. Therefore, there are at most ε |F| /|B| possible values of k0 for each given k1. Now, for each
given value of k0, there is a unique string of keys k2, . . . , kn such that the remaining conditions of the set S(t) are
satisfied; these keys are fixed by: ki = ti ⊕ fk0

(mi). Thus, summing up, there are at most |B| · ε |F| /|B| keys in S(t):

|S(t)| ≤ ε |F| = |S(tguess)| , (A5)

where we used that t = tguess maximizes the size of S(t). By employing (A5) in (A3), we obtain Eve’s guessing
probability

pguess = ε, (A6)

which concludes the proof.

APPENDIX B: Efficient hashing families

In this Appendix we specify the ε-ASU2 family and the ε-AXU2 family adopted in the analyzed QDS protocols.
We follow the notation laid out in Sec. II such that each hash function maps strings of bM bits to strings of bH bits.

The chosen families are selected for their efficiency in the number of preshared key bits required to uniquely
identify a function of the family. In particular, the number of preshared bits scales with log2 bM (for a fixed security
parameter ε), rather than with bM as for strongly-universal2 sets based on random matrices.

ε-ASU2 family: The ε-ASU2 family employed in this manuscript is FASU, with ε = 21−bH . The explicit
construction of FASU is provided in Refs. [15, 24]. Each function of the set FASU is uniquely defined by a string of y
bits, where y satisfies: y = 3bH + 2σ, where σ is the smallest number that satisfies: bM ≤ (bH + σ)(1 + 2σ). Since σ
is defined by a transcendental inequality, it can only be computed numerically. Alternatively, it might be convenient
to obtain a relatively tight analytical upper bound on σ by solving: bM = bH(1 + 2σ), which yields

σ̄ = log2

(
bM
bH

− 1

)
. (B1)

This provides us with the following upper bound on the number of bits y required to specify an element in FASU,

ȳ =

⌈
3bH + 2 log2

(
bM
bH

− 1

)⌉
, (B2)

and this is the value that we use in our performance analysis of Sec. IV.

ε-AXU2 family: The ε-AXU2 family employed in this manuscript is FAXU, with ε = bM21−bH , and it is
composed of Toeplitz matrices such that consecutive columns are consecutive states of a linear feedback shift register
(LFSR) of length bH [20]. Therefore, each hash function, i.e. each Toeplitz matrix, is specified by an LFSR and its
initial state, totaling to 2bH bits.

In order to specify the elements of FAXU, we first define LFSRs.

Definition B.1. Let p(x) be a polynomial of degree n over GF(2), p(x) = xn + pn−1x
n−1 + . . . p1x + p0 and s0 =

(sn−1, . . . , s1, s0) a binary string. A linear feedback shift register (LFSR) of length n is specified by p(x) and the
initial state of the register, s0. The following state of the register, s1, is obtained by shifting to the right the bits of
the previous state, s0, and by computing the new element: sn = s0 · p mod 2, where p is the vector of coefficients
p = (pn−1, . . . , p0) and where ”·” indicates the scalar product. Thus we have: s1 = (sn, sn−1, . . . , s1). By applying the
same rule recursively, the k-th state of the LFSR is given by: sk = (sn−1+k, . . . , s1+k, sk), where a generic element of
the sequence of bits generated by the LFSR is: sl = sl−n · p mod 2, for l ≥ n.

From the above definition, we deduce that the transpose of consecutive states of an LFSR can be considered as
consecutive columns of a Toeplitz matrix. We now define the elements of FAXU.

Definition B.2. Let p(x) be an irreducible polynomial of degree bH over GF(2) and let s0 = (sbH−1, . . . , s1, s0)
T

be the initial state of the LFSR with connection polynomial p(x), with s0 ̸= 0. Let Tp,s be the Toeplitz matrix with
columns given by: Tp,s = (s0, s1, . . . , sbM−1), where sk is the transpose of the k-th state of the LFSR. The hash
function fp,s ∈ FAXU maps messages m = (m0, . . . ,mbM−1)

T of variable length up to bM bits to bH-bit strings given
by: fp,s(m) = Tp,sm mod 2. In other words, the j-th element of the hash reads: (fp,s(m))j =

⊕bM−1
i=0 mi sbH−j+i,

where sbH−j+i is the (bH − j + i)-th element of the LFSR sequence.

