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Abstract

Cloud-based Machine Learning as a Service (MLaaS) raises
serious privacy concerns when handling sensitive client data.
Existing Private Inference (PI) methods face a fundamental
trade-off between privacy and efficiency: cryptographic ap-
proaches offer strong protection but incur high computational
overhead, while efficient alternatives such as split inference
expose intermediate features to inversion attacks. We pro-
pose PrivDFS, a new paradigm for private inference that re-
places a single exposed representation with distributed fea-
ture sharing. PrivDFS partitions input features on the client
into multiple balanced shares, which are distributed to non-
colluding, non-communicating servers for independent par-
tial inference. The client securely aggregates the servers’ out-
puts to reconstruct the final prediction, ensuring that no sin-
gle server observes sufficient information to compromise in-
put privacy. To further strengthen privacy, we propose two
key extensions: PrivDFS-AT, which uses adversarial training
with a diffusion-based proxy attacker to enforce inversion-
resistant feature partitioning, and PrivDFS-KD, which lever-
ages user-specific keys to diversify partitioning policies and
prevent query-based inversion generalization. Experiments
on CIFAR-10 and CelebA demonstrate that PrivDFS achieves
privacy comparable to deep split inference while cutting
client computation by up to 100× with no accuracy loss, and
that the extensions remain robust against both diffusion-based
in-distribution and adaptive attacks.

1 Introduction
Cloud-based inference, enabled by the rise of Machine
Learning as a Service (MLaaS) (Ribeiro, Grolinger, and
Capretz 2015), allows resource-constrained clients to access
powerful AI models through the cloud. However, this de-
ployment model exposes raw client data, such as facial im-
ages, medical scans, and other sensitive inputs, to potentially
untrusted servers, creating severe privacy risks (Rao et al.
2025; Otroshi-Shahreza, Hahn, and Marcel 2024). These
risks highlight the need for Private Inference (PI) techniques
that can protect client inputs during inference without sacri-
ficing accuracy (Mann et al. 2024).

Existing PI methods fall into two broad categories. Cryp-
tographic approaches based on Homomorphic Encryption
(HE) (Xu et al. 2024; Peng et al. 2023; Cheng et al. 2023)
or Secure Multi-Party Computation (SMPC) (Feng et al.
2025; Diaa et al. 2024) provide strong privacy guarantees,

but their heavy computational and communication over-
head makes them impractical for latency-sensitive infer-
ence (Garimella et al. 2023). A more efficient alternative is
split inference (Kang et al. 2017; Vepakomma et al. 2018),
where the model is split between the client and the cloud
so that the client uploads only an intermediate feature rep-
resentation (often called smashed data) instead of the raw
input (Yang et al. 2023; Bakhtiarnia et al. 2023). This im-
proves efficiency but leaves the intermediate features di-
rectly exposed, creating a new and critical privacy vulner-
ability (Liu et al. 2025; Zhu et al. 2025; Singh et al. 2024).

Modern inversion attacks (a.k.a reconstruction attacks)
exploit these exposed intermediate features to reconstruct
private inputs (Fredrikson, Jha, and Ristenpart 2015). These
attacks have quickly evolved from early optimization-based
methods using image priors (He, Zhang, and Lee 2019;
Ulyanov, Vedaldi, and Lempitsky 2018; Rudin, Osher, and
Fatemi 1992) to generative-model-based inverters, includ-
ing GANs (Li et al. 2023; Qiu et al. 2024) and diffusion
models (Zhang et al. 2025), which achieve highly accu-
rate reconstructions. Simple defenses that add noise to fea-
tures (Mireshghallah et al. 2020; Vepakomma et al. 2020;
Avella-Medina, Bradshaw, and Loh 2023) are no longer suf-
ficient, as they still rely on a single holistic representation
that advanced inverters can exploit. Consequently, split in-
ference remains fundamentally insecure in the face of
modern inversion attacks.

