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Abstract

Text-to-Image (T2I) models have gained widespread adop-
tion across various applications. Despite the success, the
potential misuse of T2I models poses significant risks of
generating Not-Safe-For-Work (NSFW) content. To inves-
tigate the vulnerability of T2I models, this paper delves into
adversarial attacks to bypass the safety mechanisms under
black-box settings. Most previous methods rely on word
substitution to search adversarial prompts. Due to limited
search space, this leads to suboptimal performance com-
pared to gradient-based training. However, black-box set-
tings present unique challenges to training gradient-driven
attack methods, since there is no access to the internal ar-
chitecture and parameters of T2I models. To facilitate the
learning of adversarial prompts in black-box settings, we
propose a novel prompt learning attack framework (PLA),
where insightful gradient-based training tailored to black-
box T2I models is designed by utilizing multimodal simi-
larities. Experiments show that our new method can effec-
tively attack the safety mechanisms of black-box T2I mod-
els including prompt filters and post-hoc safety checkers
with a high success rate compared to state-of-the-art meth-
ods. Warning: This paper may contain offensive model-
generated content.

1. Introduction

Text-to-Image (T2I) models, such as Stable Diffusion [30]
and DALL·E 3 [1], have demonstrated unprecedented ca-
pabilities to generate high-quality images based on text
prompts, opening new possibilities in various fields like
artistic creation and scene design [2–4]. Despite these
successes, T2I models raise significant security concerns
due to their potential misuse of generating Not-Safe-For-
Work (NSFW) content, such as sexual and violent images
[26, 31, 34]. This leads to serious legal and reputational
repercussions for both T2I model developers and end-users.

To avoid the misuse of T2I models, various safety mech-
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anisms have been developed to curb harmful content. As
illustrated in Fig. 1, prompt filters [38] and post-hoc safety
checkers [8, 26, 33] are typically employed as preventive
measures of harmful generation, especially in online ser-
vices, such as Stability.ai [9] and DALL·E 3 [1]. However,
numerous studies [38, 40, 43] have indicated that T2I mod-
els remain vulnerable to adversarial attacks that bypass cur-
rent defense mechanisms, highlighting the persistent risks
of misuse. To delve into the vulnerability of T2I models,
this research aims to study the adversarial attack on T2I
models, thereby contributing to the development of more
robust defensive strategies in the future.

In the field of adversarial attacks for T2I models, ad-
versarial prompts have emerged as a prevalent strategy to
bypass the safety mechanism of T2I models, inducing the
generation of NSFW content [21]. Most previous studies
on adversarial prompts assume a white-box setting [38, 43],
where attackers have full knowledge of the T2I model’s ar-
chitecture and parameters. Recently, given the growing in-
terest in online T2I services, most T2I models operate under
black-box settings with restricted access to internal model
details. In light of this, researchers have increasingly shifted
toward black-box attack methods, aiming to evade detec-
tions by replacing sensitive words in target prompts with
new words. For instance, SneakyPrompt [40] employs rein-
forcement learning to search potential word candidates and
iteratively replace sensitive words. However, most existing
black-box attacks generate adversarial prompts by explor-
ing words over limited search space, which often results in
suboptimal performance. Therefore, there is a pressing need
to develop a more effective approach for attacking black-
box T2I models.

Compared to existing search-based methods for black-
box attacks, gradient-driven training has uncovered great
potential to navigate the learning of effective adversarial
prompts, owing to their superior capabilities of optimizing
complex problems over extensive solution space [13, 44].
However, black-box settings present unique challenges to
training gradient-driven attack methods. In particular, at-
tackers typically lack access to the internal architecture and
parameters of black-box T2I models, hindering the effec-
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Figure 1. Illustration of black-box victim models that incorporate prompt filters and post-hoc safety checkers. Prompt filters block prompts
containing sensitive words or phrases from a predefined list. Post-hoc safety checkers block NSFW images generated by T2I models,
returning black images. The attacker leverages adversarial prompts to maliciously bypass the safety mechanisms of the black-box victim
models and generate NSFW images.

tiveness of gradient descent methods [17, 36]. Moreover,
T2I models equipped with safety mechanisms can halt the
forward propagation upon detecting NSFW content and re-
turn black images as outputs. In other words, conventional
black-box learning approaches become inapplicable in esti-
mating the gradient based on model outputs.

