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MalFlows: Context-aware Fusion of Heterogeneous
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Zhaoyi Meng, Fenglei Xu, Wenxiang Zhao, Wansen Wang, Wenchao Huang, Jie Cui, Hong Zhong, and Yan Xiong

Abstract—Static analysis, a fundamental technique in Android
app examination, enables the extraction of control flows, data
flows, and inter-component communications (ICCs), all of which
are essential for malware detection. However, existing meth-
ods struggle to leverage the semantic complementarity across
different types of flows for representing program behaviors,
and their context-unaware nature further hinders the accuracy
of cross-flow semantic integration. We propose and implement
MalFlows, a novel technique that achieves context-aware fusion
of heterogeneous flow semantics for Android malware detection.
Our goal is to leverage complementary strengths of the three
types of flow-related information for precise app profiling. We
adopt a heterogeneous information network (HIN) to model
the rich semantics across these program flows. We further
propose flow2vec, a context-aware HIN embedding technique that
distinguishes the semantics of HIN entities as needed based on
contextual constraints across different flows and learns accurate
app representations through the joint use of multiple meta-paths.
The representations are finally fed into a channel-attention-based
deep neural network for malware classification. To the best of our
knowledge, this is the first study to comprehensively aggregate
the strengths of diverse flow-related information for assessing
maliciousness within apps. We evaluate MalFlows on a large-
scale dataset comprising over 20 million flow instances extracted
from more than 31,000 real-world apps. Experimental results
demonstrate that MalFlows outperforms representative baselines
in Android malware detection, and meanwhile, validate the ef-
fectiveness of flow2vec in accurately learning app representations
from the HIN constructed over the heterogeneous flows.

I. INTRODUCTION

ITH the highest market share worldwide on mobile
Woperating systems [1] and the openness of develop-
ment, the Android platform is targeted by various malware and
other potentially harmful apps. Such apps steal users’ privacy,
abuse SMS/CALL, subscribe to premium services silently, efc.
Meanwhile, the characteristics of Android malware have been
evolving over years [2]. The circumstance calls for effective
and reliable detection techniques in the Android ecosystem.

Static analysis techniques commonly extract control flows,
data flows, and inter-component communications (ICCs) as
fundamental products for the examination of inherent se-
mantics within app behaviors to uncover hidden malicious
activities [3]—[5]. Control flows determine the execution orders
of program statements, data flows trace the paths that data
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takes through the system from input to output, and ICCs man-
age the interactions between different app components. The
three types of flow-related semantic information are inherently
associated with various APIs, involving triggering conditions,
data transmissions and communication modes, which serve as
crucial indicators for assessing maliciousness of app behaviors.
Thus, effectively leveraging these flow-related semantics is
essential for achieving precise malware detection.

Existing malware detection schemes have not fully lever-
aged the synergistic capabilities of heterogeneous flow seman-
tics. In particular, flow-based approaches usually utilize only a
part of the information within apps in isolation. For instance,
MUDFLOW [6], TriFlow [7], and Complex-Flows [8] detected
malware by learning usage characteristics of sensitive data
flows. ICCDetector [9] focused on ICC-based features for de-
tection. VAHunt [10] and Difuzer [11] respectively identified
malicious virtualization-based apps and logic bombs, using
control-flow analysis and taint tracking in separate steps. These
approaches can result in incomplete analysis and potentially
miss certain malicious behaviors. For non-flow-based methods,
the lack of the fine-grained program clues makes it challenging
to assess intentions of app behaviors. This limitation applies
to conventional [12], machine learning(ML)-based [13]-[16],
and large language model(LLM)-based [17] techniques.

To address the problem above, combining the semantics of
different types of program flows offers a promising direction
for capturing malicious behaviors more effectively. Specifi-
cally, each flow type provides a distinct view for characterizing
app behaviors. For example, a data-flow path can explicitly
trace how sensitive data moves from a source to a sink [4],
providing crucial insights into potential data leaks. Each indi-
vidual view is capable of profiling particular characteristics of
malware but is limited by its scope of assessment. Therefore,
properly integrating the semantics of multiple flow types
holds promise for leveraging their complementary strengths
to enhance the understanding of app behaviors and uncovering
hidden maliciousness within app code.

