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Abstract—Malware and cheat developers use fileless execution
techniques to evade traditional, signature-based security prod-
ucts. These methods include various types of manual mapping,
module stomping, and threadless injection which work entirely
within the address space of a legitimate process, presenting
a challenge for detection due to ambiguity between what is
legitimate and what isn’t. Existing tools often have weaknesses,
such as a dependency on Portable Executable (PE) structures
or a vulnerability to time-of-check-to-time-of-use (TOCTOU)
race conditions where an adversary cleans up before a periodic
scan has the chance to occur. To address this gap, we present
RX-INT, a kernel-assisted system featuring an architecture that
provides resilience against TOCTOU attacks. RX-INT introduces
a detection engine that combines a real-time thread creation
monitor with a stateful Virtual Address Descriptor (VAD) scan-
ner alongside various heuristics within. This engine snapshots
both private and image-backed memory regions, using real-
time memory hashing to detect illicit modifications like module
stomping. Critically, we demonstrate a higher detection rate in
certain benchmarks of this approach through a direct comparison
with PE-sieve, a commonly used and powerful memory forensics
tool. In our evaluation, RX-INT successfully detected a manually
mapped region that was not identified by PE-sieve. We then
conclude that our architecture represents a tangible difference
in the detection of fileless threats, with direct applications in the
fields of anti-cheat and memory security.

Index Terms—Memory Forensics, Kernel, Anti-Cheat, Mal-
ware Detection, Evasion Techniques, Module Stomping, VAD,
Windows Internals, Intrusion Detection.

I. INTRODUCTION

THE increasing sophistication of in-memory code execu-
tion techniques presents a problem to modern cyberse-

curity and anti-cheat methods. Attackers, ranging from state-
sponsored actors to cheat developers, have largely migrated
from traditional disk-based malware to ‘fileless’ payloads that
exist exclusively within the memory of compromised, legiti-
mate processes [1] [2]. Due to the nature of being ‘fileless’,
these threats bypass the primary scanning technique of most
antivirus (AV) and security products, allowing them to operate
with a high degree of stealth. Manual mapping, a technique
where a DLL is loaded without invoking the standard Windows
loader [3], and module stomping, where the executable code
of an already-loaded, trusted DLL is overwritten, are now
well documented and commonly used by advanced adversaries
and cheat developers. The challenge in detecting threats of
this nature lies in distinguishing legitimate memory oper-
ations from malicious ones. Complicated executables, such

as games and web browsers, make use of dynamic code
generation techniques such as Just-In-Time (JIT) compilation,
creating an environment where private, executable memory
is not inherently suspicious [4]. Existing user-mode memory
forensics tools operate with a disadvantage, they must rely
on user-mode Windows APIs (such as VirtualQueryEx and
ReadProcessMemory) which can be hooked or manipulated
by even user-mode rootkits. Their heuristics also often depend
on finding structural artifacts like PE headers, which can
be deliberately erased by the injector. Kernel level detectors
offer a higher privilege to monitor processes, but they are
not without their own weaknesses. A reasonable approach is
to periodically scan a process’s memory, however, this can
create a TOCTOU vulnerability. An adversary can perform a
module stomp, execute their payload, and restore the original
bytes of the legitimate module in a window of opportunity
that is shorter than the polling interval of a periodic scanner.
This allows the threat to execute repeatedly while remaining
invisible to the detector. This paper introduces RX-INT, a
hybrid, kernel-mode memory forensics system that leverages
event-driven triggers to mitigate TOCTOU conditions in in-
memory threat detection. It operates from a kernel context
and employs a detection engine that combines two distinct
methods:

1) A real-time, event-driven monitor that monitors thread
creation to serve as an immediate tripwire for classic
injections and, more importantly, as a trigger for the
VAD scanner.

2) A stateful VAD scanner that creates a snapshot of
a process’s memory, including the content hashes of
all executable image-backed (MEM IMAGE) sections,
allowing it to detect modifications. This includes any
modifications made within runtime debuggers such as
x64dbg.

The synergy between these two components of RX-INT
allows it to counter timing-based evasions. A suspicious

event from the thread monitor immediately triggers an out-
of-band scan from the VAD scanner, mitigating the TOCTOU
race condition. While operating from the kernel, RX-INT’s
primary objective is to counter more advanced evasion tech-
niques initiated from user-mode, establishing a higher barrier
of entry for any adversaries than what is required to bypass
traditional user-mode scanners, highlighting the techniques to
be implemented in existing solutions. RX-INT also introduces
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a fully in-kernel Import Resolver that programmatically parses
the Export Address Tables (EAT) of all modules loaded in the
target process. When a suspicious payload is dumped, this
resolver scans the raw memory for pointers and automatically
generates a report of all resolved API calls, accelerating the
reverse engineering process. This can be used alongside a
runtime debugger to resolve any imports manually in the case
of erased PE headers, or to provide a more complete picture of
the threat’s behavior. To validate this approach, we conducted
a direct comparison against PE-sieve (v0.4.1), a complex,
widely used public memory forensics tool, using a custom-
built injection suite alongside some common injectors. RX-
INT successfully detected a manually mapped DLL with its PE
headers fully erased in memory. Under the same conditions,
PE-sieve failed to generate any alerts for either of these
techniques. The contributions via this project are therefore:

• A fully in-kernel import resolver that parses Export
Address Tables (EATs) to provide automated symbolic
analysis of raw memory dumps.

