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This paper investigates quantum communication using superconducting qubits, emphasizing the
simulation and control of quantum systems via IBM’s Brisbane quantum processor. We focus on
implementing fundamental quantum gates and analyzing the evolution of entangled states, which are
essential for secure and reliable information transfer. The study highlights the role of entanglement
as a critical resource in quantum communication, enabling secure connectivity across quantum
networks. Simulations incorporate realistic conditions, including decoherence and noise, to assess
the practical viability of entangled-state operations. Additionally, we explore the extension of these
systems to simulate key quantum models such as the Jaynes–Cummings and longitudinal Ising
models, offering insight into complex interactions in superconducting architectures. The findings
advance quantum information science by demonstrating the potential of superconducting qubit
systems for both foundational research and real-world applications in quantum communication.
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I. INTRODUCTION

Quantum computing employs the principles of quan-
tum physics to perform calculations unattainable by tra-
ditional systems [1]. Quantum processing fundamentally
relies on quantum bits, or qubits, which—unlike conven-
tional bits—can exist in superpositions and become en-
tangled. These distinctive quantum characteristics of-
fer powerful computational frameworks, enabling expo-
nential acceleration in tasks such as factoring, optimiza-
tion and modeling quantum systems. Among the var-
ious physical implementations of qubits, superconduct-
ing qubits have emerged as a leading platform due to
their scalability, compatibility with semiconductor fab-
rication processes and rapid gate speeds [2–4]. Super-
conducting qubits are constructed using nonlinear, non-
dissipative circuits with Josephson junctions, elements
that enable the system to exhibit quantized energy lev-
els. When cooled to cryogenic temperatures, typically
below 20 millikelvin, these circuits function as synthetic
atoms [5]. The most widely used superconducting qubit
is the transmon, a variant of the charge qubit designed
to reduce sensitivity to charge noise [6, 7]. It operates
within an anharmonic potential well resulting from the
interplay between Josephson energy and charging energy
[8]. The first two energy levels of this system form the
computational basis states, denoted |0⟩ and |1⟩ [9]. En-
tangling gates between qubits are implemented via cal-
ibrated couplings and logical operations are executed
using microwave pulses [10]. Major technology firms
such as Google, IBM and Rigetti have developed quan-
tum processors containing hundreds of superconducting
qubits. These devices support small-scale quantum com-
putations and experiments [11, 12]. Presently, these sys-
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tems operate within the Noisy Intermediate-Scale Quan-
tum (NISQ) era, marked by experimental validation and
algorithmic development, despite the lack of full error
correction capabilities [13, 14]. Quantum systems are
susceptible to a wide range of noise sources, both intrin-
sic and external. For example, cosmic rays may delay
transitions between energy levels [15]. Quantum error
correction is therefore a critical area of research, with ad-
vanced error-correcting codes offering potential solutions
[16]. Stabilizing quantum states remains experimentally
challenging and the mitigation of noise and delays de-
pends heavily on the choice of superconducting materi-
als [17]. Recent advances in quantum computing include
the December 2023 release of IBM’s Condor processor,
which supports up to 156 qubits with low error rates.
This device aims to enhance fidelity over earlier mod-
els [18, 19]. IBM has integrated these processors into
platforms such as Eagle and Condor, available through
open-source and subscription services for academic and
industrial use [20, 21]. However, increasing qubit counts
tend to raise error probabilities due to reduced fidelity.
Quantum computing has numerous practical applica-

tions. For instance, trapped ions use electromagnetic
forces to generate entanglement with fidelities around
90% [22], while quantum dots employ semiconductor
confinement effects for qubit formation.An IBM quan-
tum simulation utilized Suzuki–Trotter decomposition
to study nearest-neighbor interactions among supercon-
ducting qubits for the Heisenberg, XY model and Ising
models. The fidelity of simulations varied with itera-
tion and experimental density matrices deviated from
theoretical predictions over time. This study showcased
quantum state evolution and underscored the potential
of quantum computers to simulate complex systems [23].
This work investigates the principles design and chal-