To address the challenges above, we propose a novel
gradient-driven attack method tailored to black-box T2I
models, namely prompt learning attack (PLA). The key
idea behind PLA lies in harnessing the sensitive informa-
tion embedded in target prompts, along with effective mul-
timodal learning objectives, to facilitate the learning (i.e.,
gradient-based training) of adversarial prompts. In partic-
ular, we design a sensitive knowledge encoding method to
encode target prompts into sensitive embeddings, where the
high-dimensional features of text embedding are leveraged.
This contributes to preserving the semantic intent of target
prompts to boost the sensitivity awareness of generated ad-
versarial prompts, thus inducing the generation of NSFW
content. In addition to sensitive knowledge learned from
semantics, we incorporate multimodal information to en-
hance the effectiveness of adversarial attacks. Specifically,
we design a gradient-driven training of adversarial prompts
empowered by a multimodal loss that accords with black-
box settings. In pursuit of multimodal learning objectives,
we leverage an auxiliary model to acquire target images
generated by target prompts, since the safety mechanisms
of black-box T2I models will halt the generation of target
images upon detecting NSFW content. Thereafter, the pro-
posed multimodal loss utilizes text-image and image-image
similarities across target prompts, generated images, and
target images to guide gradient-based training.

In summary, our main contributions are as follows:
• This study investigates the unique challenges of training

gradient-driven attacks for black-box T2I models to by-
pass their safety mechanisms. In this paper, we propose
a novel prompt learning attack (PLA) to empower the

gradient-based training of adversarial prompts.
• To facilitate the learning of adversarial prompts under

black-box settings, we develop a sensitive knowledge
guided encoding method, along with multimodal learn-
ing objectives, to effectively bypass both prompt filters
and post-hoc safety checkers of black-box T2I models.

• Extensive experiments are conducted to demonstrate the
effectiveness of our proposed PLA, which achieves a
high success rate and consistently outperforms compet-
itive methods for attacking black-box T2I models.

2. Related Work

2.1. Safety Mechanisms for T2I Models

Various strategies have been proposed to address the mis-
use of T2I models for generating NSFW content. These
strategies generally can be categorized into detection-based
and removal-based approaches. Detection-based strategies
[29] aim to eliminate unsuitable content by utilizing exter-
nal safety mechanisms during different stages of content
generation. One commonly used detection method is the
prompt filters [23, 39], which operate at the input stage to
prevent NSFW content from being generated. Alternatively,
post-hoc safety checkers [26, 33], such as those integrated
into Stable Diffusion (SD), assess generated images after
the generation process to determine whether they contain
NSFW content. While effective at blocking undesired out-
puts, post-hoc safety checkers generally require more com-
putational resources than input-based methods due to the
need for additional image analysis. Unlike external safety
mechanisms, removal-based strategies [14, 18, 34, 41] ad-
just the model’s inference processes or apply fine-tuning to
suppress NSFW content actively. However, these methods
often cannot fully eliminate such content and may uninten-
tionally impact the quality of benign images [19, 34, 43].
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2.2. Adversarial Attacks on T2I Models
To the best of our knowledge, most studies on adversarial
attacks targeting T2I models primarily focus on degrading
image quality, distorting or removing objects, and impairing
image fidelity [20–22, 24, 32, 42, 45]. These studies do not
aim to generate NSFW content such as violent and explicit
images. However, the potential misuse of T2I models to
generate NSFW content has attracted significant attention.
In response, researchers have begun exploring various ad-
versarial attacks to bypass T2I models’ safety mechanisms,
thereby enabling the production of NSFW content. Early
works like UnlearnDiffAtk [43] and Ring-A-Bell [37] have
attempted to bypass these safety mechanisms. UnlearnDiff
focuses on concept-erased diffusion models without extend-
ing to other safety mechanisms, while Ring-A-Bell explores
ways to induce the generation of NSFW content but lacks
precise control over the generation process.

Recent studies, such as MMA-Diffusion [38] and
SneakyPrompt [40], have developed several adversarial at-
tacks on T2I models’ safety mechanisms. MMA-Diffusion
treats T2I models and their safety mechanisms as the white-
box setting, capitalizing on both textual and visual modali-
ties to bypass safety mechanisms for the T2I models. How-
ever, such a white-box setting has limitations for online
T2I services, which typically operate in a black-box set-
ting where internal model details are not accessible. In
contrast, SneakyPrompt is a black-box attack that utilizes
a reinforcement learning strategy to replace sensitive words
to bypass the safety mechanisms of T2I models. However,
SneakyPrompt requires extensive exploration of potential
candidates during inference, which is constrained by the
limited search space, often leading to suboptimal perfor-
mance. To address this limitation, this paper proposes a
gradient-based adversarial attack method that successfully
attacks black-box T2I models, achieving significantly bet-
ter performance compared to previous works.