Existing detection methods with multi-view fusion tech-
niques struggle to model flow-related information accurately,
which in turn weakens the expressiveness of the fused repre-
sentations. Many methods do not explicitly model the relations
between the flow-based features across different views. In-
stead, they utilize only partial aspects of flow-related features
indirectly, e.g., sensitive API usage, function calls [15], [18]-
[20]. Given the continuity and interdependence of flow char-
acteristics within the views, the indirect modeling hinders the
extraction of meaningful semantic associations. Furthermore,
the methods that explicitly represent flow-related information
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TABLE I
STATISTICAL RESULTS OF TOP-10 KEY ELEMENTS FROM THE VIEWS OF CONTROL FLOWS, DATA FLOWS, AND ICCS ON OUR WHOLE DATASET

Triggering Conditions Guarded APIs (Simplified)
Benignware Malware # Benignware # Malware #
NO_CATEGORY 72828 NO_CATEGORY 149114 | res.AssetManager.open 4035 res.AssetManager.open 46456
NETWORK_INFORMATION 6690 NETWORK_INFORMATION 43512 HashMap.put 3920 res.Resources.getAssets 46167
DATABASE_INFORMATION 2908 DATABASE_INFORMATION 824 String.startsWith 3474 FileOutputStream. write 27411
LOCATION_INFORMATION 819 UNIQUE_IDENTIFIER 620 res.Resources.getAssets 3419 File.getParentFile 18802
BLUETOOTH_INFORMATION | 241 LOCATION_INFORMATION 301 FileOutputStream.write 3317 File.getAbsolutePath 13612
CALENDAR_INFORMATION 181 BLUETOOTH_INFORMATION | 59 File.getPath 2620 File.getCanonicalPath 11543
UNIQUE_IDENTIFIER 169 CALENDAR_INFORMATION 33 Activity.getIntent 2256 URLConnection.setRequestProperty 1721
FILE_INFORMATION 90 ACCOUNT_INFORMATION 4 File.getAbsolutePath 2197 URLConnection.getInputStream 893
NFC 62 NEC 1 File.getParentFile 2062 HttpURLConnection.setRequestMethod | 856
ACCOUNT_INFORMATION 2 FILE_INFORMATION 0 Class.getName 1772 Camera.setFlashMode 467
Source APIs (Simplified) Sink APIs (Simplified)
Benignware # Malware # Benignware # Malware #
Class.getName 1140128 | Class.getDeclaredMethod 640052 HashMap.put 2234284 | HashMap.put 1663037
HashMap.get 554018 | Class.getName 481456 | String.substring 1950565 | String.substring 710207
reflect.Field.get 534559 HashMap.get 235556 String.startsWith 1005406 | String.startsWith 477782
Hashtable.get 297028 | GregorianCalendar.get 212738 | reflect.Field.set 550355 | JSONObject.put 193678
Class.getSimpleName 285725 | reflect.Field.get 201261 URL.openConnection 382903 | reflect.Field.set 168789
ArrayList.get 275310 | ArrayList.get 198304 | Log.d 317969 | URL.openConnection 130237
Array.newInstance 255319 | System.getProperty 103814 | Log.v 265275 | Camera.setPreviewSize 82974
System.getProperty 250467 SQLiteDatabase.query 54504 StringBuffer.setLength 216059 FileOutputStream.write 65697
ThreadLocal.get 247968 | reflect.Array.get 53393 JSONObject.put 168076 | Log.w 65323
Class.getMethod 178051 File.getPath 51140 ThreadLocal.set 158014 StringBuffer.setLength 61138
Components Actions of Intents (Simplified)
Benignware # Malware # Benignware # Malware #
Activity 1072155 | Activity 2720802 | VIEW 93533 VIEW 135251
Service 238136 | Service 387539 | MAIN 69091 MAIN 57902
Broadcast Receiver 172222 Broadcast Receiver 212052 MESSAGING_EVENT 22181 CONNECTIVITY_CHANGE 36872
Conent Provider 96457 Conent Provider 149763 BOOT_COMPLETED 20984 BOOT_COMPLETED 28689
/ / / / RECEIVE 18204 USER_PRESENT 23371
/ / / / CHOOSER 17334 PACKAGE_REMOVED 21449
/ / / / INSTANCE_ID_EVENT 13911 PACKAGE_ADDED 13972
/ / / / CONNECTIVITY_CHANGE | 12664 com.taobao.accs.intent.action.RECEIVE | 8856
/ / / / REGISTER 11680 ACTION_POWER_CONNECTED 8788
/ / / / INSTALL_REFERRER 11300 ACTION_POWER_DISCONNECTED 8738

as pre-defined graph structures often overlook the heterogene-
ity inherent in various flows [21], [22], which potentially leads
to the loss of critical behavioral semantics. For instance, source
APIs, sink APIs, and ICC links contribute differently to the
semantics of data flows and should therefore be weighted
accordingly in maliciousness analysis.