lenges of superconducting qubit-based quantum comput-
ing. It focuses on the underlying physics, gate implemen-
tations, qubit architectures and efforts to address limita-
tions related to scalability and decoherence. The primary
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goal is to deepen the understanding of quantum commu-
nication by simulating and analyzing superconducting
qubit systems. Specifically, the study explores founda-
tional theoretical models,such as the Jaynes–Cummings
model and the longitudinal Ising model,in the context
of secure communication. This is achieved through
gate-level simulations and entanglement protocols imple-
mented on IBM’s quantum hardware. Superconducting
qubits have achieved gate fidelities of up to 95% and insti-
tutions including IBM, Google, Willow and the Sycamore
project continue working to improve performance and re-
duce quantum error correction overhead. These advance-
ments are steadily increasing the reliability and accuracy
of quantum computing systems.

The integration of superconductors and quantum com-
puting yields ”superconducting qubits”. Josephson junc-
tions within qubits help preserve superposition and co-
herence, while entanglement extends quantum behav-
ior. Superconducting qubits are commonly classified
into: Transmon Qubits [24] , Flux Qubits [25] and Phase
Qubits [26]. This study primarily focuses on the trans-
mon qubit due to its superior coherence times. Lever-
aging transmon architectures enhances quantum per-
formance, thereby improving information extraction in
practical applications.

II. HAMILTONIAN OF COOPER-PAIR

To comprehend the dynamics of a Cooper pair [27],
we examine a particle of mass m traversing one dimen-
sion subjected to a potential V(x). Within the realm
of quantum physics, the total energy of this particle is
denoted by the Hamiltonian operator Ĥ, which includes
both kinetic and potential energy components.

Ĥ = − h̄2

2m

d2

dx2
+ V (x) (1)

Equation (1) represents the time-independent
Schrödinger equation [28], a fundamental equation
in quantum mechanics that governs the energy and
spatial behavior of a quantum particle in a potential
V (x). The Hamiltonian operator Ĥ comprises two key
components are kinetic energy term and the potential
energy term. The kinetic energy term, which involves
Planck’s reduced constant h̄ and the particle’s mass m,
encapsulates the wave-like nature of the particle through
the second spatial derivative of the wavefunction. This
term describes how the particle propagates and exhibits
interference patterns. The potential energy term V (x),
in contrast, accounts for the external spatially dependent
influences acting on the particle, such as electromagnetic
fields or confining potentials. When the potential V(x) is
periodic, i.e., V (x+ a) = V (x) for some lattice constant
a, Bloch’s theorem becomes applicable [29]. Accord-
ing to this theorem, the solutions of the Schrödinger

equation can be expressed as plane waves modulated
by functions that share the same periodicity as the
potential. This insight is particularly important in the
study of electrons in crystalline solids, where periodic
potentials lead to the formation of energy bands.

ψk(x) = eikxuk(x), (2)

where uk(x) has the same periodicity as the potential.
This form, shown in Equation (2), reflects the transla-
tional symmetry of the system and is essential for ana-
lyzing electrons in crystals and periodic structures T .
Applying the kinetic energy operator to ψk(x) using

the product rule introduces terms involving the wave vec-
tor k. This results the modified Schrödinger equation

[
− h̄2

2m

(
d

dx
+ ik

)2

+ V (x)

]
uk(x) = Ekuk(x). (3)

Eqn. (3) gives the Hamiltonian acts on the periodic part
of the wavefunction, uk(x), with the momentum operator
effectively shifted by h̄k. This shift reflects the influence
of the crystal momentum k on the energy spectrum, a
key characteristic of electrons in periodic potentials, as
described by Bloch’s theorem.

H =
h̄2

2m

(
−i d
dx

+ k

)2

+ V (x) (4)

Eqn. (4), results the Hamiltonian operator on uk(x) and
the momentum operator is shifted by h̄k, show the ef-
fect of the wave vector k on the kinetic energy. In su-
perconducting circuits, energy is stored through electro-
static imbalance rather than momentum. When there is
a difference between the number of Cooper pairs (i.e.,
quantized charge) and the charge induced by an exter-
nally applied gate voltage, the system stores energy in
the form of charging energy.

