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Abstract
The Controller Area Network (CAN) protocol is a stan-
dard for in-vehicle communication but remains susceptible
to cyber-attacks due to its lack of built-in security. This paper
presents a multi-stage intrusion detection framework lever-
aging unsupervised anomaly detection and supervised graph
learning tailored for automotive CAN traffic. Our architec-
ture combines a Variational Graph Autoencoder (VGAE)
for structural anomaly detection with a Knowledge-Distilled
Graph Attention Network (KD-GAT) for robust attack clas-
sification. CAN bus activity is encoded as graph sequences
to model temporal and relational dependencies. The pipeline
applies VGAE-based selective undersampling to address
class imbalance, followed by GAT classification with op-
tional score-level fusion. The compact student GAT achieves
96% parameter reduction compared to the teacher model
while maintaining strong predictive performance. Experi-
ments on six public CAN intrusion datasets—Car-Hacking,
Car-Survival, and can-train-and-test—demonstrate competi-
tive accuracy and efficiency, with average improvements of
16.2% in F1-score over existing methods, particularly ex-
celling on highly imbalanced datasets with up to 55% F1-
score improvements.

1 Introduction
Modern vehicles rely on networks of electronic control units
(ECUs) to manage everything from engine functions to ad-
vanced driver assistance systems (ADAS). Communication
between ECUs is typically handled by the controller area
network (CAN) protocol, valued for its reliability and cost-
effectiveness in in-vehicle networks (IVNs) (Pazul 1999).
However, CAN lacks built-in security mechanisms like en-
cryption and authentication, as it was designed under the as-
sumption of a closed, isolated network (Choi et al. 2018).

With the introduction of on-board diagnostics (OBD)
ports and wireless connectivity (e.g., Wi-Fi, cellular, V2X),
access to the CAN bus has expanded significantly, opening
new attack surfaces (Miller and Valasek 2015). Attacks may
now originate from both physical interfaces (OBD-II, USB)
and remote channels (Bluetooth, mobile networks), allowing
adversaries to inject malicious messages and potentially dis-
rupt or take control of safety-critical vehicle systems (Woo,
Jo, and Lee 2015; Wen, Chen, and Lin 2020).

To counter these threats, intrusion detection systems
(IDS) for CAN have become an area of active research.

Traditional IDS approaches fall into two main categories:
packet-based and window-based methods. Packet-based
IDSs analyze individual CAN messages for quick detec-
tion, but cannot capture context or correlations across pack-
ets, limiting their effectiveness against complex attacks such
as spoofing or replay (Cho and Shin 2016). Window-based
IDSs consider sequences of packets, enabling better detec-
tion of such attack patterns, but often face challenges with
detection delays and performance under low-volume or re-
play attacks (Muter and Asaj 2011; Han, Kwak, and Kim
2018).

Recent efforts address these limitations with statistical ap-
proaches using graph models (Islam et al. 2022), advanced
machine learning techniques such as deep convolutional
neural networks (DCNN) (Song, Woo, and Kim 2020a),
and lightweight KNN classifiers (Derhab et al. 2022). Other
studies leverage temporal or dynamic graph features for
high-accuracy detection of diverse attack types (Refat et al.
2022; Song et al. 2024; He et al. 2024).

Despite strong results—for example, GNN- and VAE-
based systems achieving over 97% accuracy—adaptability
and efficiency remain concerns for deployment in resource-
constrained automotive environments (Yagiz et al. 2024).
Knowledge distillation, explainable AI, and graph-based
feature learning are promising strategies for developing ro-
bust, lightweight IDS that can operate effectively with lim-
ited resources and provide greater transparency.