Directly fusing the semantics of different types of flows us-
ing existing heterogeneous graph-based methods [23]-[27] is
technically non-trivial. Specifically, the semantics of a program
flow depend on its context, e.g., the partial order among its
constituent entities. However, the methods above are typically
context-unaware, making it difficult to distinguish entities of
the same type that appear in different relations, which will be
illustrated in Section III-D1. As a result, they fail to capture
the mutual constraints and dependencies across the flows, and
consequently allow unrelated flows from different apps to
be mistakenly combined, leading to semantic confusion and
compromising the reliability of the learned representations.

We propose and implement MalFlows, a novel technique
that achieves context-aware fusion of heterogeneous flow
semantics for Android malware detection. Our primary goal
is to leverage complementary strengths of the three types
of flow-related semantic information above for profiling app
precisely. Specifically, we explicitly model the relations among
entities from various flows using a heterogeneous information
network (HIN) [28]. To incorporate high-level semantics for
establishing inter-app relatedness, we construct a meta-path
group for each view. Each group consists of content-oriented
and action-oriented meta-paths designed to characterize com-
ponents, structures, or usage patterns of flows. To address

the computational and storage costs of mining HIN and in-
tegrate context awareness, we propose a new HIN embedding
approach named flow2vec, which learns low-dimensional rep-
resentations for HIN nodes while accurately preserving both
the structural and semantic properties of flows. Unlike existing
techniques [29]-[31], our approach effectively distinguishes
the semantics of HIN entities based on contextual constraints
across different flows as needed and jointly samples the
HIN along multiple meta-paths to enhance app representation
learning. We finally develop a channel-attention-based model
to fuse semantic embeddings from the views, weighting their
contributions for precise detection.

Our main contributions are summarized as follows:

« We propose and implement MalFlows, a novel technique
that achieves context-aware fusion of heterogeneous flow
semantics for Android malware detection. To the best of
our knowledge, it is the first study to comprehensively
aggregate the strengths of diverse program-flow-related
information for assessing maliciousness of apps.

o We design a new context-aware HIN embedding approach
named flow2vec, which distinguishes the semantics of
HIN entities based on contextual constraints across differ-
ent flows and learns accurate app representations through
the joint use of multiple meta-paths.

¢ Our comprehensive evaluations on over 31,000 real-world
apps and more than 20 millions program flow instances
demonstrate that MalFlows outperforms representative
baselines and validate the effectiveness of flow2vec in
representing flow-related semantics.

The rest of the paper is organized as follows: Section II
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Fig. 1. Overall architecture of MalFlows.

introduces our motivation. Section III explains MalFlows’s
architecture and the detailed methodology of MalFlows. Sec-
tion IV presents experimental results on MalFlows. Section V
discusses the limitations and future work. Section VI shows
the related work, and we conclude in Section VII.

II. MOTIVATION

To motivate our work, we conduct detailed statistical anal-
ysis of heterogeneous flows, including control flows, data
flows, and ICCs on large-scale apps, and then explain why
the three types of flows contribute to effective malware de-
tection. Specifically, we collect 31,301 real-world samples,
including 16,667 benignware samples and 14,634 malware
samples, spanning multiple years from AndroZoo [32]. We
then use publicly available tools [4], [5], [33], [34] to extract
triggering conditions, the guarded APIs, source APIs, sink
APIs, components, and actions of Intents corresponding to the
three types of flows respectively. The details of our dataset are
depicted in Section IV-A.

Table I lists top-10 key elements extracted from 2018-
2022 samples, where common prefixes (e.g., java.lang, an-
droid.content) are removed for brevity. Based on that, we make
the following observations:

(a) There exist clear distinctions between benignware
and malware in triggering conditions and guarded APIs.
Malware show higher frequencies of control logic associ-
ated with sensitive contexts, e.g., NETWORK_INFORMATION
and UNIQUE_IDENTIFIER, compared to benignware. More-
over, APIs about file and network operations, e.g., FileOut-
putStream.write and URLConnection.setRequestProperty, are
more frequently guarded in malware. In contrast, benign-
ware tend to guard APIs of general functionalities (e.g.,
HashMap.put, Activity.getintent). The observations indicate
that the combination of triggering conditions and guarded APIs
provides discriminative features for malware detection.