HC = 4EC(n− ng)
2 (5)

Here, EC is the charging energy scale, determined by

the capacitance via EC = e2

2C . The quantity n is the
number of excess Cooper pairs , while ng is the gate-
induced charge, controlled continuously by an external
voltage [30]. Eqn.(5) emphasizes that the energy in-
creases quadratically with the deviation between the ac-
tual number of Cooper pairs and the gate-induced pre-
ferred charge. Another critical energy contribution in su-
perconducting circuits arises from Josephson tunneling,
where Cooper pairs coherently tunnel across a Josephson
junction, which described by the Josephson energy,

HJ = −EJ cos(ϕ) (6)

Here, EJ represents the Josephson coupling energy,
whereas ϕ denotes the superconducting phase difference
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across the junction. Equation (6) delineates the Joseph-
son energy, which characterizes the tunneling of Cooper
pairs across the junction and is clearly contingent upon
the phase difference between the superconductors [31].
The total Hamiltonian of a charge qubit, shown by the
Cooper-pair box, is derived from the sum of the charging
energy and the Josephson energy.

Ĥcp = 4EC(n− ng)
2 − EJ cos(ϕ) (7)

The second term is the Josephson energy, which de-
pends on the superconducting phase difference ϕ across
the junction.

III. HAMILTONIAN OF JAYNES-CUMMING
MODEL

The quantum dynamics of the Cooper-pair box are
governed by the interplay between these two energies,
a balance that is crucial for the qubit’s ability to store
and manipulate quantum information.

Γ =
κg2

∆2
, (8)

where g is the coupling strength, ∆ is the detuning and
κ is the photon decay rate of the cavity. Equation (8)
typically represents the interaction Hamiltonian or the
energy shift that occurs when the qubit is coupled to a
resonant cavity.

The photon decay rate of a cavity is given by:

κ =
ωr

Qr
(9)

Equation (9), results in an effective decay rate for the
qubit , where ωr is the resonant frequency of the cavity
and Qr is its quality factor. This relationship illustrates
how a qubit, even when well-isolated, can experience de-
cay through its coupling to a lossy resonator.The design
and execution of quantum information processing sys-
tems heavily relies on these decay mechanisms, which
are basic concepts in circuit quantum electrodynamics
(circuit QED).

The Purcell effect explains how a quantum emitter’s
(such a qubit’s) spontaneous emission rate changes when
it is connected to a resonant cavity [32]. To get the
Purcell decay rate, we begin with the Jaynes–Cummings
Hamiltonian. A two-level system (qubit) interacting with
a single-mode cavity is represented by this Hamiltonian.

The interaction between a single mode of a quantized
electromagnetic field and a two-level atom (qubit) is ar-
ticulated by the Jaynes–Cummings model [33]. This
model elucidates the energy exchange between the atom
and the field through the rotating wave approximation,

resulting in phenomena such as Rabi oscillations and vac-
uum Rabi splitting [34]. It is fundamental in quantum
optics and extensively employed in cavity and circuit
quantum electrodynamics, particularly in quantum com-
puting with superconducting qubits [35].

HJC =
h̄ωq

2
σz + h̄ωra

†a+ h̄g(σ+a+ σ−a†) (10)

It contains three primary elements. The first term
gives how much energy is kept in the cavity, where quan-
tum operators count the quantity of photons and their
frequency [36]. The second term talks about the qubit’s
energy, which can be in one of two states either ground
or excited. There is a certain frequency that separates
these two states. In the third portion, we can see how the
qubit and the cavity trade energy. The qubit either sends
a photon into the cavity or takes one from it. Transmon
qubits aim to stabilize the qubit and improve operational
speed. Isaac Rabi empirically identified this phenomena
and received the Nobel Prize in Physics in 1944 for his
discoveries.
The Rabi frequency is crucial for manipulating qubit

populations in superconducting qubits. It clarifies the
frequency transition between phases in quantum systems,
enabling the phase gate operation. The quantum circuit
shown in fig. 1 is a series of gate operations on mul-
tiple qubits, starting with single-qubit rotations using
Rz and