16

Note that to avoid allowing an adversary to add zeroes to the message without changing the tag, each message
needs to end with a 1.

APPENDIX C: Security proof of Protocol 3

In this Appendix we prove the IT security of the QDS protocol presented in Sec. III C.

Lemma. Protocol 3 is εtransf-secure against non-transferability according to Definition III.2, with:

εtransf =

(
N(1− dR)

2

)
max{εi,j , εauth, εhyb}, (C1)

where

εi,j = N(1− dR) exp

(
− k

8(lmax + 1)2

)
(C2)

εauth =

(
ky + k log2(Nk)

2b
′
H−1

)N [1/2−(lmax+1)dR]

(C3)

εhyb =
ky + k log2(Nk)

2b
′
H−1

Ξ

(⌊
N

2

⌋
+ 1, N(1− dR), exp

(
− k

8(lmax + 1)2

))
, (C4)

and

Ξ(k, n, p) :=

n∑
j=k

(
n

j

)
pj(1− p)n−j . (C5)

Proof. According to the description of Protocol 3, if a signature is verified at level l, then it is also verified also at any
lower level:

Verj,l(Doc, Sig) = True =⇒ Verj,l′(Doc, Sig) = True, ∀ l′ < l. (C6)

By the contrapositive we have that:

Verj,l′(Doc, Sig) = False =⇒ Verj,l(Doc, Sig) = False ∀ l > l′. (C7)

Thus, we can restrict without loss of generality the condition in Definition III.2 to verifying that

Pr [∃Pi, Pj /∈ C : Veri,l(Doc, Sig) = True ∧ Verj,l−1(Doc, Sig) = False] ≤ εtransf , (C8)

where we consider the largest possible coalition C of dishonest users, formed by the dishonest sender and NdR
dishonest receivers.

To start with, we fix the pair of honest receivers that are targeted by the coalition to be Pi and Pj , respectively.
Nevertheless, the attack is successful whenever any pair of honest receivers disagree on the verification outcome; we
cover this case at the end of the proof. Moreover, we start by considering the possible attacks from the coalition C
that do not involve attacking the authenticated channels and are instead based on distributing invalid hash functions
to honest receivers.

The probability of a successful attack of the coalition on the pair Pi, Pj is given by:

Pr[attack on Pi, Pj] = Pr [Veri,l(Doc, Sig) = True ∧ Verj,l−1(Doc, Sig) = False]

= Pr

[
N∑
r=1

TDoc
i,r,l >

N

2
+ (l + 1)NdR ∧

N∑
r=1

TDoc
j,r,l−1 ≤ N

2
+ lNdR

]
, (C9)

where we used the definitions of the verification function and of δl. Now, we observe that for the tests TDoc
j,r,l−1 where

r ∈ C, the coalition can force the test to not pass. Indeed, a dishonest receiver r can forward invalid hash functions
to Pj such that the number of discrepancies observed by Pj exceeds the threshold sl−1k, forcing TDoc

j,r,l−1 = 0. At the
same time, the coalition can behave honestly with respect to receiver Pi, making sure that their tests are passed:
TDoc
i,r,l = 1. Since there are NdR dishonest receivers, there can be at most NdR tests that are passed by Pi and not

17

passed by Pj . Since this occurs deterministically and cannot be avoided, the condition to be checked in (C9) updates
to:

Pr[attack on Pi, Pj] = Pr

N(1−dR)∑
h=1

TDoc
i,h,l >

N

2
+ lNdR ∧

N(1−dR)∑
h=1

TDoc
j,h,l−1 ≤ N

2
+ lNdR

 , (C10)

where now the sums only run over the set of honest receivers, h /∈ C. At this point, the coalition’s ability to steer the
result of a test where the hash functions originate from an honest receiver, h, is reduced, but not null. In particular,
to each honest receiver h, the dishonest sender can provide a set of Nk hash functions, some of which are correct
while others are invalid (in the sense that their hashed values are different from the tags). Then, depending on the
random samples of k hash functions drawn by h and sent to participants Pi and Pj , the respective tests TDoc

i,h,l and
TDoc
j,h,l−1 might fail or pass.
In order to find the optimal strategy for the coalition, we consider a necessary condition for the event in (C10) to

occur. Namely, that there exists at least one honest receiver, h̄, such that Pi’s test is passed while Pj ’s test fails.
Note that this condition may also be sufficient since the event in (C10) occurs as soon as the number of passed tests
between Pi and Pj differs by one. Since the probability of a necessary condition is larger than the probability of the
original event, we have the upper bound:

Pr[attack on Pi, Pj] ≤ Pr
[
∃ h̄ /∈ C : TDoc

i,h̄,l = 1 ∧ TDoc
j,h̄,l−1 = 0

]
≤ N(1− dR) Pr

[
TDoc
i,h,l = 1 ∧ TDoc

j,h,l−1 = 0
]

≤ N(1− dR)min
{
Pr

[
TDoc
i,h,l = 1

]
,Pr

[
TDoc
j,h,l−1 = 0

]}
, (C11)

where in the second inequality we used the union bound and assumed without loss of generality that the probability
of mismatching outcomes for participants Pi and Pj is independent of the choice of honest receiver h.

As mentioned earlier, the coalition can provide participant h with a set of hash functions where some of the functions
are invalid, meaning that their hashed values would differ from the tags sent by the sender. Regardless of the strategy,
since participant h randomly samples the sets Fh→i and Fh→j to be sent to Pi and Pj , respectively, the expected
number of mismatches between the tags and the hashed values observed by Pi and by Pj coincides. We define the
expected fraction of mismatches observed by Pi and Pj to be pe:

pe = E

[∑
r∈Rh→i

g(tr, fr(Doc))

k

]
(C12)

= E

 ∑
r∈Rh→j

g(tr, fr(Doc))

k

 , (C13)

and we assume it to be fixed by the optimal strategy found by the coalition (in other words, pe is not a random
variable). Now, we consider different choices for the value of pe and compute the bound in (C11) for each choice.

• pe < sl < sl−1 In this case, the expected fraction of errors is below the thresholds used in both tests. Therefore,
it is likely that both tests are passed. This implies that we can trivially bound the probability of passing the
test in Pi:

Pr
[
TDoc
i,h,l = 1

]
≤ 1. (C14)

On the contrary, we can use Hoeffding’s inequality to bound the probability that the test in Pj fails:

Pr
[
TDoc
j,h,l−1 = 0

]
= Pr

 ∑
r∈Rh→j

g(tr, fr(Doc)) ≥ sl−1k


= Pr

 ∑
r∈Rh→j

g(tr, fr(Doc))− pek ≥ (sl−1 − pe)k


≤ exp

(
−2k(sl−1 − pe)

2
)
. (C15)

By combining the bounds in (C14) and (C15) and the condition on pe, we obtain the following upper bound on
the success probability of the attack from (C11):

Pr[attack on Pi, Pj] ≤ N(1− dR) exp
(
−2k(sl−1 − sl)

2
)
. (C16)

18

• pe > sl−1 > sl In this case, the expected fraction of errors exceeds both thresholds, thus likely causing both
tests to fail. We thus obtain the following bounds:

Pr
[
TDoc
j,h,l−1 = 0

]
≤ 1, (C17)

Pr
[
TDoc
i,h,l = 1

]
= Pr

[∑
r∈Rh→i

g(tr, fr(Doc)) < slk

]

= Pr

[
pek −

∑
r∈Rh→i

g(tr, fr(Doc)) > (pe − sl)k

]
≤ exp

(
−2k(pe − sl)

2
)
, (C18)

where the second bound is again obtained by applying Hoeffding’s inequality. By combining the above bounds
and the condition on pe, we obtain the following upper bound on the success probability of the attack:

Pr[attack on Pi, Pj] ≤ N(1− dR) exp
(
−2k(sl−1 − sl)

2
)
. (C19)

• sl < pe < sl−1 In this case, it is likely that the test in Pi fails while the test in Pj succeeds. Thus, we can use
Hoeffding’s inequality to bound both probabilities in (C11):