1.1 Motivation
The CAN protocol is the backbone of in-vehicle communi-
cation but remains highly vulnerable to cyber-attacks. While
a range of IDSs have been proposed, existing methodologies
show critical limitations. Traditional packet-based IDSs, for
example, largely ignore sequential context and are there-
fore ineffective in capturing correlations across consecu-
tive packets thus restricting their ability to detect sophis-
ticated attacks and to perform accurate attack classifica-
tion. Window-based IDSs attempt to address temporal de-
pendencies; however, this area remains nascent, with few
frameworks achieving both high detection accuracy and
lightweight deployment. In addition, the nature of this data
introduces a pronounced class imbalance, with malicious ac-
tivity being rare compared to benign traffic, often leading to
biased detectors and poorly calibrated predictions.
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Figure 1: Overview of the proposed multi-stage intrusion detection architecture. The left panel shows the two-stage framework:
a Variational Graph Autoencoder (VGAE) performs anomaly scoring and selective undersampling, followed by a Graph Atten-
tion Network (GAT) for classification.

⊕
denotes concatenation of all GNN layer outputs before the final classifier. To mitigate

class imbalance, the VGAE selects normal samples with highest reconstruction errors (hardest-to-classify examples) for GAT
training at a 4:1 normal-to-attack ratio. The right panel illustrates knowledge distillation, where compact student models learn
to replicate both predictions and latent representations of their corresponding teacher models. n indicates the number of layers
in each architecture.

To address these limitations, we propose a multistage
graph neural network (GNN)-based framework that com-
bines Variational Graph Autoencoders (VGAE) for unsu-
pervised anomaly detection with Graph Attention Networks
(GAT) for robust attack classification. Our approach cap-
tures structural dependencies in CAN traffic and uses KD to
train a lightweight student model for efficient deployment on
resource-constrained automotive platforms, while also em-
ploying targeted methods to mitigate class imbalance and
improve rare attack detection.

1.2 Contributions

The main contributions of this research are as follows:

• We propose a novel two-stage intrusion detection frame-
work for CAN bus traffic that leverages both VGAE and
GAT modules as shown in Figure 1. In this architec-
ture, VGAE serves as the initial stage for robust repre-
sentation learning and anomaly score generation, while
GAT performs refined classification by exploiting graph-
structured dependencies.

• We introduce a KD strategy tailored for CAN bus ap-
plications on resource-limited edge devices, yielding a
student model that is only 1.54% the size of the teacher
model but retains strong detection performance.

• We conduct comprehensive experiments on six pub-
licly available CAN intrusion datasets, including full-
sequence evaluation of the newly released can-train-and-
test (Lampe and Meng 2024) benchmark.

2 Related Work
Intrusion detection systems (IDS) for in-vehicle CAN net-
works are commonly classified by frame count, data type,
and detection model (Dupont et al. 2019). By frame count,
IDSs can be divided into packet-based and window-based
approaches. Packet-based IDSs analyze individual CAN
frames for fast detection, but cannot capture dependencies
between packets, which limits their accuracy. For example,
Kang et al. (Kang and Kang 2016) used deep neural net-
works on simulated data, and Groza et al. (Groza and Mur-
vay 2019) applied Bloom filters to exploit traffic periodicity,
though their method is ineffective for aperiodic frames (Wei,
Cheng, and Xie 2022).

Window-based IDSs instead analyze sequences of CAN
frames, enabling temporal correlation analysis. Olufowobi et
al. (Olufowobi et al. 2020) employed timing models for real-
time detection without relying on specifications, but still
struggled with aperiodic messages and repeated IDs. Fre-
quency and Hamming distance methods (Taylor, Japkowicz,
and Leblanc 2015) are similarly less effective against aperi-
odic attacks (Bozdal, Samie, and Jennions 2021; Jo and Choi
2022). Islam et al. (Islam et al. 2022) used graph features and
statistical tests for anomaly and replay detection, but with in-
creased detection latency due to the need for larger batches
of messages.

Graph-based IDSs better capture ECU communication
patterns but often target only simple attacks. G-IDCS (Park,
Jo, and Lee 2023a) addresses this by combining an inter-
pretable, threshold-based stage with a classifier leveraging
message correlation, enabling detection of complex attacks
beyond what packet-based IDSs can achieve.



Most CAN bus IDSs are anomaly-based, using rule-based
detection for known signatures but struggling to generalize
to novel attacks. To address this, recent work uses machine
learning (ML) and deep learning (DL) to learn normal be-
havior and identify deviations. For instance, a CNN-LSTM-
attention hybrid (Amouri et al. 2020) achieved over 98

Recently, KD-GAT (Frenken et al. 2025) combines Graph
Attention Networks and knowledge distillation to obtain a
lightweight yet effective IDS. The student model closely
matches the teacher in accuracy but, like others, still strug-
gles with severe class imbalance.

