
SelectiveShield: Lightweight Hybrid Defense Against Gradient Leakage in
Federated Learning

Borui Li, Li Yan, Jianmin Liu
School of Cyber Science and Engineering

Xi’an Jiaotong University
Shaanxi, China 710049
boruili@stu.xjtu.edu.cn

Abstract

Federated Learning (FL) enables collaborative model train-
ing on decentralized data but remains vulnerable to gradi-
ent leakage attacks that can reconstruct sensitive user infor-
mation. Existing defense mechanisms, such as differential
privacy (DP) and homomorphic encryption (HE), often in-
troduce a trade-off between privacy, model utility, and sys-
tem overhead, a challenge that is exacerbated in heteroge-
neous environments with non-IID data and varying client ca-
pabilities. To address these limitations, we propose Selec-
tiveShield, a lightweight hybrid defense framework that adap-
tively integrates selective homomorphic encryption and dif-
ferential privacy. SelectiveShield leverages Fisher informa-
tion to quantify parameter sensitivity, allowing clients to iden-
tify critical parameters locally. Through a collaborative ne-
gotiation protocol, clients agree on a shared set of the most
sensitive parameters for protection via homomorphic encryp-
tion. Parameters that are uniquely important to individual
clients are retained locally, fostering personalization, while
non-critical parameters are protected with adaptive differen-
tial privacy noise. Extensive experiments demonstrate that
SelectiveShield maintains strong model utility while signif-
icantly mitigating gradient leakage risks, offering a practi-
cal and scalable defense mechanism for real-world federated
learning deployments.

1 Introduction
Federated Learning FL has emerged as a decentralized ma-
chine learning paradigm that enables collaborative model
training while preserving data locality (McMahan et al.
2017; Kairouz et al. 2021). Despite its privacy-centric de-
sign, FL remains vulnerable to inversion attacks that exploit
shared gradients or model updates to reconstruct sensitive
information (Huang et al. 2021; Guo et al. 2025). These at-
tacks threaten data confidentiality by enabling adversaries to
infer private attributes or reconstruct raw training samples
without direct data access, undermining FL’s core privacy
guarantees.

Current defense mechanisms against inversion attacks in
FL predominantly employ Differential Privacy(DP), Homo-
morphic Encryption(HE), and Secure Multi-Party Compu-
tation (SMPC). Differential privacy injects calibrated noise
into gradients to protect sensitive information (Shokri and
Shmatikov 2015), but this often introduces a trade-off be-
tween privacy and model utility, as excessive noise can sig-

nificantly impair performance (Wang, Hugh, and Li 2024).
In addition, DP-based methods necessitate a substantial par-
ticipant pool during training to achieve convergence and at-
tain an optimal privacy-performance balance (Sun et al.
2021). SMPC enables secure computation over encrypted
data, allowing participants to jointly compute model updates
without revealing individual gradients (Bonawitz et al. 2017;
Wu et al. 2024). However, it incurs substantial communi-
cation and computational overhead, making it less practi-
cal for large-scale FL deployments. Moreover, SMPC im-
poses stringent requirements on the number of participat-
ing clients per round and demonstrates limited robustness
in handling client dropout scenarios. Homomorphic Encryp-
tion safeguards privacy by encrypting model updates be-
fore transmission (Kumar, Mitra, and Mohan 2024; Zhou
et al. 2024). However, using full homomorphic encryption
for all model updates leads to significant computational and
communication overhead (Yan et al. 2024), which limits its
practicality in large-scale or resource-constrained federated
learning scenarios.

Primary privacy methods present a sharp trade-off. Ho-
momorphic Encryption preserves model accuracy but in-
curs significant computational overhead, whereas Differen-
tial Privacy is highly efficient but can degrade model per-
formance. This prompts the question: ❶ How can a hy-
brid system be designed to optimally allocate the appli-
cation of these defenses. Specifically, can we use a pa-
rameter importance metric like Fisher Information to apply
accuracy-preserving Homomorphic Encryption exclusively
to the most critical parameters, while protecting the numer-
ous less-sensitive parameters with efficient Differential Pri-
vacy noise, where their impact on model performance is
minimal?

In statistically heterogeneous federated learning scenar-
ios, clients typically exhibit non-independent and identi-
cally distributed (non-IID) data characteristics. These clients
often have significantly varying datasets in terms of vol-
ume and class distribution. This leads to divergence in lo-
cal models, where the most sensitive parameters critical
to model performance vary across different clients. Conse-
quently, each client may generate a distinct local mask to
protect its unique set of important parameters.

As depicted in Figure 1, clients in a federated learning
system identify different sets of sensitive parameters (high-

ar
X

iv
:2

50
8.

04
26

5v
1

 [
cs

.D
C

]
 6

 A
ug

 2
02

5

https://arxiv.org/abs/2508.04265v1

Figure 1: The Challenge of Selective HE Method

lighted in blue) based on their local, heterogeneous data.
This divergence creates a fundamental conflict with homo-
morphic encryption, which requires all participants to use
a common encryption mask for correct aggregation and de-
cryption. A naive solution, such as taking the union of all
local masks, is therefore untenable. In highly heterogeneous
settings, this would cause the global encryption mask to
cover a significantly larger portion of the model, dramat-
ically increasing computational overhead and negating the
benefits of a selective approach. This brings us to our sec-
ond, highly-focused question: ❷ How can a selective de-
fense protocol resolve the operational conflicts arising
from heterogeneity?

To address this issue, we draw inspiration from personal-
ized federated learning by proposing a parameter partition-
ing strategy. After each client determines its local sensitivity
mask, all participants negotiate to establish a common en-
cryption mask defined as the intersection of their individual
masks. This alignment on a shared set of parameters is cru-
cial, as it enables the use of efficient packing-based homo-
morphic encryption schemes, accelerating the cryptographic
process.

Parameters that are sensitive to individual clients but fall
outside this common intersection are designated as personal-
ized knowledge. These parameters are retained on the client
side and are excluded from the current round of global ag-
gregation. This approach of retaining client-specific param-
eters locally yields significant benefits: it reduces commu-
nication and computational overhead by shrinking the en-
crypted set, mitigates non-IID issues and preserves high
model utility even in settings with significant data hetero-
geneity. As our experimental results confirm, this strategy
allows our framework to achieve accuracy that is compara-
ble or even superior to conventional methods.

Furthermore, many existing FL+HE schemes rely on a
shared private key distributed among all clients, introducing
a critical vulnerability: a single malicious participant could
decrypt any other client’s updates, completely nullifying the
privacy guarantee. This raises our third key question: ❸ How
can we design a secure aggregation protocol for selective
homomorphic encryption where no private key is ever
exposed to the clients, thus protecting encrypted updates
even from malicious insider attacks?

To address these challenges, we propose SelectiveShield,
a lightweight hybrid defense framework that provides a
multi-faceted solution. SelectiveShield uses Fisher Infor-
mation to systematically partition model parameters based

on their sensitivity. Answering our first question, it ap-
plies accuracy-preserving homomorphic encryption only to
a small, collaboratively-agreed set of critical parameters,
while protecting the vast majority of less impactful param-
eters with efficient differential privacy noise. To resolve the
conflicts from heterogeneity, it uses a negotiation protocol
to establish a common encryption domain, while treating
client-specific sensitive parameters as personalized knowl-
edge that is retained locally, thus boosting performance in
non-IID settings. Finally, to prevent insider attacks, it em-
ploys a two-server architecture where the private key is ex-
clusively managed by a trusted server and is never exposed
to clients, ensuring end-to-end confidentiality.

2 Related Work
2.1 Privacy-Preserving Techniques in Federated

Learning
Despite keeping data localized, FL remains vulnerable to
various privacy attacks, including gradient inversion attacks
that can reconstruct raw training data (Zhu, Liu, and Han
2019; Geiping et al. 2020), membership inference attacks
that determine whether specific samples were used in train-
ing (Melis et al. 2019; Shokri et al. 2017), and property in-
ference attacks that extract sensitive statistical or semantic
attributes (Wang et al. 2022; Luo et al. 2021).

Differential privacy (DP) in FL typically involves adding
calibrated noise to model updates before sharing them with
the server (Geyer, Klein, and Nabi 2017; Wei et al. 2020).
Truex et al. (Truex et al. 2020) proposed a hybrid approach
combining local and central differential privacy. Yang et al.
(Yang, Huang, and Ye 2023) introduced dynamic personal-
ized FL with adaptive differential privacy, using Fisher in-
formation to guide the noise addition process. While DP pro-
vides theoretical privacy guarantees, it often degrades model
performance, especially with stronger privacy requirements.

Homomorphic encryption (HE) enables computations on
encrypted data without decryption (Phong et al. 2018; Zhang
et al. 2020). Phong et al. (Phong et al. 2018) applied addi-
tive HE to protect client updates in FL. Zhang et al. (Zhang
et al. 2020) proposed BatchCrypt to reduce the overhead
of HE through quantization and batching. Jin et al. pro-
posed FedML-HE, a homomorphic encryption-based feder-
ated learning system that uses selective parameter encryp-
tion to reduce computational and communication overheads
while preserving privacy. Hu and Li (Hu and Li 2024) intro-
duced MaskCrypt, which selectively encrypts only a portion
of model updates using gradient-guided masks, significantly
reducing communication overhead while maintaining pro-
tection against privacy attacks.