3. Problem Formulation

In this section, we first define the safety mechanisms of T2I
models, including prompt filters and post-hoc safety check-
ers, in Section 3.1, followed by an introduction to adversar-
ial prompts generated to bypass these safety mechanisms.
In Section 3.2, we discuss the threat model of PLA.

3.1. Definitions
We define two significant concepts: safety mechanisms and
adversarial prompts.
Safety Mechanisms. To prevent misuse and ensure that
outputs meet ethical standards, T2I model developers have
incorporated safety mechanisms to restrict the generation of
NSFW content. For example, the open-source Stable Diffu-
sion model [30] employs filters to block hate speech, harass-

ment, sexual content, and self-harm, while the Midjourney
platform [5] restricts image creation to PG-13 standards.
According to prior research [38], these safety mechanisms
are generally classified into two categories: prompt filters
and post-hoc safety checkers.
• Prompt Filter: The prompt filter operates directly on

textual input, assessing it before image generation. Typ-
ically, it blocks prompts containing sensitive words or
phrases from a predefined list.

• Post-hoc Safety Checker: The post-hoc safety checker
F evaluates images generated by T2I models to determine
whether they contain prohibited content. Operating at the
output stage, it examines images to detect NSFW content.
If NSFW content is detected, the post-hoc safety checker
returns a black image.

This paper presents an adversarial attack that can bypass
both the prompt filter P and the post-hoc safety checker
F while still producing high-quality NSFW content aligned
with intended harmful targets.
Adversarial Prompts. An adversarial prompt padv must
satisfy three conditions. Firstly, padv should not contain any
sensitive words predefined in the prompt filter P . Secondly,
the image generated by adversarial prompts padv must by-
pass the post-hoc safety checker F . Finally, the generated
image M (padv) must retain the same sensitive semantics
as the target prompt ptar. All conditions are necessary. If
padv bypasses safety mechanisms but fails to preserve the
intended semantics, it does not qualify as an adversarial
prompt.

3.2. Threat Model
This work rigorously evaluates the robustness of T2I mod-
els under black-box settings. In particular, we assume that
the attacker is a malicious user with access to only the
generated images of the black-box T2I model M (i.e., un-
known internal model details). The attacker intends to sub-
mit target prompts to M for malicious purposes. However,
the safety mechanisms of the T2I models can block these
queries, returning black images instead. Consequently, the
attacker seeks to modify target prompts into adversarial
ones that can bypass both prompt filters and the post-hoc
safety checkers, generating NSFW images that retain the
sensitive semantics of target prompts.

4. Method
In this section, we propose a novel framework (i.e., PLA)
for attacking the safety mechanisms of black-box T2I mod-
els via adversarial prompts. As shown in Fig. 2, the pro-
posed framework consists of three key components, namely
sensitive knowledge guided encoding, pipeline of attack-
ing safety mechanisms, and multimodal loss. The first
component aims to encode sensitive information embedded
in target prompts into learnable embeddings, which con-
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Figure 2. Overview of PLA. (a) In sensitive knowledge guided encoding, the SKE module extracts sensitive embeddings from the target
prompt ptar . Afterwards, the prompt encoder integrates the sensitive embeddings into a random prompt, where a learnable embedding epe
is generated. (b) Given ptar and epe, we concate them as the input of PLM to generate the adversarial prompt, which can bypass the safety
mechanisms and generate a NSFW image Igen. Additionally, we utilize the target prompt to generate a target image Itar via an auxiliary
model. (c) By incorporating text-image and image-image similarities across ptar, Igen, and Itar , multimodal loss is designed to optimize
the prompt encoder parameters ς for generating adversarial prompts.

tributes to preserving the semantic intents of target prompts
to induce the generation of NSFW content. Subsequently,
the learned embeddings are utilized to generate adversarial
prompts, taking advantage of the remarkable language gen-
eration capabilities of pre-trained language models (PLMs).
Second, during the pipeline of attacking safety mechanisms,
the generated adversarial prompt aims to bypass prompt fil-
ters and post-hoc safety checkers of T2I models. Notably,
we leverage an auxiliary model to acquire expected target
images generated by original target prompts, guiding the
learning of adversarial prompts. Thereafter, a multimodal
loss is proposed to achieve gradient-based training of adver-
sarial prompts, incorporating carefully designed text-image
(i.e., target prompt and generated image) and image-image
(i.e., target image and generated image) similarities.