Despite progress, current IDSs face challenges including
interpretability, scalability, and computation overhead, par-
ticularly for deployment in embedded automotive systems.
Class imbalance and scarce labeled attack data further hin-
der real-world generalization. These challenges motivate hy-
brid and distillation approaches, such as combining GNNs
and autoencoders with KD, as explored in this work.

3 Background
This section will cover fundamental concepts of the CAN
protocol, GNNs, VGAE, and KD.

3.1 CAN Protocol
The CAN is a robust serial protocol enabling real-time com-
munication between electronic control units (ECUs) in ve-
hicles. In a CAN bus, nodes broadcast messages, while re-
ceivers filter and process relevant ones. As shown in Figure
2, each CAN data frame includes a Start-of-Frame, Arbi-
tration, Control, Data, CRC, Acknowledgment, and End-of-
Frame field.

Control FieldArbitration Field

Bits

ACK ACK
      CRC
Sequence CRC EOF

71111 11 11 4 0-64 15 1

DataDLCROIDERTRIDSoFFields

CRC Field ACK Field

CAN Data Frame

Figure 2: CAN data frame structure

3.2 Graph Neural Networks
A graph is a data structure consisting of a set of nodes V and
a set of edges E that connect pairs of nodes. A graph can
be defined as G = (V,E), where V = {v1, v2, ..., vn} is a
node set with n nodes, and E = {e1, e2, ..., em} is an edge
set with m edges. Given this graph structure, a GNN looks
to find meaningful relationships and insights of the graph.
The most common way to accomplish this is through the
message passing framework (Gilmer et al. 2017) (Scarselli
et al. 2009), where at each iteration, every node aggregates
information from its local neighborhood. Across iterations,
node embeddings contain information from further parts of
the graph. This update rule can be explained through the fol-
lowing equation:

h(k)
v = ϕ

(
h(k−1)
v ,

⊕
u∈N (v)

ψ(h(k−1)
v ,h(k−1)

u , evu)
)

(1)

where h is the feature embedding, ϕ is the node update
function, ψ the message function, evu the edge feature,

⊕
an aggregation (sum/mean), and N (v) the neighbors of v.

GAT (Veličković et al. 2018) builds upon GNNs by intro-
ducing an attention mechanism. This allows each node in the
message passing framework to dynamically assign weight
contributions to their neighbors. For node v, the attention
coefficient αvu for neighbor u is computed as:

αvu = softmax
(
LeakyReLU

(
a⊤ [Whv ∥Whu]

))
(2)

where α is the learnable attention vector, W is a weight ma-
trix, and || denotes concatenation between the weight matri-
ces.

The attention function computes a scalar weight for each
neighbor of node vi, denoted by αij , which reflects the im-
portance or relevance of node vj for node vi.

h(k)
v = σ

 ∑
u∈N (v)

αvuWh(k−1)
u

 (3)

where σ is the activation function, normally ELU or RELU.
The Jumping Knowledge (JK) module (Xu et al. 2018)

enhances GATs by aggregating intermediate layer represen-
tations. In this work, we adopt the concatenation strategy,
where each node’s final representation is formed by directly
concatenating its embeddings from all GAT layers. Let h(l)v

denote the representation of node v at layer l ∈ 1, . . . , L.
The final output is computed as:

hfinal
v =

[
h(1)v , ; , h(2)v , ; , . . . , ; , h(L)

v

]
(4)

This approach preserves multi-level features without intro-
ducing additional sequential modeling overhead.

3.3 Variational Graph Autoencoder
The Variational Graph Autoencoder (VGAE) (Kipf and
Welling 2016) is a probabilistic model designed for unsuper-
vised learning on graphs. Given a graph G = (V,E) with
adjacency matrix A and node features X , VGAE approxi-
mates the posterior distribution of latent variables Z using a
two-layer GCN encoder.

