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Abstract—Keyloggers remain a serious threat in modern cy-
bersecurity, silently capturing user keystrokes to steal credentials
and sensitive information. Traditional defenses focus mainly on
detection and removal, which can halt malicious activity but do
little to engage or mislead adversaries. In this paper, we present
a deception framework that leverages API hooking to intercept
input-related API calls invoked by keyloggers at runtime and
inject realistic decoy keystrokes. A core challenge, however,
lies in the increasing adoption of anti-hooking techniques by
advanced keyloggers. Anti-hooking strategies allow malware to
bypass or detect instrumentation. To counter this, we introduce
a hardened hooking layer that detects tampering and rapidly
reinstates disrupted hooks, ensuring continuity of deception. We
evaluate our framework against a custom-built “super keylogger”
incorporating multiple evasion strategies, as well as 50 real-world
malware samples spanning ten prominent keylogger families.
Experimental results demonstrate that our system successfully re-
sists sophisticated bypass attempts, maintains operational stealth,
and reliably deceives attackers by feeding them decoys. The
system operates with negligible performance overhead and no
observable impact on user experience. Our findings show that
resilient, runtime deception can play a practical and robust role
in confronting advanced threats.

I. INTRODUCTION

Keyloggers remain a persistent threat, operating silently
in the background to capture user keystrokes and extract
sensitive or financial information, often before the data is
exfiltrated to the attacker. The presence of keyloggers allow the
attacker to access information early, at the interface between
human input and system processing. Most defensive strategies
focus on identifying and terminating keyloggers through static
signatures, behavioral heuristics, or anomaly detection. While
these methods help contain potential harm, they also eliminate
the opportunity to gather intelligence on the adversary or
modify their behaviors through deception.

Cyber deception provides a powerful complement to tradi-
tional detection-based defenses. Rather than simply identifying
threats, deception seeks to delay, confuse, and mislead adver-
saries by inserting false or misleading information into their
operational environment. This approach disrupts the attacker’s
decision-making process, contaminates any exfiltrated data,
and undermines their ability to act effectively during exploita-
tion. In the context of keylogging, deception enables defenders
to corrupt captured keystrokes with disinformation, turning
stolen input into misleading artifacts that can support attacker
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attribution or strengthen existing detection mechanisms. To
implement deception, we utilize API hooking, a dynamic
instrumentation technique that intercepts and modifies function
calls during execution. In contrast to heavier approaches such
as virtualization or full-system sandboxing, API hooking of-
fers fine-grained control with minimal performance overhead.
It also enables lightweight deployment and provides real-
time visibility into the use of critical API functions. In our
framework, we target input-related APIs that are exploited by
keyloggers in order to inject decoy data, simulate keystroke
activity, and monitor attacker behavior. However, modern
adversaries are increasingly equipped with advanced tech-
niques to detect and evade instrumentation. These evasion
strategies are specifically designed to neutralize defenses based
on API hooking and can render a naive deception approach
ineffective. A deception system that does not account for such
countermeasures may fail to operate reliably in adversarial
environments. Our work addresses this challenge by securing
both the deceptive outputs and the resilience of the underlying
hooking infrastructure. The framework is designed to detect
tampering, recover from manipulation, and remain operational
even when subjected to active evasion attempts. This combined
focus on deception and robustness distinguishes our approach
from prior efforts.

Several prior works have explored keylogger detection,
API monitoring, and honeypot-style deception. For example,
Nasaka et al. [1]| monitored keyboard APIs to detect keystroke
loggers; Al-Husainy [2] intercepted API calls for bot detec-
tion; and HookTracer [3]] used memory forensics to identify
hooks. Other studies, such as [4]], focused on detecting hook
tampering through Import Address Table (IAT) and inline
hook monitoring. However, these efforts primarily focus on
detection rather than deception. While works such as [5]]—[9]]
demonstrated the use of API hooking to achieve deception,
they do not address the resilience of the hooking layer against
modern anti-hooking techniques. Sophisticated adversaries can
bypass such defenses using methods like prologue restoration,
dynamic API resolution, encrypted input channels, or shadow
DLL loading. However, these works generally focus on either
detection or static deception and are not designed to persist
under active tampering.

In contrast, our work presents a deception framework that
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not only injects decoy inputs but is also hardened against
runtime evasion. It actively detects and responds to tampering
attempts, preserving both the continuity of deception and the
stealth of its instrumentation. To the best of our knowledge,
this is the first deception framework based on API hooking
that includes runtime resilience against advanced keyloggers
equipped with anti-hooking capabilities. Overall, this paper
makes the following contributions:

o We conduct a systematic analysis of userland keylogging
techniques and identify the critical input-related APIs
most frequently exploited for keystroke capture.

« We examine four representative anti-hooking strategies
commonly used in malware, academic proposals, and
public tooling, and evaluate their impact on user-mode
API hooking.

« We design and implement a secure deception framework
built on EasyHook and Microsoft Detours, enabling real-
istic decoy injection while incorporating layered defenses
to maintain hook integrity against tampering.

« We evaluate the framework against both a custom multi-
vector keylogger with advanced anti-hooking and real-
world malware samples. The results demonstrate that
our system detects and mitigates evasion attempts in
real time, reliably delivers decoy inputs with a minimal
performance overhead.

The remainder of this paper is organized as follows. Sec-
tion [[I] provides background on keylogging and anti-hooking
techniques, research questions, and the threat model. Sec-
tion details the design of our deception framework, in-
cluding architecture and tamper resilience. Section [[V] presents
implementation and evaluations against real-world and sim-
ulated keyloggers. Section |V| reviews related work. Finally,
Section@ summarizes our findings, discusses limitations, and
concludes with directions for future research.