To overcome this inherent vulnerability, we propose
PrivDFS (Private Inference via Distributed Feature Shar-
ing), a framework inspired by the intuition of secret shar-
ing (Shamir 1979) but designed for lightweight, practical
deployment rather than strict information-theoretic guaran-
tees. Instead of sending a single intermediate representation,
PrivDFS splits client features into multiple balanced shares
and distributes them to non-colluding servers. Each server
performs inference only on its share, without inter-server
communication, and the client aggregates the partial results
to obtain the final prediction. By replacing one exposed rep-
resentation with multiple isolated shares, PrivDFS funda-
mentally changes the attack surface: no server alone has
enough information to mount a successful inversion. Com-
pared with cryptographic approaches, PrivDFS provides
privacy protection with much lower overhead, and unlike
traditional split inference, it removes the single point of ex-
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posure by spreading information across isolated servers.
Although PrivDFS effectively blocks basic inversion at-

tacks, its protection weakens when adversaries possess
auxiliary data or can launch repeated adaptive queries.
To address these stronger threats, we define a three-level
threat model based on data access and attack capability,
and strengthen PrivDFS with two complementary exten-
sions. PrivDFS-AT leverages adversarial training with a
diffusion-model proxy attacker (Wang et al. 2024; Zhang,
Rao, and Agrawala 2023; Zhang et al. 2025) to produce
inversion-resistant feature partitions, while PrivDFS-KD
diversifies feature-sharing policies across users so that an in-
version model trained for one policy does not transfer to oth-
ers. Together, these two extensions provide complementary
protection: PrivDFS-AT hardens the shared features against
learned inversion, and PrivDFS-KD prevents adaptive query
attacks from transferring across users, extending the base-
line framework to withstand stronger adversaries.

Contributions. Our main contributions are:
• We propose PrivDFS, a new paradigm for private infer-

ence that replaces a single exposed representation with
distributed feature sharing across non-colluding servers,
fundamentally reshaping the attack surface.

• PrivDFS breaks the core limitation of split inference:
privacy no longer depends on a deep, expensive client
model. Even with a very shallow client (one lightweight
layer), PrivDFS achieves the same privacy level as deep-
split baselines while cutting client FLOPs by up to 100×
and preserving accuracy.

• To withstand stronger adversaries, we extend the frame-
work with PrivDFS-AT (diffusion-guided adversarial
training that learns inversion-resistant features) and
PrivDFS-KD (user-specific sharing policies that block
cross-user transfer of adaptive attacks).

• Extensive experiments on CIFAR-10 and CelebA, con-
ducted under a three-level threat model, show that
PrivDFS and its extensions deliver state-of-the-art pri-
vacy–efficiency–accuracy trade-offs. Specifically, they
preserve high accuracy while substantially lowering re-
construction fidelity (SSIM↓/PSNR↓, LPIPS↑), and re-
main robust against diffusion-based in-distribution at-
tacks and adaptive query attacks.

2 Threat Model
We consider a general inference scenario where a client
computes intermediate features locally and transmits them
to multiple remote servers for further processing. We as-
sume an honest-majority setting in which fewer than half of
the servers can be compromised; an adversarial server acts
alone without colluding with the others and attempts to re-
construct the client’s private input x from the transmitted
representation z = Mc(x).

Adversary Knowledge and Capability. We assume a
gray-box adversary: it has full knowledge of the architec-
ture and parameters of the server-side model Ms under its
control but does not have access to the client-side parame-
ters. The adversary can issue queries to the client-side en-
coder Mc and, by collecting input-representation pairs from

such queries (He, Zhang, and Lee 2019), trains an inver-
sion model A that approximates the inverse mapping, i.e.,
A(Mc(x)) ≈ x.

Adversary Resources. The primary factor distinguishing
adversary resources is the quality and quantity of the auxil-
iary dataset available for training A (Yeom et al. 2018). We
therefore define three levels:
• Level 1 (Similar-distribution). The adversary can only

gather a limited dataset from a related but not identical
distribution.

• Level 2 (In-distribution). The adversary can gather a
limited dataset drawn from exactly the same distribution
as the target, enabling more accurate inversion.

• Level 3 (Unbounded). The adversary has access to
an unrestricted, large-scale in-distribution dataset, repre-
senting a worst-case upper bound.

In practice, mechanisms such as query rate limiting, anti-
crawling, and anti-distillation (Juuti et al. 2019; Lee et al.
2019) substantially restrict the data that an adversary can
collect, making the limited-data assumption in Levels 1 and
2 a realistic and commonly adopted threat model.