• An empirical demonstration that this architecture can
detect advanced, evasive in-memory threats that are not
detected by other widely-used, powerful tools.

• The design and implementation of a hybrid, event-
triggered kernel detection architecture that is compari-
tively resilient to TOCTOU attacks.

II. BACKGROUND AND THREAT MODEL

The efficacy of modern security solutions is increasingly
challenged by a class of threats that minimize or entirely
eliminate their on-disk footprint. These ‘fileless’ techniques
are central to the threat model targeted in this paper, which
focuses on an attacker who has achieved code execution on a
target system and seeks to inject a payload into a legitimate
process to operate stealthily with the goal to modify the
legitimate process itself, or to hide malicious code within it.
This section details the primary in-memory evasion techniques
that RX-INT has been designed to detect, contextualized with
adversary behavior.

A. Adversary Goals and Assumptions

This threat model assumes an adversary in user-mode with
at most administrative privileges on a 64-bit Windows system.
The adversary’s goal is to execute a malicious payload (such
as a malicious modification for a game, remote access trojan,
or spyware) from within the address space of a trusted process.
This is a common form of Masquerading, a sub-technique
of Defense Evasion (TA0005) as mentioned by the MITRE
ATTACK framework [5]. By operating within a legitimate
process’s address space, the attacker inherits its trust level and
bypasses simple firewalls and monitoring tools. It is assumed
the adversary has not yet compromised the kernel (i.e., has
not loaded a malicious driver or achieved kernel-level code
execution), meaning their actions are initiated from user mode,
but they are designed to evade or harm kernel-level detectors.

B. In-Memory Evasion Techniques

1) Manual PE Mapping: The standard procedure for load-
ing a dynamic-link library (DLL) is the LoadLibrary API
[6]. These functions are heavily instrumented by security
products. To bypass this entirely, adversaries can implement
their own PE loader. This process, known as manual mapping,
involves parsing the PE file format [3], allocating a region of
virtual memory in a target process with VirtualAllocEx, and
manually copying the DLL’s sections (.text, .data, etc.) into the
allocated block. The injector then performs base relocation and
resolves the Import Address Table (IAT) which need to be done
manually since it is not reliant on the default Windows API
[7]. A particularly effective variant of this technique involves
subsequently erasing the PE headers from the image once
it has been copied into memory, which can defeat scanners
that rely on finding the IMAGE DOS SIGNATURE (‘MZ’)
to identify executable modules, part of the reason why PE-
Sieve fails. The resulting payload exists as a MEM PRIVATE
memory region with no clear file backing, making it difficult to
attribute. Advanced injectors enhance this by offering options
to Clean Data Directories, etc [8]. This removes all metadata
from the in-memory PE image, turning it into a ‘freeform’
blob of code and data that is very difficult to identify with
signature-based scans.

2) Module Stomping: Module stomping is a more advanced
and stealthy form of process injection. Instead of allocat-
ing new private memory, the attacker targets a legitimate,
already-loaded DLL within the target process. As detailed
by Hammond, this technique involves using VirtualProtectEx
[9] to make the legitimate module’s executable .text section
writable, which is a highly suspicious action [10]. The attacker
then overwrites a portion of the legitimate code, often the
entry point of a known function, with their own malicious
shellcode or a trampoline that redirects execution to a different
memory region. This technique is highly evasive for two
primary reasons. First, the malicious code is executing from
a MEM IMAGE memory region, which many security tools
inherently trust more than MEM PRIVATE memory because
it is associated with a legitimate, signed file on disk. Second,
extending from the method showcased by F-Secure, a sophis-
ticated attacker can restore the original bytes of the stomped
function immediately after their payload executes, defeating
periodic memory scanners that check for integrity modifica-
tions [10]. This creates a critical TOCTOU vulnerability that
RX-INT is specifically designed to narrow the window for.

3) Code Injection Primitive: This is the fundamental
method of placing and executing code. While classic methods
use CreateRemoteThread (internally NtCreateThreadEx), ad-
vanced injectors leverage a wide array of alternatives to bypass
common API hooks [11]:

• Thread Hijacking: Instead of creating a new thread (easily
detectable), the injector suspends an existing thread in the
target, overwrites its instruction pointer (RIP) to point to
the malicious code, and then resumes it.