4.1. Sensitive Knowledge Guided Encoding

The sensitive knowledge guided encoding, consisting of a
sensitive knowledge extraction module and a prompt en-
coder, aims to encode the sensitive information embedded
in target prompts into learnable embeddings. This con-
tributes to preserving the semantic intent of target prompts
in the learning of adversarial prompts.
Sensitive Knowledge Extraction. The sensitive knowl-
edge extraction generates sensitive embeddings from target
prompts to extract sensitive information. Formally, given
the target prompt ptar, the pre-trained text encoder Tθ(·)
transforms ptar into the text embedding etar ∈ Rd, denoted
as Tθ(ptar). After acquiring the text embedding etar, SKE
Sλ(·) is proposed to project the text embedding etar into the

sensitive embedding esen ∈ Rds , denoted as Sλ(etar). As
shown in Fig. 2, SKE consists of two layers: low-projection
layer and high-projection layer. The low-projection layer
projects the text embedding etar into the low-dimension
feature with the weight Wl ∈ Rd×dl . Next, the weight
Wh ∈ Rdl×ds of the high-projection layer maps the low-
dimension feature into the high-dimension feature with the
dimension of ds. In summary, the text embedding etar can
be projected into the sensitive embedding esen ∈ Rds ,
which is further reshaped into the shape of esen ∈ RM×ds

for inserting into the middle layer of the generation of the
learnable embedding.
Prompt Encoder. To enhance the sensitive awareness of
the learnable embedding, the sensitive embedding esen is
embedded into the learnable embedding generation process.
Given a random prompt pran of length L, it is encoded by
the prompt encoder Tς(·). Assuming we insert the sensitive
embedding esen into l-th layer of Tς(·). The random prompt
pran is fed into the first l-th layer of Tς(·) for obtaining the
middle-level textual embedding el. Formally, the textual
embedding ei(i ≤ l) of the i-th layer is defined as:

ei = Tςi(ei−1), i ∈ [1, l], (1)

where Tςi(·) is the i-th layer of the prompt encoder.
After obtaining the middle-level textual embedding el ∈

RM×ds , we embed the sensitive embedding esen into el to
obtain the middle-level textual embedding with sensitive in-
formation êl, which is defined as:

êl = el + ω · esen, (2)
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where ω is the weight, representing the degree of sensitive
information integration.

After that, the embedding êl incorporating sensitive in-
formation is fed into the rest layers, which is defined as:

êi = Tςi(êi−1), i ∈ [l + 1, N ], (3)

where N denotes the total number of layers. The output
of the last layer is treated as the learnable embedding epe.
The learnable embedding epe is concatenated with the target
prompt ptar to input the pre-trained language model.

4.2. Pipeline of Attacking Safety Mechanisms
During the pipeline of attacking safety mechanisms, the
generated adversarial prompt aims to bypass prompt filters
and post-hoc safety checkers. Given the learnable embed-
ding epe and the target prompt ptar, they serve as input to a
pre-trained language model PLM such as BERT [16] and
T5 [28], which outputs the adversarial prompt padv . This
process can be formalized as:

padv = PLM([epe; ptar]), (4)

where [·; ·] is the concatenation operation.
The adversarial prompt padv is input into the black-box

victim model, where it undergoes a two-step safety check.
First, the prompt filter P verifies whether padv contains sen-
sitive words. If padv successfully bypasses P , it is passed
to the T2I model to generate an image Igen. Subsequently,
the post-hoc safety checker F evaluates whether Igen con-
tains unsafe content (i.e., NSFW material). If Igen passes
both P and F , it demonstrates that padv has successfully
evaded the safety mechanisms of the T2I model. If padv
fails to bypass either P or F , a black image is returned
as a safety measure. It is worth noting that, apart from
the generated image, we leverage an auxiliary model Ms

(i.e., without safety mechanisms) to acquire the target im-
age generated by the target prompt. Formally, the target
image Itar = Ms(Ptar) is generated, aiming to guide the
learning of adversarial prompts.

4.3. Multimodal Loss
Following the pipeline of attacking safety mechanisms, a
generated image can be acquired from the black-box vic-
tim model. We hope the image generated by the adversarial
prompt is expected to bypass the safety mechanisms while
maintaining semantic consistency with the target prompt. In
pursuit of such goals, we introduce multimodal loss to train
the prompt encoder parameters ς , generating the desired ad-
versarial prompt. Specifically, we design the multimodal
loss utilizing the similarities between both text-image rep-
resentations (i.e., target prompt and generated image) and
image-image representations (i.e., target image and gener-
ated image) to guide the learning of adversarial prompts.