√
X gates, followed by Hadamard gates and en-

tangling operations, likely CNOTs and concluding with
measurement in the Z basis. These operations reflect
experimental realizations of theoretical models like the
Jaynes–Cummings (JC) interaction, where microwave
pulses precisely control the quantum state evolution. The
circuit is likely designed for process tomography or fi-
delity estimation, making use of superposition, entangle-
ment and measurement to evaluate the performance of
quantum gates. Overall, the JC model provides the phys-
ical mechanism for implementing and analyzing quantum
logic operations in superconducting qubit systems.

IV. HAMILTONIAN OF LONGITUDINAL
ISING MODEL

The classical Ising model describes a system of spins
that can point either up or down. These spins are ar-
ranged in a line (or lattice) and interact with their nearest
neighbors. The energy of the system depends on whether
neighboring spins are aligned or opposite and whether
there’s an external magnetic field acting on them.To
move from the classical to the quantum Ising model, we
make one key change: Instead of treating spins as just
classical up/down values, we treat them as quantum ob-
jects—specifically, using quantum spin operators. These
quantum spins can exist in superpositions and their be-
havior follows the rules of quantum mechanics.
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FIG. 1. Quantum circuits implementing Jaynes–Cummings-inspired gate operations enable scalable modeling of quantum
dynamics across multi-qubit systems.

The Ising model is a cornerstone of statistical and
quantum mechanics, widely used to study spin systems
and phase transitions [37]. In its quantum version, par-
ticularly the longitudinal quantum Ising model, spins in-
teract with their nearest neighbors along the z-axis and
may be influenced by an external magnetic field. Unlike
the classical version where spins are treated as binary
variables, the quantum model describes them using Pauli
spin operators. This shift to operator-based formalism al-
lows for a more accurate and powerful representation of
quantum phenomena such as superposition and entangle-
ment. As a result, the longitudinal Ising model becomes
a useful tool for modeling realistic quantum systems, in-
cluding arrays of qubits in quantum computers [38].

Let us consider a quantum spin chain where each spin
interacts only with its nearest neighbor. The energy of
interaction between the l the and (l+1)spins is given by

El,l+1 = Jlσ
z
l σ

z
l+1, (11)

where σz
l and σz

l+1 are the Pauli-Z operators correspond-
ing to the spin orientation along the z-axis for the re-
spective spins and Jl is the coupling constant for that

pair. This constant determines the strength and nature
of the interaction: a positive Jl tends to align spins in
the same direction, whereas a negative Jl favors opposite
alignments. This type of interaction is a key component
in the Ising model, which is fundamental for studying
magnetic systems and quantum correlations.
To describe the total interaction energy of a quantum

spin chain, where each spin interacts only with its nearest
neighbor, we sum over all adjacent spin pairs:

Hint =

N−1∑
l=1

Jlσ
z
l σ

z
l+1, (12)

where Jl is the coupling constant between the l-th and
(l + 1)-th spins and σz

l , σ
z
l+1 are the Pauli-Z operators

acting on those spins.
Each spin is also subjected to a magnetic field along

the z-axis. The Hamiltonian for this magnetic field in-
teraction is:

Hext = −
N∑
l=1

hlσ
z
l , (13)
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where hl is the magnetic field strength at site l.
Combining both the magnetic field and spin-spin in-

teraction terms, the full Hamiltonian for the longitudinal
Ising model is:

HLIsing = Hext +Hint (14)

Substituting Eqns. (12) and (13) in Eqn (14) results,

HLIsing = −
N∑
l=1

hlσ
z
l +

N−1∑
l=1

Jlσ
z
l σ

z
l+1. (15)

This Hamiltonian model is important phenomena in
condensed matter, quantum magnetism and quantum
computing. Equation (15) specifies the total Hamilto-
nian of a one-dimensional quantum spin chain governed
by the Ising model without an external magnetic field.
It sums over all pairs of neighboring spins, where each
pair contributes an energy term of the form Jlσ

z
l σ

z
l+1.

