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Abstract. Privacy-enhancing technologies (PETs) have attracted sig-
nificant attention in response to privacy regulations, driving the devel-
opment of applications that prioritize user data protection. At the same
time, the information and communication technology (ICT) sector faces
growing pressure to reduce its environmental footprint, particularly its
carbon emissions. While numerous studies have assessed the energy foot-
print of various ICT applications, the environmental footprint of cryp-
tographic PETs remains largely unexplored.
Our work addresses this gap by proposing a standardized methodol-
ogy for evaluating the carbon footprint of PETs. To demonstrate this
methodology, we focus on PETs supporting client-server applications as
they are the simplest to deploy. In particular, we measure the energy
consumption and carbon footprint increase induced by five cryptographic
PETs (compared to their non-private equivalent): HTTPS web browsing,
encrypted machine learning (ML) inference, encrypted ML training, en-
crypted databases, and encrypted emails. Our findings reveal significant
variability in carbon footprint increases, ranging from a twofold increase
in HTTPS web browsing to a 100,000-fold increase in encrypted ML.
Our study provides essential data to help decision-makers assess privacy-
carbon trade-offs in such applications. Finally, we outline key research
directions for developing PETs that balance strong privacy protection
with environmental sustainability.

Keywords: Privacy-Enhancing Technologies · Carbon Footprint · Cryp-
tography· Encrypted ML · Encrypted Databases · HTTPS.

1 Introduction

Over the last ten years, awareness about privacy issues has significantly in-
creased. Legislations such as the European GDPR (General Data Protection
Regulation) marked a turning point by incentivizing practitioners to develop
applications considered as “private by design.” Pushed by these legal incentives,
the research community has proposed many novel privacy-enhancing technolo-
gies (PETs); enabling to implement existing applications without requiring the
user to reveal their private data.
⋆ Corresponding author: m.f.d.damie@utwente.nl
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However, information and communication technologies (ICTs) are also cop-
ing with another major challenge: reducing their environmental footprint; in
particular their carbon emissions. In their fight against climate change, many
governments are willing to reduce their carbon footprint, and all industries (in-
cluding ICTs) attempt to contribute to the carbon emission reductions.

Several existing works started exploring this problem either by estimating
the carbon footprint of the ICT industry [21] or by measuring the footprint of
specific applications. Measurements are essential to identify the most energy-
efficient technologies in order to fulfil carbon emission reduction goals.

Related works Existing works have measured the environmental footprint of var-
ious ICTs: online advertising [2], network communications [15], video streaming
[1], video calls [6], Machine Learning (ML) [17,23,41], and blockchain [3,42].
However, there has been limited research on the impact of PETs.

On the one hand, several works [33,36] have studied the energy consumption
of the TLS protocol used to secure various web protocols (including HTTP).
This represents important related works as TLS is a form of “soft” PET (i.e., a
PET providing data security and processing data with consent [11]).

On the other hand, various ML paradigms have been studied under the lens
of carbon footprint, including differentially private ML [35,38] and Federated
ML [19,40]; two paradigms related to privacy-preserving ML. Our work is com-
plementary to these research works because we notably measure the footprint of
cryptographic techniques applied to privacy-preserving ML.

Gap in the literature Despite these preliminary works, the debate about environ-
mental sustainability is absent from the cryptography community. This absence
is particularly problematic because cryptographic PETs induce computation and
communication overheads compared to their “non-private” equivalents. While
privacy could be seen as a value to protect at all costs, the emission reduction
goals may require to design PETs offering the best trade-off between privacy and
carbon emissions.

Unfortunately, the literature provides no evaluation of the environmental
footprint of cryptographic PETs. Such measurements have become essential to
find the best trade-off between privacy and carbon emissions.

Our contributions We present a standard methodology to analyze the foot-
print of a PET. In particular, we detail a taxonomy of the possible overheads
induced by a PET. This methodology enables to answer two key questions: (1)
What is the carbon footprint of a given cryptographic PET? (2) What is the
relative increase compared to a non-private equivalent?