• QueueUserAPC: A ‘threadless’ injection that queues an
Asynchronous Procedure Call (APC) to a legitimate
thread. The malicious code is executed when the thread
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enters an alertable wait state, avoiding the creation of
a new thread entirely. Kernel Callbacks & FakeVEH:
Abuse kernel callback functions or set up fake Vectored
Exception Handlers (FakeVEH) to hijack the process’s
control flow in response to system events or deliberately
triggered exceptions.

4) Post-Injection Cloaking Techniques: After the code is
mapped and a thread is executed, injectors can attempt a final
layer of techniques to hide the thread itself from analysis tools.

• Cloak Thread: The thread is created with characteristics
that hide it from standard user-mode debuggers.

• Fake Start Address: The thread’s start address in its
control structures (TEB/PEB) is pointed to a benign
location, while the actual execution begins elsewhere.
This is intended to fool scanners that only check the
‘official’ start address.

• Skip Thread Attach: Manipulate thread flags to prevent
standard DLL THREAD ATTACH notifications from
being sent to the process’s loaded modules.

C. Kernel-Level Threats and Detection Challenges

While this threat model focuses on user-mode injection,
the design of a detector such as this must be informed by
the challenges of kernel-level security. The ‘OnThreadNotify’
callback, operating at the kernel level, is designed to catch the
creation of threads regardless of user-mode ‘cloaking’ or ‘fake
start address’ techniques, providing a reliable, low-level view
of process execution that is difficult for a user-mode attacker to
subvert. The Windows kernel’s internal memory management
is organized by a tree of VAD structures, which are opaque
to user-mode code [12], kernel-mode detectors can traverse
this tree to build a complete and accurate map of a process’s
memory layout. However, some research on kernel-level rootk-
its have shown, even kernel components can be attacked, and
relying on a single detection methodology is often insufficient
[13] [14]. Therefore, an ideal detector should employ a multi-
layered approach to be effective against an informed adversary
[15], especially due to the now documented nature of manual-
mapping. RX-INT was designed with this principle in mind,
combining real-time event monitoring with stateful memory
analysis to provide defense.

III. SYSTEM DESIGN AND ARCHITECTURE

A. User-Mode Client (rx-tui.exe)

The primary interface is the RX-INT TUI. This compo-
nent is a standalone C++23 executable with zero external
dependencies, built on the native Windows Console API for a
responsive UI, albeit not being the focus of this project. The
TUI’s creation had three primary goals:

• It provides a user with commands to start and stop
monitoring on any target process, which is specified by
its Process ID (PID). This user-driven control model is
crucial for avoiding the false-positives that can arise from
attaching to a process during its noisy initialization phase,
and also provides more control as a user can attach to and
detatch from a process at will.

Fig. 1. Architecture of the RX-INT system, showing the interaction between
the user-mode client and the kernel-mode driver components.

• The TUI provides a persistent dashboard that displays
the real-time status of the kernel driver (e.g., Idle, Mon-
itoring), the PID of the currently monitored process, and
key performance metrics such as the driver’s paged and
non-paged kernel pool memory footprint. This is how the
performance data was collected for the evaluation section.

• The client contains an ‘Injection Suite’ which serves
as a built-in validation and evaluation harness for the
kernel driver’s detection capabilities. Common injection
techniques such as standard manual-mapping were not
included, as there are many publicly available tools that
can perform these actions [8], and the focus of this project
is on more advanced techniques that are not commonly
tested against. In total, it comes with 5 unique injection
methods, each targeting a different aspect of rx-int in
order to test for a bypass.

B. IOCTL Interface

Communication between the client and the kernel driver is
facilitated through a standard IOCTL model. Upon loading, the
driver creates a named device object (\\Device\\RxInt) and
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a corresponding symbolic link (\\??\\RxInt) that is visible to
user-mode applications, this may act as a detection vector to
any adversaries that are trying to hide from RX-INT, however
the focus of this project was not targeted towards UM-KM
communication. The TUI client uses the CreateFile API to
open a handle to this device, and all subsequent commands are
sent via DeviceIoControl calls. This interface is defined by a
shared header (ioctl.h) containing a set of custom I/O Control
Codes (IOCTLs). The primary IOCTLs allow the client to pass
a RXINT MONITOR INFO structure, containing the target
PID and a custom dump path format, to begin a monitoring
session, and to send a command to stop the session. Additional
IOCTLs are used to query the driver for its current status and
memory usage statistics, enabling the TUI’s live dashboard.