3 Proposed Framework: PrivDFS
3.1 Framework Overview
PrivDFS tackles a core challenge in private inference: how to
split features so that each server sees only fragments that are
useless on their own, while their combination still enables
accurate predictions without imposing heavy cost on the
client. This challenge arises because naive feature partition-
ing almost invariably breaks down due to three fundamental
factors: Privacy leakage: retaining excessive information in
each branch leaves the intermediate representations highly
susceptible to inversion attacks; Accuracy loss: overly ag-
gressive or unstructured partitioning destroys essential pre-
dictive signals and severely degrades model performance;
Efficiency-robustness trade-off: a partitioning module that
is too complex imposes prohibitive computational cost on
resource-limited clients, whereas an oversimplified module
can be easily modeled and inverted by an adaptive adversary.
These conflicting objectives make effective feature partition-
ing a fundamentally non-trivial design problem. PrivDFS
addresses this problem with a principled Distributed Fea-
ture Sharing (DFS) module that jointly determines where to
partition, what information each share retains, and how to
transform the representations, achieving a balanced integra-
tion of privacy, accuracy, and client efficiency rather than a
one-dimensional trade-off.

As shown in Figure 1, inference under PrivDFS proceeds
in three main stages. First, a lightweight client encoder M enc

c
extracts a compact representation from the raw input. This
representation is then processed by the DFS module, which
generates N balanced and obfuscated feature shares co-
designed with the server models to satisfy three key prop-
erties: (i) each share is deliberately incomplete and non-
invertible, ensuring that no single server can reconstruct the
input; (ii) when combined, the shares recover a represen-
tation that retains task-relevant information for accurate in-
ference; and (iii) the transformation remains lightweight for
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Figure 1: The overall framework of PrivDFS, PrivDFS-AT, and PrivDFS-KD.

resource-constrained clients while structured to resist inver-
sion. Each share is transmitted to a distinct non-colluding
server, where a sub-model MS,i performs partial inference
and returns a partial output. Finally, the client aggregates
these partial outputs using a lightweight fusion module M fus

c
to produce the final prediction. Throughout this process, the
raw inputs and final predictions remain confined to the client
boundary, and the servers receive only fragmented, obfus-
cated feature shares.

This framework enforces privacy by distribution rather
than perturbation: information is not erased by random
perturbation but deliberately fragmented across multiple
servers. Each individual share is noisy and semantically in-
complete, making it of little value to an adversary, while
their collective fusion restores the full predictive representa-
tion needed for accurate inference. This separation of infor-
mation flow fundamentally changes the attack surface com-
pared to traditional split inference. As our experiments con-
firm, PrivDFS renders reconstruction and label inference at-
tacks ineffective, whether attempted by a single server or by
a small group of colluding servers, while its fused outputs
achieve a new state of the art in balancing privacy, accuracy,
and client efficiency.

3.2 Module Design: DFS and Fusion
DFS Module. DFS progressively transforms intermediate
features into fragments that are uninformative in isolation
yet predictive when fused. Rather than applying naive per-
turbations, DFS follows a structured pipeline where each
stage targets a specific leakage dimension and builds upon
the previous one. The pipeline addresses three complemen-
tary sources of leakage. Spatial Structure (S): Local tex-
tures and global layouts in convolutional features allow at-
tackers to align activations with spatial positions or reassem-
ble patch arrangements. Channel Semantics (C): Semanti-
cally coherent concepts often concentrate in a few channels,
making them highly class-discriminative and exploitable

for inversion or label inference. Deterministic Patterns
(D): Strong, repetitive activations (e.g., edges or salient re-
gions) form predictable patterns that can be learned as sta-
ble input–feature mappings. DFS mitigates these leakage
pathways in sequence: suppressing local spatial cues, dis-
solving channel semantics, breaking deterministic patterns,
and finally fragmenting context and adding redundancy for
robust fusion. (1) Localized Confusion (LocConf). The
pipeline begins by attenuating fine-grained spatial details
that make features amenable to inversion. A depthwise con-
volution followed by a nonlinearity diffuses each activation
into its neighborhood, breaking the one-to-one correspon-
dence between activations and input patches while preserv-
ing coarse structure. (2) Orthogonal Recombination (Or-
thoRcb). Once local cues are blurred, a 1 × 1 orthogonal
convolution globally mixes channel information, dispersing
class-discriminative signals so that no single branch retains
a coherent semantic representation. (3) Adaptive Noise In-
jection (AdaNoise). With spatial and channel cues weak-
ened, the next step injects variance-scaled Gaussian noise,
reducing the predictability of regular high-magnitude activa-
tions while leaving broad patterns intact. (4) Channel Per-
mutation (ChanPerm). A random permutation of channels
further disrupts any stable channel-semantic alignment that
might remain after mixing and noise. (5) Patch Reorgani-
zation (PatchReorg). The fifth stage fragments global spa-
tial context: the feature map is divided into patches that are
cyclically shifted and reassembled across channels so that
each branch only sees fragmented, context-free pieces. (6)
Cross-branch Mixing (CrossMix). Finally, a lightweight
mixing matrix introduces controlled redundancy, allowing
the fused output to recover predictive power while keeping
each individual branch incomplete. Table 1 summarizes how
each stage targets spatial, channel, and deterministic leakage
and how they complement one another to achieve privacy
without sacrificing accuracy.