3 Preliminary
3.1 Threat Model
We consider an honest-but-curious server that strictly ad-
heres to the federated learning aggregation protocol while
attempting to infer sensitive information from the received
gradients or model updates. Although clients faithfully com-
pute their local updates, they remain vulnerable to privacy

breaches through the shared parameters. Malicious adver-
saries may attempt to reconstruct raw training data from the
model updates through gradient inversion attacks, formu-
lated as solving the following optimization problem:

min
x̂

∥∥∥∇θL(θ, x̂, y)− g
∥∥∥2 (1)

where x̂ represents the reconstructed input data, θ denotes
the model parameters, L is the loss function, and g is the
observed gradient.

3.2 Fisher Information
Fisher Information (FI) measures how much information an
observable variable carries about an unknown parameter.
For a parametric model with likelihood function p(x|θ), the
Fisher Information Matrix (FIM) is:

I(θ) = Ex∼p(x|θ)

[
(∇θ log p(x|θ))(∇θ log p(x|θ))⊤

]
. (2)

In practice, a diagonal approximation is often used:

Ij(θ) ≈
1

N

N∑
i=1

(
∂

∂θj
logL(xi, yi; θ)

)2

. (3)

Parameters with higher FI are more sensitive and should be
protected more rigorously.

3.3 Rényi Differential Privacy
Rényi Differential Privacy (RDP) (Mironov 2017) extends
classical DP by using Rényi divergence to obtain tighter
composition bounds. For two probability distributions P and
Q, their Rényi divergence of order α > 1 is defined as:

Dα(P∥Q) =
1

α− 1
logEx∼Q

[(P (x)

Q(x)

)α]
. (4)

A randomized mechanismM satisfies (α, ϵ)-RDP if for all
neighboring datasets D and D′:

Dα(M(D)∥M(D′)) ≤ ϵ. (5)

The Gaussian mechanism achieves RDP by adding noise:

M(x) = f(x) +N (0, σ2S2), (6)

where S is the global sensitivity and σ controls the privacy
budget.
Lemma 1 (RDP composition (Mironov 2017)) IfM1 sat-
isfies (α, ϵ1)-RDP andM2 satisfies (α, ϵ2), then their com-
positionM1 ◦M2 satisfies (α, ϵ1 + ϵ2)-RDP.
Lemma 2 (RDP to DP conversion (Balle et al. 2020)) If
the mechanismM satisfies (α, ϵ)-Rényi differential privacy
(RDP), then it also satisfies (ϵ′, δ)-differential privacy (DP)
for any 0 < δ < 1 where

ϵ′ = ϵ+ log
α− 1

α
− log δ + logα

α− 1
.

Lemma 3 (RDP Gaussian mechanism (Mironov 2017))
If a function f : D → Rd has ℓ2-sensitivity ∆f , then
the Gaussian mechanism Gf (·) := f(·) + N (0, σ2∆2

fI)

satisfies (α, α/(2σ2))-Rényi differential privacy (RDP) for
any α > 1.

3.4 Homomorphic Encryption
Homomorphic Encryption (HE) allows computations to be
performed directly on encrypted data. A typical additively
homomorphic encryption scheme (e.g., Paillier) supports
operations like:

Enc(m1) + Enc(m2) = Enc(m1 +m2). (7)

This property enables secure aggregation in FL:

Enc
(M∑

i=1

wi

)
=

M∑
i=1

Enc(wi), (8)

allowing the server to sum encrypted updates without de-
crypting individual client gradients.

In contrast, Fully Homomorphic Encryption (FHE)
schemes, such as BGV or CKKS, support both addition and
multiplication:

Enc(m1) · Enc(m2) = Enc(m1 ·m2). (9)

CKKS is widely used in machine learning because it effi-
ciently handles approximate real-number arithmetic, which
is common for gradient updates. However, FHE schemes
come with significant computational and communication
overheads, making them impractical for encrypting all
model parameters in large-scale FL. Therefore, selective or
partial encryption strategies are commonly adopted to bal-
ance privacy and efficiency.

3.5 Personalized Federated Learning
Personalized Federated Learning (PFL) addresses the non-
IID nature of clients’ local data by separating model param-
eters into a global component v and a client-specific local
component ui. Suppose client i holds Di = {(xj , yj)}Ni

j=1.
The objective function is:

min
v,u1:M

1

M

M∑
i=1

E(x,y)∼Di

[
L(f(x;v,ui), y)

]
. (10)

Each client locally optimizes its parameters and then only
shares updates related to the global component:

vt+1 = vt +
1

M

M∑
i=1

(vt+1
i − vt). (11)

PFL frameworks support better personalization and general-
ization on heterogeneous data. In our method, the separation
of sensitive and non-sensitive parameters naturally aligns
with this idea: parameters outside the shared secure mask
can be treated as local knowledge and remain private.

4 Method
We introduce SelectiveShield, an adaptive hybrid defense
framework, with its comprehensive workflow depicted in
Figure 2. The process begins with each client using Fisher
Information to locally identify sensitive parameters (Section
4.1). Following this, clients engage in a collaborative negoti-
ation protocol (Section 4.2) to partition the model’s parame-
ters into three zones based on a shared consensus: a globally-
critical encrypted zone that is shared, a personalized zone

Figure 2: Framework of SelectiveShield

that is retained locally, and a noise zone that is protected
via differential privacy. Clients then apply a hybrid defense,
protecting the encrypted zone with homomorphic encryption
(Section 4.3) and the noise zone with differential privacy
(Section 4.4), before uploading the updates. To ensure se-
curity, a two-server architecture (Section 4.5) is employed,
consisting of a trusted Key Distribution and Decryption
Server (KDS, SKey) responsible for public key distribution
and model decryption, along with a semi-trusted Aggrega-
tion Server (AS, SAgg) dedicated to aggregating encrypted
models. The updated global model is then distributed back to
the clients, who merge it with their personalized parameters
for the next training round.

We consider T communication rounds, each with a set
of participating clients Kt. Let N be the total number of
clients. Clients are selected in each round via Poisson sam-
pling with selection probability qtn. During the initialization
phase, SKey distributes the public key pk to all clients and
SAgg.

4.1 Fisher Information-Based Local Selection
At the beginning of each round t, each client n estimates
the local Fisher Information for each parameter θn,j . For a
local dataset Dn, the Fisher Information for parameter j is
computed as:

I(θn,j) =

(
∂

∂θn,j
logL(θn, Dn)

)2

. (12)

To ensure comparability across layers with different
scales, each layer’s Fisher scores are normalized using a
min-max operation. For each layer l, the normalized Fisher
score for parameter j is:

Ĩ(θn,j) =
I(θn,j)− I lmin

I lmax − I lmin

, ∀j ∈ l. (13)

Algorithm 1: SelectiveShield

1: Init: SKey : (pk, sk)← KeyGen(), θ0g ← Init();
2: SKey sends pk to SAgg, all clients.
3: for t = 1, . . . , T do
4: Kt ← SelectClients()

5: Client n ∈ Kt ():
6: ∆θtn ← LocalTrain(θt−1

n , Dn)
7: M t

n ← GenMask(∆θtn, τn) ▷ Refer to Sec 4.1

8: Mask Negotiation():
9: M t

enc ←
⋂

n∈Kt M t
n; ▷ Encrypted

10: M t
pers ←M t

n \M t
enc; ▷ Personalized

11: M t
noise ← Θ \

(
M t

enc ∪M t
pers

)
▷ Noised

12: Client n ∈ Kt ():
13: ctn ← Enc(pk,∆θn,Mt

enc
)

14: ∆̃θ
t

n ← AddNoise(∆θn,Mt
noise

, Ct
n, σ

t
n)

15: Server SAgg():
16: ctagg ←

∑
n∈Kt ctn;

17: ∆θtnoise sum ←
∑

n∈Kt ∆̃θ
t

n

18: Server SKey():
19: ∆θtenc sum ← Dec(sk, ctagg)

20: ∆θtsum ← ∆θtenc sum ⊕∆θtnoise sum
21: θtglobal ← θt−1

global + ηg
1

|Kt|∆θtsum

22: Client n ∈ Kt ():
23: θtn ←M t

pers ⊙ θtn,local + (1−M t
pers)⊙ θtglobal

24: end for

Here, I lmin and I lmax denote the minimum and maximum
Fisher values in layer l respectively.

Finally, each client derives its local sensitive mask by
thresholding the normalized scores:

M t
n =

{
j | Ĩ(θn,j) > τn

}
, (14)

where τn is a client-specific threshold that can be tuned
based on privacy preference and system capacity.

4.2 Collaborative Secure Mask Negotiation
To ensure accurate decryption in homomorphic encryption
and support batch packing encryption, all selected clients
n ∈ Kt first compute their local sensitive masks M t

n and
exchange them to establish a consistent encryption domain.

The encrypted zone is formally defined as the intersec-
tion of all local masks:

M t
enc =

⋂
n∈Kt

M t
n. (15)

Parameters within M t
enc are universally recognized as highly

sensitive and are consequently protected through homomor-
phic encryption. However, when dealing with either a large
number of clients or significant heterogeneity in client data,

the common intersection among clients may exhibit limited
overlap.