Here, σz
l and σz

l+1 are Pauli-Z matrices acting on the
l-th and (l + 1)-th spins respectively, describing their
spin states along the z-axis. The coupling constant Jl
quantifies how strongly each neighboring pair interacts.
The sign and magnitude of Jl determine whether the in-
teraction tends to align the spins in the same direction
(ferromagnetic, Jl > 0) or opposite directions (antiferro-
magnetic, Jl < 0). By summing over all l, the equation
captures the cumulative interaction energy for the entire
spin chain, making it a fundamental model for analyzing
collective quantum behavior in many-body systems[39].
This expression represents the full Hamiltonian for a 1D
Ising chain without an external magnetic field, capturing
the collective behavior of spins through pairwise interac-
tions.

In our exploration of the Ising model, we introduce a
dedicated quantum circuit architecture designed to probe
the system’s frequency dynamics, fidelity and inherent
error correction capabilities. This endeavor centers on
constructing a 22-qubit quantum circuit that faithfully
embodies the structure of the Ising model Hamiltonian,
as depicted in Fig. 2. The circuit commences with a
layer of Hadamard (H) gates, which prepare each qubit
in an equal superposition—setting the stage for quantum
parallelism. This is followed by an orchestrated applica-
tion of phase (P) gates and rotation around the z-axis
(Rz) gates, each introducing local phase shifts that en-
code spin interactions specific to the Ising Hamiltonian.
Crucially, the backbone of entanglement is constructed
through controlled-NOT (CNOT) gates, applied between
adjacent qubits to mimic nearest-neighbor couplings and
generate the entangled states necessary for capturing col-
lective quantum behavior. The sequence of gates, in-
spired by the Ising model’s theoretical underpinnings, al-
lows the simulation of complex many-body dynamics on
a quantum substrate. Fig. 2 illustrates this evolution,
horizontal colored bars denote time-evolving single-qubit
operations, while the vertical connectors signify entan-
gling operations that link qubit pairs across the lattice.

This layered visual conveys not only the logic of the cir-
cuit but also the propagation of quantum correlations
essential to simulating spin chain behavior. By structur-
ing the circuit in this manner, we facilitate the investi-
gation of quantum state evolution, identify signatures of
quantum phase transitions and assess algorithmic robust-
ness against decoherence and gate imperfections. The
implementation also serves as a testbed for refining er-
ror mitigation strategies in near-term quantum devices,
providing a bridge between theoretical models and their
physical realizations.

We employ the Brisbane quantum processor [40],
recognized as one of the most advanced third-generation
quantum chips, owing to its superior speed and qubit
manipulation capabilities. Its architecture is particularly
optimized for rapid quantum operations, making it an
ideal platform for simulating complex quantum systems
with enhanced execution efficiency. In our study, the dy-
namics of superconducting qubits are explored through
precise control and readout techniques, allowing us to
probe the evolution of quantum states with minimal la-
tency. Leveraging IBM’s simulation environment, the im-
plementation of our model on the Brisbane processor en-
ables the execution of up to 18,000 quantum operations
with minimal reliance on error correction protocols. This
capacity not only underscores the processor’s robustness
but also illustrates its suitability for running high-depth
quantum circuits with remarkable stability and perfor-
mance.

Figure 3 shows the schematic layout of IBM’s 127-qubit
Brisbane processor, where each circle represents a qubit
and connecting lines indicate allowed two-qubit interac-
tions which expalains the coupling map, that affects how
multi-qubit gates like CNOT are implemented. Such a
layout is crucial for optimizing circuit performance on
real hardware.