To demonstrate this methodology, we measure the energy consumption
and carbon footprint of five cryptographic PETs: HTTPS, encrypted ML
inference, encrypted ML training, encrypted databases, and encrypted emails.
We focus on PETs supporting client-server applications, because they are the
easiest to deploy. In particular, we highlight the relative carbon footprint
difference between the PET and its non-private equivalent (i.e., the carbon
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footprint of the privacy enhancement). We show highly variable carbon footprint
increases from a ×2 increase in HTTPS to a ×100, 000 in encrypted ML.

Finally, we discuss promising research directions to build sustainable
and privacy-enhancing technologies.

Our goal is not to categorize PETs between environmentally accept-
able and unacceptable. To fulfil carbon emission goals, it is not mandatory to
reduce the carbon emissions of all technologies: some highly energy-consuming
technologies can be considered “worth the emissions” because their service is es-
sential. Our work simply provides orders of magnitude enabling decision makers
to assess the privacy-carbon trade-offs of specific services. Such figures have be-
come essential in the public debate as press articles rely on such estimations and
measurements to provide high-level perspectives on sustainability issues [18].

2 Measuring the carbon footprint of a PET

Life-Cycle Assessment (LCA) is a standard methodology [22] to measure the
environmental footprint associated with all stages of a product’s life. Such stages
can include anything from the manufacturing to the recycling. This approach
enables to estimate the energy consumption, carbon emissions, and resource
consumption in a comprehensive manner.

Taking inspiration from Schmidt et al. [41] who introduced carbon footprint
measurement to the ML community, this section applies the LCA methodology
to PETs and present simple analysis tools for PET researchers.

2.1 Background: Life-Cycle Assessment

An LCA requires defining a scope based on an analysis goal; this will specify
what is included in and excluded from the analysis. Let us assume that we
want to compare the footprint of two objects. If the two objects use the same
materials and end-of-life processes, the material extraction and the end of life are
not necessary in the analysis. Indeed, these stages affect equally the two objects,
so they will not change the comparison (i.e., our objective).

The analysis goal also defines an analysis metric which quantifies the impact
of a product. The two most common metrics are the energy consumption (in
kWh) and the carbon emissions (in kg eq. CO2) [41]. However, some analyses
also quantify other variables such as water consumption [5].

LCA and digital services While LCA focuses on physical objects, it is possible to
extend this approach to digital services. However, LCA on such services focuses
mostly on the service usage. For example, for an ML service, an LCA studies
the impacts of the model training [23,30,41], and of the inference [14].

One may wonder why the hardware is not always included in the setup. Even
though hardware is a significant part of the ICT footprint [21], the hardware-
related costs are irrelevant in the scope of these works. These works [23,41] (like
ours) want to identify the most energy-efficient services and execute them on a
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standard hardware. In other words, the hardware-related footprint is excluded
because they want to minimize the footprint of the service usage.

Like most works on the carbon footprint of ICTs [17,23,33,35,36,38,40,41],
our LCA focuses on the service usage. Therefore, our experiments quantify the
impact in terms of carbon footprint and energy consumption.

2.2 Taxonomy of carbon footprint overhead in PET

Our goal is to measure the “footprint overhead” induced by PET usage; i.e., the
footprint increase between a PET and a non-private equivalent. This footprint
increase can have several origins in PETs. To compare the carbon footprint of
PETs, we distinguish four types of overhead:

– Computational overhead: any additional computation (e.g., encryption).
– Communication overhead: any additional communication (e.g., if the ci-

phertext is larger than the plaintext).
– Infrastructure overhead: any server duplication (e.g., like the existence

of two non-colluding servers in privacy-preserving telemetry [9]).
– Hardware overhead: any PET-specific hardware requirement (e.g., TEE).

2.3 Our scope: client-server applications

As there exists plenty of PETs, we demonstrate our methodology on a specific
subset and leave the rest of them for future works. Our work focuses on PETs in a
client-server setup because they are the easiest to deploy. This simplicity makes
such PETs attractive to companies providing “Software as a Service” because
they simply need to update their code and do not require major infrastructure
changes. For example, encrypted databases (such as MongoDB Queryable En-
cryption) fit this category because this PET only requires updating the software.