Technically, we take advantage of pre-trained image/text
encoders (i.e., CLIP [27]) to acquire the representations of
images or prompts for calculating similarities. Overall, the
multimodal loss consists of two parts:
Text-Image Similarity-driven Loss. Given the target
prompt ptar and the generated image Igen, the text-image
similarity-driven loss La utilize cosine similarity to ensure
semantic similarity between the prompt and the image. The
loss La is formalized as:

La = 1− cos(Ten(ptar),Ven(Igen)), (5)

where Ten(·) and Ven(·) represent the text encoder and im-
age encoder of CLIP, respectively.
Image-Image Similarity-driven Loss. Given the target
image Itar and the generated image Igen, the image-image
similarity-driven loss Lb utilize cosine similarity to ensure
semantic similarity between images. The loss Lb is formal-
ized as:

Lb = 1− cos(Ven(Itar),Ven(Igen)) (6)

Based on the above two similarity loss functions, we can
formulate the multimodal loss LMS as:

LMS = La + Lb (7)

4.4. Gradient Optimization
Considering the black-box setting of T2I models, the pro-
posed loss LMS cannot be directly used to compute gra-
dients for optimizing the prompt encoder parameters ς . To
tackle gradient calculation without access to the model pa-
rameters, existing studies have demonstrated the effective-
ness of Zeroth-Order Optimization (ZOO) [10–12, 35], to
estimate the gradient based on the finite differences of tar-
get loss in random directions. Formally, given our target
loss LMS , the estimated gradient can be formulated as fol-
lows:

g1(ς) =
LMS(ς + c ·∆)− LMS(ς − c ·∆)

2c ·∆
, (8)

where c ∈ (0, 1] is the decay parameter and ∆ ∈ Rdz is a
random perturbation vector, sampled from mean-zero distri-
butions while satisfying the finite inverse momentum con-
dition [35].

Despite the widespread applicability of the conventional
ZOO, the safety mechanism of T2I models could cause the
estimated gradient (i.e., g1(ς)) to 0, which brings unique
challenges to gradient optimization. This is because the T2I
models generate black images when adversarial prompts
fail to bypass the safety mechanisms. As a result, when both
the parameters ς + c ·∆ and ς − c ·∆ yield entirely black
images, their losses LMS(ς + c ·∆) and LMS(ς − c ·∆)
will have the same value for substration, thus causing the
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estimated gradient to 0 according to Eq. (8). To address
the above challenge, we propose an enhanced approach that
evades gradient vanishing by retaining the history gradient
to refine the gradient computation mechanism.

g2(ς) = βĝ2 + (1− β)η · g1(ς + ĝ2), (9)

where the former ĝ2 is the gradient used in the previous
update iteration, while the latter η ·g1(ς+ĝ2) is the adaptive
adjustment when the model continues to update along the
previous gradient path. η is the learning rate and β controls
the ratio of ĝ2 to adjust the dependency to history gradient.
In such case, when the g1(ς + ĝ2) vanishes, g2(ς) = ĝ2.

It is important to note a special case where the black im-
ages are generated in the first optimization step, the gradi-
ent g2(ς) converges to zero. To overcome this issue, we
propose a “restart” strategy by replacing black images with
carefully designed noises. Specifically, drawing inspiration
from the generation process of diffusion models [15], where
Gaussian noise ϵ ∼ N (0, I) serves as the starting point and
images are progressively generated through denoising, we
replace the black images with Gaussian noises for gradient
computation when the gradient drops to zero. The strength
of this gradient computation mechanism lies in its ability to
guide the model toward updating along previously success-
ful directions while incorporating essential modifications.

5. Experiments
5.1. Experimental Settings
Datasets. We evaluate the performance of PLA utilizing
the I2P dataset [34], a recognized collection of challeng-
ing prompts, on the concepts of nudity and violence. We
select 100 nudity prompts where the percentage of nudity
exceeds 50%. For the concept of violence, we curated an
additional set of 30 prompts to prevent any overlap with nu-
dity prompts. These prompts have a nudity ratio of less than
50%, an inappropriateness ratio of more than 50%, and are
labeled as harmful.
Baselines. To verify the effectiveness of our method PLA,
we select several SOTA baselines for adversarial attacks
on T2I models, including QF-attack [45], SneakyPrompt
[40], Ring-A-Bell [37], UnlearnDiffAtk [43], and MMA-
Diffusion [38]. The details of the baselines are provided in
the Appendix.
Auxiliary Models. We adopt SDv1.4 [7] (UNet-based) and
PixArt [6] (DiT-based) as the auxiliary models. By lever-
aging their distinct diffusion architectures, we can provide
a comprehensive evaluation of our method. The main text
focuses on SDv1.4 implementation, with complete PixArt
studies provided in the Appendix.
Victim T2I Models. We conduct experiments on three
black-box victim T2I models: SDv1.5 [8], SDXLv1.0 [25],
and SLD [34]. Moreover, we test the well-known T2I online