Superconducting qubits are widely regarded for their
precision and stability, making them ideal candidates for
scalable quantum computing. To achieve optimal perfor-
mance and accuracy, these systems typically operate at
frequencies between 4 GHz and 6 GHz, a range carefully
chosen to balance coherence times with control fidelity.
Within this spectrum, microwave signals play a pivotal
role—serving as the primary medium through which re-
searchers manipulate and probe quantum states. These
signals, often tuned between 5 and 8 GHz, align well
with the natural transition frequencies of superconduct-
ing qubits, enabling precise state preparation, manipu-
lation and measurement. This frequency window not
only ensures minimal interference and signal degradation
but also allows for highly accurate and stable character-
ization of quantum behavior, reinforcing the reliability
of superconducting platforms in experimental and ap-
plied quantum research. Figure 4 shows two bar graphs
that indicate how two alternative qubit interaction mod-
els—Jaynes–Cummings (left) and Ising (right) affect the
frequency distribution of recorded two-qubit quantum
states (00, 01, 10 and 11). The observed frequencies of
downward trend from 00 to 11 in the Jaynes–Cummings
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FIG. 2. Quantum circuits designed with Ising-inspired gate structures enable scalable simulation of spin-chain dynamics,
allowing detailed exploration of quantum correlations, many-body interactions, and critical phenomena across multi-qubit
systems.

model. This behavior stems from the dispersive coupling
between qubits and resonators, which causes the energy
levels to shift and spread out as more qubits transition
into the excited state. As more qubits get into the ex-
cited state, the energy levels change, making it less likely
that they will be measured in higher-excitation states.
In contrast, the Ising model displays an ascending fre-
quency pattern shows that from 00 to 11. This arises
due to Z–Z coupling, which means that the interaction
energy increases as more qubits are in the |1⟩ state. By
multiplying the number of trials with the potential out-
comes of the two quantum states, we compute the result-
ing frequencies. This process allows us to statistically
map the behavior of the quantum system under repeated
measurements. The primary objective is to generate a
spectrum of frequency values corresponding to various
quantum state configurations. By systematically eval-
uating the resulting frequencies, we aim to assess their
consistency and accuracy, thereby verifying the reliabil-

ity of the quantum circuit in capturing the underlying
quantum dynamics.

In general, adding more quantum gates while keeping
the number of qubits low but enough tends to improve
fidelity [41], as long as the superconducting qubits stay
in their best operational states. Figure 5 shows that if
the number of gates goes up with the number of qubits,
the fidelity value may go down, which means that the
error rate goes up.

This divergence between the two models reflects funda-
mental differences in how qubit interactions shape quan-
tum state probabilities and energy landscapes. Under-
standing the behavior of superconducting qubits under
various computing loads is made easier by these simula-
tions. In high-speed quantum computations, fidelity is a
crucial criterion for assessing the stability and quality of
superconducting qubits.

Fig. 6 illustrates how increase in bit errors within
the quantum circuit with diminishes the output of the
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FIG. 3. The schematic illustration of IBM’s 127-qubit Brisbane processor demonstrates that each circle represents a qubit and
the lines connecting them indicate how two qubits interact.

FIG. 4. (a) The bar chart on the left illustrates the frequency distribution of quantum states for a 22-qubit system with
2.98 × 107. The y-axis indicates the frequency (in Hz) of each quantum state. (b) The bar chart on the right displays the
frequency distribution of the same quantum states under the Ising Model, also for a 22-qubit system with 2.98× 107 shots.
This comparison highlights how different quantum interaction models influence the observed distribution of states under the
same simulation conditions.

qubits. This behavior can be efficiently detected and
evaluated in IBM’s quantum technologies. Classical bits
are frequently utilized when implementing frequencies in
a limited number of classical systems. By establishing
the values of the classical bits, the whole frequency may
be delineated to enhance comprehension of the behav-
ior of these bits. This technique enables enhanced pre-
cision in quantifying key quantum properties. It shows
how closely the desired state and the actual state of a
qubit match and it is essential for assessing how well
quantum error correction works, especially in connection
with the quantity of qubits used. Quantum operators

are implemented within circuits to analyze and demon-
strate these phenomena. Error correction demands grow
with increasing qubit count in both interaction mod-
els, underscoring the inherent fragility of larger quan-
tum systems. Notably, the Ising model exhibits a slightly
higher requirement for error correction compared to the
Jaynes–Cummings model, reflecting the stronger inter-
qubit correlations and more complex entanglement struc-
tures involved. This trend highlights the critical impor-
tance of robust error mitigation strategies as system size
scales, ensuring the fidelity and stability of quantum com-
putations in both theoretical simulations and real hard-
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FIG. 5. Fidelity comparison between the Jaynes–Cummings
and Longitudinal Ising models across varying qubit counts.
The plot illustrates the fidelity degradation from 2 to 127
qubits, highlighting the performance scalability of each model.
The Jaynes–Cummings model demonstrates superior re-
silience to noise and decoherence, while the Ising model re-
veals limitations under large-scale quantum simulation.

ware implementations.