Thus, we compare the computation costs of a client-server PET deployment
to the non-private equivalent. More precisely, we highlight the relative footprint
increase due to the privacy enhancement. This focus on client-server setups im-
plies that the studied PETs induce no infrastructure overhead because, like the
non-private equivalent, such PETs only require a client and a server.

Fig. 1: Our scope: non-private vs. privacy-enhanced client-server technology
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Moreover, we exclude communication overheads from our scope because no
existing work enables quantifying appropriately this overhead. Indeed, measuring
the footprint of network communications is still an open research problem. No
work has yet estimated the complete footprint of a client-server communications
because it requires computing the amortized energy consumption of all network
devices (e.g., routers, switches, antennas, wires, etc.) used to transmit a bit of
information. Ficher et al. [15] started exploring this question, but they studied
only the communication between two servers in the same network backbone.
Further research is still necessary to obtain a general result.

Anyway, client-server PETs usually induce minor communication overheads.
For example, in HTTPS web browsing, the size of the ciphertext sent to the server
is comparable in size to the plaintext (plus a one-time secret-key exchange). Their
communication overhead is anecdotal compared to communication overheads in
“communication-intensive PETs” such as multiparty computations (MPC).

Finally, we leave for future works PETs based on cryptographic hardware
(e.g., Trusted Execution Environments [39]). Their need for a dedicated hardware
calls for a fine-grained analysis of this “hardware overhead.”

In summary, due to the properties of client-server PETs, our work
only need to focus on the computational overhead. This scope already
fits many PETs and our experiments covers 5 of them. Future works would
be necessary to assess the carbon footprint of all possible PETs. Our research
provides a clear framework supporting such future research and demonstrate its
practicality on the PETs analyzed in Section 3.

2.4 Software-based measurement

Our scope requires measuring the energy consumption induced by a software. A
natural approach is to use a power meter. While reliable, such hardware-based
approaches are inconvenient as they limit the reproduction.

On the contrary, recent works [24,26,41] have promoted software-based ap-
proaches to measure the energy consumption. Software-based measurements are
valuable as they simplify the reproduction of an experiment: they simply require
a package installation. In particular, Khan et al. [26] showed that Intel’s Running
Average Power Limit (RAPL) was a powerful tool to measure the power con-
sumption of a machine. RAPL-based measurement consists in polling the RAPL
interface every x seconds and extrapolate the consumption based on these dis-
crete measurements. Such measurements were notably used in ML research [41].
Recently, Jay et al. [24] highlighted that RAPL induces a low overhead.

Considering the advantages of RAPL, like related ML works [41], we rely
on this software-based approach to measure energy consumption. Schmidt et al.
[41] extended this approach to include GPU and RAM consumption.

In addition to energy consumption, our scope also expects carbon emis-
sion measurement. To compute the carbon emissions, one needs to multiply
the energy consumption to the “carbon intensity” of the country in which the
server/client is located. The carbon intensity corresponds to the amount of green-
house gas emitted per kWh of electricity produced. This information is directly
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available in some public databases [13]. In other words, the energy consumption
and the energy emissions are perfectly correlated. This carbon emission estima-
tion is commonly used in ML research [23,41].

2.5 Is the runtime a good proxy for the carbon footprint?

As research papers typically benchmark the runtime of their algorithms, one may
want to extrapolate the carbon footprint based on such measurements. While
runtime is correlated to energy consumption, other parameters influence it. Thus,
we cannot trivially deduce the energy consumption based on the runtime.

To reduce their runtime, research works (including in PETs [27,32]) par-
allelize their computation across multiple cores. When parallelized, the energy
consumption of an algorithm is proportional to the number of cores in use. Thus,
a runtime can be divided by 4, 16, or even 32 via parallelization, but the energy
consumption would remain similar because spread over several cores. Similarly,
powerful CPUs and GPUs can also reduce the runtime, but induce a higher
energy consumption than smaller chips.

This observation shows that specialized energy measurement techniques (such
as RAPL [26]) are essential to quantify the carbon footprint and cannot be
obtained using simpler methods such as runtime measurement. For example,
RAPL-based measurements accounts for the energy consumption of all cores.