C. Kernel Driver (rxint.sys)
The core of the system is a Windows (KMDF) kernel-

mode driver that performs all detection and analysis. The
driver is architected around a central Detector class, which
encapsulates all state and logic. To ensure stability and prevent
resource leaks in the hostile kernel environment, and due to
the ancient nature of the Windows API, the driver makes
extensive use of modern C++ RAII (Resource Acquisition Is
Initialization) principles. Custom wrapper classes (ProcessRef-
erence, SpinLockGuard) provide safe, automatic management
of kernel resources such as PEPROCESS object references and
KSPIN LOCKs. The driver’s detection capabilities are divided
into two primary subsystems: an event-driven thread monitor
and a stateful VAD scanner. Upon a successful detection,
the driver is responsible for dumping the suspicious memory
region and its automatically generated import analysis report
to disk.

IV. IMPLEMENTATION DETAILS

To ensure stability and prevent resource leaks, a critical
concern in a non-garbage-collected environment like the Win-
dows kernel, the driver makes extensive use of the Resource
Acquisition Is Initialization (RAII) paradigm [16]. All critical
kernel resources are wrapped in dedicated C++ classes whose
destructors guarantee proper cleanup. Key examples include:

• ProcessReference: This class wraps a PEPROCESS
pointer. Its constructor calls PsLookupProcessByProces-
sId [17] to acquire a reference, and its destructor au-
tomatically calls ObDereferenceObject [18], preventing
‘zombie process’ leaks.

• SpinLockGuard: Wraps a KSPIN LOCK. Its con-
structor calls KeAcquireSpinLock (saving the old IRQL),
and its destructor calls KeReleaseSpinLock. This is used
to protect data shared with high-IRQL callbacks, such
as OnProcessNotify, and is essential for preventing the
IRQL NOT LESS OR EQUAL bugcheck.

• ProcessAttacher: Wraps KeStackAttachProcess
[19] and KeUnstackDetachProcess [20] to safely read
memory from a target process’s address space.

All dynamic memory allocations are routed through a custom
tracking system built around a hash table, which allows the
user-mode TUI to query the driver’s real-time paged and non-
paged pool memory footprint via an IOCTL.

A. Stateful VAD Scanner

The VAD scanner is the primary defense against stealthy
modifications to process memory. It operates in a dedicated
system worker thread created via PsCreateSystemThread.

1) Baseline Creation: Upon initiation of monitoring for a
target process, the worker thread’s first task is to establish
a comprehensive baseline of the process’s virtual memory
layout. It traverses the VAD tree by repeatedly calling Zw-
QueryVirtualMemory, starting from a null base address. It
records metadata for every committed memory region into
a baseline array stored in paged pool. Crucially, the scanner
differentiates between memory types:

• For MEM PRIVATE regions, it records the base address,
region size, and memory protection flags. A content hash
is explicitly not taken for private memory to keep the
baseline’s memory footprint minimal, as these regions can
be very large and volatile.

• For MEM IMAGE regions with execute permissions
(e.g., the .text sections of loaded DLLs), it performs a
deeper analysis. The scanner reads the entire section into
a temporary non-paged pool buffer using MmCopyVir-
tualMemory and computes a content hash using the high-
speed, non-cryptographic XXH64 algorithm [21].

This detailed snapshot, containing both structural information
about private memory and integrity information about image
memory, serves as the authoritative ‘ground truth’ for the
process’s legitimate state.

2) Change Detection Logic: After creating the baseline,
the thread enters its main detection loop. Periodically (or
when triggered by an event), it takes a new snapshot of the
process’s memory and performs a differential analysis against
the baseline. A detection is generated based on the following
precise heuristics:

• A MEM PRIVATE region is found in the new snapshot
that has execute permissions and whose address range
does not exist in the baseline. This heuristic is effective
at detecting classic VirtualAllocEx-based shellcode injec-
tions.

• An executable MEM IMAGE region is found whose
current XXH64 hash does not match the hash stored
in the baseline. This is a high-confidence indicator of
a module stomping or inline hooking attack, as the code
of a legitimate module should not be modified after it is
loaded.

B. Event-Driven Trigger and TOCTOU Mitigation

To mitigate timing-based attacks, the periodic VAD scanner
is built with a real-time event monitor. We register a system-
wide thread creation callback using PsSetCreateThreadNoti-
fyRoutine [22]. The callback function, OnThreadNotify, is
designed to be a lightweight, non-blocking tripwire. When a
new thread is created in the monitored process, our callback is
immediately invoked at APC LEVEL. It retrieves the thread’s
start address via ZwQueryInformationThread and performs a
quick analysis of its memory region.

• If the start address is in MEM PRIVATE memory that
is not part of a known module (as determined by a
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PEB walk), it is treated as a direct detection, and the
dumping/reporting function is called immediately.

• If the start address is within a known MEM IMAGE
region, this is treated as a strong heuristic indicator of a
module stomp. Critically, the callback does not perform
a full VAD scan itself, as this would be too slow and
could lead to deadlocks. Instead, its only action is to
immediately call KeSetEvent on a kernel event that the
VadScannerThread is waiting on. This awakens the VAD
scanner from its sleep state, forcing it to perform an
immediate, out-of-band scan.