II. BACKGROUND, RESEARCH QUESTIONS AND THREAT
MODEL

A. Keyloggers

Keyloggers are surveillance malware that capture user
keystrokes to extract sensitive input such as credentials, finan-
cial information, or private messages. The stolen data is ex-
filtrated to attacker-controlled servers for identity theft, fraud,
or unauthorized access. While hardware-based variants exist,
this work focuses on user-space software keyloggers. These
typically exploit OS APIs by polling keystates, registering
hooks, monitoring message queues, or intercepting clipboard
and form data. Table [l summarizes common techniques and
APIs identified through our literature review. A complete
mapping of surveyed methods and API usage is available in
the anonymized supplementary repository [10].

B. Deception Systems

Cyber deception misleads attackers by injecting false infor-
mation or deploying decoys to expose malicious behavior and

TABLE I
USERLAND KEYLOGGER TECHNIQUES AND ASSOCIATED APIS

Technique Common Userland APIs
Keyboard Hooking SetWindowsHookEx (WH_KEYBOARD_LL),
UnhookWindowsHookEx

Polling Keystates
Message Queue Inter-
ception

Clipboard Monitoring
Form Grabbing

GetAsyncKeyState, GetKeyState
PeekMessage, GetMessage

OpenClipboard, GetClipboardData
HttpSendRequest, InternetWriteFile,
WSASend

BitBlt, PrintWindow, GetDC
SetWindowsHookEx (WH_MOUSE_LL),
GetCursorPos

Browser Script Injec- onKeyDown, onKeyPress, onKeyUp (JavaScript
tion DOM APIs)

Raw Input Capture RegisterRawInputDevices,
GetRawInputData

WriteProcessMemory, CreateRemoteThread

Screen Logging
Mouse Tracking

Process Injection

increase uncertainty. While commonly used in network secu-
rity and access control, it is also effective against keyloggers.
For keyloggers, deception involves simulating user activity
and injecting fake keystrokes to corrupt captured data. For
example, [11] used a decoy keyboard to confuse keyloggers,
and [12] proposed a honeypot that simulates interaction and
detects unauthorized access. Unlike detection methods that
terminate threats, deception enables controlled engagement to
gather intelligence, trigger behavior signatures, and prolong
adversary exposure.

C. API Hooking

API hooking is a widely used technique in system security
and malware analysis for monitoring and modifying applica-
tion behavior at runtime. It intercepts system or library calls
to provide visibility and control, enabling sandboxes, antivirus
tools, and debuggers to detect suspicious activity and enforce
policies. Its dynamic, non-invasive nature supports deployment
on live systems without kernel access. In cyber deception, API
hooking enables real-time intervention as malware attempts to
collect sensitive data. It is particularly effective against user-
land keyloggers that rely on APIs like GetAsyncKeyState,
SetWindowsHookEx, and ReadConsoleInput. By in-
tercepting these calls, defenders can inject false inputs, corrupt
logs, or trigger early exfiltration. Unlike static deception, API-
level deception enables dynamic, policy-driven interaction.
However, advanced malware may use anti-hooking tactics to
detect or disable hooks, requiring defensive deployments to
emphasize stealth, integrity, and tamper resilience.

D. Motivation, Anti-Hooking, and Research Questions

A core challenge for hooking-based deception is resilience
against anti-hooking techniques employed by advanced key-
loggers. Modern malware can detect, bypass, or disable user-
land API hooks, threatening defensive frameworks built using
prominent hooking libraries such as EasyHook [13] and MS
Detours [14]. To ensure robust deception, our framework
explicitly counters four widely observed anti-hooking strate-
gies [15]-[18]]: (i) .text section restoration to remove inline
hooks, (ii) IAT rebinding to clean DLL copies, (iii) alternate
DLL loading to evade instrumentation, and (iv) memory
scanning to identify hook signatures. In these techniques,



adversaries overwrite trampoline-modified code regions with
clean instruction bytes, rebind imported function pointers
in the IAT, load alternate DLLs (e.g., ntdll.dll), or scan
memory for hook patterns to avoid instrumented functions.
Such actions undermine any defense that assumes persistent
control at the userland API boundary. Without effective tamper
detection and mitigation, hooking-based deception may easily
fail. Therefore, addressing these evasion strategies is essential
for building an effective and resilient deception system. To
guide the design and evaluation of our framework, we pose
the following research questions:

« RQ1: Which API surfaces do userland keyloggers most
frequently use, and what opportunities do they offer for
deploying deception?

« RQ2: What anti-hooking techniques are employed by
keyloggers to bypass userland monitoring, and how can
a deception framework be designed to preserve its oper-
ational integrity in adversarial environments?

E. Threat Model

We consider user-mode keyloggers that operate with stan-
dard user privileges on a compromised system to capture
sensitive inputs such as passwords or form data. These key-
loggers may rely on common techniques including keyboard
polling, input hooks, GUI message monitoring, clipboard
access, or form grabbing. The attacker is assumed to be
sophisticated, using anti-hooking tactics such as unhooking
prologues, DLL shadow loading, dynamic API resolution, and
memory scanning. Kernel-level and hardware keyloggers are
out of scope. Our framework is not intended for malware
detection. Instead, it becomes active after an external detection
mechanism identifies a process as malicious. Such mechanisms
may include an Endpoint Detection and Response (EDR)
system such as [19], intervention by a human analyst or
prior detection systems [20]—[22f]. Once flagged, the deception
module is injected into the process and operates at the same
privilege level. The defender hooks input-related APIs, assum-
ing OS and library integrity (e.g., EasyHook, Detours), and no
interference from other endpoint security tools. The framework
aims to (1) prevent data leakage by feeding keyloggers false
inputs, (2) preserve stealth so attackers remain unaware of
deception, and (3) resist evasion and tampering by detect-
ing and recovering from common anti-hooking techniques to
maintain the integrity of its instrumentation.

III. FRAMEWORK DESIGN

Our deception framework intercepts keylogger activity in
real time, injects realistic but misleading inputs, and main-
tains its own integrity under attacker tampering. We build
on EasyHook and Microsoft Detours—two widely used API
hooking libraries—to achieve lightweight, runtime interception
of relevant APIs. The architecture consists of three core
components: a Hooking Layer that implants inline hooks at
chosen input APIs, a Deception Engine that decides how
to modify or fabricate data returned to the keylogger, and
a Hook Integrity Manager that monitors and preserves the

hooks against removal attempts. In essence, the Hooking
Layer provides interception, the Deception Engine injects
decoys, and the Integrity Manager ensures continued operation
under adversarial conditions. Figure [I] provides the system
architecture of the deception framework.