(b) The differences emerge in the usage of source APIs
and sink APIs between benignware and malware. While be-
nignware predominantly access standard reflection and collec-
tion sources, e.g., Class.getName and HashMap.get, malware
exhibit increased reliance on sensitive sources like Gregorian-
Calendar.get, and SQLiteDatabase.query. In the aspect of sink
APIs, benign usage is dominated by common data manipula-
tion APIs, e.g., HashMap.put and String.substring, whereas
malware frequently invoke sensitive sinks, e.g., JSONOb-
Jject.put, FileOutputStream.write, and Camera.setPreviewSize.
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This suggests that sources and sinks provide meaningful
features for malware detection.

(c) The analysis of ICCs reveals divergence in how benign-
ware and malware utilize components and actions of Intents.
Malware invoke more components, particularly Activity and
Service, which suggest a higher reliance on ICCs to coor-
dinate background or stealthy behaviors. Moreover, malware
frequently register for system-level actions, e.g., CONNECTIV-
ITY CHANGE, and PACKAGE_REMOVED, which are less
used by benignware. The patterns indicate that the ICC-based
features provide discriminative clues for malware detection.

(d) The three types of flows exhibit clear semantic re-
lations and complementarity. On the one hand, there exists
an intersection between guarded APIs and source/sink APIs.
For example, FileOutputStream.write appears in both guarded
APIs and sink APIs of malware. Class.getName occurs in
both guarded APIs and source APIs of benignware. On
the other hand, the components of different types of flows
are also explanatorily related. For instance, CONNECTIV-
ITY CHANGE in actions of Intents of malware can be seen
as an explanatory indicator for the use of a sink API named
URL.openConnection. This demonstrates that the semantics of
these heterogeneous flows exhibit the potential for integration,
which is beneficial for malware behavior analysis.

III. METHODOLOGY
A. Architecture

Figure 1 depicts the overall architecture of MalFlows,
consisting of four main components as follows:

Data Collection. The component obtains flow-based fea-
tures by off-the-shelf static analysis tools. Specifically,
MalFlows employs IccTA [5] to collect explicit and implicit
ICC links. Additionally, it uses FlowDroid [4] to gather intra-
and inter-component sensitive data-flow paths. Furthermore,
it gets conditional statements of the guarded sensitive APIs
by the Soot framework [33], [34]. Based on the raw data
above, MalFlows automatically extracts meaningful features
(e.g., trigger conditions, sensitive APIs), and then analyzes
various relations (e.g., condition-trigger-API) among different
types of entities (e.g., condition, API).

HIN Construction. The component constructs a HIN using
the flow-based features extracted by the previous component.
Specifically, a network schema is generated to model the
relations among various entities of heterogeneous flows. Based
on the schema, the HIN is constructed. After that, three
groups of meta-paths are designed from the HIN to capture



the relatedness over apps from different views of flows. To
simplify our design, each group of meta-paths include one
content-oriented meta-path and one action-oriented meta-path.

flow2vec. The component utilizes a context-aware HIN
embedding approach to generate low-dimensional representa-
tions of nodes in the HIN, while accurately preserving both
semantics and structural correlations between different types of
nodes. To ensure the semantic correctness of flow-related em-
beddings on the HIN, a flow-context-aware graph refinement
method is proposed to separate nodes based on their associated
contexts. Next, a random walk strategy guided by predefined
meta-path groups is designed to map the word-context concept
in a text corpus into the HIN. This strategy guarantees the
semantic completeness of flow-related information during the
sampling process on the HIN. Skip-gram is finally used to
learn node representations for the HIN.

Malware Detection. The component trains a channel-
attention-based deep neural network (DNN) model using the
vectors learned by flow2vec to determine whether a given app
is malicious. Specifically, a channel attention mechanism is
used to dynamically adjust the importance of the vectors from
different views, thereby enhancing the effectiveness of their
fusion. Finally, a multi-layer perceptron(MLP)-based classifier
is trained to produce a predicted label for the input app.

B. Data Collection

Based on the domain knowledge, we leverage existing static
analysis tools to extract features from three views centered
on control flows, data flows, ICCs. The flow-based features
contain various entities of apps (e.g., APIs, conditions, actions)
and rich semantic relations among them, all of which are
crucial to build the HIN in the following.