This ‘hybrid’ architecture mitigates the TOCTOU race con-
dition. The detection is no longer limited by a multi-second
polling interval but is instead triggered instantly after the Cre-
ateRemoteThread call, allowing the VAD scanner to capture
the state of the modified memory before an attacker has the
chance to restore the original bytes.

C. In-Kernel Automated Import Resolution

Another contribution of RX-INT is the ability to provide
context for dumped payloads, allowing for reconstruction
of any of these payload via attaching a debugger to the
target or via any ‘export dumps’ RX-INT generates. This is
handled by a dedicated ExportResolver class, which builds
and maintains a complete snapshot of the target process’s
export landscape. The snapshot is built by first enumerating
all loaded modules by walking the PEB’s InLoadOrderMod-
uleList [23]. For each module, the resolver safely copies its
PE headers from the target’s memory [24]. It then navigates
to the IMAGE EXPORT DIRECTORY and parses the Export
Address Table (EAT), the Name Pointer Table (NPT), and the
Ordinal Table. If a function’s RVA in the EAT points back
into the virtual address range of the export directory itself,
the resolver identifies it as a forwarder. It then reads the null-
terminated forwarder string (e.g., ‘ntdll!NtCreateThreadEx’)
from the target’s memory and stores it in the snapshot. The
entire snapshot is stored in dynamically allocated paged pool,
with a memory-efficient ‘jagged array’ structure to minimize
footprint. When ‘DumpPages’ is called upon any detection, it
scans the raw memory dump for any 8-byte value that could
be a valid pointer. Each potential pointer is then looked up in
the pre-built export snapshot. If the pointer’s value matches
the absolute address of a known export, the fully resolved
symbolic name is written to a companion text report, providing
the analyst with immediate, actionable intelligence that would
otherwise require a manual debugging session.

V. EVALUATION

To validate the efficacy, reliability, and performance of
RX-INT, we conducted a comprehensive set of experiments.
The evaluation was designed to rigorously test the full range
of the driver’s detection capabilities against a curated suite
of advanced, in-memory threats. The primary goals of this
evaluation were to: (1) empirically measure the detection
coverage for each heuristic against each attack vector, (2)
perform a direct, quantitative comparison against a very well-
regarded public tool, and (3) quantify the performance and

Fig. 2. The RX-INT TUI client has successfully attached to a target process
and is displaying the driver’s real-time kernel memory footprint.

memory overhead of the kernel-mode driver under realistic
workloads. These tests were conducted on a Windows 11 24H2
virtual machine with 8GB of RAM and 4 vCPUs, running on
a host with an Intel Core i9-13900H CPU and 64GB of DDR5
RAM. The VM was configured to use a dynamically allocated
disk image to simulate a realistic environment.

The primary test target was the 64-bit notepad.exe pro-
cess to provide a clean, low-noise environment. Additional
validation testing was performed on larger processes such
as ‘chrome.exe’, ‘explorer.exe’, and ‘gmod.exe’ to assess
system stability and basic performance characteristics under
realistic conditions. Representative results from these tests are
presented in the performance section. An assessment was also
conducted during a 10-minute Chrome browsing session, and
on a .NET process to determine behavior in a JIT / complex
environment. The comparative analysis was performed against
PE-sieve (v0.4.1), a widely-used and respected open-source
memory forensics tool. For each test, after the injection was
performed, a full PE-sieve scan was run on the target process.
All PE-sieve scans were run with default parameters (pe-
sieve64.exe /pid ¡PID¿) to ensure a baseline comparison [25].
A detection was considered successful if the tool identified
and dumped the injected payload with a non-zero suspicion
score. While it can be argued that notepad is not a realistic
target for an adversary, it is a clean process that is not known
to use any dynamic code generation techniques, and therefore
provides a good baseline for testing the detection capabilities
of RX-INT. To evaluate false-positives, a separate test was
conducted later in the evaluation stage. The tests were run in
a controlled environment to ensure repeatability, with each test
being executed multiple times to account for any variability
in the results. See Table I.

A. Detection Coverage and Evasion Analysis

The core of the evaluation was to test the resilience of the
hybrid detection model. The results are summarized in Table
I.