Steals /O from
benign apps

Generates keyboard/
mouse input via OS

Benign
User
Process

‘Windows Input APIs

(e.g., GetAsyncKeyState) | Keylogger

Misinformation T

Deception Engine

Active Hook Verification

A

Clone DLL Detection
Hooked APT|  HO°K
Integrity |« - -
Detour Manager Trampoline Obfuscation

Guard Pages on Hooked Code

Fig. 1. System Architecture of the Deception Framework.

A. Target API Coverage

We focused on the Windows platform, as more than ninety
percent of new malware samples target Windows systems [23]].
Its mature and well-documented input APIs make it espe-
cially attractive to attackers. Our implementation uses both
EasyHook and Microsoft Detours. While Microsoft Detours
is tailored specifically for Windows, EasyHook is platform-
agnostic. Our system can be adapted to other platforms with
equivalent interception capabilities, once the relevant input
APIs are identified for those environments.

A critical design consideration in building our deception
framework was identifying which API calls to intercept to ef-
fectively undermine keyloggers. To identify these crucial APIs,
we conducted a threat-driven study of fifty (50) keylogger
samples drawn from ten widely observed keylogger families:
Agent Tesla, AppleSeed, RokRAT, ghOst RAT, WarzoneRAT,
Astaroth, Micropsia, NightClub, Azorult, and Lokibot. The
samples were collected from publicly available malware repos-
itories, including AnyRun and VirusTotal. For each family,
we selected five representative binaries based on observed
behavioral diversity and prevalence in recent campaigns. Each
sample was dynamically analyzed using Cuckoo Sandbox, Ro-
hitab API Monitor, and OllyDBG. We focused our efforts on
the keylogging collection phase, as this stage reveals attacker
intent most directly and offers a more tractable point for
defensive intervention. Later stages such as file manipulation
or network exfiltration often involve encryption or protocol
obfuscation that makes deception less practical.

To identify the most relevant API calls used for gathering
user input, we manually examined execution traces. Rather
than relying on raw API call frequencies, we applied expert
judgment to reconstruct the control flow and analyze the logic
used by each malware sample to capture input. This allowed
us to filter noise and highlight only those APIs that were func-
tionally essential for keylogging. These categories, along with
representative examples and associated keylogging strategies,
are summarized in Table [Il In particular, we concentrated on



APIs that (i) directly expose user input, (ii) allow indirect
inference of keystrokes through GUI behavior, or (iii) facilitate
passive capture of input data before exfiltration. We identified
four key categories of target APIs:

Direct Input Acquisition APIs: Functions that immediately
return keyboard state, which are popular for straightforward
keylogging. For example, many malware use polling calls like
GetAsyncKeyState or GetKeyState within loops to
detect keystrokes with minimal latency. Our Hooking Layer
intercepts these calls and returns manipulated key states or
injected noise. For instance, when a keylogger polls these
APIs, our system may respond with a stream of plausible but
fake keystrokes, effectively corrupting the logged data at its
source and rendering the captured information unreliable..

Window Message Inspection: APIs such as GetMessage
and PeekMessage enable malware to monitor the GUI
message queue and infer user keystrokes based on intercepted
window messages. Our analysis shows that keyloggers tar-
geting graphical applications, particularly browsers and email
clients, frequently uses this technique to extract typed input.
To counter this behavior, our framework intercepts message-
level activity and introduces deception. When keylogging is
detected within sensitive applications, our hooks can selec-
tively suppress or manipulate WM_KEYDOWN and WM_CHAR
messages. For example, the framework may inject fake key
events or alter character messages to produce misleading input
traces in the keylogger’s log file.

Hook-Based Capture APIs: Some keyloggers rely on
legitimate Windows APIs such as SetWindowsHookEx with
the WH_KEYBOARD_ LL flag to register global keyboard hooks
and intercept keystrokes system-wide. Our framework counters
this technique through two mechanisms. First, it can block
untrusted processes from registering keyboard hooks by failing
the hook installation or actively removing it. Second, if a hook
is successfully registered, our system intercepts and overrides
its callback logic. This allows us to prevent the keylogger from
accessing real keystroke data and instead deliver fabricated
input. These defenses are critical for mitigating threats that
abuse legitimate OS-provided hooking capabilities.

Auxiliary Data Collection: In addition to capturing
keystrokes directly, keyloggers often exploit supporting APIs
to collect sensitive data or exfiltrate user input. Common
examples include clipboard access via OpenClipboard
and GetClipboardData, or intercepting form submis-
sions using network functions like Ht tpSendRequest and
WSASend. Our Hooking Layer monitors these APIs as well,
allowing the Deception Engine to inject plausible decoy con-
tent. For instance, fake clipboard data can be returned to
mislead malware accessing GetClipboardData, and fabri-
cated credentials can be inserted into outbound transmissions.
Since these APIs are typically more context-sensitive, hooks
are selectively applied to preserve application stability while
disrupting form-grabbing behavior. This categorization guided
our API selection and prioritization: lower-level functions such
as polling or clipboard access allow simple, low-overhead
interception; GUI and hook-based methods provide richer

context but require careful handling; and network-layer APIs,
while demanding deeper inspection, offer strategic points to
corrupt attacker objectives. Our framework balances these
trade-offs, achieving broad coverage and effective deception
with minimal performance overhead, as demonstrated in our
evaluations.

B. Input Deception Policies

Intercepting an API call is the initial step. The core func-
tionality of the Deception Engine lies in determining how
to respond to those intercepted calls. Since our framework
is deployed only after a process has been externally flagged
as suspicious, such as by an analyst, Endpoint Detection and
Response (EDR) tool, or anti-malware system, it operates in a
strictly active mode, applying deception policies immediately
and consistently. This design avoids the need for runtime
decision-making, behavioral triggers, or passive logging within
the framework itself.