1) Feature Extraction from Control-flow View: Using con-
trol structures for sensitive operations is one of the common
tricks by which malware can be camouflaged as benign-
ware [11], [35]. To capture this kind of malicious intentions,
we obtain trigger conditions, as well as the APIs guarded by
the conditions within apps as follows.

We leverage the Soot framework to obtain the conditions
that control the executions of sensitive APIs. Specifically, app
code is first transformed into Jimple, the internal representation
of Soot [34]. Sensitive APIs are then positioned in the Jimple
code based on their API signatures. We extract the trigger con-
ditions and their triggering semantics based on AppScalpel’s
strategy [33] implemented by Soot APIs as follows.

We position the target conditional statement based on a
rule that the target statement is the predominator of an
invocation statement of the guarded sensitive API, but the
invocation statement is not its postdominator, and meanwhile,
the join point of the conditional statement’s branches is the
postdominator of the invocation statement. We next extract the
semantics of the obtained conditions by code instrumentation.
Specifically, the functionality of a source API that has infor-
mation flow to a conditional statement can be regarded as the
semantic of that statement. However, conditional statements
cannot be considered as sinks when using state-of-the-art
static taint analyzers [4], [36]. To address this limitation, we

instrument each conditional statement with a dummy method
ifStmt(), which takes the variables involved in the conditional
statement as parameters. The ifStmit() is static and declared
in a dummy class IfClass that contains all the instrumented
methods related to conditional statements. As depicted in
Listing 1 for an app', we add code at Line 8 to wrap the
parameters of the conditional statement at Line 9.

public final void b () {
LocationProvider locallLocationProvider;

do {
localLocationProvider = locallLocationManager.
getProvider ((String) ((Iterator)localObject2) .
next ());

} while (locallocationProvider.getAccuracy () != 2);

// A dummy method call for a conditional statement
+ IfClass.ifStmt (locallocationProvider, localObject2);
if((localLocationProvider == null) || (
locallocationManager.getProvider ( (String)
localObject2) .getAccuracy () !'= 1)) {
a(locallLocationManager. (oo2);
}
}

Listing 1. A simplified code snippet of a real-world malware sample named
com.Gamezoor.Grand.CityRacing.game for the instrumentation performed by
MalFlows (a Line with "+ represents the instrumented code).

When the instrumentation is complete, the newly generated
method calls are dynamically registered as sinks in FlowDroid.
Based on that, we can get the data flows from source APIs
and ifStmit(). We finally leverage the categories proposed by
SuSi [37] to summarize the semantics of the condition-related
sources. For example, the semantics of getDeviceld() and
getSubscriberld() are summarized as UNIQUE_IDENTIFIER.

We build two matrixes to describe the relations above:

e R;: The app-include-condition matrix C where each
element ¢; ; € {0,1} means if app; includes condition,.

e Ro: The condition-trigger-API matrix T where each
element ¢; ; € {0,1} means if condition; controls the
invocation of sensitive API;.

2) Feature Extraction from Data-flow View: Usage of sen-
sitive data within apps is one of the most important clues to
identify hidden maliciousness [4], [6]. We run FlowDroid [4]
to collect intra- and inter-component data-flow paths for each
app. We then get a pair of APIs (i.e., a source API and a sink
API) from each path and record the apps using the APIs.

We build two matrixes to represent the obtained relations:

e R3: The app-use-API matrix U where each element
u; ; € {0,1} means if app; uses API;.

o Ry: The API-flow-API matrix F where each element
fi,; € {0,1} means if there exists a data flow from API;
to API;. API; is a source API and API; is a sink APL

3) Feature Extraction from ICC View: The ICC mechanism
can be exploited by malware to launch stealthy attacks, e.g.,
data leaks, code obfuscation, privilege escalation [5], [9]. To
enhance the detectability of MalFlows for ICC-based mali-
cious behaviors, we first run IccTA [5] to get ICC links from
apps and extract actions of Intents and source components
from each ICC link. The action is a core and widely used
attribute of an implicit Intent, informing what operation is
expected to be executed. The source component refers to the

'MD5: dc9b09466a0024£22989£71d9632a0d6
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Fig. 2. Network schema for the HIN in MalFlows, where blue solid rectangles
represent entity types, and black solid arrows indicate their relations.

sender of an explicit or impilict Intent. The two types of
entities are essential to interpret the semantics of ICC links.
We build two matrixes to represent the obtained relations:

e Ry: The app-set-action matrix S where each element
s;; € {0,1} means if action; is set in app;.

e Rg4: The app-declare-component matrix D where each
element d; ; € {0,1} means if app, declares component;
in AndroidManifest.xml.

o R7: The component-initiate-action matrix N where each
element n; ; € {0,1} means if component; initiates
action; in an Intent.