In conclusion, we provide a complementary perspective to existing PET pa-
pers because we report carbon and energy measurements that cannot be precisely
extrapolated from existing experimental results. Our work echoes with recent ML
works [23] that promoted a systematic reporting of carbon footprint and energy
consumption in ML papers (in addition to existing runtime measurements).

2.6 Experimental setup

We execute our experiments on a dedicated server with 32 GB, an Intel Xeon-E3
1245 v5, and no GPU. We run the client and the server on the same machine.

As the hardware can slightly change the energy consumption of an algorithm,
one may wonder whether we should execute our experiment on different devices.
However, remember that we mainly want to measure the relative footprint differ-
ence between private and non-private deployments. A standard hardware change
would influence the absolute values, but the relative difference should not be sig-
nificantly changed. This LCA on a single hardware platform aligns with common
practices in studies performing LCA on ML algorithms [38,19].

The only hardware that could significantly influence a PET benchmark is
cryptographic accelerators. We leave them out-of-scope because a dedicated anal-
ysis is necessary to estimate the production cost of this hardware only needed in
the private deployment. Section 4.1 further discusses the use of such hardware.

We use the software CodeCarbon [41] to measure the energy consumption
and infer the subsequent carbon emissions. This software uses a RAPL-based
measurement, and measures RAM, CPU, and GPU consumption.
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We configured CodeCarbon to poll the energy consumption every 1 ms (like
in [24]). Moreover, we chose the Netherlands as reference country to compute
the carbon emissions. The Netherlands have a quite “average carbon intensity”
within Europe (i.e., 268 g eq. CO2 per kWh in 2023) compared to the low carbon
intensity of France (56 g eq. CO2 per kWh) and the high carbon intensity of
Poland (662 g eq. CO2 per kWh). However, the choice of a country does not
matter too much: we want to measure the relative increase. Reproducing the
experiment in another country would change the absolute carbon emission but
not the relative difference.

As explained above and illustrated in Figure 2, the energy and carbon emis-
sions are then perfectly correlated in our experiments. Thus, some figures (as
Figures 4a and 5a) only report the energy consumption in order to comply with
space limitations. The reader can easily extrapolate the carbon emissions of a
PET in any country by multiplying the energy consumption (reported in our
figures) with the carbon intensity of the desired country [13].

3 Experimental results

This section measures the relative difference between the footprint of differ-
ent PETs and the footprint of their non-private equivalent. Our measurement
aggregates the computational costs of the client and the server.

Our experiments systematically use the most default configuration proposed
in the documentation of the tested software. Thus, the measurements reported
in our paper correspond to the expected default behavior. For implementation
details, we refer to our publicly available codebase: https://github.com/
MarcT0K/privacy-carbon-experiments

3.1 Encrypted Machine Learning inference

With the increasing use of ML, there is a growing concern regarding the use
of personal data in these systems. To address this problem, many works [12,34]
have proposed privacy-preserving ML protocols to support these applications
while preserving data privacy. Among all ML operations, ML inference (i.e.,
evaluating data on a trained ML model) is a particularly important operation
for practitioners. Indeed, many companies have trained a powerful model (e.g.,
a Large Language Model) and provide “Inference as a Service”: customers send
input data and the company returns the model output.

However, traditional “Inference as a Service” requires sharing personal data
in plaintext with the service provider. To enhance privacy, researchers have de-
signed encrypted ML frameworks [8] (based on Fully Homomorphic Encryption)
to perform ML operations (in particular inference) under encryption.

Software libraries. Our goal is to measure the energy consumption of an en-
crypted inference compared to a classic plaintext inference. We use the software
library Concrete ML developed by the company Zama. This library is stable and
promoted by the company for real-world use cases. We compare the encrypted

https://github.com/MarcT0K/privacy-carbon-experiments
https://github.com/MarcT0K/privacy-carbon-experiments
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Fig. 2: Average energy consumption and carbon emissions of encrypted and plain-
text ML inference using various classification models (100 samples, 30 features).

inference provided by Concrete ML to the plaintext ML inference performed by
Scikit Learn (a popular ML framework). Note that Scikit Learn is also used as
baseline by Zama in their accuracy benchmarks.

Data. We use Scikit Learn to generate synthetic datasets with varying number
of features. In ML, a sample is a data point included in a dataset, and the features
are the dimensions/characteristics of a data point.