Fusion Module. Despite the heavy obfuscation applied



Table 1: Impact of each DFS stage on the three leakage di-
mensions (S, C, D) and on redundancy (R). ▲ = primary
effect, ◦ = secondary effect.

Stage S C D R Impact
LocConf ▲ ◦ ◦ ◦ Reduce fine detail
OrthoRcb ◦ ▲ ◦ ◦ Disperse channel semantics
AdaNoise ◦ ◦ ▲ ◦ Randomize patterns
ChanPerm ◦ ▲ ▲ ◦ Remove fixed mapping
PatchReorg ▲ ◦ ▲ ◦ Disrupt global layout
CrossMix ◦ ◦ ◦ ▲ Enable robust fusion

to individual branches, the information distributed across
them remains largely complementary with only limited re-
dundancy. Consequently, the fusion module does not require
a deep or complex architecture: a shallow multi-layer per-
ceptron followed by a softmax is sufficient to re-aggregate
these signals. This is because DFS is designed to redis-
tribute task-relevant information rather than perturb it, i.e.,
each branch captures a different aspect of the input while
retaining some redundancy for robustness. When these par-
tially overlapping features are aggregated, the fused repre-
sentation recovers the full discriminative structure with min-
imal computation. In other words, the burden of informa-
tion separation lies entirely in DFS, so fusion becomes a
simple low-capacity operation, avoiding additional overhead
and reducing the risk of overfitting or leakage.

Together these stages ensure that no single share contains
enough coherent structure or semantics to support reliable
inversion, and their fusion can reconstruct a representation
usable for prediction. This progressive design systematically
dismantles exploitable information, making each share in-
sufficient for reconstruction while keeping the client-side
computation lightweight.

3.3 Hardening via Adversarial Training
PrivDFS protects sensitive inputs by fragmenting interme-
diate features so that each server receives only a partial
representation. Its privacy basically relies on the situation
that reconstructing the input from a single share is in-
trinsically hard in the absence of prior knowledge. How-
ever, when an adversary has access to a large amount of
in-distribution data, this case may no longer hold: the ad-
versary can learn a strong prior over the input distribution
and train specialized inversion models for each branch, ef-
fectively turning an under-determined reconstruction prob-
lem into a learnable mapping. In such settings, fragmen-
tation alone is insufficient, and the feature representations
themselves should be made resistant to inversion. Thus, we
introduce PrivDFS-AT, a hardened variant of PrivDFS that
retains the same distributed feature-sharing architecture but
augments it with an adversarial training regularization.

Core Idea. PrivDFS-AT introduces an adversarially regu-
larized learning objective that anticipates reconstruction at-
tacks. For each feature branch, a conditional diffusion model
acts as an adaptive attacker trained to recover the input
from that share. The defender is then optimized in a mini-

max formulation to preserve task-relevant information while
actively suppressing reconstruction fidelity. The adversar-
ial pressure drives the encoder to discover representations
whose predictive content is decoupled from any structure
that could support inversion, yielding features that are in-
herently resistant to strong in-distribution priors.