To address this challenge, we propose a refined definition
of the encrypted zone by introducing a consensus thresh-
old hyperparameter ρ ∈ [0, 1]. Specifically, a parameter
position is incorporated into the encrypted zone M t

enc if and
only if it is marked as important by a proportion of clients
that meets or exceeds the threshold ρ. The definition is as
follows:

M t
enc =

{
j

∣∣∣∣ |{n ∈ Kt | j ∈M t
n}|

|Kt|
≥ ρ

}
. (16)

This consensus mechanism ensures that the parameters pro-
tected in M t

enc are those widely agreed upon as highly sensi-
tive among the client population.

The personalized private zone is formed by the differ-
ence between the union and the intersection:

M t
pers = M t

n \M t
enc. (17)

This region contains parameters that are sensitive for spe-
cific clients but not shared globally. These parameters re-
main local and are not uploaded, preserving personalization
and reducing encryption overhead. Finally, the remaining
parameters constitute the adaptive noise zone:

M t
noise = Θ \

(
M t

enc ∪M t
pers

)
, (18)

where Θ denotes the full parameter set.

4.3 Selective Homomorphic Encryption
Each client n computes its local model update ∆θtn. The
components of the update corresponding to the encrypted
zone, {∆θtn,j}j∈Mt

enc
, are packed into a plaintext vector vt

n.
This vector is then encrypted using the CKKS public key pk:

ctn = Enc(pk,vt
n). (19)

The resulting single ciphertext ctn is sent to the server SAgg.
According to our setup, both clients and SAgg possess only
the public key but not the private key, thus they can only per-
form encryption and homomorphic computation operations.
Throughout their lifecycle, client updates remain encrypted
and never undergo decryption. These encrypted updates di-
rectly participate in the aggregation process while maintain-
ing their ciphertext form.

4.4 Adaptive Noise Addition
For parameters in the adaptive noise zone M t

noise, clients ap-
ply differential privacy using the Gaussian mechanism, ana-
lyzed under Rényi Differential Privacy (RDP). In this stan-
dard approach, each client n independently and adaptively
selects two parameters for round t: a clipping norm Ct

n and
a noise standard deviation σt

n.
First, the client clips the sub-vector of its update corre-

sponding to the noise zone by its chosen L2 clipping norm
Ct

n:

∆̄θn,Mt
noise

= ∆θn,Mt
noise
·min

(
1,

Ct
n

∥∆θn,Mt
noise
∥2

)
. (20)

This ensures the sensitivity of the update is bounded by Ct
n.

Then, the client adds Gaussian noise with its chosen stan-
dard deviation σt

n:

∆̃θ
t

n,j = ∆̄θ
t
n,j + zn,j , ∀j ∈M t

noise, (21)

where zn,j ∼ N (0, (Ct
nσ

t
n)

2|Kt|).
For any RDP order α > 1, this mechanism guarantees

(α, εn(α))-RDP. According to Lemma 3, the privacy budget
is given by:

εn(α) =
α(Ct

n)
2

2(Ct
nσ

t
n)

2
=

α

2(σt
n)

2
. (22)

While our framework allows each client n to choose its own
noise parameter σt

n, we focus on the uniform case σt
n ≡ σ

for all participating clients. This simplification facilitates a
global privacy analysis and guarantees a consistent, mini-
mal level of protection. After T iterations, the mechanism
satisfies (α, Tα

2σ2)-RDP according to Lemma 1. By apply-
ing Lemma 2, this implies (ϵ, δ)-DP after T rounds, where
ϵ = Tα

2σ2 + log
(
α−1
α

)
− log(δ)+logα

α−1 .

4.5 Server Aggregation
We introduce a two-server architecture to enhance security
by separating key management from aggregation tasks. The
system comprises a trusted Key Distribution and Decryp-
tion Server (SKey) and a semi-trusted Aggregation Server
(SAgg).

At the beginning of the process, SKey generates a public-
secret key pair (pk, sk) for the CKKS scheme. It retains the
secret key sk and distributes the public key pk to all clients
and to the Aggregation Server SAgg.

The aggregation process proceeds in the following steps:
Step 1: Aggregation at Server SAgg. The Aggregation

Server SAgg is responsible for collecting updates from all
clients n ∈ Kt. Since SAgg does not possess the secret key,
it performs aggregation as follows:
• For the encrypted zone (M t

enc), SAgg leverages the ad-
ditive homomorphism of the CKKS scheme to sum the
received ciphertexts without decrypting them:

ctagg =
∑
n∈Kt

ctn. (23)

• For the adaptive noise zone (M t
noise), SAgg aggregates

the noisy plaintext updates through simple summation:

∆θtsum,j =
∑
n∈Kt

∆̃θ
t

n,j , ∀j ∈M t
noise. (24)

After completing these operations, SAgg holds a partially ag-
gregated result, consisting of the aggregated ciphertext ctagg
and the plaintext summed updates for the noise zone. SAgg
then transmits this entire result to the Key Server SKey.

Step 2: Decryption and Finalization at Server SKey.
The trusted Key Server SKey receives the aggregated results
from SAgg. Using its private key sk, it decrypts the aggre-
gated ciphertext:

vt
sum = Dec(sk, ctagg). (25)

The resulting plaintext vector vt
sum contains the summed up-

dates for the encrypted zone, {∆θtsum,j}j∈Mt
enc

. SKey now
combines this with the plaintext sums from the noise zone
to form the complete aggregated update vector, ∆θtsum.

Finally, SKey computes the new global model:

θtglobal = θt−1
global + ηg

1

|Kt|
∆θtsum, (26)

where ηg is the server learning rate. Notably, when setting
ηg = |Kt|, the aggregation algorithm reduces to the stan-
dard FedAvg approach.

Step 3: Global Model Distribution. SKey broadcasts the
updated global model θtglobal back to all clients. The clients
then use this new model for their local merging step in the
next round.

Specifically, the client retains the parameters from its per-
sonalized zone (M t

pers) that were updated during the current
round of local training. For all other parameters (i.e., those
in the encrypted zone M t

enc and the noise zone M t
noise), it

adopts the new parameters from the received global model.
This selective merge operation can be formulated as:

θtn ←M t
pers ⊙ θtn,local + (1−M t

pers)⊙ θtglobal (27)

where θtn is the final model for client n at the end of round
t, which will be used for the next round of training, θtn,local
is the model of client n after completing local training in
round t, θtglobal is the latest global model broadcast from the
server, M t

pers is the personalized parameter mask for client
n, ⊙ represents the Hadamard product (element-wise mul-
tiplication). This merged model, which contains both global
consensus and personalized knowledge, is then used by the
client to begin the next training round.

5 Evaluation
5.1 Experimental Setup
We conduct comprehensive experiments on five datasets un-
der various conditions to evaluate the performance of the
proposed method in comparison with existing approaches.
Specifically, we assess the accuracy on these datasets, com-
paring our SelectiveShield method (abbreviated as ”Ours”
in subsequent tables for conciseness) against DP-FedAvg,
MaskCrypt, FedML-HE, and DPSGD.

Datasets and Models. We use five benchmark datasets
in federated learning and privacy research: MNIST (LeCun
et al. 1998), Fashion-MNIST (FMNIST) (Xiao, Rasul, and
Vollgraf 2017), CIFAR-10 (Krizhevsky, Hinton et al. 2009),
CIFAR-100 (Krizhevsky, Hinton et al. 2009), and SVHN
(Netzer et al. 2011). These datasets vary in complexity, rang-
ing from simple grayscale digits (MNIST) to diverse real-
world images (SVHN).

For MNIST and FMNIST datasets, we employ a 3-layer
MLP architecture. For other datasets, we utilize a CNN
model consisting of 2 convolutional layers followed by 2
fully-connected layers.

Comparison Methods. We evaluate the performance
of our proposed method against several state-of-the-art
approaches in differentially private federated learning,

including DP-FedAvg (Geyer, Klein, and Nabi 2017),
DPSGD (Abadi et al. 2016), FedML-HE (Jin et al. 2023),
and MaskCrypt (Hu and Li 2024). Notably, DP-FedAvg im-
plements user-level differential privacy, while DPSGD pro-
vides record-level privacy guarantees. Both FedML-HE and
MaskCrypt employ selective encryption techniques for pri-
vacy preservation.

Attacks. We evaluate SelectiveShield against Gradient In-
version Attacks (GIA). We use iDLG (Zhao, Mopuri, and
Bilen 2020) to reconstruct input samples from gradients.

Implementation Details. For all datasets, we set the
learning rate to 0.01. We employ 20 clients with 10 global
epochs, 5 local epochs per client, and a batch size of 32.
We use the Rényi Differential Privacy (RDP) algorithm pro-
vided by Opacus as our privacy accountant. After perform-
ing a grid search over α, τ , and ρ, we adopted the parameter
combination that achieved the best validation performance;
the complete search results are provided in the appendix for
reference.

We employ a Dirichlet-distributed partition to synthesize
non-IID data, controlled by the concentration parameter α:
as α → 0, clients possess highly heterogeneous class distri-
butions; increasing α approaches IID. All experiments were
implemented in Python with PyTorch on an NVIDIA 4090
GPUs and an Intel Xeon Platinum 8369B CPU.