Results. Figures 2 and 3 presents measurements for various classification and
regression models. These results are average measurements over 100 samples;
each sample having 30 features. On linear models (e.g., Logistic regression), the
encrypted inference is 100× more expensive than the plaintext inference. On tree
models (Decision Tree, Random Forest, and XGB), the encrypted inference is at
least 100, 000× more expensive than the plaintext inference. Encrypted inference
on neural networks is also 100, 000× more expensive than plaintext.

To better understand this overhead, Figure 4a studies the influence of the
number of features on the footprint of three popular classification models: logis-
tic regression, random forest, and neural networks. We observe that the scaling
of the encrypted inferences does not match perfectly the scaling of the plaintext
inferences. First, the encrypted logistic regression footprint increases relatively
faster than the cost of the plaintext inference. Second, the encrypted neural
network seems to have the same scaling pattern as the encrypted logistic re-
gression. The encrypted neural network does not have results for more than 200
features because we stopped inferences taking more than several hours (to limit
the energy consumption of our experiments). Third, the encrypted random for-
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Fig. 3: Average energy consumption of encrypted and plaintext ML inference
using various regression models (100 samples, 30 features).

(a) Varying nb. of features / 100 samples (b) Varying nb. of samples / 30 features

Fig. 4: Average energy consumption of encrypted and plaintext ML inference for
varying number of features and samples.

est footprint is approximately constant. This behavior seems to be an artifact
coming from the fact that Concrete ML transforms decision trees into matrix
multiplications (inducing significant constant costs).

Figure 4b illustrates the footprint in function of the number of samples. On
the one hand, we see that plaintext algorithms are optimized to process batches
of data points: the average cost is amortized when the number of samples grows.
On the other hand, we observe on the logistic regression that the encrypted
inference does not provide a similar amortization. Like on Figure 4a, we stopped
experiments requiring several hours (which explains the smaller number of results
for the random forest and neural network).

Discussions. Our experiments show that encrypted ML inference induces
significant overheads. However, this PET is still relatively recent, so there is room
for optimization. For example, Ko et al. [28] recently presented an encrypted
XGB 100× more efficient than Concrete ML’s XGB. This improvement resonates
with Figure 4a that identified a major constant factor for encrypted Random
Forest (i.e., a tree-based model related to XGB). Our benchmark could be re-
executed once Concrete ML integrates improved algorithms.
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(a) Varying nb. of features / 300 samples (b) Varying nb. of samples / 10 features

Fig. 5: Energy consumption of encrypted and plaintext ML training of a logistic
regression for varying numbers of features and samples

3.2 Encrypted Machine Learning training

Next to inference, ML training is the other operation attracting a lot of privacy
concerns. Like for inference, researchers have designed frameworks [12,16] to
execute these algorithms directly on encrypted data. These frameworks usually
rely on the same cryptographic primitives as encrypted inference.

Software libraries. Even though the Concrete ML library focuses on encrypted
inference, it also implements a few training algorithms. In particular, it enables
training a logistic regression under encryption. We then compare this encrypted
training to the logistic regression of Scikit Learn.

Data. Like for inference, we use Scikit Learn to generate synthetic data with
a varying number of samples and features.

Results. Figure 5a compares the encrypted and plaintext training for a vary-
ing number of features. The encrypted training is at least 100, 000× more ex-
pensive and its costs increase faster with the number of features.

Contrary to inference, the logistic regression training is not influenced by the
number of samples. Training algorithms are iterative and process a fixed-sized
batch during each iteration. Thus, their cost only depends on the batch size and
number of iterations. Figure 5b confirms this behavior experimentally.

Discussions. Like secure ML inference, secure training induces massive foot-
print increase. Similarly, there is room for optimizations.

However, other (non-cryptographic) approaches to privacy-preserving ML
training exist. For example, de Reus et al. [38] studied the carbon footprint
of synthetic data generation in ML context. Synthetic data generation [25] is
a pre-processing step used in privacy-preserving statistics and ML: instead of
encrypting its private data, the data owner generates synthetic data based on
its data and can transmit the synthetic data in plaintext. In this paradigm, the
server can then process plaintext data without privacy issues as it has only access



Measuring the Carbon Footprint of Cryptographic PETs 11

to synthetic data (and not the initial private data). Some techniques such as [25]
ensure that the synthetic data does not leak private information.