1) Case Study 1, Manual Map with Header Erasure: This
test simulates an attacker attempting to defeat signature-based
scanners. A 64-bit DLL was manually mapped into the target
process, and subsequently, the first 0x1000 bytes of the in-
memory module, containing the DOS and NT headers, were
overwritten with zeroes.
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TABLE I
COMPARATIVE DETECTION RESULTS BETWEEN RX-INT AND PE-SIEVE

Attack Scenario Execution Vector RX-INT Result PE-sieve Result

Standard Load
NtCreateThreadEx
SetWindowsHookEx
KernelCallback

Detected Detected (Module path visible)

Header Erasure
NtCreateThreadEx
SetWindowsHookEx
KernelCallback

Detected Detected (As detached module)

PEB Unlinking
NtCreateThreadEx
SetWindowsHookEx
KernelCallback

Detected Detected (As detached module)

PEB Unlinking + Header Erasure
NtCreateThreadEx
SetWindowsHookEx
KernelCallback

Detected Error (”Could not read remote PE”)

Manual Map + Headers Intact
NtCreateThreadEx
SetWindowsHookEx
KernelCallback

Detected Detected (Dumped as UNMAPPED)

Threadless Manual Map + Header Erasure QueueUserAPC Detected Missed (0 suspicious)

Manual Map + Header Erasure
NtCreateThreadEx
SetWindowsHookEx
KernelCallback

Detected Missed (0 suspicious)

Module Stomping
NtCreateThreadEx
SetWindowsHookEx
KernelCallback

Detected Missed (0 suspicious)

• PE-sieve Result: A full scan of the process reported no
implants. The tool’s reliance on finding PE headers to
identify modules caused it to miss the payload entirely.

• RX-INT Result: The stateful VAD scanner detected a
new, executable MEM PRIVATE memory region that
was not present in its baseline. This triggered an immedi-
ate alert. The driver successfully dumped the raw memory
of the headerless payload and generated an import anal-
ysis report. Fig. 6 shows the raw dump loaded into IDA
Pro, where we have manually rebased the image to its
original address (0x7FFBFBBE1000) to begin analysis,
confirming the dump’s validity. The flow of detection is
shown in the kernel logs in Fig.3 and Fig. 4, where the
VAD scanner detects the new MEM PRIVATE region and
dumps it immediately after the thread creation event is
triggered by the injector.

2) Case Study 2, Module Stomping: This test simulated
an adversary stomping the Beep function in kernel32.dll,
executing a payload, and immediately restoring the original
bytes.

• PE-sieve Result: It detected a module (gdi32full.dll) as
‘suspicious’ due to an unrelated false-positive, however
was unable to detect any actual module stomping within
our target module kernel32.dll. While PE-sieve is capable
of detecting modified modules, as shown in the scan
summary in Fig. 5, it was unable to detect the fast cleanup
attack. The user-mode tool lost the TOCTOU race.

• RX-INT Result: The CreateRemoteThread call was im-
mediately caught by the OnThreadNotify callback. This
‘stomp hint’ triggered an instantaneous VAD scan, which
detected the content hash mismatch in the legitimate
module before the injector could restore the original bytes
followed by a successful dump of the modified region.

Fig. 3. Kernel logs from DbgView showing RX-INT’s successful detection
cascade. The ‘hint of module stomp’ from the thread monitor triggers an
immediate VAD scan, which finds and dumps multiple suspicious regions.

Fig. 4. Kernel logs from DbgView showing RX-INT’s general successful
detection.
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Fig. 5. The summary output from a PE-sieve scan showing its capability to
detect modified modules (”Total suspicious: 1”). However, this detection was
not successful against our fast-cleanup module stomping attack.

B. False Positive Test on a Complex Process

To assess RX-INT’s resilience to false-positives in high-
noise environments, we ran Google Chrome (chrome.exe)
under typical usage for a continuous 10-minute session. During
this period, the browser was used to open multiple tabs,
navigate JavaScript-heavy websites, and load embedded me-
dia content. RX-INT reported zero detections throughout the
session.

Given Chrome’s extensive use of JIT compilation, dynamic
memory allocation, and embedded sandboxed processes, this
serves as a realistic baseline for evaluating benign dynamic
behavior. While longer runtimes may eventually yield flagged
regions due to edge-case heuristics (e.g., highly obfuscated ex-
tensions or auto-generated code), no suspicious memory events
were observed during the 10-minute monitoring window.

On the other hand, another test was run on a .NET runtime
process with mono, which is known to use dynamic code
generation techniques. RX-INT did falsely detect a suspicious
MEM PRIVATE region, which was confirmed to be benign.
This false-positive was triggered by the same heuristic that de-
tects ‘VirtualProtectEx’ -based shellcode injections which also
leads to a new executable MEM PRIVATE memory region
being created. While Chrome’s V8 JIT engine did not trigger
this heuristic in our test window, the .NET CLR JIT did. This
result does not invalidate the detection architecture but presents
a new research opportunity. Addressing this could have a
few solutions, such as analyzing the source of the memory
allocation (e.g. whitelisting pages allocated by clrjit.dll) or
performing an actual content analysis of the memory region.
This highlights the importance of careful tuning and validation
in real-world deployment, with RX-INT being a Proof of
Concept (PoC) as to what is possible via kernel-level windows
internals. RX-INT’s heuristics are designed to minimize false-
positives while still catching evasive threats.