5.2 Performance Comparison
We evaluate the model accuracy of various methods on
five datasets under statistically heterogeneous scenarios with
Dirichlet distribution (α = 0.5) and a privacy budget of
ϵ = 1.0. Our comparative analysis between SelectiveShield
and baseline methods, as presented in Table 1 and Table 2,
reveals that our approach consistently delivers competitive
or superior performance across all evaluated datasets.

Algorithm CIFAR10 CIFAR100

DP-FedAvg 0.538 0.245
MaskCrypt 0.566 0.329
FedML-HE 0.571 0.270

DPSGD 0.492 0.308
Ours(τ = 0.2) 0.587 0.397
Ours(τ = 0.3) 0.542 0.416
Ours(τ = 0.5) 0.573 0.415

Table 1: Performance Comparison

Algorithm MNIST FMNIST SVHN

DP-FedAvg 0.982 0.884 0.873
MaskCrypt 0.981 0.887 0.867
FedML-HE 0.982 0.889 0.877

DPSGD 0.986 0.872 0.846
Ours(τ = 0.02) 0.981 0.892 0.877
Ours(τ = 0.05) 0.982 0.894 0.880

Table 2: Performance Comparison

5.3 Impact of Data Heterogeneity
To evaluate the robustness of SelectiveShield under non-
IID conditions, we conducted experiments on CIFAR-10
with varying degrees of data heterogeneity, controlled by
the Dirichlet distribution parameter α. As shown in Table 3,
our method demonstrates strong performance across differ-
ent levels of non-IID data. When data heterogeneity is high
(α = 0.2 and α = 0.5), SelectiveShield (τ = 0.5 and
τ = 0.2 respectively) achieves the highest accuracy. In the
IID case, our method still achieves the best performance.

Algorithm
Dirichlet α

iid0.2 0.5 1

DP-FedAvg 0.649 0.538 0.744 0.745
MaskCrypt 0.642 0.566 0.748 0.759
FedML-HE 0.644 0.571 0.747 0.749

PPSGD 0.594 0.236 0.662 0.758
Ours(τ = 0.2) 0.648 0.587 0.752 0.757
Ours(τ = 0.3) 0.653 0.542 0.751 0.760
Ours(τ = 0.5) 0.655 0.573 0.740 0.764

Table 3: Accuracy vs. non-IID Degree on CIFAR-10

5.4 Hyperparameter Analysis
Our proposed method adaptively balances the ratio of pa-
rameters that are encrypted, personalized, and perturbed
with noise, ensuring that all parameters receive a degree of
protection. For instance, if the scope of both the encrypted
and personalized zones approaches zero, all parameters will
have noise added, causing our framework to degenerate into
a standard local differential privacy (DP) approach in feder-
ated learning. Therefore, a detailed analysis of strengthening
privacy by increasing the privacy budget (i.e., lowering ϵ) is
not the primary focus of this section. Since the encrypted
and personalized parameters do not leak any information to
an attacker, the system remains secure as long as the privacy
budget for the remaining parameters is sufficiently high.

Consequently, in this section, we conduct an ablation
study to evaluate the resilience of our framework when
the noise-adding module is removed. We test the effective-
ness of the encryption and personalization components alone
against the iLRG (instance-level label restoration from gra-
dients) inversion attack. The attack’s performance is mea-
sured using two metrics: (1) Label Existence Accuracy
(LeAcc), which is the accuracy score for predicting the ex-
istence of a label, and (2) Label Number Accuracy (LnAcc),
which is the accuracy score for predicting the number of in-
stances per class.

Effect of Sensitivity Threshold (τ): The threshold τ con-
trols the size of each client’s sensitive parameter mask. As
τ increases from 0.01 to 1.0, the encrypted zone (Menc)
shrinks from 28.64% to 0%. This directly impacts security:
the attacker’s LeAcc climbs from an ineffective 0.4 to a per-
fect 1.0. This demonstrates that τ is a critical lever for man-
aging the trade-off between computational efficiency and se-
curity.

τ Menc Mpers LeAcc LnAcc

0.01 28.64% 13.19% 0.4 0.0
0.02 19.68% 11.29% 0.2 0.0
0.07 4.89% 0.98% 0.4 0.0
0.1 2.28% 1.00% 0.9 0.1
0.2 0.45% 0.27% 0.9 0.2
1.0 0.00% 0.00% 1.0 0.6

Table 4: Hyperparameter Study on τ Refer Eq. (14)

ρ Menc Mpers LeAcc LnAcc

0.1 5.52% 3.94% 0.5 0.0
0.2 4.13% 1.65% 1.0 0.2
0.3 4.24% 2.41% 0.9 0.1
0.5 2.28% 1.00% 0.9 0.1
0.7 1.06% 0.54% 1.0 0.3
0.8 1.35% 0.69% 0.9 0.2

Table 5: Hyperparameter Study on ρ Refer Eq. (16)

Effect of Consensus Threshold (ρ): The consensus
threshold ρ sets the requirement for a parameter to be in-
cluded in the globally encrypted zone. Increasing ρ from
0.1 to 0.7 tightens this consensus, reducing the encrypted
zone from 5.52% to 1.06%. While a smaller encrypted zone
leads to a high LeAcc, the attack’s Label Number Accuracy
(LnAcc) remains low. This shows that even a small, strate-
gically chosen encrypted zone is effective at preventing the
attacker from learning the exact number of data instances per
class. Therefore, ρ fine-tunes the balance between a unified
global defense and client-specific personalization.

The detailed results presented in the appendix demon-
strate comprehensive experiments conducted across vari-
ous combinations of parameters α, τ , and ρ. These experi-
ments systematically evaluate their impacts on multiple per-
formance metrics, including: classification accuracy, the ef-
fective ranges of encryption masks (Menc), personalization
masks (Mpers), and noise masks (Mnoise), as well as the com-
putational time costs associated with encryption, decryption,
aggregation, and training processes.

6 Conclusion
In this paper, we introduced SelectiveShield, a lightweight
and adaptive hybrid defense framework designed to ad-
dress the challenges of privacy in heterogeneous federated
learning. Our framework leverages Fisher information and
a collaborative negotiation protocol to partition parameters
into unique encrypted, personalized, and noise-protected
zones. This partitioning method, inspired by personalized
federated learning, has been demonstrated through exten-
sive experiments to maintain high model utility under non-
independent and identically distributed (non-IID) scenarios.
Future work will focus on optimizing the communication
protocol and evaluating the framework against more ad-
vanced threat models.

References
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep learn-
ing with differential privacy. In Proc. of CCS.
Balle, B.; Barthe, G.; Gaboardi, M.; Hsu, J.; and Sato, T.
2020. Hypothesis testing interpretations and renyi differen-
tial privacy. In Proc. of AISTATS.
Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.;
McMahan, H. B.; Patel, S.; Ramage, D.; Segal, A.; and Seth,
K. 2017. Practical secure aggregation for privacy-preserving
machine learning. In Proc. of CCS.
Geiping, J.; Bauermeister, H.; Dröge, H.; and Moeller, M.
2020. Inverting gradients-how easy is it to break privacy in
federated learning? In Proc. of NeurIPS.
Geyer, R. C.; Klein, T.; and Nabi, M. 2017. Differentially
private federated learning: A client level perspective. In
Proc. of MLPCD.
Guo, P.; Wang, R.; Zeng, S.; Zhu, J.; Jiang, H.; Wang, Y.;
Zhou, Y.; Wang, F.; Xiong, H.; and Qu, L. 2025. Ex-
ploring the vulnerabilities of federated learning: A deep
dive into gradient inversion attacks. arXiv preprint
arXiv:2503.11514.
Hu, C.; and Li, B. 2024. MASKCRYPT: Federated Learn-
ing With Selective Homomorphic Encryption. IEEE TDSC,
Early Access.
Huang, Y.; Gupta, S.; Song, Z.; Li, K.; and Arora, S. 2021.
Evaluating Gradient Inversion Attacks and Defenses in Fed-
erated Learning. In Proc. of NeurIPS.
Jin, W.; Yao, Y.; Han, S.; Joe-Wong, C.; Ravi, S.; Aves-
timehr, S.; and He, C. 2023. FedML-HE: An Efficient
Homomorphic-Encryption-Based Privacy-Preserving Fed-
erated Learning System. In Proc. of NeurIPS Workshop.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2021. Advances and Open Problems in
Federated Learning. Foundations and Trends® in Machine
Learning, 14(1–2).
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Kumar, K. N.; Mitra, R.; and Mohan, C. K. 2024. Revamp-
ing Federated Learning Security from a Defender’s Perspec-
tive: A Unified Defense with Homomorphic Encrypted Data
Space. In Proc. of CVPR.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-Based Learning Applied to Document Recogni-
tion. Proc. of the IEEE, 86(11).
Luo, X.; Wu, Y.; Xiao, X.; and Ooi, B. C. 2021. Feature
inference attack on model predictions in vertical federated
learning. In Proc. ICDE.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of
Deep Networks From Decentralized Data. In Proc. of AIS-
TATS.
Melis, L.; Song, C.; De Cristofaro, E.; and Shmatikov, V.
2019. Exploiting unintended feature leakage in collaborative
learning. In Proc. of IEEE Symposium on S&P. IEEE.