De Reus et al. [38] showed that their studied synthetic data generation re-
quires 1 Wh to generate a synthetic dataset based on the adult dataset (14
features), and 0.01 Wh to train the logistic regression. They also used a RAPL-
based energy measurement, so our results are comparable. In comparison, Figure
5a shows that the encrypted ML training requires 10× more energy for a training
on a similar dataset.

This comparison emphasizes that the PET choice has a major impact on
the carbon footprint. It also highlights an interesting future work: comparing all
privacy-preserving ML paradigms to identify the most energy-efficient one.

3.3 Encrypted databases

With the rise of cloud services, vast amounts of personal data are stored on
outsourced databases, raising privacy concerns since providers may not be fully
trusted. To solve this issue, researchers introduced searchable encryption [10],
a database model that enables encrypted data storage and querying while pre-
venting the provider from accessing data or query content.

Software libraries. This experiment3 uses SWiSSSE [20] as baseline for en-
crypted database. SWiSSSE is an encrypted database system comparable to
Redis (a traditional database specialized in key-value storage).

Gui et al. [20] already compared the runtime of SWiSSSE to Redis. We
reproduce their benchmark using new metrics: energy and carbon.

Data. Like in [20], we populate the database using the Enron email dataset.
Results. Figure 6 shows the results of this benchmark for varying database

sizes. We observe that the footprint of the encrypted database is nearly ten times
higher than the footprint of the plaintext database. Moreover, the footprint of
the encrypted database increases slightly faster in function of the database size.

Discussions. Our benchmark relies on SWiSSSE, which is a research pro-
totype. Ideally, we would like to reproduce the results on professional products
such as the “Queryable Encryption” plugin available in MongoDB. Unfortunately,
part of this plugin requires a premium license; limiting its access and hindering
reproducibility. We demonstrated our methodology on SWiSSSE, and leave for
future work the evaluation of MongoDB Queryable Encryption.

3.4 HTTP vs. HTTPS

HTTP (HyperText Transfer Protocol) is the foundational protocol used for data
exchanges on the web. It operates as a plaintext protocol; making the trans-
mitted data susceptible to eavesdropping and tampering. In contrast, HTTPS
integrates HTTP with the Transport Layer Security (TLS), encrypting data to

3 Due to hardware issues (unrelated to the experiment), we executed this experiment
on a MacOS machine while the other experiments are executed on a Debian server.
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Fig. 6: Average energy consumption and carbon emissions of encrypted and plain-
text queries (SWiSSSE vs. Redis) for varying database sizes (1000 queries).

Fig. 7: Average energy consumption and carbon emissions of HTTP and HTTPS
requests on five different websites (1000 requests).

ensure confidentiality and integrity. HTTPS protects sensitive data, such as login
credentials and payment information, from being intercepted or altered.

Software libraries. We use NGinx as web server with TLS 1.3 and imple-
mented a basic Python web client using the requests library. We compute the
average energy consumption and carbon emissions over 1000 Web requests.

Data. We run this experiment on five different websites: Wikipedia (Sim-
plified English), New York Times, MDN, Mastodon Technical Blog, and xkcd.
These websites are quite diverse: Wikipedia is an encyclopedia, New York Times
a media, MDN a web developer documentation, Mastodon Blog is a blog, and
xkcd is a minimal website publishing amusing comic strips. Wikipedia source files
are publicly available, so we downloaded the “simplified English” archive from
April 2007. We used the tool HTTrack to automatically download the static files
(i.e., HTML, CSS, JS, and images) of the other websites.
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Results. Figure 7 represents the average energy consumption and carbon
footprint over 1000 HTTP(S) requests. The relative footprint increase ranges
from 152% for NYTimes to 182% for xkcd.

Unfortunately, we cannot compare our results to existing works on the en-
ergy consumption of TLS [33,36]. While we analyze the energy consumption to
estimate the environmental footprint of HTTPS, these works had a completely
different goal: estimating the impact of HTTPS on a smartphone battery life.
Thus, these works have only measured client-side energy consumption.