The encoder approximates the posterior distribution over
the latent variables Z = {z1, ..., zN} by assuming a Gaus-
sian distribution for each node:

q(Z|X,A) =
N∏
i=1

N (zi|µi,diag(σ
2
i )), (5)

where µi ∈ Rd and σi ∈ Rd are the mean and standard
deviation vectors for node i. These are parameterized by two
separate GCN layers:

µ = GCNµ(X,A), log σ = GCNσ(X,A),

which capture both local topology and node features. The
outputs of these GCNs define the variational posterior
q(Z|X,A).



The decoder attempts to reconstruct the graph structure
by computing the probability of edge existence between any
two nodes i and j as:

p(A|Z) =
N∏
i=1

N∏
j=1

σ(z⊤i zj), (6)

where σ(·) is the sigmoid function and z⊤i zj measures simi-
larity in latent space. This inner product decoder encourages
connected nodes to have similar embeddings.

The training objective is to maximize the variational evi-
dence lower bound (ELBO), which consists of a reconstruc-
tion term and a regularization term:

L = Eq(Z|X,A)[log p(A|Z)]−KL[q(Z|X,A)||p(Z)], (7)

where the first term encourages accurate reconstruction of
the observed adjacency matrix, and the second term is the
Kullback-Leibler divergence between the approximate pos-
terior and the prior p(Z) =

∏N
i=1 N (zi|0, I), promoting

regularization and disentangled latent representations.
While VGAE effectively captures global graph struc-

ture, its full-graph decoding may be suboptimal for de-
tecting localized anomalies, especially in sparse or noisy
graphs. To address this, Zhou et al. (Zhou et al. 2023) intro-
duced GAD-NR, which replaces full adjacency reconstruc-
tion with localized neighborhood prediction. This modifi-
cation enhances sensitivity to topological deviations at the
node-level, making it suitable for intrusion detection in sys-
tems like CAN networks. Inspired by this, our architecture
adopts neighborhood-level reconstruction via masked de-
coding over the graph of each CAN window.

3.4 Knowledge Distillation
KD, popularized by Hinton et al.(Hinton, Vinyals, and Dean
2015), is a widely adopted model compression technique
where a small, efficient student model is trained to repro-
duce the behavior of a large, accurate teacher model. The
soft target probabilities output by a teacher model encode
rich relational information between classes that’s often not
captured by hard labels alone. Training a student model to
match these softened outputs enables it to learn a more in-
formative function approximation than training with one-hot
labels alone.

Concretely, given an input x, the teacher produces a vector
of logits st(x), which are converted into a softened distribu-
tion via temperature scaling τ :

p̃tk(x) =
exp(stk(x)/τ)∑
j exp(s

t
j(x)/τ)

(8)

The student is trained to match these probabilities by min-
imizing the Kullback-Leibler divergence between teacher
and student distributions (distillation loss), alongside the
standard supervised classification loss:

Ltotal = α · Lhard + (1− α) · LKD (9)

where α balances the contribution of ground truth and
teacher supervision.

4 Methodology
The two-stage framework depicted in Figure 1 is explained
in detail in this section.

4.1 Graph Construction
CAN data is typically represented as a tabular time se-
ries dataset, where each message mi is characterized by
attributes such as CAN ID, payload data, and timestamp.
To convert this sequential data into graph inputs suitable
for graph-based intrusion detection, we define the following
procedure:

Sliding Window and Graph Formation Given a sliding
window of size W (set to 100 messages in this work), we
extract a subsequence of CAN messages:

Wt = {mt,mt+1, . . . ,mt+W−1}

where each message mi = (IDi, payloadi).

Node Definition Each unique CAN ID within the window
Wt corresponds to a node vj in the graph Gt = (Vt, Et).
The node attributes are defined as:

xj =

[
IDj , fj =

count(IDj)

W
, p̄j =

1

nj

nj∑
k=1

payloadj,k

]
(10)

where nj is the number of occurrences of CAN ID j in the
window, and p̄j is the average payload value for that ID.