Mironov, I. 2017. Rényi differential privacy. In Proc. of
CSF.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading Digits in Natural Images with Un-
supervised Feature Learning. In Proc. of NeurIPS Workshop.
Phong, L. T.; Aono, Y.; Hayashi, T.; Wang, L.; and Moriai,
S. 2018. Privacy-Preserving Deep Learning via Additively
Homomorphic Encryption. IEEE TIFS, 13(5).
Shokri, R.; and Shmatikov, V. 2015. Privacy-preserving
deep learning. In Proc. of CCS.
Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V. 2017.
Membership inference attacks against machine learning
models. In Proc. of Proc. of IEEE Symposium on S&P.
Sun, J.; Li, A.; Wang, B.; Yang, H.; Li, H.; and Chen, Y.
2021. Soteria: Provable defense against privacy leakage in
federated learning from representation perspective. In Proc.
of CVPR.
Truex, S.; Baracaldo, N.; Anwar, A.; Steinke, T.; Ludwig,
H.; Zhang, R.; and Zhou, Y. 2020. LDP-Fed: Federated
learning with local differential privacy. In Proc. of EdgeSys.
Wang, F.; Hugh, E.; and Li, B. 2024. More Than Enough Is
Too Much: Adaptive Defenses Against Gradient Leakage in
Production Federated Learning. IEEE/ACM ToN, 32.
Wang, Z.; Huang, Y.; Song, M.; Wu, L.; Xue, F.; and Ren, K.
2022. Poisoning-assisted property inference attack against
federated learning. IEEE TDSC.
Wei, K.; Li, J.; Ding, M.; Ma, C.; Yang, H. H.; Farokhi, F.;
Jin, S.; Quek, T. Q.; and Poor, H. V. 2020. Federated learn-
ing with differential privacy: Algorithms and performance
analysis. In IEEE TIFS. IEEE.
Wu, Z.; Hou, J.; Diao, Y.; and He, B. 2024. Federated Trans-
former: Multi-Party Vertical Federated Learning on Practi-
cal Fuzzily Linked Data. In Proc. of NeurIPS.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv preprint arXiv:1708.07747.
Yan, N.; Li, Y.; Chen, J.; Wang, X.; Hong, J.; He, K.; and
Wang, W. 2024. Efficient and straggler-resistant homomor-
phic encryption for heterogeneous federated learning. In
Proc. of INFOCOM.
Yang, X.; Huang, W.; and Ye, M. 2023. Dynamic Personal-
ized Federated Learning with Adaptive Differential Privacy.
In Proc. of NeurIPS.
Zhang, C.; Li, S.; Xia, J.; Wang, W.; Yan, F.; and Liu, Y.
2020. BatchCrypt: Efficient Homomorphic Encryption for
Cross-Silo Federated Learning. In Proc. of USENIX ATC.
Zhao, B.; Mopuri, K. R.; and Bilen, H. 2020. iDLG:
Improved deep leakage from gradients. arXiv preprint
arXiv:2001.02610.
Zhou, Y.; Zheng, P.; Cao, X.; and Huang, J. 2024. Two-Tier
Data Packing in RLWE-based Homomorphic Encryption for
Secure Federated Learning. In Proc. of CCS.
Zhu, L.; Liu, Z.; and Han, S. 2019. Deep leakage from gra-
dients. In Proc. of NeurIPS.

A Notations
This section defines the key notations and hyperparameters used throughout the paper and this supplementary material. A
summary is provided in Table 6.

Symbol Description
θ Model parameters.
T Total communication rounds.
Kt Set of participating clients in round t.
Dn Local dataset of client n.
∆θtn Local model update from client n at round t.
α Controls data heterogeneity (non-IID) via Dirichlet distribution.
τ Fisher Information threshold for selecting sensitive parameters.
ρ Consensus threshold for defining the encrypted zone.
ηg Server-side global learning rate.
I(θn,j) Fisher Information value for a specific parameter.
M t

n Local mask of sensitive parameters for client n.
Menc Mask for the encrypted zone (protected by Homomorphic Encryption).
Mpers Mask for the personalized zone (parameters retained locally).
Mnoise Mask for the adaptive noise zone (protected by Differential Privacy).
pk, sk Public and secret key pair for Homomorphic Encryption.
ctn Ciphertext of a client’s update.
Ct

n L2 norm clipping bound for Differential Privacy.
σt
n Standard deviation of Gaussian noise for Differential Privacy.

SKey Key Distribution and Decryption Server (KDS).
SAgg Aggregation Server (AS).

Table 6: List of Notations and Hyperparameters.

B Experimental Setup Details
B.1 Model Architectures
For reproducibility, we provide the detailed architectures of the models used in our experiments. For the MNIST and Fashion-
MNIST datasets, a 3-layer Multilayer Perceptron (MLP) was used. For the CIFAR-10, CIFAR-100, SVHN and stl10 datasets, a
Convolutional Neural Network (CNN) was employed. The specifics of these architectures, based on the implementation code,
are detailed in Table 7. Parameters that vary by dataset, such as input or output dimensions, are represented by variable names.

→prule Dataset Model Architecture

MNIST / FMNIST

MLP
Linear (input dim, 256)→ ReLU
Linear (256, 128)→ ReLU
Linear (128, num classes)

CIFAR-10 / CIFAR-100
SVHN / stl10

SimpleCNN
Conv2d (in channels, 32, kernel size=3, padding=1)→ BatchNorm2d→ ReLU→MaxPool2d(2)
Conv2d (32, 64, kernel size=3, padding=1)→ BatchNorm2d→ ReLU→MaxPool2d(2)
Flatten
Linear (n features, 256)→ ReLU
Linear (256, num classes)

Table 7: Model architectures used in the experiments.

B.2 Data Partitioning
To simulate non-IID data distributions, we partitioned the datasets among 20 clients using a Dirichlet distribution, controlled
by the concentration parameter α. A smaller α results in higher heterogeneity, where clients possess distinct class distributions,
as illustrated in Figure 3. In contrast, a larger α yields more IID-like distributions across clients, as shown in Figure 4.

0 1 2 3 4 5 6 7 8 9
Class Label

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Cl
ie

nt
 ID

76 913 119 108 135 348 700 59 258 0
20 174 61 13 88 197 261 344 23 512

290 576 89 11 40 374 537 10 409 53
364 2 912 100 50 293 76 34 361 132
82 297 300 233 23 583 484 424 318 0

281 503 307 250 33 531 72 475 98 0
670 33 24 209 202 380 782 254 0 0
622 22 324 162 138 158 115 247 121 252
905 119 331 90 439 90 54 392 51 976
158 585 266 157 729 173 46 670 0 0
132 169 64 46 549 171 60 155 428 250
478 161 135 38 271 230 170 35 167 25
194 33 461 110 38 51 212 517 856 54
32 0 273 1,652 442 260 0 0 0 0

115 359 325 121 161 150 138 41 29 1,578
187 20 218 848 32 237 70 270 357 181
119 216 147 153 661 67 391 244 61 561
140 531 351 178 147 139 41 182 777 334
120 50 17 490 88 58 639 557 571 0
15 237 276 31 734 510 152 90 115 92

Training Data Class Distribution

0 1 2 3 4 5 6 7 8 9
Class Label

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Cl
ie

nt
 ID

47 62 55 54 54 42 51 42 53 40
59 58 37 44 52 52 48 51 45 54
68 50 52 47 48 54 54 55 36 36
44 47 51 35 49 48 56 47 67 56
36 50 58 37 55 50 55 60 60 39
40 49 47 54 54 53 55 50 51 47
52 48 49 51 55 49 54 40 47 55
46 47 51 47 59 54 51 52 43 50
52 49 54 52 37 55 47 49 46 59
46 43 47 53 49 60 49 55 44 54
42 51 59 48 54 44 56 46 54 46
53 42 46 49 48 59 40 61 51 51
52 44 48 50 48 42 45 52 58 61
54 67 48 51 44 40 43 42 54 57
51 44 57 54 61 50 40 51 44 48
62 51 50 51 50 50 50 42 44 50
50 53 42 53 53 51 41 48 59 50
49 46 52 48 43 53 51 53 51 54
53 53 52 68 48 43 50 48 41 44
44 46 45 54 39 51 64 56 52 49

Test Data Class Distribution

0

250

500

750

1000

1250

1500

Sa
m

pl
e

Co
un

t

35

40

45

50

55

60

65

Sa
m

pl
e

Co
un

t

Figure 3: Client-wise class distributions with α = 1 (non-IID).