C. HIN Construction

To depict the rich relations among the extracted Android
entities, it is crucial to model them in an appropriate manner
so that different relations can be better and easier analyzed and
handled. Therefore, we employ a HIN [28] that is capable
to incorporate different types of features (i.e., entities and
relations) extracted above. The HIN facilitates uncovering
underlying intentions within Android apps by providing not
only the network structure of the data associations but a high-
level abstraction of categorical association. We first exhibit the
definitions of the HIN and its network schema as follows.

Definition 1. A heterogeneous information network [28] is
defined as a graph G = (V, E) with an entity type mapping
¢: V. — T and a relation type mapping : E — R, where V
denotes the entity set and T denotes the entity type set, and E
denotes the relation set and R denotes the relation type set, and
the number of entity types |T| > 1 or the number of relation
types |R| > 1. The network schema for G, denoted as S =
(T, R), is a graph with nodes as entity types from T and edges
as relation types from R.

1) Network Schema Generation: We have 5 entity types
(e.g., APIs, conditions) and 7 types of relations among them
(i.e., R1-R7 in Section III-B). The network schema for the HIN
of our work is shown in Figure 2, which enables apps to be
comprehensively represented by simultaneously incorporating
information from multiple views.

2) Meta-path Design: The different types of entities and
relations motivate us to use a machine-readable representation
for enriching the semantics of similarities among apps. The
similarities are our basis to measure the maliciousness of apps.
To handle this, the meta-path is designed to formulate the
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Fig. 3. Meta-paths built for flow-centric malware detection, where some

entities (e.g., Cond) is short for the contents in Figure 2 (e.g., Condition).
The definitions of nodes and edges are the same as those in Figure 2.

semantics of higher-order relations among entities in HIN. Its
definition is shown as follows.

Definition 2. A meta-path MP is a path defined on the graph
of network schema S = (T, R), and is denoted in the form
of T1 £> Ts % T3 ﬁ) M Tyr41, which defines a
composite relation R = Ry o Ry o R3 o ... o Ry between types
T) and Tar41, where o denotes relation composition operator,
and M is the length of MP.

Given the network schema with different types of entities
and relations, we enumerate many meta-paths. Based on
the domain knowledge from human experts, we design 6
meaningful meta-paths shown in Figure 3 for characterizing
relatedness over apps. To aggregate different types of semantic
information from our HIN, we then group the meta-paths
based into 3 distinct but related views, i.e., control flows, data
flows, and ICCs. Each group comprises one content-oriented
meta-path (e.g., MP1) and one action-oriented meta-path (e.g.,
MP5), which work together to capture various relations within
a view. Note that additional meta-paths can be included in
each group, but we select the two most representative ones to
demonstrate the effectiveness of MalFlows.

For example, the relatedness over apps by leveraging the

. . Includ
control-flow features in a meta-path MP; is App ———

.. Include™ .
Condition 224, App, which means that two apps can be

connected as they use the trigger conditions with the identical
semantics. Another meta-path MPs in the same group, i.e., App
Include™!

Condition 2% APJ Condition 2%,
App, denotes that two apps are related as they use the trigger
conditions controlling the invocations of the same API. The
former depicts the contents of apps, but the latter describes
the detailed actions of apps.

Include Trigger!

D. flow2vec

To measure the relatedness over entities of the constructed
HIN, it is essential to adopt an effective representation learning
method that effectively aggregates both structural and semantic
relations about various flows.
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(b) Sampling on the refine HIN

Fig. 4. Example for sampling on the original and refined HIN, where solid
rectangles represent entities, black solid arrows indicate their relations, and the
numbers on the dashed arrows show the order of access. Incorrect sampling
paths are highlighted in red, and the correct paths are highlighted in blue.
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Fig. 5. Example of the HIN sampling guided by a meta-path group, where
the black solid arrows represent the relations between the entities.