Decoy Injection: The hook returns synthetic data in place of
the real input. This straightforward strategy directly feeds false
information to the keylogger. For instance, imagine malware
polling GetAsyncKeyState to capture a user’s password as they
type. Under a Decoy Injection policy, when the user presses
“P”, the keylogger might instead receive a code corresponding
to, say, “M”, followed by a sequence of characters spelling out
a fake password. In our prototype, we scripted decoy payloads
such as “Password123!” or realistic keyboard patterns to simu-
late user typing. If the attacker is exfiltrating keystrokes in real
time or operating in an automated fashion, this tactic poisons
their data entirely. We found Decoy Injection particularly
effective against rapid key thieves, as it fills their logs with
plausible-looking but incorrect credentials.

Input Perturbation: Rather than full fabrication, the engine
makes slight, often random modifications to the legitimate
input data. The goal is to degrade the fidelity of stolen data
while remaining subtle. Our framework can, for example, flip
the case of every third character the user types, introduce
small delays in reporting keystrokes, or inject an occasional
extra keystroke that would be benign (like an innocuous typo)
from the user’s perspective. This way, the attacker’s logged
keystroke sequences will not exactly match what the user ac-
tually entered. In one test scenario, we enabled a perturbation
policy that would randomly swap two characters in a password
being captured. The genuine login still succeeded (because
the real keystrokes went through to the application unaltered),
but the keylogger’s record contained the wrong characters,
thwarting any later misuse of that password.

Input modification is configurable at deployment via a
masking ratio (e.g., 30% or 100%), enabling partial per-
turbation of the keystroke buffer through randomized index
selection. This reduces overhead while maintaining plausible
deception, especially valuable under high-frequency polling,
where full modification may introduce latency. To ensure
efficiency, the system adopts a context-agnostic strategy that
avoids semantic input analysis. While context-aware deception



(e.g., leveraging NLP or LLMs) is feasible, it introduces
additional complexity and cost, hence is left as future work.

C. Hook Integrity and Tamper Resilience

While the Hooking Layer and Deception Engine mislead
attackers, an advanced adversary may attempt to disable the
framework by tampering the hooks. Hence, we prioritized
hook integrity from the start, guided by real attacker behaviors.
The Hook Integrity Manager implements layered defenses to
detect and counter such interference. Hook Integrity Manager
uses memory protection attributes such as PAGE_NOACCESS
or PAGE_GUARD to safeguard its internal data and control
logic. It executes as a privileged watchdog thread outside
common scanning regions, reducing its exposure to tampering.
These protections help isolate the Hook Integrity Manager
from untrusted threads while maintaining operational trans-
parency.

Active Hook Verification: EasyHook does not provide
built-in support for verifying the integrity of installed hooks.
To address this limitation, our framework implements custom
logic to detect and recover from hook tampering in real
time. After installing a hook using LhInstallHook, we
capture a lightweight hash or byte-level snapshot of the target
function’s prologue. A dedicated watchdog thread periodically
compares the current memory content of each hook target
with the expected detour layout. If an attacker attempts to
unhook (e.g., restoring the original function bytes via memcpy
or WriteProcessMemory), the tampering is detected and
the Hook Integrity Manager immediately restores the hook.
This self-healing process preserves the continuity and stealth
of the deception engine. In our evaluation, tampering was
typically corrected within milliseconds and did not introduce
measurable performance degradation.

Clone DLL Detection: Some advanced malware attempt
to evade userland hooks by loading fresh copies of com-
mon libraries such as user32.d11 or ntdl1l.d1l1l under
alternate names or paths. By calling functions from these
clean instances, the malware can bypass previously installed
hooks. While effective against static hooking, our framework
extends EasyHook with custom logic to detect and counter
such evasion. Since EasyHook does not monitor module load
events by default, we hook low-level loader functions, such as
LdrLoadD11, within the target process. When a new module
is loaded, our hook inspects its export table and code sections
to identify clones of known system libraries. If matched, we
dynamically apply the same set of hooks to the new module
using LhInstallHook API. This clone-aware mechanism
ensures continued interception even when malware attempts to
establish an unmonitored API path through DLL shadowing.
In our evaluation, this method successfully detected and re-
hooked a dynamically loaded clean copy of user32.d11,
neutralizing the bypass attempt in real time.

Trampoline Obfuscation: By default, EasyHook installs
inline detours using common jump instructions such as JMP
rel32 (E9) or indirect jumps via pointers (e.g., FF25). These
opcode patterns are widely recognized and easily identified

through memory scans that target the prologues of com-
monly hooked functions. To enhance stealth, we implemented
a custom trampoline generator that avoids these recogniz-
able signatures. Our obfuscation logic constructs semanti-
cally equivalent but structurally different sequences, including
PUSH address; RET and MOV reg, address; JMP
reg. We further randomize the detour memory layout and
insert benign padding instructions to disrupt signature-based
scanning. These transformations are applied dynamically dur-
ing hook installation, yielding a distinct hook fingerprint for
each deployment. In evaluation, our obfuscation consistently
evaded detection by simulated attacker tools that relied on
signature matching. While this functionality extends beyond
EasyHook’s native features, it significantly increases resistance
to static memory analysis and reverse engineering.