C. End-to-End Analysis Workflow

The value of RX-INT is not just in detection, but in its
ability to enable a relatively reliable forensic workflow that
enables analysis for threats that other tools may not detect.
We demonstrate this workflow using the ”Manual Map with
Header Erasure” test case, which PE-sieve failed to detect.

Fig. 6. The raw memory dump from RX-INT, successfully loaded and rebased
in IDA Pro, allowing analysis to begin on the headerless payload.

Fig. 7. IDA Pro’s decompilation of the captured payload. The call to an
unknown function pointer at MEMORY[0x7FFBFBBE4640] is highlighted.

1) Detection and Dumping: The attack was initiated from
the TUI. RX-INT’s stateful VAD scanner immediately detected
a new, executable MEM PRIVATE memory region that was
not present in its baseline. The driver automatically dumped
two key artifacts: a raw binary dump of the 4096-byte memory
region, and an automated import analysis report.

2) Initial Analysis in IDA Pro: The raw memory dump
was loaded directly into IDA Pro. Because the PE headers
were erased, IDA initially recognized the file as raw binary
data. However, by using the base address logged by RX-
INT (0x7FFBFBBE1000) and rebasing the program (Fig.
6), We were able to begin disassembly. IDA’s decompila-
tion of a function at the start of the payload, shown in
Fig. 7, revealed a call through a hardcoded function pointer
at MEMORY[0x7FFBFBBE4640]. While this confirms exe-
cutable code, the destination of the call is unknown.

3) Symbolic Resolution with the RX-INT Report: This is
where RX-INT’s automated analysis can provide a critical
advantage. The REPORT.txt file generated by the driver can
scan the dump and resolve this pointer. In the case that it
misses the pointer, the report contains a complete snapshot of
the target process’s exports, including all loaded modules and
their respective Export Address Tables (EATs). If the pointer
is not found in the report, the analyst can manually search for
it, as mentioned in the next step.

4) Live Verification with x64dbg: To provide the final
ground truth, we attached x64dbg to the live, compromised
notepad.exe process. We navigated to the address of the
function pointer identified by both IDA and our report:
0x7FFBFBBE4640. As shown in Fig. 8, x64dbg’s symbol
engine confirmed the result. It read the pointer at that address
and displayed its fully resolved symbolic name: &Message-
BoxW. This end-to-end workflow, from initial kernel-level
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Fig. 8. Verification in x64dbg. The debugger confirms that the function
pointer at the address discovered in IDA and our report (...4640) resolves
to user32.dll!MessageBoxW.

detection of a fully obfuscated payload to its symbolic res-
olution, illustrates the system’s ability to provide actionable
intelligence on a threat that other tools could not even see,
reducing a potentially hours-long reverse engineering task to
minutes. This is particularly advantageous in the anti-cheat
context, where rapid response is critical to maintaining game
integrity and user trust, and detection isnt the only goal, but
also providing a way to analyze the threat and understand its
behavior.

D. Performance Benchmarks

To be viable, a security tool must not unnecessarily impact
system performance. The RX-INT TUI provides a live view
of the driver’s kernel memory footprint. As shown in Fig.
2, the driver maintains a minimal non-paged pool footprint
(approx. 340 KB). When monitoring begins, the paged pool
usage stabilizes at a mean of 6.07 MB for a complex process
like gmod.exe, which is primarily consumed by the one-time
creation of the export resolver snapshot. This is a reasonable
trade-off for the real-time analysis capabilities it provides.

CPU overhead was measured using the Windows Perfor-
mance Toolkit. During idle monitoring, rxint.sys consistently
consumed less than 0.1% of total kernel CPU time, having no
noticeable impact on the system, as expected. During active
detection and polling on ‘chrome.exe’, a brief CPU usage spike
corresponding to the VAD scan and memory dump operations
was recorded. This spike measured 0.79% CPU weight. This
measurement was conducted on a non-optimized DEBUG
build of the driver, which was compiled with optimizations
disabled to assist with debugging. The performance of a
fully optimized RELEASE build measured a 0.46% CPU
weight, clearly showing that the driver is viable for deployment
without adding a significant performance penalty. Considering
this is including periodic snapshots of the target process,
the performance overhead is negligible and would not be
noticeable to the end user.

VI. LIMITATIONS AND FUTURE WORK

While RX-INT demonstrates an advancement in detect-
ing a specific class of in-memory threats, it is not without
limitations. This work represents an initial implementation
and proof-of-concept for kernel-level fileless malware detec-
tion. An obvious limitation remains the evaluation scope:
the current testing focuses on demonstrating core function-
ality against various attack vectors. Comprehensive evaluation
against large-scale malware datasets and comparison with
multiple tools remains future work. Following this, various
offline user-mode tools face similar TOCTOU vulnerabilities
as demonstrated with PE-sieve, making direct performance
comparison challenging given RX-INT’s real-time detection
approach.