Training Pipeline. Starting from a pretrained PrivDFS
model G (defender), PrivDFS-AT alternates between two
stages: (1) Adversary update. For each branch i, a condi-
tional diffusion model Di is trained to reconstruct the input x
from its feature share si = G(x). These attackers are trained
with full in-distribution data, ensuring they represent strong
and specialized inversion models. (2) Defender update. With
Di frozen, the defender is optimized to both minimize the
task loss Ltask and maximize reconstruction errors, using the
anti-reconstruction objective Lar:

Lar =
1

N

N∑
i=1

[
SSIM(x, x̃i)−MSE(x, x̃i)

]
, (1)

where x̃i = Di(si). The total loss for the defender is

Ldefender = Ltask + λLar, (2)

where λ controls the privacy-utility balance.
Lar combines pixel-wise mean squared error (MSE) and

the structural similarity index (SSIM): MSE discourages
pixel-level matches by forcing the defender to obscure fine
details, while SSIM penalizes the preservation of structural
patterns such as shapes and textures. Together, these penal-
ties remove both local appearance and global structure from
branch-wise reconstructions. Through iterative adversarial
training, PrivDFS-AT uses this objective to progressively
harden the defender: as the attacker becomes stronger, the
defender adapts to produce feature shares that are fundamen-
tally less invertible.

3.4 Defense via Keyed Policy Diversification
Despite adversarial hardening, a static feature-sharing policy
constitutes a fundamental single point of failure: under un-
bounded computational resources, a Level 3 adversary can
eventually tailor an inversion model to that policy. The nat-
ural remedy is to break this monoculture by introducing di-
versity: instead of a single, fixed policy, we employ multiple
user-specific policies so that an attacker faces many disjoint
reconstruction problems rather than one. Accordingly, we
propose PrivDFS-KD, which strengthens PrivDFS through
policy diversification.

Core Idea. PrivDFS-KD extends PrivDFS with a fam-
ily of k feature-sharing policies {Ψ1, . . . ,Ψk}, each deter-
ministically derived from an independent key (seed). The
seed drives the pseudo-random components of the DFS
pipeline—including orthogonal mixing matrices, channel
permutations, and patch rearrangements— so that every pol-
icy induces a policy-specific, non-transferable feature dis-
tribution. During training, the policy index is sampled for
each mini-batch, forcing the model to learn task represen-
tations that are invariant across policies, while making any
inversion mapping strictly tied to one policy. As a result, an
inversion model trained on one policy Ψj cannot generalize



to another Ψl (l ̸= j): even with unlimited in-distribution
data, the adversary must now solve k separate reconstruc-
tion problems instead of one. The parameter k therefore acts
as a tunable privacy budget: larger k improves isolation at
the cost of more capacity to support all policies.

4 Evaluations
We evaluate our framework on three aspects: (1) utility,
measured by classification accuracy on multiple benchmark
datasets; (2) privacy, assessed using state-of-the-art inver-
sion attacks to quantify the fidelity of recovered inputs;
and (3) efficiency, evaluated in terms of client-side com-
putation and latency. All models are implemented in Py-
Torch (Paszke et al. 2019). Unless otherwise specified, the
number of server branches is set to N = 3. All experi-
ments are repeated 10 times, and we report the mean and
standard deviation of the results. Experiments are conducted
on a high-performance cluster with Intel Xeon Gold 6330
CPUs, 1TB RAM, and 8 NVIDIA 4090 GPUs.

4.1 Experimental Settings
Datasets and Model. We evaluate our framework on two
benchmarks: CIFAR-10 (Krizhevsky, Hinton et al. 2009)
for multi-class image classification and CelebA (Liu et al.
2015) for multi-attribute face prediction. To train strong re-
construction adversaries in Level 1 threat model, we pro-
vide large similar-distribution auxiliary datasets (Tiny Ima-
geNet (Le and Yang 2015) for CIFAR-10 and FFHQ (Kar-
ras, Laine, and Aila 2021) for CelebA). The client-side en-
coder M enc

c is deliberately lightweight, using a single con-
volutional layer to extract local features, while each server
branch MS,i adopts a ResNet-18 (He et al. 2016) backbone
unless stated otherwise.
Baselines. We compare our framework with a series of base-
lines, including:

• Split Inference (SI) (Kang et al. 2017). Standard split
inference, which achieves the highest accuracy since fea-
tures are sent unmodified, but its privacy depends on
the split depth, creating a trade-off between leakage and
on-device cost.

• Shredder (Mireshghallah et al. 2020). A classical
perturbation-based defense that learns task-aware noise
to obscure private information while preserving accu-
racy, serving as a representative noise-injection baseline.