0 1 2 3 4 5 6 7 8 9
Class Label

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Cl
ie

nt
 ID

289 236 257 285 209 249 255 215 242 267
263 234 254 216 199 228 246 207 206 259
245 247 308 273 289 214 281 231 252 235
246 247 242 267 229 309 278 257 232 254
269 175 268 265 273 200 272 274 233 228
222 244 231 275 225 255 295 271 278 289
226 276 237 245 253 276 244 271 254 251
204 213 284 223 270 287 215 224 248 282
271 252 249 235 243 299 241 258 290 226
284 289 221 232 262 232 267 230 265 295
263 228 243 193 254 283 238 270 247 221
206 264 272 264 284 226 222 312 277 252
258 224 257 242 274 217 266 210 268 256
235 263 234 245 247 244 231 226 214 265
252 274 254 236 263 231 258 275 203 247
291 268 237 249 219 276 233 260 258 296
225 260 229 291 225 227 233 266 233 225
263 270 246 212 263 245 253 212 264 211
241 291 241 296 275 266 248 273 270 223
247 245 236 256 244 236 224 258 266 218

Training Data Class Distribution

0 1 2 3 4 5 6 7 8 9
Class Label

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Cl
ie

nt
 ID

54 44 48 49 51 58 60 49 36 51
55 49 46 44 46 56 51 42 54 57
51 54 52 54 44 49 41 48 52 55
57 47 44 52 56 44 48 51 54 47
39 60 56 65 37 44 46 49 55 49
51 44 50 51 45 37 56 51 56 59
59 38 49 31 64 45 52 53 53 56
57 41 50 60 59 58 39 43 49 44
58 50 50 51 53 47 33 56 54 48
46 59 59 45 62 41 51 43 43 51
50 52 41 61 60 52 52 43 45 44
50 50 41 53 50 51 46 66 49 44
42 54 50 64 45 45 56 48 42 54
44 50 49 53 43 56 53 55 64 33
48 47 54 53 49 47 52 51 51 48
38 51 56 40 60 52 57 47 42 57
47 65 46 36 42 62 57 48 49 48
47 49 53 52 39 57 43 56 51 53
56 47 51 48 45 54 51 48 48 52
51 49 55 38 50 45 56 53 53 50

Test Data Class Distribution

180

200

220

240

260

280

300

Sa
m

pl
e

Co
un

t

35

40

45

50

55

60

65

Sa
m

pl
e

Co
un

t

Figure 4: Client-wise class distributions with α = 100 (more IID).

C Fisher Information Visualization

The core of SelectiveShield is identifying sensitive parameters using Fisher Information (FI). This process involves three key
steps: calculating raw FI values, normalizing them for comparability, and applying a threshold to generate a sensitivity mask.
The following figures and formulas illustrate this process.

C.1 Step 1: Raw Fisher Information Calculation
First, each client computes the local Fisher Information for every parameter θn,j . This value, which approximates the parame-
ter’s importance to the model’s loss, is calculated as the squared gradient of the log-likelihood, as shown in Equation 28.

I(θn,j) =

(
∂

∂θn,j
logL(θn, Dn)

)2

(28)

Figure 6 visualizes the distribution of these raw FI values for a single client. The histograms show that the distributions are
typically heavy-tailed, with most parameters having very small FI values and a few having very high values. This supports our
strategy of selectively protecting a small subset of important parameters.

C.2 Step 2: Normalization
As shown in the left plot of Figure 5, the raw FI values can have vastly different scales across different model layers. This makes
it difficult to apply a single, meaningful threshold to the entire model. To address this, we apply a min-max normalization to
the FI scores within each layer l, as defined in Equation 29.

Ĩ(θn,j) =
I(θn,j)− I lmin

I lmax − I lmin

, ∀j ∈ l (29)

Here, I lmin and I lmax denote the minimum and maximum Fisher values in layer l, respectively. The right plot in Figure 5 shows
the result of this normalization, where all values are brought to a comparable scale of [0, 1].

C.3 Step 3: Thresholding and Mask Generation
With the normalized FI scores, each client can now derive its local sensitive mask, M t

n, by selecting all parameters whose
normalized FI score exceeds a client-specific threshold τn.

M t
n =

{
j | Ĩ(θn,j) > τn

}
(30)

Figure 7 provides a clear visualization of this step. It shows the distribution of the normalized FI scores, with a vertical dashed
line representing a sample threshold (τ = 0.1). This demonstrates how the threshold effectively separates the more sensitive
parameters (to the right of the line) from the less sensitive ones, finalizing the local selection process.

Figure 5: Fisher Value Boxplots (Raw and Normalized).

Figure 6: Raw Fisher Information Distribution.

Figure 7: Normalized Fisher Information Distribution.

D Detailed Experimental Results
This section provides the complete results from our extensive hyperparameter search, as mentioned in the main paper. The
following tables detail the performance (Accuracy), mask ratios (Menc, Mpers, Mnoise), and time costs for different combinations
of the Dirichlet parameter α, sensitivity threshold τ , and consensus threshold ρ across all tested datasets.

Hyperparameters Mask ratio Time Cost (s) Performance

α τ ρ Menc Mpers Mnoise Encryption Decryption Aggregation Training Acc

0.2

0.05
0.3 3.56% 3.27% 93.17% 3.25 0.04 0.95 6.96 0.980
0.5 1.47% 2.79% 95.74% 3.22 0.04 0.94 6.97 0.979
0.7 0.46% 2.94% 96.60% 2.71 0.03 0.80 7.01 0.982

0.1
0.3 1.33% 1.54% 97.13% 3.23 0.04 0.94 7.29 0.980
0.5 0.42% 1.16% 98.42% 3.28 0.04 0.94 7.14 0.980
0.7 0.11% 1.16% 98.73% 2.70 0.03 0.79 7.07 0.981

0.2
0.3 0.47% 0.64% 98.89% 3.27 0.04 0.94 7.04 0.981
0.5 0.12% 0.46% 99.42% 3.01 0.04 0.88 7.09 0.981
0.7 0.01% 0.45% 99.53% 1.88 0.02 0.56 6.84 0.980

0.5

0.05
0.3 5.08% 4.96% 89.96% 3.25 0.04 0.94 5.94 0.981
0.5 1.93% 4.33% 93.73% 3.25 0.04 0.97 5.86 0.981
0.7 0.19% 4.27% 95.54% 3.15 0.04 0.92 5.89 0.981

0.1
0.3 2.25% 2.57% 95.19% 3.23 0.04 0.93 5.83 0.980
0.5 0.27% 1.77% 97.96% 3.24 0.04 0.95 6.15 0.982
0.7 0.02% 1.86% 98.11% 2.60 0.03 0.86 5.91 0.983

0.2
0.3 0.46% 0.76% 98.78% 3.32 0.04 1.01 6.08 0.981
0.5 0.04% 0.65% 99.31% 3.19 0.04 0.91 5.80 0.981
0.7 0.00% 0.57% 99.43% 0.75 0.01 0.27 5.92 0.982

1

0.05
0.3 5.08% 4.51% 90.41% 3.26 0.04 0.93 5.72 0.982
0.5 1.98% 4.10% 93.92% 3.35 0.04 0.94 5.64 0.980
0.7 0.49% 4.37% 95.14% 3.27 0.04 0.96 5.66 0.981

0.1
0.3 1.66% 2.00% 96.34% 3.32 0.04 0.95 5.63 0.981
0.5 0.50% 1.83% 97.67% 3.26 0.04 0.93 5.80 0.981
0.7 0.03% 1.70% 98.27% 3.10 0.04 0.90 5.74 0.981

0.2
0.3 0.30% 0.61% 99.09% 3.35 0.04 1.03 5.71 0.981
0.5 0.03% 0.50% 99.48% 3.35 0.04 0.97 5.67 0.982
0.7 0.01% 0.62% 99.38% 1.49 0.02 0.49 5.65 0.981

Table 8: Experimental Results on MNIST.

Hyperparameters Mask ratio Time Cost (s) Performance

α τ ρ Menc Mpers Mnoise Encryption Decryption Aggregation Training Acc

0.2

0.05
0.3 20.57% 15.70% 63.73% 4.34 0.05 1.21 6.66 0.853
0.5 9.28% 15.45% 75.26% 3.40 0.04 1.05 6.83 0.893
0.7 1.07% 17.57% 81.36% 3.24 0.04 0.96 6.80 0.877

0.1
0.3 10.22% 10.30% 79.48% 3.73 0.05 1.04 6.76 0.872
0.5 2.53% 9.25% 88.22% 3.20 0.04 0.93 6.67 0.893
0.7 0.18% 8.93% 90.89% 2.80 0.04 0.89 6.99 0.887

0.2
0.3 2.63% 4.51% 92.86% 3.44 0.04 0.96 6.68 0.893
0.5 0.05% 3.21% 96.74% 3.03 0.04 0.89 6.99 0.894
0.7 0.00% 3.86% 96.14% 0.55 0.01 0.20 6.74 0.892

0.5

0.05
0.3 19.63% 15.34% 65.03% 5.21 0.06 1.50 7.03 0.892
0.5 10.07% 14.56% 75.36% 3.80 0.05 1.08 7.06 0.886
0.7 2.57% 16.24% 81.20% 3.24 0.04 0.94 7.27 0.889

0.1
0.3 10.87% 10.46% 78.67% 3.78 0.05 1.11 7.28 0.893
0.5 4.31% 8.44% 87.25% 3.24 0.04 0.93 7.26 0.887
0.7 0.01% 8.59% 91.40% 3.27 0.04 0.94 7.08 0.888

0.2
0.3 4.23% 5.09% 90.68% 3.24 0.04 0.95 7.02 0.889
0.5 0.88% 4.17% 94.95% 3.30 0.04 0.95 7.19 0.890
0.7 0.08% 3.99% 95.93% 2.51 0.03 0.76 7.16 0.894

1

0.05
0.3 21.16% 14.69% 64.14% 5.19 0.06 1.48 6.29 0.891
0.5 11.84% 14.52% 73.64% 3.64 0.04 0.99 6.07 0.886
0.7 2.31% 18.58% 79.11% 3.33 0.04 0.97 6.04 0.897

0.1
0.3 11.95% 10.66% 77.38% 3.72 0.05 1.07 6.02 0.884
0.5 1.81% 8.51% 89.68% 3.20 0.04 0.92 6.37 0.887
0.7 0.43% 9.67% 89.90% 3.24 0.04 0.94 6.08 0.896

0.2
0.3 3.63% 4.48% 91.89% 3.29 0.04 0.98 6.00 0.888
0.5 0.62% 4.23% 95.15% 3.24 0.04 0.93 6.06 0.887
0.7 0.00% 3.60% 96.40% 2.32 0.03 0.68 6.31 0.893

Table 9: Experimental Results on FMNIST.