Guard Pages on Hooked Code: As an additional layer
of tamper detection, we implemented page-level memory
protections to secure the code regions of hooked functions.
After installing a hook, our framework modifies the memory
protection of the corresponding page using PAGE_GUARD or
PAGE_NOACCESS, depending on operating system support.
Any unauthorized read or write access to this memory, such
as an attempt to inspect or modify the function prologue, will
trigger an access violation. The framework registers a struc-
tured exception handler (SEH) that intercepts these violations,
verifies the integrity of the hook, and immediately restores it if
tampering is detected. In stricter configurations, the attacking
thread or process is terminated to prevent further manipulation
attempts. This method effectively turns the hooked memory re-
gion into a tripwire, enabling real-time detection and response.
In our controlled evaluation, this method successfully raised an
access violation when a simulated keylogger attempted
to overwrite the prologue of GetAsyncKeyState. The
triggered exception allowed our framework to detect and
restore the hook before any further bypass activity could occur.
We note that this guard-based approach is not universally
applicable, as some system DLL or shared memory regions
may not reliably support guarded permissions due to OS level
constraints. Nonetheless, in applicable scenarios, it provided
a strong layer of hook resilience with minimal overhead.
Table [lI| summarizes the defensive measures implemented by
the Hook Integrity Manager. By integrating these defenses,
the framework maintains resilience against tampering. The
Hook Integrity Manager converts anti-hooking behaviors into
observable events, allowing timely recovery with negligible
performance overhead.

IV. IMPLEMENTATION AND EVALUATIONS
A. Prototype Implementation

We tested our deception framework on virtualized Windows
10 and Windows 11 environments. Our deception framework
was manually injected into target processes using EasyHook’s
remote injection API. We tested it against both open-source
and real-world malware samples. Evaluation metrics included
CPU overhead, success of decoy injection, and resilience to
tampering. Hook integrity was verified using memory hash



TABLE 11

DEFENSIVE MEASURES IMPLEMENTED BY THE HOOK INTEGRITY MANAGER

Defense Mecha-
nism

Description

Tamper Detection Method

Reaction

Active Hook Ver-
ification

Detects tampering by periodically comparing current memory
at each hook site with the expected detour layout. Reinstalls
hooks if tampering is detected.

Memory comparison with ex-
pected detour layout.

Reapply detour patch immedi-
ately.

Clone DLL De-
tection

Hooks module loader to detect duplicate DLLs (e.g.,
user32.dll). Applies the same set of hooks to newly loaded
modules if a match is found.

Analysis of module character-
istics (e.g., export table signa-
tures or code sections) on load.

Apply hooks
modules

on duplicate

Trampoline Ob-
fuscation

Replaces standard JMP instructions with alternate sequences
to avoid signature recognition via memory scanning.

Avoidance of common jump
signatures.

Avoid detection from memory
scanners.

Guard Pages on
Hooked Code

Modifies memory protection of target function’s page using
PAGE_GUARD or PAGE_NOACCESS to catch tampering

Access violation triggers via
structured exception handler

Intercept and restore hook;
Optionally terminate thread.

via access violations.

(SEH).

comparisons and structured exception handler (SEH)-based
validation. To validate the design of our deception framework,
we developed two functionally equivalent prototypes using
EasyHook and Microsoft Detours. Our goal was to determine
whether the core ideas: the hook-based interception, decoy
injection, and tamper resilience could be implemented effec-
tively across different hooking libraries, each with their own
engineering trade-offs.

The EasyHook-based prototype provided a high-level API,
support for both 32-bit and 64-bit processes, and native .NET
integration. These features enabled rapid development and
iterative testing with minimal low-level engineering. In con-
trast, the Detours-based implementation offered fine-grained
control over instruction patching. We extended it with cus-
tom logic for randomized trampoline generation and runtime
hook validation to enhance stealth and robustness. While this
version required more manual engineering effort, particularly
for handling edge cases in 64-bit systems, it validated the
generality and portability of our framework design. For clarity
and consistency, our evaluation focuses on the EasyHook-
based prototype, which served as the basis for case studies
and performance testing. The complete source code for both
variants is publicly available at [10].

B. Case Study: Deceiving WarzoneRAT, a Real-World Polling-
Based Keylogger

We deployed our framework against WarzoneRAT (a.k.a.
Ave Maria RAT) [24], a widely documented remote access
trojan with a built-in keylogger. We selected WarzoneRAT as
a case study because it represents a common but effective
class of keyloggers. Its polling-based approach, though simple,
generates high API call volume, making it ideal for testing
the stability, performance, and transparency of our framework
under realistic conditions. As mentioned it’s keylogging relies
on a stealthy polling approach: it repeatedly calls the Windows
API GetAsyncKeyState to check the state of each key, rather
than installing a hook via the OS. This design makes it
stealthier in some respects and is fairly typical of many simple
yet effective keyloggers in the wild.

Attacker’s Technique: WarzoneRAT’s keylogger uses a
polling loop that repeatedly calls GetAsyncKeyState
across virtual key codes (0x08—-0xFE) to detect pressed keys.
It supplements this with calls to GetForegroundWindow,

GetWindowTextW, and GetKeyboardState to capture
the active window title and modifier keys (e.g., Shift, Cap-
sLock), allowing it to reconstruct accurate, timestamped
keystroke logs tagged by application context. These logs are
periodically written to disk, building a detailed timeline of
user activity such as: “[Browser — 10:30AM] username: Alice”
followed by “[Browser — 10:30AM] password: secret123”.
Deception Deployment: We evaluated our framework by
injecting a hook-enabled DLL into the WarzoneRAT process
at runtime. For this experiment, we used the EasyHook-
based implementation. Our focus was on subverting War-
zoneRAT’s polling-based keylogger, which repeatedly invokes
GetAsyncKeyState to collect keystrokes. We installed
an inline hook on GetAsyncKeyState and redirected all
invocations to a custom detour handler governed by our Decoy
Injection policy. Rather than attempting full behavioral emu-
lation or adaptive input generation, our approach focuses on
direct substitution of keystroke content with carefully crafted,
plausibly structured decoy sequences. During evaluation, the
detour handler replaced the output of GetAsyncKeyState
with a predefined but realistic-looking credential string—such
as "hrSmith2025!"—designed to mimic user input pat-
terns commonly observed in authentication workflows. The
injection sequence also included synthetic tab and enter
keystrokes to simulate form navigation and submission. This
substitution-based deception simplifies runtime complexity
while still producing high-fidelity artifacts that closely resem-
ble genuine user behavior from the attacker’s perspective.
Results and Impact: During the evaluation, our frame-
work successfully deceived WarzoneRAT without disrupting
its execution or revealing the presence of instrumentation.
The malware continued to invoke GetAsyncKeyState at
its normal polling frequency, unaware that our hook was
intercepting the calls. When triggered during a simulated login
scenario, the detour returned a predefined but fake decoy
sequence (e.g., "hrSmith2025!"), including synthetic TAB
and ENTER keystrokes to mimic form submission. The actual
user input remained fully hidden. The resulting keylog file
(keylog.log) contained only the decoy data, complete with
accurate window titles and timestamps, producing output that
appeared indistinguishable from genuine user behavior. The
malware’s auxiliary functions—such as modifier key checks
and file I/O—proceeded normally, and no detection logic was