• Naive Channel Split (NCS). A variant that replaces DFS
with a random channel shuffle followed by an equal split
into N chunks. This baseline isolates the effect of struc-
tured DFS transformations by testing a purely partition-
based approach.

Adversary Setting. To rigorously test privacy, we adopt
diffusion-based inversion attacks as our primary adversary.
Diffusion models have recently become the state-of-the-art
in image reconstruction and inversion, consistently outper-
forming GAN- and VAE-based approaches in recovering
fine-grained visual details from highly compressed or partial
representations (Zhang et al. 2025). Their iterative denoising

process and strong learned priors make them particularly ef-
fective at exploiting even weak feature cues, thus providing
a powerful and realistic attacker.
Attack implementation. We implement each adversary as
a conditional U-Net diffusion model (Ronneberger, Fischer,
and Brox 2015) with four down- and up-sampling stages,
conditioned on the feature shares. The attack follows the de-
fined threat levels: (1) Level 1 adversaries are trained on a
small, similar-distribution dataset (e.g., Tiny ImageNet for
CIFAR-10 or FFHQ for CelebA); (2) Level 2 adversaries are
trained on in-distribution subsets of the target training data,
representing attackers with stronger priors; and (3) Level 3
adversaries represent the worst case, with access to the entire
target training set.
Evaluation Metrics. We assess each method along three
complementary dimensions: (1) Utility is reported as Top-1
classification accuracy (%↑); (2) Client cost is measured
by FLOPs (↓) on the client-side encoder; and (3) Privacy
is quantified by the fidelity of reconstructions from the
diffusion-based attacker, using PSNR (↓) (Horé and Ziou
2010), SSIM (↓) (Wang et al. 2004), and LPIPS (↑) (Zhang
et al. 2018). Lower PSNR/SSIM or higher LPIPS indicates
stronger privacy (poorer reconstruction).

4.2 Performance under Level 1 Adversary
Privacy Evaluation. Table 2 shows that PrivDFS offers sub-
stantially stronger privacy protection than all baselines while
maintaining task accuracy close to that of SI. When 33% of
feature shares are exposed, reconstruction quality collapses:
on CIFAR-10, the SSIM of inverted images drops from
0.952 (SI) and 0.782 (Shredder) to 0.432 with PrivDFS,
and on CelebA from 0.840 (SI) to 0.129. Figure 2 confirms
this trend qualitatively: images reconstructed from PrivDFS
shares are heavily degraded and visually unrecognizable,
in stark contrast to the clear structure preserved by SI and
Shredder. Even when the adversary compromises 50% of the
shares, the gain is tiny (SSIM 0.432 → 0.436 on CIFAR-10
and 0.129 → 0.134 on CelebA), highlighting that partial
feature access remains statistically uninformative. Notably,
these strong privacy guarantees come with almost no loss in
accuracy: 92.5% on CIFAR-10 and 90.8% on CelebA.
Utility-Privacy Trade off. As shown in Table 3, PrivDFS
offers a more favorable utility-privacy trade-off than Shred-
der. For a fair comparison, we increase Shredder’s noise
level until it achieves a privacy level comparable to PrivDFS.
Even under this stronger obfuscation, PrivDFS consistently
retains higher task accuracy. This gap reflects a fundamen-
tal design difference. PrivDFS achieves privacy not by per-
turbing features, but by securely distributing it across mul-
tiple non-colluding servers. By contrast, Shredder and other
perturbation-based defenses rely on irreversible corruption
of the feature space. As the noise level increases to ensure
privacy, essential representations are inevitably suppressed.
Client-Side Cost. Table 4 compares PrivDFS with SI con-
figured to achieve a similar level of privacy by moving the
split point deep into the network (after Block5 of ResNet-
18). This deep split substantially increases client compu-
tation: on CIFAR-10, SI requires 206.7M FLOPs, whereas
PrivDFS achieves the same privacy with only 2.95M FLOPs,



Table 2: Accuracy and privacy metrics under Level 1 attacks on CIFAR-10 and CelebA. For PrivDFS, 33% and 50% correspond
to the fraction of compromised servers (i.e., 1 of 3 servers and 3 of 6 servers, respectively).