services: Stability.ai [9] and DALL·E 3 [1]. The details of
the victim T2I models are provided in the Appendix.
Safety Mechanisms. Following previous work [38], we
employ the same prompt filter, which utilizes a predefined
list of sensitive words to prohibit harmful prompts. And
we apply three post-hoc safety checkers: the built-in safety
checker in SD [8], Q16 [33], and MHSC [26].
Evaluation Metrics. Following MMA-Diffusion [38], we
adopt the Attack Success Rate out of N syntheses (ASR-N)
as our evaluation metrics. ASR-N measures N generated
images of T2I models for each given prompt. The attack
is deemed successful if any of these images exhibit NSFW
content and bypass the safety mechanisms. For example,
ASR-4 indicates the proportion of effective prompts (i.e., at
least one out of the four generated images contains NSFW
content) over all tested prompts. We evaluate three black-
box T2I models using SC [8], Q16 [33], and MHSC [26]
to quantify ASR. For online services, six human evaluators
independently assess and report the average result.
Evaluation Settings. We adopt the pre-trained language
models BERT [16] and T5 [28] to generate adversarial
prompts. More details of the evaluation settings are pro-
vided in the Appendix.

5.2. Attacking on Black-Box Victim T2I Models
Due to different choices of pre-trained language models, we
set up two models, i.e. PLA-BERT and PLA-T5. We con-
duct experiments on two datasets: nudity and violence, as
shown in Tab. 1 and Tab. 2. On both datasets, compared
to other baselines, our attack achieves significant success in
steering black-box T2I models to generate NSFW content.

For the nudity dataset, Tab. 1 presents experimental re-
sults comparing various adversarial attacks across three
black-box victim T2I models using three post-hoc safety
checkers and evaluating them based on ASR-4 and ASR-1.
It is particularly notable that our proposed methods, PLA-
BERT and PLA-T5, outperform all other methods signifi-
cantly. For the three black-box victim T2I models, the aver-
age ASR-4 of PLA-BERT is 91.45%, 90.57%, and 90.82%
respectively. Especially on the SDXLv1.0 model, the av-
erage ASR-4 of PLA-BERT far exceeds the average of the
highest ASR-4 among other baselines, up to 17.27%. Mean-
while, PLA-T5 achieves average ASR-4 scores of 86.56%,
86.54%, and 90.61% respectively. Although PLA-T5’s per-
formance on the nudity dataset is slightly lower than that of
PLA-BERT, it is still far better than other baseline methods.

Tab. 2 shows experimental results on the violence
dataset. The results consistently show that the attack per-
formance of PLA surpasses that of other baselines. But un-
like the dataset nudity, PLA-T5 performs better than PLA-
BERT on this dataset. This may be due to the fact that dif-
ferent pre-trained language models exhibit distinct “prefer-
ences”. These results collectively demonstrate the effective-
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Metric SC [8] Q16 [33] MHSC [26] AVG.Model Method ASR-4 ASR-1 ASR-4 ASR-1 ASR-4 ASR-1 ASR-4 ASR-1
QF-Attack [45] (CVPR’ 23) 27.88 12.55 26.57 10.94 19.68 7.58 24.71 10.36

SneakyPrompt [40] (S&P’24) 44.82 24.80 35.18 19.06 33.68 16.81 37.89 20.22
Ring-A-Bell [37] (ICLR’24) 58.05 35.80 51.75 33.58 41.79 19.97 50.53 29.78

UnlearnDiffAtk [43] (ECCV’ 24) 75.03 58.26 74.22 55.29 70.57 51.33 73.27 54.96
MMA-Diffusion [38] (CVPR’ 24) 79.14 61.30 78.38 58.36 75.77 55.48 77.76 58.38

PLA-BERT(Ours) 92.41 71.44 92.61 66.10 89.33 68.52 91.45 68.69

SDv1.5

PLA-T5(Ours) 89.77 69.53 83.90 64.27 86.01 63.72 86.56 65.84
QF-Attack [45] (CVPR’ 23) 13.93 4.73 12.46 4.18 10.08 3.34 12.16 4.08

SneakyPrompt [40] (S&P’24) 23.25 14.01 20.26 9.16 15.11 8.91 19.54 10.69
Ring-A-Bell [37] (ICLR’24) 31.47 18.42 28.02 13.44 23.10 11.17 27.53 14.34