A. Limitations

The current in-kernel import resolver parses module Export
Address Tables (EAT) directly. While this correctly handles
standard and forwarded exports, it does not interpret the
modern Windows API Set schema [26]. The ApiSetMap in
the Process Environment Block (PEB) provides a layer of
redirection, mapping virtual DLL names (e.g., ext-ms-win-
ntuser-message-l1-1-0.dll) to their real host binaries (e.g.,
user32.dll). As a result, when the resolver encounters a pointer
to a redirected API, it correctly identifies the pointer’s target
within the intermediary module (often ntdll.dll) but does not
provide the final, user-friendly symbolic name of the API
being called. This represents a gap in the richness of the
forensic data provided, which an analyst would currently need
to resolve manually with a debugger.

1) Vulnerability to Kernel-Mode Threats: RX-INT is a
kernel-mode driver, and as such, it operates at the highest priv-
ilege level within the guest operating system (Ring 0). How-
ever, it is not immune to attacks from other, malicious kernel-
mode components. An advanced rootkit could, in theory, target
RX-INT directly. It could hook the PsSetCreateThreadNoti-
fyRoutine or ZwQueryVirtualMemory functions to feed the
driver false information, or it could directly tamper with the
driver’s memory to disable its heuristics or corrupt its baseline
data. Defending against such threats would require integrity-
checking mechanisms that are outside the current scope of the
project. Hooking such functions would also require a bypass of
the Windows Driver Signature Enforcement (DSE) and Kernel
Patch Protection (KPP) [27], which is a significant barrier to
entry for most adversaries.

B. Future Work: Hypervisor-Based Detection

The most promising avenue for future work is to transcend
the kernel by migrating the entire detection engine to a hyper-
visor. By leveraging hardware virtualization extensions such
as Intel VT-x [28], a Type-1 hypervisor could be developed
to run directly on the hardware, with the entire Windows
operating system running as a guest. This would provide two
main capabilities:

1) The RX-INT detection logic would reside in VMX root
mode, making it completely isolated and invisible to all
software within the guest, including the guest kernel
itself. This would render it immune to kernel-mode
rootkits and tampering.

2) Instead of relying on software-based hashing, we could
use Extended Page Tables (EPT) to enforce memory
integrity at the hardware level. The hypervisor could
mark the physical memory pages corresponding to a
module’s .text section as read-only in the EPT. An
attempt by the guest to write to this memory (as in
a module stomp attack) would trigger an immediate,
non-maskable EPT VIOLATION VM-Exit. This trap
would transfer execution to the hypervisor’s exit handler,
providing a highly reliable reliable, instantaneous, and
tamper-resistant detection mechanism with minimal race
conditions.
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This hypervisor-based approach, often referred to as Virtual
Machine Introspection (VMI) [29], represents a potential evo-
lution of the RX-INT project. This would also allow RX-INT
to act as a monitor for the entire system, not just a single
process, providing a comprehensive view of all in-memory
activity across all processes, and the kernel itself.

VII. RELATED WORK

Our work builds upon several foundational concepts while
contributing a novel set techniques.

1) Offline Forensics: Frameworks such as Volatility [30]
are one of the industry standards in memory analysis. They
operate on full physical memory dumps of a compromised
system and can reconstruct a vast amount of system state,
including running processes, loaded modules, and network
connections. However, their offline nature means they cannot
provide real-time detection or prevention. RX-INT is designed
to complement these tools by providing a real-time trigger and
memory dump that would serve as the input for a deeper offline
analysis with a framework like Volatility.

2) UM Scanners: PE-sieve [25] is an extremely popular
tool for the live system scanning of running processes. It
uses a set of heuristics to find anomalies, including unbacked
executable memory and modified PE headers. As our evalua-
tion demonstrates, however, its reliance on user-mode APIs
makes it vulnerable to both TOCTOU race conditions and
headerbased obfuscation techniques. RX-INT’s primary contri-
bution is overcoming these specific weaknesses by moving the
detection logic to the kernel and employing an event-triggered
scanning model.

3) KM Monitoring: The use of kernel-mode drivers for se-
curity is a common pattern in commercial Endpoint Detection
& Response (EDR) agents. These agents frequently use API
hooking (via PsSetCreateThreadNotifyRoutine, etc.) to moni-
tor system events. Our work differs in its focus on the stateful
analysis of memory content. While many EDRs focus on
behaviors (e.g., a Word document spawning powershell.exe),
RX-INT focuses on the state of memory itself, specifically
detecting the illicit modification of legitimate code modules,
a scope potentially missed by purely behavioral engines. The
inclusion of a fully in-kernel EAT-parsing import resolver is
a feature typically found only in high-end commercial tools,
not in publicly documented research projects.
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