Pr
[
TDoc
i,h,l = 1

]
≤ exp

(
−2k(pe − sl)

2
)

(C20)

Pr
[
TDoc
j,h,l−1 = 0

]
≤ exp

(
−2k(sl−1 − pe)

2
)
. (C21)

By combining the above bounds in (C11), we obtain the following upper bound on the attack success probability:

Pr[attack on Pi, Pj] ≤ N(1− dR)min
{
exp

(
−2k(pe − sl)

2
)
, exp

(
−2k(sl−1 − pe)

2
)}

. (C22)

Since the optimal strategy by the coalition aims at maximizing the attack success probability, we choose pe to
be equidistant from sl and sl−1, i.e. pe = (sl + sl−1)/2. Indeed, this choice maximizes the right hand side of
the last expression. We obtain:

Pr[attack on Pi, Pj] ≤ N(1− dR) exp

(
−k

2
(sl−1 − sl)

2

)
. (C23)

By comparing the bounds (C16), (C19), and (C23) obtained for various possible choices of the value of pe, we observe
that the largest attack probability on a given pair of participants Pi, Pj is obtained in (C23) for pe = (sl + sl−1)/2.
Thus, we obtain the following upper bound on the probability of a successful attack on the fixed pair Pi, Pj of honest
participants, given that the coalition C performs the attack with invalid hash functions provided to honest receivers:

Pr[attack on Pi, Pj] ≤ εi,j , (C24)

where we employed the optimal choice for the spacing of the sl variables, sl−1 − sl = ∆s ≈ [2(lmax + 1)]−1,

εi,j = N(1− dR) exp

(
− k

8(lmax + 1)2

)
. (C25)

At this point, we turn to consider the attack on the transferability property between Pi and Pj which is enabled
by imperfect authenticated channels, while assuming that all the hash functions distributed by the sender are correct.
Specifically, the coalition can either attack the authenticated channels used to forward the {Doc, Sig} pair in the
messaging stage, or the authenticated secret channels used to shuffle the hash functions in the distribution stage.
For the former, a successful attack would indeed cause a rejection but it comes at the cost of having one of the
participants verifying a different pair {Doc′, Sig′}. Since the transferability definition requires both parties to verify
the same document-signature pair, this scenario is not relevant for the proof (although causing a transferability
issue in practice). In the latter attack, the coalition attempts to alter the hash functions sent to party Pj over the
authenticated secret channels by honest receivers, such that Pj rejects the signature. Meanwhile, the hash functions
destined to Pi are left untouched, hence the event Veri,l(Doc, Sig) = True occurs with certainty. The probability that
the described attack is successful is given by:

Pr [attack on Pj] = Pr [Verj,l−1(Doc, Sig) = False]

= Pr

N(1−dR)−1∑
h=1

TDoc
j,h,l−1 ≤ N

2
+ lNdR − 1

 , (C26)

19

where we already accounted for the fact that the NdR dishonest receivers will send invalid hash functions to Pj and
that the hash functions kept by Pj , i.e. those in the set Fj→j , are necessarily correct, thus causing TDoc

j,j,l−1 = 1.
From (C26), we deduce that Pj rejects the signature if at least N(1−dR)−1−(N/2+lNdR−1) = N [1/2−(l+1)dR]

tests are not passed. This implies that the coalition must successfully corrupt the hash functions sets Fh→j sent by an
equal number of honest receivers over authenticated secret channels. Now, recall from Sec. II that the authenticated
channels are implemented via WC authentication with key recycling and with the hash family FAXU. Then, the
probability of corrupting one authenticated message of length bM is bM/2b

′
H−1 according to Table I. Note, however,

that a single failed authentication (caused by a corruption attempt) causes the protocol to abort. Then, the probability
that the coalition successfully corrupts enough hash function sets to cause Pj ’s rejection without causing an abortion
reads:

Pr [attack on Pj] =

(
ky + k log2(Nk)

2b
′
H−1

)N [1/2−(l+1)dR]

≤ εauth, (C27)

where ky + k log2(Nk) is the length of the messages exchanged by the receivers in the distribution stage and where