FIG. 6. Error correction performance across quantum systems
of increasing size, from 2 to 127 qubits. The graph reveals a
rising trend in cumulative errors with larger qubit counts,
emphasizing the critical need for advanced error mitigation
and fault-tolerant strategies in scalable quantum computing
architectures.

To overcome hardware-imposed shot limitations,
we employ a strategy of aggregating the outcomes of
multiple low-shot executions on IBM Quantum systems,
as illustrated in Figure 7. This approach enables
the collection of highly accurate measurement data
without exceeding the permissible number of shots per
run, making it particularly valuable for probing larger
quantum systems. Figure 7 reveals a striking trend: as
the number of qubits increases, the system’s operating
frequency undergoes a significant decline. While smaller
circuits—comprising fewer qubits—maintain stability
within the 4–5 GHz range, the frequency plummets
to nearly 1 GHz when scaling up to 127 qubits. This
sharp drop indicates the growing challenge of preserv-
ing coherent control and synchronization as system
complexity escalates. The comparison presented in

FIG. 7. Comparison of qubit frequencies across systems rang-
ing from 2 to 127 qubits, based on theoretical predictions and
IBM Brisbane hardware data. While theoretical models in-
dicate a gradual frequency decline followed by a sharp drop
near 126 qubits, the IBM Brisbane hardware maintains sta-
ble qubit frequencies between 4.9 and 5.0 GHz, demonstrating
superior frequency control and calibration stability in large-
scale quantum systems.

the figure also underscores how different underlying
Hamiltonians influence quantum state evolution and
readout probabilities. These observed dynamics are
crucial for the development of high-fidelity quantum
gates, the design of scalable quantum algorithms and the
calibration of realistic circuit models. Figure 7 illustrates
a resource-efficient technique employed in IBM Quan-
tum systems, where multiple operations are executed
with fewer shots and the outcomes are subsequently
aggregated. This approach enables the extraction of
highly accurate measurement data while remaining
within the shot limitations imposed by the hardware.
It proves especially effective when scaling quantum
circuits for large qubit systems. A clear trend emerges
inFigure 7 shows that the system’s operating frequency
goes up as the number of qubits goes up .While smaller
systems exhibit stability within the 4–5 GHz range, the
frequency sharply drops to approximately 1 GHz when
the qubit count reaches 127. This decline highlights the
increasing difficulty in maintaining precise control and
synchronization in large-scale quantum architectures.
Moreover, the comparison in the figure emphasizes how
the system’s Hamiltonian significantly shapes both the
quantum state evolution and the readout probabilities.
Understanding these frequency dynamics is essential
for the development of high-fidelity quantum gates,
the design of scalable quantum algorithms,the accurate
modeling, simulation and calibration of complex quan-
tum circuits. We take into consideration three main
causes of error when assessing the overall fidelity of a
quantum circuit running on IBM’s 127-qubit Brisbane
processor: Measurement error, two-qubit gate errors,
and single-qubit gate defects Each of these defect
types contributes uniquely to the degradation of circuit
performance. The total error probability is calculated as
follows
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Qubits
Frequency (GHz) Fidelity Error Correction