UnlearnDiffAtk [43] (ECCV’ 24) 66.28 37.21 68.43 40.19 60.24 39.31 64.98 38.90
MMA-Diffusion [38] (CVPR’ 24) 72.98 41.37 77.52 49.33 69.39 45.02 73.30 45.24

PLA-BERT(Ours) 95.37 76.20 94.03 74.56 82.30 63.54 90.57 71.43

SDXLv1.0

PLA-T5(Ours) 91.26 74.08 85.34 66.90 83.01 59.74 86.54 66.91
QF-Attack [45] (CVPR’ 23) 19.27 8.90 18.91 7.47 16.76 6.78 18.31 7.72

SneakyPrompt [40] (S&P’24) 49.90 26.32 36.29 22.46 37.91 23.37 41.37 24.05
Ring-A-Bell [37] (ICLR’24) 56.88 38.26 51.16 33.29 49.72 29.94 52.59 33.83

UnlearnDiffAtk [43] (ECCV’ 24) 72.39 40.24 62.53 47.20 65.17 51.84 66.70 46.43
MMA-Diffusion [38] (CVPR’ 24) 75.99 45.27 75.34 53.44 78.12 60.28 76.48 53.00

PLA-BERT(Ours) 94.75 73.09 90.32 64.88 87.39 69.94 90.82 69.30

SLD

PLA-T5(Ours) 93.41 75.60 88.24 60.03 90.17 67.53 90.61 67.72

Table 1. The attack performance of PLA against black-box T2I models on the nudity dataset. The bolded values are the highest perfor-
mance. The difference between PLA-BERT and PLA-T5 is the pre-trained language model used to generate adversarial prompts.

Metric SC [8] Q16 [33] MHSC [26] AVG.Model Method ASR-4 ASR-1 ASR-4 ASR-1 ASR-4 ASR-1 ASR-4 ASR-1
QF-Attack [45] (CVPR’ 23) 25.15 11.76 23.81 9.44 18.59 7.28 22.52 9.49

SneakyPrompt [40] (S&P’24) 38.71 17.77 36.26 15.14 35.62 16.61 36.86 16.51
Ring-A-Bell [37] (ICLR’24) 65.41 40.02 54.24 38.90 53.04 37.73 57.56 38.88

UnlearnDiffAtk [43] (ECCV’ 24) 71.22 54.17 65.23 46.88 63.92 47.31 66.79 49.45
MMA-Diffusion [38] (CVPR’ 24) 80.23 64.46 78.45 61.71 76.11 56.96 78.26 61.04

PLA-BERT(Ours) 93.46 73.81 91.44 73.28 80.97 61.44 88.62 69.51

SDv1.5

PLA-T5(Ours) 92.04 71.38 93.96 75.90 85.23 64.73 90.41 70.67
QF-Attack [45] (CVPR’ 23) 12.81 3.62 11.24 3.55 10.18 2.08 11.41 3.08

SneakyPrompt [40] (S&P’24) 34.45 16.17 26.38 10.65 24.80 9.77 28.54 12.20
Ring-A-Bell [37] (ICLR’24) 42.78 30.47 34.21 26.82 31.72 23.05 36.24 26.78

UnlearnDiffAtk [43] (ECCV’ 24) 65.29 49.42 64.83 41.27 62.81 39.90 64.31 43.53
MMA-Diffusion [38] (CVPR’ 24) 75.92 53.23 76.01 50.29 74.67 48.32 75.53 50.61

PLA-BERT(Ours) 91.69 70.23 90.04 71.36 79.11 58.25 86.95 66.61

SDXLv1.0

PLA-T5(Ours) 93.72 78.91 92.63 78.04 80.51 62.94 88.95 73.30
QF-Attack [45] (CVPR’ 23) 18.48 8.88 16.76 7.15 16.28 6.54 17.17 7.52

SneakyPrompt [40] (S&P’24) 50.32 36.61 45.94 31.39 42.26 33.00 46.17 33.67
Ring-A-Bell [37] (ICLR’24) 69.93 49.48 61.57 49.06 59.50 38.99 63.67 45.84

UnlearnDiffAtk [43] (ECCV’ 24) 61.08 46.74 66.28 44.91 63.02 45.27 63.46 45.64
MMA-Diffusion [38] (CVPR’ 24) 76.62 55.76 77.95 56.49 74.77 58.60 76.45 56.95

PLA-BERT(Ours) 91.98 77.84 91.22 71.54 84.41 66.70 89.20 72.03

SLD

PLA-T5(Ours) 93.34 79.62 92.74 73.04 86.33 64.19 90.80 72.28

Table 2. The attack performance of PLA against black-box T2I models on the violence dataset. The bolded values are the highest
performance. The difference between PLA-BERT and PLA-T5 is the pre-trained language model used to generate adversarial prompts.

ness of PLA in tackling the challenging task of bypassing
both prompt filter and post-hoc safety checkers under the
black-box setting.