Moreover, Miranda et al. [33] focused on the energy consumption of TLS only;
they do not provide a relative difference between HTTP and HTTPS. Finally,
Naylor et al. [36] focused on specific Web applications (e.g., Youtube); contrary
to our experiments that considered an easily reproducible setup: Python web
client and static HTML files. Naylor et al. [36] also integrated some network-
related costs (e.g., WiFi communications). These major divergences between our
experimental setup and [36] prevent any naive comparison.

Discussions. Our experiments only simulate static websites, and exclude any
possible back-end operations (e.g., database interactions), even though such op-
erations are common in Web applications. To assess the footprint of a Web
application, an experiment would include both the cost related to HTTP(S)
and the back-end costs. However, this is not our goal: we only want to compare
HTTP to HTTPS. Hence, we exclude any backend work to focus solely on the
footprint of HTTP data transfer.

3.5 Encrypted emails

Protecting personal communications has long been a key objective for cryptog-
raphers. Over the decades, various solutions have emerged, ranging from en-
crypted emails to secure messaging apps like Signal. In this work, we focus on
email encryption, as it is the most mature technology. Specifically, we examine
the footprint of GPG encryption and signing, given that GPG is a widely used
standard for securing email communication.

Software libraries. We use the GnuPG library (i.e., the reference open-source
implementation for GPG). We benchmark 3 cipher suites: RSA, Elliptic Curve
Cryptography (ECC), and ElGamal. Note that ElGamal only provides encryp-
tion so we combine it with DSA to sign messages. For each cipher suite, we used
key sizes provided 128 bits of security [4].

Contrary to the other PETs, we do not have a non-private baseline to bench-
mark. Indeed, the non-private equivalent of email encryption is... no encryption
(i.e., 0 cost). Thus, we present the encryption costs and put them into perspec-
tives thanks to our previous experiments.

Data. We use the Enron email dataset to benchmark email encryption. We
extract the 30109 emails contained in the sent mail folders of this dataset.

Results. Figure 8 presents the results. First, the encryption is systematically
slightly more expensive than the signature for RSA and ECC. Second, RSA
is slightly less expensive than ECC. Finally, ElGamal encryption is nearly ten
times more expensive than RSA and ECC.
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Fig. 8: Average energy consumption and carbon emissions of GPG email encryp-
tion and signing (30K emails).

For ElGamal, remember that we use DSA for signatures. The figure shows
that DSA is about twice as expensive as RSA and ECC signatures.

To put these results into perspectives, we can compare them to secure ML
inference. Based on our results, the footprint of an email encryption is then
1000× smaller than the footprint of an encrypted random forest inference.

Discussions. Our comparison shows comparable computational costs for RSA
and ECC. However, ECC has another advantage over RSA: smaller key sizes.
ECC could reduce (by a couple of kilobytes) the communication costs related to
key and signature exchanges. As explained in Section 2.3, there is no consensus
(yet) on the overall footprint of network communications, so we cannot include
this factor in our comparison.

Finally, email encryption is becoming less and less popular; in favor of secure
messaging apps that are more accessible. Such secure messaging systems rely
heavily on symmetric-key cryptography, which is known to be more efficient
than public-key cryptography. Secure messaging apps could then provide even
smaller footprints than those of email encryption.

However, such messaging systems also require expensive protocols to set up
communications. For example, half the operation costs of Signal Messenger is
caused by the registration process [43]. An LCA of Signal should then include
these expensive operations and not only the cheap symmetric-key encryption.

Our analysis of email encryption provides valuable baseline, but the analysis
of complex messaging systems such as Signal represents a promising future work.
Such analysis is particularly challenging as some protocols used by Signal require
cryptographic hardware like secure enclaves whose environmental footprint is
harder to estimate (as discussed in Section 4.1).

4 Orthogonal discussions

4.1 The hidden cost of cryptographic hardware

Energy consumption can be significantly reduced by using cryptographic acceler-
ators [7]. These chips can perform cryptographic operations much more efficiently
than standard CPUs and GPUs.
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However, the LCA must include the manufacturing impact, as this special-
ized hardware adds a hardware overhead in our taxonomy. Since manufacturing
accounts for most of the ICT sector’s carbon footprint [21], using cryptographic
accelerators does not necessarily reduce the overall carbon footprint.