Theoretical IBM
Brisbane

Jaynes-
Cumming
Model

Ising
Model

Jaynes-
Cumming
Model

Ising
Model

2 5.00 4.60 94.79 94.29 0.0534 0.0587

12 4.80 4.98 72.55 70.29 0.3208 0.3525

22 4.68 5.03 53.53 52.40 0.5882 0.6462

32 4.65 4.91 42.50 39.06 0.8556 0.9400

42 4.54 5.06 32.53 29.11 1.1229 1.2337

52 4.44 4.91 24.89 22.14 1.3903 1.5275

62 4.33 4.93 19.05 16.18 1.6575 1.8212

72 4.22 5.05 15.41 12.06 1.8696 2.1153

82 4.12 4.89 11.16 8.99 2.1924 2.4087

92 4.03 4.91 8.54 6.70 2.4958 2.7025

102 3.94 4.80 6.53 4.99 2.7272 2.9962

112 3.85 5.00 5.45 3.91 2.9082 3.2395

122 3.76 4.93 3.83 2.77 3.2619 3.5837

126 1.17 4.90 3.36 2.39 3.3923 3.7305

TABLE I. System performance trends as a function of qubit number, ranging from 2 to 127. The graph captures the interplay
between fidelity, frequency, and error rates, revealing that as qubit count increases, fidelity and frequency generally decline,
while error accumulation intensifies. The comparison integrates theoretical predictions with empirical data from IBM’s Brisbane
quantum processor, highlighting the hardware’s relative stability and scalability challenges.

Single-qubit Error :
Assuming 12 single-qubit gates are applied and each

gate has an average error rate of 2.596× 10−4,

Errorsingle = 12× (2.596× 10−4) = 0.002755.

Two-qubit Error :
Assuming 2 CNOT gates with an average error rate of

6.560× 10−3,

Errortwo = 2× (6.560× 10−3) = 0.01389.

Measurement Error :
The average measurement error is given as:

ErrorMeasurement = 0.0534.

Total Error and Fidelity:
Let ES , ET , EM represent the single-qubit, two-qubit

and measurement errors respectively. The overall fidelity
F ′ is computed as,

F ′ = e−(ES+ET+EM )

Substituting the values,

F ′ = e−(0.002569+0.06560+0.01587) = e−0.0534

F ′ ≈ 0.9479 ≈ 94.79%

This signifies that the total circuit fidelity on the IBM
Brisbane processor for the specified configuration is

roughly 94.79%, which is regarded as rather high in near-
term quantum devices (NISQ era) [41]. In superconduct-
ing qubits, an augmentation in the quantity of qubits
is associated with an escalation in error correction de-
mands. As a result, the fidelity value decreases. This
suggests that as the quantity of qubits increases, the
overall fidelity declines. In a two-qubit system, fidelity
is improved with little error correction. However, when
the quantity of qubits escalates, error correction requires
supplementary gates and repeated cycles, leading to the
proliferation of errors inside quantum states.

V. CONCLUSION

In conclusion, this study provides a comprehensive in-
vestigation into the behavior and performance of super-
conducting quantum circuits utilizing transmon qubits
on IBM’s Brisbane quantum processor. By integrating
the Jaynes–Cummings interaction and the Longitudinal
Ising model into our simulations, we unveiled distinct
strengths and limitations associated with each frame-
work—highlighting the Jaynes–Cummings model’s supe-
riority in preserving fidelity and frequency stability across
larger qubit architectures. Notably, the sharp decline in
performance beyond a few qubits underscores the per-
sistent challenges posed by gate infidelity, decoherence
and measurement noise in current quantum hardware.
Through rigorous modeling, we demonstrated how fi-
delity deteriorates with increasing system size, thereby
drawing attention to the delicate trade-off between scal-
ability and quantum coherence. The Longitudinal Ising
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model, though less robust in large-scale implementations,
proved insightful in exploring complex many-body dy-
namics and condensed matter analogs. These findings
collectively stress the critical need for innovations in su-
perconducting circuit design, improved qubit connectiv-
ity, and the integration of more resilient error-correction
protocols. As the field advances, addressing these bot-
tlenecks will be vital for achieving practical, large-scale
quantum computing. Superconducting platforms, with
their solid-state reliability and strong industry support,
remain at the forefront of this pursuit. Continued col-

laboration between theory, experiment, and engineering
will be pivotal in transcending current limitations and
realizing the full potential of quantum technologies.
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