Hyperparameters Mask ratio Time Cost (s) Performance

α τ ρ Menc Mpers Mnoise Encryption Decryption Aggregation Training Acc

0.2

0.2
0.3 16.14% 12.41% 71.45% 11.23 0.17 3.35 28.42 0.647
0.5 11.75% 11.17% 77.08% 11.21 0.13 3.32 30.13 0.648
0.7 7.97% 8.79% 83.24% 8.56 0.10 2.52 30.70 0.641

0.3
0.3 3.84% 8.97% 87.20% 7.25 0.09 2.17 29.29 0.653
0.5 5.77% 5.27% 88.95% 7.86 0.09 2.40 29.30 0.640
0.7 2.49% 3.31% 94.20% 6.74 0.09 2.07 29.67 0.645

0.4
0.3 1.30% 3.53% 95.17% 6.45 0.07 1.95 29.49 0.645
0.5 0.94% 3.39% 95.67% 6.43 0.08 1.96 29.19 0.633
0.7 2.19% 2.18% 95.62% 6.64 0.08 2.08 29.36 0.638

0.5
0.3 0.94% 1.46% 97.60% 6.42 0.08 1.99 29.39 0.641
0.5 0.25% 0.80% 98.95% 6.40 0.08 2.03 29.30 0.645
0.7 0.08% 0.84% 99.07% 6.40 0.07 1.96 29.58 0.655

0.5

0.2
0.3 13.33% 7.31% 79.37% 12.08 0.14 3.57 30.33 0.536
0.5 14.87% 8.61% 76.52% 10.17 0.11 2.98 31.54 0.507
0.7 8.40% 5.06% 86.54% 8.90 0.11 2.72 31.05 0.587

0.3
0.3 5.42% 4.28% 90.31% 7.73 0.09 2.29 30.17 0.533
0.5 4.59% 2.31% 93.10% 7.34 0.09 2.24 30.16 0.510
0.7 4.80% 2.79% 92.40% 7.37 0.09 2.20 29.85 0.542

0.4
0.3 2.12% 1.66% 96.22% 6.73 0.08 2.02 29.93 0.578
0.5 3.48% 2.61% 93.91% 6.53 0.08 2.00 30.15 0.490
0.7 2.02% 1.14% 96.84% 6.72 0.08 2.01 29.97 0.543

0.5
0.3 1.41% 0.90% 97.69% 6.40 0.08 2.02 29.97 0.560
0.5 1.24% 1.29% 97.47% 6.38 0.07 1.96 29.75 0.573
0.7 1.29% 0.99% 97.72% 6.43 0.08 2.05 30.45 0.571

1

0.2
0.3 32.06% 19.56% 48.38% 23.53 0.27 6.77 29.74 0.731
0.5 23.13% 15.80% 61.06% 18.40 0.22 5.25 30.75 0.752
0.7 17.58% 15.04% 67.38% 11.72 0.14 3.35 29.76 0.740

0.3
0.3 12.48% 14.71% 72.82% 9.40 0.11 2.75 29.19 0.743
0.5 11.20% 8.39% 80.40% 11.59 0.13 3.28 29.06 0.750
0.7 7.32% 7.07% 85.61% 8.69 0.10 2.66 29.36 0.742

0.4
0.3 6.24% 7.43% 86.34% 7.15 0.08 2.14 29.48 0.740
0.5 3.86% 6.24% 89.90% 6.59 0.08 2.00 29.13 0.742
0.7 5.82% 4.37% 89.81% 7.32 0.09 2.28 29.24 0.730

0.5
0.3 2.27% 2.59% 95.14% 6.41 0.08 1.99 29.14 0.719
0.5 1.69% 3.02% 95.30% 6.50 0.08 2.01 29.42 0.743
0.7 0.69% 2.99% 96.32% 6.40 0.07 1.97 29.64 0.740

2

0.2
0.3 30.37% 17.40% 52.23% 22.84 0.32 6.77 29.87 0.756
0.5 27.08% 17.14% 55.79% 17.49 0.20 5.03 30.42 0.757
0.7 23.69% 17.63% 58.69% 13.59 0.16 3.93 29.31 0.755

0.3
0.3 14.34% 14.08% 71.59% 10.78 0.13 3.15 29.11 0.756
0.5 17.67% 13.65% 68.68% 12.16 0.14 3.61 29.28 0.757
0.7 11.54% 8.66% 79.79% 8.95 0.11 2.80 29.39 0.754

0.4
0.3 7.47% 9.05% 83.49% 7.97 0.09 2.38 29.56 0.744
0.5 4.63% 5.80% 89.57% 7.09 0.08 2.13 29.14 0.747
0.7 6.38% 5.98% 87.64% 7.83 0.09 2.39 29.48 0.754

0.5
0.3 2.17% 3.22% 94.61% 6.66 0.08 2.07 29.58 0.732
0.5 1.03% 2.38% 96.59% 6.57 0.08 1.97 29.30 0.757
0.7 0.95% 3.56% 95.49% 6.43 0.07 1.94 29.26 0.759

Table 10: Experimental Results on Cifar10.

Hyperparameters Mask ratio Time Cost (s) Performance

α τ ρ Menc Mpers Mnoise Encryption Decryption Aggregation Training Acc

0.2

0.2
0.3 21.40% 14.52% 64.08% 19.23 0.22 5.50 30.13 0.341
0.5 25.66% 17.10% 57.24% 15.80 0.18 4.53 29.88 0.013
0.7 29.76% 18.66% 51.58% 19.00 0.22 5.43 30.90 0.396

0.3
0.3 27.43% 17.56% 55.01% 22.98 0.28 6.47 30.02 0.418
0.5 14.86% 10.72% 74.42% 12.22 0.14 3.75 30.89 0.342
0.7 5.55% 1.01% 93.44% 11.42 0.13 3.32 30.37 0.010

0.4
0.3 18.04% 11.68% 70.29% 13.88 0.16 3.97 30.27 0.393
0.5 19.22% 12.14% 68.63% 17.65 0.21 5.17 30.87 0.417
0.7 14.72% 12.27% 73.01% 10.16 0.12 3.06 30.53 0.309

0.5
0.3 13.03% 2.28% 84.69% 10.00 0.12 2.96 29.51 0.010
0.5 19.94% 16.04% 64.02% 10.61 0.12 3.12 29.11 0.409
0.7 21.12% 15.33% 63.55% 12.39 0.15 3.53 29.53 0.420

0.5

0.2
0.3 14.34% 13.04% 72.63% 9.22 0.11 2.74 29.64 0.311
0.5 9.89% 1.92% 88.19% 9.49 0.11 2.80 29.12 0.308
0.7 10.42% 13.00% 76.58% 9.13 0.11 2.66 29.58 0.397

0.3
0.3 14.22% 12.56% 73.22% 9.90 0.12 2.93 29.24 0.414
0.5 10.36% 8.15% 81.49% 9.22 0.11 2.73 29.81 0.333
0.7 5.15% 1.50% 93.35% 8.51 0.10 2.54 29.19 0.011

0.4
0.3 14.64% 11.17% 74.19% 9.78 0.12 2.86 29.68 0.404
0.5 8.90% 6.51% 84.58% 10.47 0.12 3.19 29.81 0.416
0.7 5.96% 4.97% 89.06% 7.90 0.09 2.39 30.03 0.347

0.5
0.3 7.82% 1.67% 90.51% 7.71 0.09 2.33 29.48 0.359
0.5 9.47% 7.58% 82.95% 8.18 0.10 2.43 29.51 0.400
0.7 10.86% 8.13% 81.01% 8.02 0.09 2.39 29.58 0.415

1

0.2
0.3 5.57% 4.43% 90.00% 7.21 0.08 2.16 29.84 0.350
0.5 8.55% 1.98% 89.48% 8.06 0.09 2.34 29.07 0.010
0.7 6.21% 6.04% 87.76% 7.00 0.09 2.18 29.46 0.394

0.3
0.3 9.45% 9.85% 80.70% 7.67 0.09 2.28 29.22 0.415
0.5 4.07% 6.70% 89.24% 6.74 0.08 2.08 30.12 0.337
0.7 6.69% 1.35% 91.96% 7.70 0.09 2.41 29.19 0.179

0.4
0.3 4.30% 5.96% 89.74% 6.73 0.08 2.01 29.49 0.393
0.5 5.39% 6.92% 87.69% 6.81 0.08 2.08 29.79 0.412
0.7 4.21% 3.77% 92.02% 7.08 0.08 2.15 29.54 0.330