Trusted Execution Environments (TEEs) [39] are another example of crypto-
graphic hardware with an environmental cost that should not be ignored. TEEs
are now widely used in efficient secure protocols because they allow operations
on confidential data without relying on expensive primitives like homomorphic
encryption. For example, Signal uses TEEs in its Contact Discovery protocol.

As their use grows, more manufacturers now include TEEs by default in their
products. However, the added manufacturing cost still represents an overhead
that needs to be estimated. Like cryptographic accelerators, estimating this cost
is difficult, as the necessary data is rarely made public by production facilities.
This gap then represents a promising and interesting future work.

4.2 Privacy-Carbon-Functionality trilemma

Our work initially examined the relationship between privacy and carbon emis-
sions in an isolated manner. However, our experiments indirectly revealed a
broader trilemma involving privacy, carbon emissions, and functionality.

The carbon footprint of cryptographic PETs is tied to their functionality;
more complex functionalities generally require more computationally expensive
cryptographic primitives, leading to higher emissions. This phenomenon is evi-
dent in Figure 2. While encryption always increases the footprint, the extent of
this increase varies significantly across ML models. For instance, logistic regres-
sion exhibits a 100-fold increase, whereas encrypted neural networks result in a
100,000-fold increase. Consequently, simpler models like logistic regression lead
to a smaller footprint.

Reducing functionality can therefore serve as an effective strategy to mitigate
the overhead induced by the privacy enhancement.

4.3 Mitigating carbon footprint overhead via decentralization

Besides functionality, trust is another powerful leverage to optimize the privacy-
carbon trade-off. The PET literature usually considers two edge cases: (1) a
party trusted by all users requiring no PET and (2) a zero-trust world requiring
(potentially) expensive PETs.

However, decentralized social media such as Mastodon introduced a new
kind of trust assumption: decentralized and personalized trust. In these social
media, each user can pick a specific server (that they trust to process their per-
sonal data), and then they can interact with any user (even from other servers)
thanks to the protocol ActivityPub. Such decentralization is comparable to the
decentralization of the email protocol.

We can formulate the Mastodon threat model as follows: each user trusts
one specific server (among all possible servers), and they do not trust anyone
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else. Such decentralized trust avoids expensive cryptographic operations (⇒lower
carbon emissions) because each server can perform plaintext operations on the
personal data of its users. For instance, on Peertube (a “decentralized Youtube”),
each server can offer ML-based video recommendations to its users without re-
lying on encrypted ML.

Decentralization “à la Mastodon” is then a promising direction to enhance
privacy while avoiding significant carbon footprint overheads.

Mansoux and Roscam [31] presented this decentralized trust as “social ap-
proach of privacy”, opposed to the technical approach adopted by cryptographic
PETs. While this “social” approach provides weaker privacy guarantees, Lee
and Wang [29] showed that privacy was a key factor driving the adoption of
Mastodon. Thus, the weaker guarantees are not necessarily an issue for user
acceptability (even among privacy-aware users).

5 Conclusion

Our work studied the environmental footprint of cryptographic PETs. We first
introduced a standardized methodology for measuring the carbon footprint of
PETs; demonstrating it on five cryptographic PETs. Our results highlight (PET-
induced) carbon footprint increases ranging from 2× to 100, 000×. Our find-
ings provide essential data to assist decision-makers assessing the privacy-carbon
trade-offs inherent in different ICTs.

Runtime has always been a natural metric in PET papers, and recent works
[37] also mention monetary costs on Amazon Web Services. Even though such
costs are relatable to practitioners, they could be completed with energy con-
sumption (and possibly carbon emission) measurements. While monetary costs
are valuable to economical actors, the environmental footprint is highly infor-
mative for the society as a whole (e.g., journalists or policymakers).

Future directions Our work marks a first step in the carbon footprint analysis
of PETs, but significant work is still necessary to analyze the footprint of all
existing PETs (especially complex systems such as Signal Messenger or Tor).
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