εauth :=

(
ky + k log2(Nk)

2b
′
H−1

)N [1/2−(lmax+1)dR]

. (C28)

Now, for each given pair Pi, Pj , the coalition might decide to perform the first attack we analyzed, whose probability
of success is given by (C25), or the second attack with probability of success (C28), or a combination of the two.
Combining the two attacks means that the verification tests at Pj may fail either due to incorrect hash functions
received from honest receivers, or due to hash functions sent by honest receivers which are corrupted on their way to
Pj . The necessary events for the hybrid attack to take place are that Pi successfully verifies the signature and that
at least one successful attack is performed on the authenticated channels. Thus, the success probability of the hybrid
approach is bounded by:

Pr [hybrid attack] ≤ Pr [Veri,l(Doc, Sig) = True]
ky + k log2(Nk)

2b
′
H−1

= Pr

N(1−dR)∑
h=1

TDoc
i,h,l >

N

2
+ lNdR

 ky + k log2(Nk)

2b
′
H−1

≤ ky + k log2(Nk)

2b
′
H−1

Ξ

(⌊
N

2
+ lNdR

⌋
+ 1, N(1− dR), e

− k
2 (sl−1−sl)

2

)
≤ εhyb, (C29)

with

εhyb :=
ky + k log2(Nk)

2b
′
H−1

Ξ

(⌊
N

2

⌋
+ 1, N(1− dR), exp

(
− k

8(lmax + 1)2

))
. (C30)

In the first equality we accounted for the fact that the dishonest receivers will provide Pi with correct hash functions.
In the second inequality, we considered the probability of passing a single test at Pi as per derivation of (C23) and
used the function (C5) for the probability of at least N

2 + lNdR successes out of N(1− dR) attempts. Finally, in the
last inequality we chose the smallest value2 for l and adopted the optimal spacing sl−1 − sl = ∆s = [2(lmax + 1)]−1.

Since the coalition aims at maximizing its attack success probability, for each fixed pair Pi, Pj the coalition will
perform the type of attack with the highest probability of success, which is given by:

max{εi,j , εauth, εhyb}. (C31)

Recall that the total success probability in (C8) refers to any pair of honest participants. There are in total
(
N(1−dR)

2

)
different pairs of honest participants. By employing the union bound, the relevant probability can be bounded by:

Pr [∃Pi, Pj /∈ C : Veri,l(Doc, Sig) = True ∧ Verj,l−1(Doc, Sig) = False] ≤
(
N(1− dR)

2

)
max{εi,j , εauth, εhyb}

(C32)

2 We remark that, according to the transferability definition, the
smallest allowed value for l is l = 1. Here, however, we choose

l = 0 so that the resulting bound is also reusable in the proof
against repudiation.

20

where the epsilon variables are given in (C25), (C28) and (C30), respectively. This concludes the proof.

Lemma. Protocol 3 is εrep-secure against repudiation according to Definition III.3, with:

εrep =

(
N(1− dR)

2

)
max{εi,j , εauth, εhyb}, (C33)

where εi,j , εauth and εhyb are given in (C25), (C28) and (C30), respectively.

Proof. The proof can be reduced to a special case of the proof of transferability (see proof of Lemma III.7). According
to the repudiation definition (Definition III.3), we need to bound the following probability:

prep = Pr [∃Pi /∈ C : Veri,l(Doc, Sig) = True ∧ MV(Doc, Sig) = Invalid] . (C34)

Here, the attack is successful if an honest receiver validates the signature while the majority of receivers (specifically,
≥ ⌈N/2⌉) deems it invalid at verification level l = −1. With a coalition of NdR = ω − 1 dishonest receivers, we can
already be certain that ω−1 participants will deem the signature as invalid in the majority vote. This means that the
attack is successful when at least NHR := ⌈N/2⌉+1−ω honest receivers reject the signature at verification level l = −1.
By taking into account that the number of dishonest participants is strictly bounded by: ω < (N+1)/2, the number of
honest receivers that need to reject the signature for the attack to be successful is at least NHR > ⌈N/2⌉−N/2+1/2,
which is equivalent to requesting:

NHR ≥
{

2 for N odd
1 for N even. (C35)

In other words, a precondition for the attack being successful for any N is that at least one honest receiver rejects
the signature at verification level l = −1. Then, the probability to be bounded reads:

prep ≤ [∃Pi, Pj /∈ C : Veri,l(Doc, Sig) = True ∧ Verj,−1(Doc, Sig) = False] . (C36)

Now, we use the fact pointed out in (18) to upper bound the last expression as follows:

prep ≤ [∃Pi, Pj /∈ C : Veri,0(Doc, Sig) = True ∧ Verj,−1(Doc, Sig) = False]

≤
(
N(1− dR)

2

)
max{εi,j , εauth, εhyb}, (C37)

where we used (C32) in the last inequality, since it also valid for the special case l = 0. This concludes the proof.

Lemma. Protocol 3 is εfor-secure against forgery according to Definition III.1, with:

εfor = (N − ω) Ξ(⌊N/2⌋, N − ω, pt), (C38)

where pt is defined as:

pt = Ξ(⌊k(1− s0)⌋+ 1, k, 21−bH), (C39)

and

Ξ(k, n, p) :=

n∑
j=k

(
n

j

)
pj(1− p)n−j . (C40)

Moreover, the forgery attack based on the security loophole discussed in Ref. [15], where a dishonest receiver forges
the pair {Doc′, Sig′} and invokes the dispute resolution method for the other parties to accept the pair, succeeds with
probability:

pattack = Ξ(⌊N/2⌋+ 1− ω,N − ω, p−1), (C41)

with:

p−1 = Ξ(⌊N/2⌋+ 1− ω,N − ω, pt). (C42)

21

Proof. A successful forgery attack occurs when a coalition C of ω dishonest receivers, which does not include the
sender, is provided with a valid {Doc, Sig} pair and finds a new pair {Doc′, Sig′} (with Doc′ ̸= Doc) such that at
least one of the N − ω honest receivers accepts it at the lowest verification level, l = 0.

We first consider the case where the coalition tries to deceive a fixed receiver, Pi. Then, we are interested in
bounding the following probability:

Pr [Veri,0(Doc′, Sig′) = True] = Pr

 N∑
j=1

TDoc′

i,j,0 ≥ ⌊Nδ0⌋+ 1

 . (C43)

By using the fact that δ0 = 1/2 + dR and that dR = (ω − 1)/N , we can write:

Pr [Veri,0(Doc′, Sig′) = True] = Pr

 N∑
j=1

TDoc′

i,j,0 ≥
⌊
N

2

⌋
+ ω

 . (C44)

Now, for all the Pj ∈ C, the test TDoc′

i,j,0 can be forced to pass. Indeed, the coalition knows the hash functions in Fj→i

and thus can choose the tags contained in Sig′, corresponding to the positions Rj→i, to be the hashed values of Doc′

when using the functions in Fj→i. This will guarantee that TDoc′

i,j,0 = 1 occurs with certainty. Then, we can update
the probability in (C44) as follows:

Pr [Veri,0(Doc′, Sig′) = True] = Pr

[
N−ω∑
h=1

TDoc′

i,h,0 ≥
⌊
N

2

⌋]
, (C45)

meaning that the attack is successful if at least ⌊N/2⌋ additional tests originating from honest receivers h /∈ C are
passed. Let pt be the probability that the test based on the hash functions sent by receiver h is passed:

pt := Pr
[
TDoc′

i,h,0 = 1
]
. (C46)

Then, assuming w.l.o.g. that the probability of passing each test is independent for different receivers h, we can
express the probability in (C45) as follows:

Pr [Veri,0(Doc′, Sig′) = True] = Ξ(⌊N/2⌋, N − ω, pt), (C47)

where Ξ(k, n, p), defined in (C40), is the function returning the probability of at least k successes out of n trials with
success probability p for each trial.