0.5
0.3 0.80% 0.22% 98.97% 6.94 0.08 2.15 29.00 0.334
0.5 3.66% 3.23% 93.11% 7.15 0.08 2.23 29.61 0.412
0.7 4.14% 2.60% 93.26% 7.29 0.09 2.22 29.82 0.416

2

0.2
0.3 1.91% 2.08% 96.01% 6.53 0.08 2.12 29.71 0.343
0.5 0.97% 0.25% 98.78% 6.56 0.08 2.03 29.55 0.316
0.7 2.79% 2.63% 94.58% 6.55 0.08 2.01 29.40 0.401

0.3
0.3 3.02% 3.11% 93.87% 6.62 0.08 2.00 29.57 0.415
0.5 1.54% 1.89% 96.56% 6.44 0.07 1.99 30.12 0.330
0.7 2.05% 2.71% 95.23% 6.67 0.08 2.09 29.18 0.010

0.4
0.3 1.38% 2.19% 96.43% 6.42 0.08 2.01 28.99 0.399
0.5 1.82% 2.14% 96.04% 6.50 0.08 2.01 29.10 0.411
0.7 0.75% 2.28% 96.98% 6.43 0.07 1.98 29.54 0.340

0.5
0.3 1.51% 0.65% 97.84% 6.76 0.08 2.13 29.26 0.371
0.5 1.25% 2.66% 96.10% 6.29 0.07 1.93 29.01 0.401
0.7 2.97% 2.70% 94.33% 6.38 0.07 1.96 29.27 0.417

Table 11: Experimental Results on Cifar100.

Hyperparameters Mask ratio Time Cost (s) Performance

α τ ρ Menc Mpers Mnoise Encryption Decryption Aggregation Training Acc

0.2

0.02

0.2 17.36% 12.10% 70.54% 13.55 0.15 3.89 51.65 0.722
0.3 10.97% 8.84% 80.19% 11.34 0.13 3.32 53.16 0.757
0.5 4.91% 7.49% 87.60% 7.26 0.08 2.19 52.20 0.770
0.7 2.69% 8.93% 88.38% 6.55 0.08 1.96 50.24 0.750

0.05

0.2 5.66% 4.75% 89.59% 8.30 0.10 2.50 50.93 0.753
0.3 3.90% 3.92% 92.17% 7.42 0.09 2.23 50.48 0.743
0.5 2.38% 4.06% 93.55% 6.49 0.08 1.98 50.41 0.765
0.7 0.61% 2.82% 96.57% 6.42 0.08 2.00 50.97 0.758

0.1

0.2 2.64% 2.21% 95.15% 6.94 0.08 2.09 50.61 0.758
0.3 1.62% 1.60% 96.79% 6.56 0.08 2.15 50.83 0.703
0.5 0.66% 1.41% 97.93% 6.41 0.07 1.94 50.43 0.758
0.7 0.20% 1.41% 98.39% 6.32 0.07 1.93 49.44 0.747

0.5

0.02

0.2 23.01% 15.82% 61.17% 16.72 0.19 5.03 48.81 0.874
0.3 19.81% 13.48% 66.70% 14.35 0.17 4.17 49.25 0.877
0.5 8.72% 10.53% 80.74% 8.91 0.11 2.62 47.64 0.871
0.7 1.49% 14.71% 83.80% 6.61 0.08 2.00 49.07 0.862

0.05

0.2 9.51% 7.51% 82.97% 10.09 0.12 3.01 47.87 0.879
0.3 6.21% 5.67% 88.13% 7.67 0.09 2.36 47.28 0.865
0.5 1.81% 5.53% 92.66% 6.63 0.08 2.04 47.76 0.871
0.7 0.32% 4.48% 95.20% 6.46 0.07 1.96 47.45 0.881

0.1

0.2 3.17% 2.77% 94.06% 7.16 0.08 2.18 48.15 0.875
0.3 1.26% 1.77% 96.97% 6.40 0.07 1.97 47.38 0.874
0.5 0.78% 1.81% 97.41% 6.42 0.08 1.95 48.20 0.880
0.7 0.47% 1.57% 97.96% 6.17 0.07 1.88 47.30 0.872

0.1

0.02

0.2 23.22% 15.75% 61.03% 19.75 0.22 5.52 49.34 0.857
0.3 12.99% 10.84% 76.17% 15.44 0.17 4.52 50.79 0.850
0.5 6.93% 10.52% 82.55% 9.01 0.10 2.65 48.36 0.862
0.7 3.02% 15.43% 81.55% 6.98 0.08 2.09 47.81 0.856

0.05

0.2 11.43% 8.89% 79.68% 10.88 0.13 3.15 49.09 0.854
0.3 6.95% 6.39% 86.66% 8.33 0.10 2.51 48.03 0.864
0.5 1.67% 4.21% 94.12% 6.56 0.08 2.07 48.64 0.862
0.7 0.77% 4.80% 94.43% 6.45 0.08 1.98 48.20 0.861

0.1

0.2 3.75% 3.41% 92.84% 7.69 0.09 2.35 48.00 0.850
0.3 2.00% 1.82% 96.19% 6.75 0.08 2.06 48.51 0.859
0.5 0.23% 1.31% 98.46% 6.40 0.07 1.93 48.70 0.857
0.7 0.18% 1.95% 97.87% 5.98 0.07 1.80 47.44 0.857

Table 12: Experimental Results on SVHN.

Hyperparameters Mask ratio Time Cost (s) Performance

α τ ρ Menc Mpers Mnoise Encryption Decryption Aggregation Training Acc

0.2

0.02

0.2 3.37% 2.10% 94.53% 19.06 0.22 7.21 50.85 0.284
0.3 0.85% 0.47% 98.69% 10.68 0.13 4.90 51.73 0.290
0.5 1.82% 1.19% 97.00% 8.92 0.10 4.33 49.86 0.301
0.7 0.75% 0.81% 98.44% 8.39 0.10 4.12 50.14 0.316

0.05

0.2 1.16% 0.71% 98.12% 11.33 0.13 4.93 49.61 0.304
0.3 0.85% 0.47% 98.68% 8.23 0.10 4.55 50.22 0.289
0.5 0.64% 0.70% 98.65% 7.54 0.09 3.94 49.42 0.292
0.7 0.34% 0.84% 98.82% 7.23 0.09 3.89 51.23 0.290

0.1

0.2 0.46% 0.39% 99.15% 7.29 0.08 3.83 47.93 0.302
0.3 0.38% 0.28% 99.34% 6.46 0.07 3.61 47.32 0.293
0.5 0.20% 0.24% 99.56% 6.06 0.07 3.44 47.32 0.283
0.7 0.08% 0.25% 99.67% 6.08 0.07 3.44 46.91 0.293

0.5

0.02

0.2 4.93% 3.29% 91.78% 22.25 0.26 7.97 50.54 0.429
0.3 1.64% 1.14% 97.22% 15.81 0.18 6.18 49.87 0.438
0.5 1.79% 2.21% 96.00% 9.46 0.11 4.40 48.88 0.444
0.7 0.42% 2.31% 97.27% 7.21 0.08 3.82 49.92 0.462

0.05

0.2 2.25% 1.76% 95.99% 11.69 0.13 5.01 49.39 0.425
0.3 1.50% 1.14% 97.36% 8.72 0.11 4.49 49.53 0.445
0.5 0.50% 1.25% 98.24% 7.21 0.09 3.91 49.22 0.443
0.7 0.17% 1.10% 98.73% 6.34 0.07 3.48 47.19 0.426

0.1

0.2 1.21% 1.03% 97.76% 7.50 0.09 3.82 46.19 0.452
0.3 0.44% 0.39% 99.16% 6.78 0.08 3.78 46.91 0.422
0.5 0.03% 0.48% 99.49% 6.00 0.07 3.42 46.61 0.423
0.7 0.12% 0.40% 99.48% 6.03 0.07 4.16 48.41 0.432

0.1

0.02

0.2 7.25% 5.51% 87.25% 23.56 0.27 8.45 51.46 0.527
0.3 4.25% 3.23% 92.52% 14.38 0.17 5.96 49.94 0.510
0.5 1.91% 2.15% 95.94% 8.55 0.10 4.21 49.53 0.461
0.7 2.27% 1.87% 95.85% 7.80 0.09 4.24 49.72 0.538

0.05

0.2 1.67% 1.58% 96.75% 9.86 0.11 4.60 49.36 0.526
0.3 0.93% 0.67% 98.40% 8.30 0.10 4.27 49.82 0.525
0.5 0.65% 0.76% 98.58% 6.83 0.08 3.88 48.96 0.512
0.7 0.34% 0.70% 98.96% 6.68 0.08 3.84 51.03 0.527

0.1

0.2 0.58% 0.59% 98.83% 6.39 0.07 3.52 46.13 0.514
0.3 0.55% 0.43% 99.02% 6.30 0.07 3.52 46.60 0.501
0.5 0.23% 0.40% 99.37% 6.14 0.07 3.48 46.49 0.537
0.7 0.18% 0.40% 99.42% 6.55 0.08 3.85 49.99 0.504

Table 13: Experimental Results on stl10.