triggered. To measure runtime performance impact, we used
the Windows Performance Monitor (per fmon) to track CPU
utilization of the instrumented process during high-frequency
polling sessions. Simulated user interactions were performed
repeatedly over a 60-second interval, with the keylogger run-
ning under normal conditions. Across five independent runs,
the measured CPU overhead introduced by our hooking and
detour logic remained consistently below one percent. The
host system remained fully responsive, and no input lag or
application slowdown was observed during these tests.

Overhead Across Deception Policies: We also examined
the runtime overhead introduced by our two deception policies:
Decoy Injection and Input Perturbation. For static content theft
(e.g., clipboard or credential files), Decoy Injection imposes
negligible overhead, as it substitutes predefined content with-
out parsing. In contrast, Input Perturbation requires runtime
processing to apply masking ratios, increasing computational
cost. In polling-based keyloggers like WarzoneRAT, which
calls GetAsyncKeyState approximately 131 times per
minute, full Decoy Injection requires modifying all 131 calls.
However, applying a 20 percent perturbation ratio reduces this
to only 26 modified responses, lowering CPU load while still
corrupting the keylog. This tradeoff allows our framework to
balance deception fidelity with performance efficiency based
on the threat model.

C. Broader Evaluation Against Real-World Malware

To generalize beyond a single malware instance, we
tested our framework against fifty keylogger samples as
mentioned in Section During our analysis, we ob-
served that several malware families including Agent Tesla,
Lokibot, AppleSeed, Azorult, and Astaroth employed basic
sandbox and virtualization evasion techniques. These behav-
iors involved checks for the presence of debuggers, tim-
ing anomalies, or signs of an analysis environment using
APIs such as TsDebuggerPresent, GetTickCount, and
NtQueryInformationProcess. When successful, these
checks would cause the malware to suppress its payload
execution or terminate early in order to avoid analysis or
detection. To prevent these evasive techniques from interfering
with full execution, we extended our hooking layer to intercept
the relevant evasion-related APIs. Our detour logic returned
spoofed values that emulated a normal, non-instrumented
environment. For instance, debugger detection APIs were
forced to return false, and timing outputs were adjusted to
eliminate inconsistencies. As a result, the malware continued
its execution path and reached the keylogging stage without
detecting the instrumentation.

For each sample, we confirmed the malware attempted to
invoke one or more input collection APIs listed in Table I} and
verified our framework intercepted them correctly. In all fifty
cases, the Hooking Layer captured the targeted API calls and
redirected them to the Deception Engine, which returned either
crafted decoy data or perturbed input. The malware executed
normally, recorded fake inputs, and never logged real user
data. None of the samples triggered crashes or evasion logic in

response to our instrumentation. This evaluation confirms that
our framework reliably deceives a broad range of keylogger
families, even when facing common evasion techniques. We
next evaluate its resilience against active tampering and anti-
hooking defenses.

D. Case Studies: Against Anti-Hooking Attacks

To rigorously evaluate our framework’s resilience, we de-
veloped a custom “‘super keylogger” that combines multiple
input-logging methods with advanced anti-hooking techniques.
This case study simulates a sophisticated attacker using diverse
strategies while actively evading defensive hooks. Building it
ourselves gave us full control to observe the interplay between
attack and defense. The process also drew on real-world
malware behaviors and Al-assisted development to ensure it
was both comprehensive and realistic.

Building a Multifaceted Keylogger: We used an LLM
(GPT-40) to assist in generating and refining keylogger
components, which accelerated the implementation of mul-
tiple logging methods and ensured comprehensive coverage.
Through iterative prompts (e.g., “generate code to log keys
via GetAsyncKeyState,” “what other Windows APIs capture
keystrokes?”’), we built a modular keylogger integrating five
distinct data-capture techniques: (1) direct polling via GetA-
syncKeyState and GetKeyState, (2) event hooking through
SetWindowsHookEx, (3) GUI message spying using functions
like PeekMessage, (4) clipboard monitoring via OpenClip-
board and GetClipboardData, and (5) network interception of
HTTP POSTs by hooking HttpSendRequest and WSASend,
simulating form grabbing. These methods reflect the breadth
of userland keylogging seen in real malware.

We implemented each method in its own thread, allowing
the keylogger to simultaneously poll keys, monitor clipboard
activity, and intercept network traffic—maximizing redun-
dancy and data capture. In tests on Windows 10 and 11,
the keylogger reliably recorded all expected input, including
clipboard changes and mock web submissions, even producing
overlapping logs across techniques. Functionally, it behaved
like a super keyloggers—merging traditional and advanced
techniques into a single, potent data-theft tool. This confirmed
that our deception targets were up against a realistic and
comprehensive threat. All prompts, source code, and modular
implementations used to construct this keylogger are publicly
available in our supplementary materials [[10].

Integrating Anti-Hooking Techniques and Evaluating
Framework Resilience: Next, we equipped the keylogger
with four anti-hooking strategies [15]—[18] to simulate an
attacker actively trying to evade hook-based defenses like
ours. One technique was inspired by the real-world malware
SmokeLoader [15]], known for its aggressive anti-hooking
behavior. Another was derived from academic literature, re-
flecting techniques commonly discussed in research [18]]. The
remaining two [16], [17] were adapted from open-source
implementations available on GitHub, mimicking what a
skilled attacker could easily integrate. Together, these made



the keylogger an actively evasive threat capable of challenging
advanced hook defenses.