Method CIFAR10 CelebA

Acc ↑ PSNR ↓ SSIM ↓ LPIPS ↑ Acc ↑ PSNR ↓ SSIM ↓ LPIPS ↑
SI 96.79% 23.008±2.189 0.952±0.027 0.008±0.005 91.31% 19.717±1.594 0.840±0.056 0.049±0.012

Shredder 92.35% 17.594±1.580 0.782±0.040 0.035±0.015 90.76% 15.461±1.336 0.615±0.045 0.230±0.034
NCS 94.33% 22.040±1.571 0.888±0.028 0.015±0.005 91.27% 18.986±1.761 0.710±0.055 0.194±0.028

PrivDFS(33%) 92.53% 13.750±0.472 0.432±0.032 0.100±0.009 90.81% 8.919±0.168 0.129±0.012 0.566±0.012
PrivDFS(50%) 92.43% 13.832±0.481 0.436±0.025 0.098±0.007 90.71% 8.974±0.208 0.134±0.015 0.554±0.014

Ground Truth SI Shredder NCS PrivDFS
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A
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Figure 2: Qualitative reconstruction results under a Level 1
adversary on CIFAR-10 and CelebA. Columns correspond
to different defense methods.

Table 3: Accuracy vs. Privacy (matched strong privacy).

Dataset Method Acc ↑ PSNR ↓ SSIM ↓ LPIPS ↑

CIFAR10 Shredder 91.39% 13.855 0.491 0.090
PrivDFS 92.53% 13.750 0.432 0.100

CelebA Shredder 90.52% 9.509 0.159 0.526
PrivDFS 90.81% 8.919 0.129 0.566

over 70× less. On the higher-resolution CelebA, the gap is
nearly 100× (4.39G vs. 47.2M). These results demonstrate
that PrivDFS decouples privacy from client cost, overcom-
ing the inherent trade-off in traditional split inference and
enabling private inference on resource-constrained devices.

4.3 Performance Under Level 2 Adversary
We further explore the security of PrivDFS-AT against
a stronger Level 2 adversary, which has access to in-
distribution data and can thus train highly specialized inver-
sion models. This setting is substantially more challenging
than Level 1, as it removes the data-distribution mismatch
that naturally limits reconstruction accuracy.

As shown in Table 5, introducing adversarial hardening

Table 4: Efficiency vs. Privacy (matched strong privacy)

Dataset Method FLOPs ↓ PSNR ↓ SSIM ↓ LPIPS ↑

CIFAR10 SI 206.730M 13.974 0.479 0.089
PrivDFS 2.949M 13.750 0.432 0.100

CelebA SI 4.387G 9.112 0.364 0.360
PrivDFS 47.186M 8.919 0.129 0.566

Table 5: PrivDFS and PrivDFS-AT under Level 2 adversary.

Dataset Method Acc ↑ PSNR ↓ SSIM ↓ LPIPS ↑

CIFAR10 PrivDFS 92.37% 14.528 0.472 0.090
PrivDFS-AT 92.34% 11.784 0.268 0.171

CelebA PrivDFS 90.81% 9.642 0.159 0.564
PrivDFS-AT 90.43% 8.384 0.111 0.632

produces a marked improvement in privacy with almost
no impact on task utility. On CIFAR-10, PrivDFS-AT re-
duces SSIM from 0.472 to 0.268 and nearly doubles LPIPS
(0.090 → 0.171), indicating that reconstructed images lose
both structural and perceptual fidelity. CelebA shows a sim-
ilar pattern, with reconstructions becoming even more de-
graded. These gains are achieved with only a marginal
drop in accuracy (−0.03% on CIFAR-10 and −0.38% on
CelebA), demonstrating that the anti-reconstruction objec-
tive successfully pushes the learned representations toward
a space where predictive signals are preserved but invertible
structures are eliminated.

4.4 Performance Under Level 3 Adversary
Level 3 represents the most challenging threat model, where
an adversary has unrestricted access to in-distribution data
and can devote unbounded resources to train highly special-
ized inversion models. In this setting, a single static feature-
sharing policy becomes a single point of failure. PrivDFS-
KD addresses this by introducing keyed policy diversifica-
tion, so that an inversion model overfits to its own key-
specific feature distribution and fails to generalize to others.

Table 6 quantifies the trade-off between the number of
keys (k) and task accuracy. As k increases, accuracy drops
gradually due to the need to learn policy-invariant represen-
tations; however, this degradation can be mitigated by us-
ing higher-capacity server models (e.g., ResNet-34). This



Table 6: Accuracy of PrivDFS-KD under different numbers
of keys (k) and server model capacities.