Edge Construction Edges ejk ∈ Et are created between
nodes vj and vk if their corresponding messages appear
sequentially in the window. Formally, for message pairs
(mi,mi+1), if mi corresponds to node vj and mi+1 to node
vk, then:

ejk = number of occurrences of (vj , vk) in Wt

This captures the temporal relational structure of CAN mes-
sages within the window.

Graph Input Summary Thus, each sliding window Wt

is represented as a graph Gt = (Vt, Et, Xt) where Vt are
nodes (unique CAN IDs), Et are edges (sequential message
relations), and Xt are node attributes as defined above. La-
bels are created for a binary classification task, where 0 ifWt

contains only benign messages, and 1 if Wt contains any at-
tack messages. Figure 3 shows some examples of attack-free
and attack graphs.

4.2 Training Paradigm
Our approach employs a novel two-stage training framework
that leverages the complementary strengths of VGAE and
GAT for enhanced graph-based classification while address-
ing class imbalance through selective undersampling and
knowledge distillation.

Stage 1: VGAE Training and Selective Undersam-
pling. The first stage trains a VGAE model exclusively on
normal graph samples to learn baseline structural patterns.
The VGAE encoder generates latent representations Z ∼
N (µ, σ2) from input graphs, while the decoder reconstructs



Fuzzy Attack RPM Attack Gear Attack

DoS AttackAttack-FreeAttack-Free

Figure 3: Graphs created from the Car Hacking Dataset.
Each node represents a unique CAN ID found in the win-
dow, and each edge is constructed between sequential IDs,
including self edges. The feature vector associated with each
node is not shown. Blue denotes that the graph has no attack
IDs, while red indicates that at least one of the nodes is an
intrusion.

adjacency matrices. Following training, we implement se-
lective undersampling based solely on reconstruction errors:
Rerror(i) = ||Ai − Âi||2 for each normal graph sample.
This identifies normal samples with highest reconstruction
errors—those most difficult to reconstruct and likely on de-
cision boundaries—maintaining a 4:1 normal-to-attack ratio
for Stage 2.

Stage 2: GAT Training with Enhanced Represen-
tations. The second stage trains a GAT on the filtered
dataset using multi-head attention mechanisms: α(l,h)

ij =

softmaxj(e
(l,h)
ij ) to learn adaptive neighborhood weights for

flexible neighborhood aggregation.
KD Training: Both stages can be enhanced through

knowledge distillation, where the entire two-stage frame-
work is re-executed with student models learning from
pre-trained teacher models. In this paradigm, student
models receive guidance through soft labels: LKD =

KL(P soft
student||Pteacher), where teacher predictions are soft-

ened using temperature scaling. For VGAE, knowledge
transfer occurs in the latent space, while GAT distillation op-
erates on final node representations. This approach improves
generalization and convergence by leveraging the learned
expertise of teacher models.

5 Experiments
This section presents the experimental setup, evaluation
metrics, training details, and insights into the datasets used
in this study.

5.1 Experimental Setup
Table 1 highlights the differences between the teacher and
student model for both the VGAE and GAT models.

Table 1: Teacher (Tch.) and Student (Std.) Model Parameters
for Autoencoder and Classifier

Autoencoder Classifier
Param. Tch. Std. Tch. Std.
Layers 3 2 5 2
Attn. heads 4 2 8 4
Hidden ch. 32 16 32 16
Loss fn. BCE KL Div. BCE KL Div.
Tot. param. 184K 87K 3.56M 55K

Evaluation Metrics The performance of the model is
evaluated using accuracy and F1-Score.

Implementation Details 80% of the dataset was utilized
for training, 20% for validation, and a distinct test set was
used compiled by the dataset providers. Include batch size,
learning rate, and epochs. All experiments were conducted
using PyTorch and PyTorch Geometric. Model training and
evaluation were performed on GPU clusters provided by the
Ohio Supercomputer Center (OSC)(Center 1987).

5.2 Datasets
Our proposed method has been evaluated on three publicly
available automotive CAN intrusion detection datasets, each
offering distinct characteristics and challenges for compre-
hensive IDS evaluation. Below provides a detailed compari-
son of dataset specifications and characteristics.