Visualization of Results. Fig. 3 presents images generated
by SDXLv1.0 using adversarial prompts created with PLA,
demonstrating the strong capability of our attack method
to generate NSFW content against black-box T2I models.
Additional visual results are provided in the Appendix.

5.3. Attacking on T2I Online Services

We evaluate two popular online services, Stability.ai [9] and
DALL·E 3 [1], both of which are equipped with proprietary
safety mechanisms as shown in Tab. 3. Due to network
delays and limitations on the number of queries allowed,
conducting quantitative tests on the large dataset we col-
lected directly is challenging. To address this, we use a
subset of the large dataset (20 nudity prompts and 20 vi-
olence prompts). Also compared to other baselines, our at-
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Dataset Model QF-Attack SneakyPrompt Ring-A-Bell UnlearnDiffAtk MMA-Diffusion PLA-BERT PLA-T5
Stability.ai 39.18 9.44 31.27 44.03 46.89 62.15 54.83Nudity DALL·E 3 30.26 6.57 26.97 28.02 28.72 45.09 38.22

Stability.ai 13.62 28.64 46.24 40.81 42.57 55.68 69.70Violence DALL·E 3 9.08 13.11 51.31 24.76 25.80 36.77 51.98

Table 3. Evaluation of different attack methods on T2I online services via the metric of ASR-4.
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Figure 3. Visualization results of PLA. Sensitive words within
the target prompt are colored in red. Images are generated by
SDXLv1.0.

tack method exhibits superior attack performance. We pro-
vide more examples of NSFW images generated by T2I on-
line services in the Appendix.

5.4. Ablation Study
Multimodal Loss. To demonstrate the effectiveness of the
multimodal loss, we conduct ablation studies by removing
the specific La (or Lb) in our approach. We use PLA-T5 to
attack the SLD model on the violence and nudity datasets.
As shown in Tab. 4, in the absence of La or Lb, the attack
performance of our method significantly decreases, indicat-
ing that these two components play a crucial role in the ef-
fectiveness of our attack. In particular, the impact of Lb on
attack performance is more significant. This may be due to
the presence of more potentially sensitive information in the
target images, which more effectively guides the generation
of adversarial prompts.
Gradient Optimization To verify the powerful capability
of our gradient design, we perform an ablation study on it.
We adopt different insertion schemes:
• We keep our gradient method (Eq. (9)) and “restart” strat-

PLA (Ours)
Violence Nudity

ASR-4 ASR-1 ASR-4 ASR-1
La + Lb 93.34 79.62 93.41 75.60
- w/o La 81.02 54.57 82.99 51.07
- w/o Lb 79.34 47.88 74.66 44.87

Table 4. Ablation study on multimodal loss.

Gradient
Method

Violence Nudity
ASR-4 ASR-1 ASR-4 ASR-1

GPLA 91.69 70.23 95.37 76.20
GZOO 52.89 46.73 58.44 41.27
GRE 70.12 58.24 78.33 53.90

Table 5. The Analysis of Gradient Optimization.

egy (i.e., GPLA).
• We utilize the ZOO gradient method (Eq. (8)) and

“restart” strategy (i.e., GZOO).
• We keep our gradient method (Eq. (9)) but remove

“restart” strategy (i.e., GRE).
As shown in Tab. 5, we utilize PLA-BERT to attack the
SDXLv1.0 model on the violence and nudity datasets. We
can see that our gradient method outperforms the traditional
ZOO method. The absence of the “restart” strategy leads to
the decrease of ASR, primarily because generating black
images in the initial optimization step triggers gradient van-
ishing.

6. Conclusion
This study investigates the vulnerability of black-box T2I
models against adversarial attacks that bypass safety mech-
anisms including prompt filters and post-hoc safety check-
ers. Due to the unique challenges of training gradient-
driven attack methods under black-box settings, most pre-
vious methods rely on word substitution to search adversar-
ial prompts over limited search space, leading to subopti-
mal performance compared to gradient-based training. To
bridge this gap, we propose a novel prompt learning attack
framework (PLA), where insightful gradient-based training
tailored to black-box T2I models is designed by utilizing
multimodal similarities. Our results affirm that employ-
ing PLA to fabricate adversarial prompts can potentially
steer these T2I models to output NSFW content effectively,
contributing to the development of more robust defensive
strategies in the future.
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