1) Runtime Unhooking via .text Restoration: This
technique involves the keylogger actively removing inline
hooks by restoring the original bytes of targeted API
functions in memory [15]. For example, it marks the
memory of GetAsyncKeyState as writable using
VirtualProtect, then restores the original bytes—either
previously saved before the hook was installed or retrieved
from a clean copy of the DLL. If our framework had patched
a JMP instruction at the beginning of GetAsyncKeyState,
the malware would overwrite it with the original opcodes.
This is a direct assault on inline hooks; if successful, control
flow no longer jumps to our detour and instead executes the
API normally. We have observed real-world malware using
this tactic to disable userland security monitors.

Outcome: We anticipated this to be a substantial challenge,
as it targets the core of our Hooking Layer. However, the Hook
Integrity Manager’s active verification loop responded almost
instantly. As soon as the keylogger overwrote the first few
bytes, the watchdog thread’s subsequent hash check flagged
the discrepancy. Our framework immediately re-patched the
hook in the function’s prologue. From the keylogger’s perspec-
tive, it had successfully unhooked the API and proceeded with-
out further checks, unaware that within milliseconds, the hook
was reinstated. Since the keylogger didn’t continuously verify
the hook status, it assumed success and continued calling
GetAsyncKeyState, all while our detour fed it synthetic
keystrokes. We confirmed this by inspecting its logs—only
decoy inputs such as "Adminl23!" were recorded post-
unhooking. The keylogger remained unaware of the deception,
validating our rapid detection and self-healing hook strategy
as a defense against memory patching attacks.

2) Import Address Table (IAT) Rebinding to Clean DLLs:
In this technique, the keylogger circumvents hooked APIs
by loading a clean copy of a system DLL [17]. Using
LoadLibraryEx with specific flags, it loads a fresh in-
stance of user32.d11 into a different memory location.
This new instance, absent during our original hook in-
jection, contains unpatched functions. The malware then
uses GetProcAddress to resolve function addresses (e.g.,
GetAsyncKeyState) and updates its Import Address Table
or local function pointers to reference these clean copies. This
enables the malware to call APIs from the unmonitored DLL,
bypassing our instrumentation.

Outcome: Our framework countered this using the Hook In-
tegrity Manager’s clone-detection. Since we had hooks placed
on Windows loader routines, any new DLL load event trig-
gered inspection. Upon identifying the newly loaded module
as a clone of user32.d11, the framework scanned its export
table, injected the same hooks, and rewired malware’s function
pointers to route through our detours. Consequently, while the
malware believed it had sidestepped our monitoring, we had
already hooked the new entry points. The keylogger resolved
and invoked what it assumed was an unhooked function, but
execution flowed straight into our deception logic. Again, the

logged keystrokes were decoys. This emphasized the impor-
tance of real-time module load monitoring. While it introduces
some complexity, our experiments showed the added hooks
incurred minimal overhead and ensured effective coverage.

3) Manual API Resolution (Alternate DLL Loading with-
out IAT): An evolution of IAT rebinding, this method
avoids import tables altogether. The malware manually re-
solves addresses of critical APIs at runtime and invokes
them directly through function pointers [|18]. For instance, it
loads a clean copy of ntdl1l.d1ll or user32.dl1l, uses
GetProcAddress to resolve GetAsyncKeyState, and
stores the resulting address. It then calls the function via
(»funcPtr) (), bypassing static imports and any hooks
placed there.

Outcome: We generalized our clone-module defense by
maintaining a registry of detoured functions by name and
module base address. When a new DLL is loaded, we hook all
matching exports. As a result, the function pointers resolved by
the malware point to already-detoured functions. Since manual
resolution eliminates future interception opportunities, our
response must occur during module load. We optimized our
loader hook to apply detours preemptively. We also ensured
our trampolines were either position-independent or appropri-
ately adjusted for each base address. During tests, the mal-
ware resolved GetAsyncKeyState, stored the address, and
called it—unaware that the address already led to our handler.
No anomalies were detected by the keylogger, confirming the
efficacy of our proactive strategy. While this approach requires
hooking multiple module instances, our modular architecture
reused detour logic efficiently, maintaining low overhead.

4) In-Memory Signature Scanning for Hooks: In this defen-
sive maneuver, the keylogger scans memory to detect the pres-
ence of inline hooks [16]. Many malware strains implement
such scanning routines, checking whether the first few bytes of
sensitive APIs match known patterns or appear tampered. Our
keylogger version scanned APIs like GetAsyncKeyState
and SetWindowsHookEx for recognizable signatures, such
as near jumps (E9) or indirect jumps. Upon detecting a
potential hook, it either avoided calling the function or logged
a warning, thereby reducing the chance of interacting with a
monitored or manipulated function.

Outcome: Our defense relied on stealth-by-diversity, imple-
mented through trampoline obfuscation. Our detours avoided
conventional byte patterns. For example, a hook stub might
begin with a PUSH followed by a RET, deviating from typical
JMP signatures. We also introduced random padding and
varied hook placement through address layout randomiza-
tion. During experiments, the keylogger ran its scan before
logging began. It failed to detect our hooks and proceeded
to log activity—entirely unaware it was capturing only fake
keystrokes. This reinforced the importance of remaining covert
in deception-based defenses. Once the adversary suspects
tampering, they may disengage or adapt. Our obfuscated hooks
maintained the attacker’s trust in the environment, ensuring
continued operation under false pretenses.

We evaluated our framework against a custom “Super” key-



logger implementing .text restoration, IAT rebinding, manual
API resolution, and in memory hook detection. Despite efforts
to remove hooks, load clean DLLs, resolve APIs manually, and
detect in-memory modifications, our framework neutralized
each evasion method in real time. The keylogger was limited
to logging only decoy inputs, with real user activity unaffected.
This test confirmed the resilience of our combined use of inline
hooking, integrity validation, and deception.