1. HCRL Car-Hacking: This dataset contains CAN traf-
fic from a Hyundai YF Sonata with four attack types: DoS,
fuzzing, RPM spoofing, and gear spoofing. All attacks were
conducted on a real vehicle, with data logged via the OBD-II
port. The dataset includes 988,872 attack-free samples and
approximately 16.6 million total samples across all attack
types(Song, Woo, and Kim 2020b).

2. HCRL Survival Analysis: Collected from three vehi-
cles (Chevrolet Spark, Hyundai YF Sonata, Kia Soul), this
dataset enables scenario-based evaluation with three attack
types: flooding (DoS), fuzzing, and malfunction (spoofing).
The dataset is structured with 627,264 training samples and
four testing subsets designed to evaluate IDS performance
across known/unknown vehicles and known/unknown at-
tacks (Han, Kim, and Kim 2018).

3. can-train-and-test:1 The largest dataset, containing
CAN traffic from four vehicles across two manufacturers
(GM and Subaru). It provides nine distinct attack scenar-
ios including DoS, fuzzing, systematic, various spoofing at-
tacks, standstill, and interval attacks. The dataset is orga-
nized into four vehicle sets (set 01 to set 04) with over 192
million total samples. This dataset exhibits extreme class im-
balance with attack-free to attack sample ratios ranging from
36:1 to 927:1 across different subsets. Each set contains
one training subset and four testing subsets following the
known/unknown vehicle and attack paradigm(Lampe and

1https://bitbucket.org/brooke-lampe/can-train-and-test-
v1.5/src/master/



Table 2: Test Set Performance across CAN Intrusion Datasets

CarH CarS S01 S02 S03 S04

Method Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

A&D 99.95 99.94 – – – – – – – – – –
G-IDCS 97.25 93.36 – – – – – – – – – –
GUARD-CAN 97.02 97.27 – – – – – – – – – –
KD-GAT 99.97 99.97 99.31 99.29 99.29 88.08 98.18 24.42 98.24 86.06 87.07 61.35
Ours 99.89 99.89 99.96 99.96 99.38 89.86 99.61 79.67 99.29 95.10 96.47 91.99

Meng 2024). This work will limit evaluation to the known
vehicle and attack testing set.

6 Results and Discussion

6.1 Experimental Results

Table 2 summarizes the test set performance across six
datasets. We compare against four GNN-based baselines:
KD-GAT (Frenken et al. 2025), A&D GAT (He et al. 2024),
G-IDCS (Park, Jo, and Lee 2023b), and GUARD-CAN (Kim
and Kim 2025). KD-GAT serves as the primary baseline
since it is the only method evaluated on the comprehensive
can-train-and-test dataset (Lampe and Meng 2024).

Our approach demonstrates consistent improvements
across all datasets, with particularly significant gains on
highly imbalanced datasets. Compared to KD-GAT, we
achieve an average improvement of 2.09% in accuracy and
16.22% in F1-score. The most substantial improvements oc-
cur on challenging datasets S02 and S04, where F1-scores
improve by 55.25% and 30.64% respectively, indicating su-
perior handling of severe class imbalance.

6.2 Discussion

Class Imbalance Handling: Our multi-stage approach
demonstrates superior performance on imbalanced datasets
compared to single-stage methods. The VGAE component
effectively captures structural anomalies even with limited
attack samples, while the GAT classifier benefits from the re-
fined feature representations. This combination proves par-
ticularly effective on datasets S02 and S04, where traditional
methods struggle with extreme class ratios.

Generalization Capability: The consistent performance
across diverse datasets (CarH, CarS, and can-train-and-test
subsets) demonstrates strong generalization. Unlike previ-
ous methods that show significant performance degradation
on unseen test data, our approach maintains robust detection
capabilities across different attack types and network condi-
tions.

Limitations: While our method shows substantial im-
provements, performance on extremely imbalanced datasets
(e.g., S02 with 1.14% attack samples) remains challenging
for the entire field. Future work should explore advanced
sampling strategies and loss functions specifically designed
for such scenarios.

7 Ablation Study
To assess the contribution of each model component, we per-
form ablation experiments comparing standalone and fused
architectures. Table 3 summarizes F1-scores for the GAT-
only and fusion setups across all datasets.