We now consider the general case of the coalition trying to deceive at least one of the N − ω honest receivers. The
relevant probability is thus:

Pr [∃Pi /∈ C : Veri,0(Doc′, Sig′) = True] ≤ (N − ω) Pr [Veri,0(Doc′, Sig′) = True] , (C48)

where we employed the union bound in the inequality. Then, by combining (C48) with (C47) we obtain:

Pr [∃Pi /∈ C : Veri,0(Doc′, Sig′) = True] ≤ (N − ω) Ξ(⌊N/2⌋, N − ω, pt), (C49)

which is the claim of the Lemma.
We now derive an explicit expression for pt. Participant Pi deems the test TDoc′

i,h,0 as passed (at verification level
l = 0) if the number of mismatches between the tags in Sig′ and the hashes obtained by applying the functions in
Fh→i to Doc′ is smaller than ks0:

Pr
[
TDoc′

i,h,0 = 1
]
= Pr

[∑
r∈Rh→i

g(t′r, fr(Doc′)) < ks0

]
. (C50)

In order for the coalition to append correct tags in Sig′, they need to know the hash functions in Fh→i. However,
this is not possible since h is an honest receiver and the sender is not part of the coalition. Let f1, f2, . . . , fk be the
k hash functions in Fh→i. For each hash function, the coalition knows a valid message-tag pair from the knowledge
of {Doc, Sig} and wishes to find another valid pair. In particular, the coalition knows that Doc and t1 are such that
f1(Doc) = t1 and wants to find t′1 such that f1(Doc′) = t′1. Since the ε-ASU2 family FASU adopted by the protocol has
security parameter ε = 21−bH (see Appendix B), the probability that the coalition correctly guesses the tag t′1 is given

22

by 21−bH . Since correctly guessing the tag for each hash function in Fh→i are independent events, the probability of
correctly guessing more than k − ks0 tags out of k attempts is:

pt = Pr
[
TDoc′

i,h,0 = 1
]
= Ξ(⌊k(1− s0)⌋+ 1, k, 21−bH), (C51)

which is the expression provided in the claim of the Lemma.
Finally, we compute the success probability (pattack) of a forgery attempt where the forger invokes the dispute

resolution method by falsely claiming that they verified the pair {Doc′, Sig′} at level l = 0 (this attack was first
pointed out in Ref. [15]). In this case, the forger aims at making other honest receivers accept the signature at level
l = −1, i.e., at a lower level compared to the standard definition of security against forgery, such that the outcome of
the dispute resolution is to accept the pair: MV(Doc′, Sig′) = Valid.

Let Pi /∈ C be an honest receiver. Then, the probability that Pi accepts the forged signature is:

p−1 := Pr [Veri,−1(Doc′, Sig′) = True]

= Pr

 N∑
j=1

TDoc′

i,j,−1 ≥ ⌊Nδ−1⌋+ 1


= Pr

[
N−ω∑
h=1

TDoc′

i,h,−1 ≥
⌊
N

2

⌋
+ 1− ω

]
, (C52)

where we assumed that the dishonest receivers will automatically force the test to be passed (TDoc′

i,j,−1 = 1). By again
using the fact that pt is the probability that a single test TDoc′

i,h,−1 is passed, we have the following probability that an
honest receiver accepts the forged signature at level l = −1:

p−1 = Ξ(⌊N/2⌋+ 1− ω,N − ω, pt). (C53)

Now consider that, to enforce MV(Doc′, Sig′) = Valid, the malicious coalition needs a total of ⌊N/2⌋ + 1 receivers
accepting the pair. Since ω of them will surely accept, only ⌊N/2⌋ + 1 − ω honest receivers out of N − ω need to
accept the pair. This occurs with probability:

pattack = Ξ(⌊N/2⌋+ 1− ω,N − ω, p−1), (C54)

as reported in the claim of the Lemma. This concludes the proof.

	Secure and practical Quantum Digital Signatures
	Abstract
	Introduction
	Background
	QDS protocols
	QDS by Yin et al.
	The protocol
	Security proof

	QDS by García Cid et al.
	The modified protocol
	Security proof

	Amiri et al.
	The protocol
	Security definitions
	Security proof

	Performance optimization
	Calculation of _P
	Optimization results

	Conclusion
	References
	Wegman-Carter authentication
	Efficient hashing families
	Security proof of Protocol 3