V. RELATED WORK

To the best of our knowledge, this is the first system to
combine API hooking for deception with integrated defenses
against anti-hooking techniques. Existing deception frame-
works often fail under tampering, while anti-hooking solutions
generally lack deceptive capabilities. As these approaches
address distinct aspects of the problem space, direct empirical
comparison is infeasible. Our work bridges this gap through
a resilient design.

Deception has long been a strategic defense in cybersecurity,
with early methods relying on honeypots, honeytokens, and
honeywords to mislead adversaries and collect telemetry [25]—
[27]. These mechanisms have since evolved into dynamic
frameworks that leverage moving target defense [28|], Markov
decision processes [29], and game-theoretic planning [30]
to adapt deception strategies in real time. Systems such as
PhantomFS [31] and others [32]-[34] offer scalable platforms
for orchestrating and evaluating deception assets.

In the context of keyloggers, deception has been explored
through the injection of false input to mislead or expose
surveillance software. Simms et al. [|[11]] proposed a decoy
keyboard mechanism to confuse keyloggers, while Wazid et
al. [12] developed a honeypot-based framework that simulates
user interaction to trigger malicious behavior. These works
focus on misdirection without addressing the advanced evasion
capabilities. Complementing deception, a substantial body
of work focuses on detection. Nasaka et al. [1] and Al-
Husainy [2] monitored API usage to flag suspicious behavior.
HookTracer [3|] performed forensic memory analysis to detect
hook artifacts, while Muthumanickam et al. [4] targeted inline
and IAT hook tampering in userland processes. However, these
approaches also lack defenses against anti-hooking techniques.

More sophisticated adversaries, such as those behind
SmokeLoader [15], actively dismantle or bypass defensive
instrumentation. SmokeLoader, for instance, restores original
function prologues to remove inline hooks. Other public
implementations demonstrate evasive tactics including Import
Address Table rebinding and alternate DLL loading [17]. In-
memory hook detection using signature scans, as seen in
various malware samples [16], further complicates defensive
visibility. These strategies highlight a growing asymmetry:
while detection improves, malware continues to evolve to
evade naive userland monitoring hookings entirely.

VI. DISCUSSION AND CONCLUSION

Effectiveness and Resilience: Our experience shows that
hooking-based deception is both feasible and effective for

countering userland keyloggers. In all test scenarios, keylog-
gers operated under the illusion of capturing real input, while
our framework injected fabricated data. For example, when
deployed against WarzoneRAT, a real-world RAT with polling-
based keylogging, our hook on GetAsyncKeyState redirected
keystroke queries to our deception engine, which returned
realistic decoys. These were logged by the malware with
correct context and timestamps, keeping actual user input
secure. User experience was unaffected and system overhead
remained negligible as presented in [[V-B

To evaluate resilience under a stronger adversarial model,
we developed a custom super keylogger combining behaviors
from diverse malware families. Guided by malware reports,
academic literature, and LLM-assisted synthesis, it simulates
diverse keylogging strategies without using multiple samples.
The keylogger integrates five input-capture techniques and
incorporates four advanced evasion methods: one drawn from
real-world malware, one from an academic publication, and
two from widely used open-source tools. These include .text
section restoration, IAT rebinding, alternate DLL loading, and
signature-based memory scanning, as detailed in Section
Despite full knowledge of our defense mechanisms, the adver-
sary was unable to bypass the system. The Hook Integrity
Manager mitigated each evasion attempt through proactive
hook verification, clone DLL tracking, and randomized tram-
poline construction. These results validate the soundness and
resilience of hooking our strategy. The combination of run-
time input randomization and multi-layer tamper resistance
significantly increases the complexity of static and behav-
ioral evasion. Successful circumvention would require memory
inspection or runtime probing, which contradicts keylogging
stealth and proved ineffective in our evaluation.

Limitations and Challenges: Despite promising results,
several limitations emerged. First, our framework operates
solely in user space, excluding kernel-level and hardware
keyloggers, which bypass the API layer. Extending deception
to lower layers would require OS or driver-level support, which
we leave for future work. Second, our framework assumes a
prior detection event. It is not a standalone detector; rather, it
activates once a process is flagged as suspicious by a security
analyst or detection tool. In our evaluations, we manually
injected the module, but in real deployments, this would need
to be automated and tightly integrated with existing detection
pipelines. Finally, hooking in adversarial settings introduces
engineering complexity. Though EasyHook and MS Detours
ease initial development, they lack tamper resilience. We added
trampoline obfuscation, clone-module tracking, and memory
protections, requiring deep understanding of the Windows
memory model and low-level tuning to ensure stability and
performance.

Lessons for Practitioners: From this experience, several
key lessons emerge for practitioners building deception sys-
tems. First, designing for evasion from the start is essential.
Hook integrity must be treated as a first-class concern, as
adversaries will attempt to tamper with instrumentation. Our
framework’s success depended on early integration of tamper



detection and restoration. Second, deception only works if
the attacker believes it. Static or naive decoys risk exposure.
In our framework, plausible fake inputs (e.g., passwords
with tab/enter) increased believability. Adding variability or
randomization in future versions may further enhance stealth.
Third, anti-hooking itself can serve as a detection signal. Our
design demonstrates that tampering attempts offer forensic
value, and deception frameworks can double as sensors for
identifying sophisticated threats. Finally, the balance between
stealth and response must be carefully considered. We prior-
itized transparency by not killing threads or processes even
during tampering. However, a higher-assurance environment
may require stronger countermeasures. Policy-driven flexibil-
ity allows tailored responses per threat context.

In conclusion, this work demonstrates that deception via
API hooking is a practical and resilient defense against user-
land keyloggers. By intercepting and manipulating attacker-
visible API calls, and protecting hook integrity, we misled
malware without affecting user experience. Our findings show
adversary-aware instrumentation and stealthy deception form
a lightweight, effective alternative to traditional detection and
blocking. In future work, we plan to integrate the framework
with detection pipelines for automatic engagement and extend
our techniques to other attack vectors.
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