Score Fusion: During inference, predictions are fused us-
ing fixed performance-based weights as Pfused = ωanomaly ·
PVGAE + ωGAT · PGAT, where ωanomaly = 0.15 and ωGAT =
0.85. These weights (0.85, 0.15) were determined empiri-
cally based on validation performance.

The ablation results show that GAT-only performs best
or on par with the weighted fusion approach across all
datasets, suggesting that simple linear fusion offers limited
benefits over the standalone GAT classifier. Future work
should explore more sophisticated fusion strategies, such as
mixture-of-experts (MoE) architectures or attention-based
fusion mechanisms, to better leverage the complementary
strengths of both components.

Table 3: Ablation Study Results (F1-Scores)

Dataset GAT-Only Fusion Best
S01 0.899 0.895 GAT
S02 0.797 0.792 GAT
S03 0.951 0.951 Tie
S04 0.920 0.918 GAT
CarH 0.999 0.999 Tie
CarS 1.000 1.000 Tie

Mean 0.927 0.926 –

8 Explainability
8.1 UMAP Analysis
To understand the representations learned by our model, we
perform UMAP-based feature analysis using both raw input
statistics and learned graph embeddings. We sample 10% of
graphs from the HCRL Car-Hacking dataset.

Figure 4a visualizes processed CAN-graph data projected
via UMAP. The loose clustering indicates limited separabil-
ity between normal and attack types. In contrast, Figure 4b
shows UMAP projections of graph-level embeddings from
the trained GAT classifier’s penultimate layer.

Despite binary supervision (attack vs. normal), the
learned embedding space forms well-separated clusters



(a) UMAP of raw CAN messages (b) UMAP of GAT graph-level embeddings

Normal DoS Fuzzy Gear RPM

Figure 4: UMAP visualizations of sampled CAN messages (left) and learned GAT embeddings (right). Even though the model
was trained using binary labels, it naturally separates different attack types in the learned feature space.
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Figure 5: Reconstruction Error of VGAE.

aligned with specific attack types (DoS, Fuzzy, Gear, RPM).
This emergent multi-class structure demonstrates that our
model captures high-level semantic patterns in CAN traf-
fic and generalizes across attack categories without explicit
multi-class labels. The clear cluster separation in embedding
space, absent in raw features, validates the GAT’s ability to
learn discriminative representations from graph-structured
temporal data.

8.2 Composite VGAE Reconstruction Error
To assess the overall reconstruction quality of the VGAE,
we combine three types of reconstruction errors: node fea-

ture reconstruction error (Enode), CAN ID prediction error
(ECAN ID), and neighborhood reconstruction error (Eneighbor).
Each error captures a different aspect of the graph struc-
ture and message semantics. We compute a single composite
score as a weighted sum:

Composite Error = αEnode+β Eneighbor+γ ECAN ID (11)

where α, β, and γ are empirically chosen weights that reg-
ulate each term’s influence. In our experiments, we use
α = 1.0, β = 20.0, and γ = 0.3. Figure 5 shows the distri-
bution of the individual error components and the resulting
composite anomaly score. This approach enables the detec-
tion of subtle anomalies by jointly evaluating node content,
CAN identifier semantics, and local neighborhood structure.

9 Conclusion
We introduced a novel multi-stage CAN intrusion detec-
tion framework combining Variational Graph Autoencoder
and Graph Attention Network modules for robust anomaly
detection and classification. Knowledge distillation enables
a compact student model achieving 96% parameter reduc-
tion while maintaining strong performance. Extensive ex-
periments across six benchmark datasets demonstrate sig-
nificant improvements over existing methods, with average
F1-score gains of 16.2% and exceptional performance on
class-imbalanced scenarios. Our ablation study reveals that
the standalone GAT classifier achieves comparable perfor-
mance to fusion approaches with greater computational effi-
ciency, making it ideal for resource-constrained automotive
environments. These results highlight the promise of graph-
based, multi-stage deep learning combined with knowledge
distillation for practical automotive cybersecurity deploy-
ment.
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