MS 2 Keys 4 Keys 8 Keys 16 Keys

ResNet18 91.11% 89.17% 85.79% 85.02%
ResNet34 91.64% 89.40% 86.90% 86.62%

Ground
Truth

With
Target Key

Without
Target Key

Figure 3: Qualitative reconstruction results under a Level 3
adversary. Without the target key, inversion fails completely.

demonstrates that PrivDFS-KD scales through increased
model capacity. Figure 3 illustrates PrivDFS-KD’s security.
When the attacker’s inversion model is trained with the tar-
get Key, reconstruction remains accurate (e.g., PSNR= 20.3,
SSIM= 0.77). However, applying the same model without
the target Key results in a complete collapse of reconstruc-
tion (PSNR= 10.6, SSIM= 0.19), with outputs degenerat-
ing into noise. This contrast confirms that PrivDFS-KD en-
forces strong policy isolation: even a Level 3 adversary can-
not transfer an inversion model across keys. These results
show that PrivDFS-KD turns a single global reconstruction
problem into k disjoint ones, providing a tunable, key-driven
defense against the strongest class of adaptive adversaries.

4.5 Extended Experiments
Scalability with Server Count. We evaluate the scalability
of PrivDFS by varying the number of server branches (N )
while keeping the client-side feature dimensionality fixed.
Figure 4 shows that accuracy decreases only slightly as N
grows, demonstrating that PrivDFS scales gracefully to dif-
ferent deployment configurations.

Figure 4: Impact of the number of server models (N ) on task
accuracy: PrivDFS scales well with more branches.

Ablation of DFS Stages. To understand the contribution of

Table 7: Ablation study of the DFS stages.

Stage (w/o) Acc ↑ PSNR ↓ SSIM ↓ LPIPS ↑
Full DFS 92.53% 13.750 0.432 0.100
LocConf 92.85% 15.134 0.496 0.083
OrthoRcb 92.67% 14.219 0.443 0.108
AdaNoise 92.48% 14.767 0.476 0.091
ChanPerm 92.62% 14.201 0.457 0.104
PatchReorg 96.37% 21.173 0.909 0.016
CrossMix 91.93% 13.889 0.440 0.116

each transformation in the DFS pipeline, we systematically
remove one stage at a time and re-train the model. Table 7
shows that almost all stages are necessary for privacy and
accuracy: removing any component leads to higher PSNR/S-
SIM and lower LPIPS, indicating weaker privacy. In particu-
lar, removing Patch Reorganization causes a drastic privacy
collapse (SSIM rises from 0.432 to 0.909) and an anoma-
lous boost in accuracy, showing that this stage is critical
for breaking global structural cues. While some removals
slightly improve one metric, they always harm others, con-
firming that the full DFS pipeline yields the balanced and
robust protection.
Inference Incapability of a Single Share. Finally, we ver-
ify the core security claim that no single branch is infor-
mative enough to support prediction on its own. When we
directly classify using only one branch of PrivDFS (on
CIFAR-10), the accuracies of the three branches are 10.8%,
8.5%, and 10.4%, essentially indistinguishable from random
guessing (10%). In contrast, fusing all three branches recov-
ers a full accuracy of 92.5%. This confirms that each share
is semantically incomplete, preventing both direct label in-
ference and downstream reconstruction attacks that depend
on partial predictive information.

5 Conclusion and Future Work

We have presented PrivDFS, a distributed feature-sharing
framework that protects inference privacy by fragmenting
intermediate features across non-colluding servers. Through
adversarial hardening (PrivDFS-AT) and key diversification
(PrivDFS-KD), PrivDFS achieves strong resistance to inver-
sion attacks with negligible accuracy loss and greatly re-
duced client cost. Experiments on CIFAR-10 and CelebA
validate its effectiveness. Despite these advances, sev-
eral challenges still remain: PrivDFS currently requires
end-to-end training for each architecture, the multi-server
design introduces additional inference cost, its current form
is limited to classification tasks, and policy diversifica-
tion with many keys, while effective, can slightly reduce
accuracy. Extending PrivDFS to generation tasks is also
non-trivial due to their strong contextual dependencies. Ad-
dressing these challenges would pave the way for private in-
ference that is scalable, versatile, and ready for real-world
deployment.
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