1) Flow-context-aware Graph Refinement: Modeling flow-
related information using a standard HIN method [23] directly
results in the description of incorrect relations. Specifically,
flow-related information in the HIN consists of multiple
entities, associated not only through the explicitly modeled
relations but also by implicit contextual constraints (e.g., the
source API and the sink API in a data-flow path are used in
the same app). Overlooking the constraints lead to incorrect
extraction of structural and semantic relations of the HIN.

We use a real-world case to demonstrate the importance
of modeling the flow-related information under contextual
constraints. As drawn in Figure 4(a), the red sampling paths
on the subgraph of the HIN violate a contextual constraint.
Specifically, the app named com.jacmapps.padrenuestro* and
the app named com.app.ufit365.iron.gym.fitness®> appear to
be related by MPj3 under the data-flow view. However,
the sink API named (android.util.Log: int i(java.lang.String,
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Algorithm 1 Implementation of the graph refinement
1: Input: A HIN H, a meta-path mp_I of length 4, a set
S_mp_s consisting of meta-paths of length 2

: Output: A refined HIN H

: N < getAnchorNodes(H, mp_l)

: for all n in N do

P + getPredecessor(n, H, mp_l);

S <« getSuccessor(n, H, mp_I)

for all p in P and s in S do
nc < clone(n)
if isConnected(p, s, S_mp_s) then

setPredecessor(nc, p, H); setSuccessor(nc, s, H)

else if haveNotConnected(p, H) then

12: setPredecessor(nc, p, H)

13: end if

14:  end for

15:  removeOriginalNode(n, H)

16: end for

17: return H

R I AN

—_
- o

Jjava.lang.String)) is not used in the former app. Therefore,
the data-flow-based relation does not exits in practice. The
former app and the sink API are incorrectly associated over
the HIN, resulting in inaccurate representations for the two
apps. In comparison, as shown in Figure 4(b), by represent-
ing the API named (java.net.URL: java.net.URLConnection
openConnection()) as two separate instances corresponding to
different apps, the graph refinement enables the HIN to capture
context-specific semantics and prevents unrelated apps from
being incorrectly linked. All the paths (e.g., the blue one)
sampled from the refined HIN exist in practice.

As depicted in Algorithm 1, we leverage joint semantics of
meta-paths in each group to identify and correct the inaccurate
parts in a HIN on demand. We first obtain all nodes (i.e.,
anchor nodes) with the second entity type along mp_[ from a
HIN H (Line 3). We then find predecessors P and successors S
of each anchor node (Lines 5-6). Next, we clone each anchor
node as nc and rebuild its connection relations as follows. We
connect a predecessor p to nc and nc to a successor s when p
and s can be connected via any meta-path in S_mp_s (Lines
10-12). Otherwise, we connect p to nc only once (Lines 13-
14). In other word, we use content-oriented relations of the
meta-paths in S_mp_s to constrain action-oriented relations
of mp_l in the HIN construction. Afterwards, we remove the
anchor node to avoid information redundancy in H (Line 18).
Finally, a refined HIN is generated.

2) Meta-path-group-guided Random Walk: To learn latent
representations for the refined HIN, it is inapplicable to
directly apply traditional single meta-path-based sampling
schemes, e.g., metapath2vec [30], HAN [31], MAGNN [38].
Specifically, single meta-path-based sampling considers only
a limited subset of flow-based relations in the HIN, so it may
fail to capture important structural and semantic dependencies.
As depicted in Figure 5, malware samples named com.cibo®

4MD5: 5aal3c2dfe6668a6al70e82c70clab6c
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Fig. 6. Channel-attention-based deep neural network classifier.

and com.CrochetBagDesign.garpudroid® cannot be related by
any single meta-path in Section III-C2. Due to the failure
to capture their relations, the two apps may be misclassified
in malware detection, In comparison, the apps can be con-
nected by the meta-paths in MPGo, where the app named
com.trillion.snow.tiger.family® bridges them in the HIN. By
capturing the relations, the apps can be correctly classified.

To produce precise node embeddings for our work, we
extend metapath2vec based on the proposed work [39] for
sampling based on each meta-path group. This facilitates
the extraction of structural and semantic information from
both contents and actions cooperatively. Given a meta-path
group MPG, we put a random walker to traverse a HIN. The
walker randomly chooses a meta-path MPy, from MPG at first
and the transition probabilities at step ¢ are defined as follows:

p (v | vl ,MPG) =

if (v,in,viﬂ) €E ¢ (vfn) = Toupp,

¢ (UH_I) =T

if (v,in, ’U“’l) €E ¢ (U,Zn) # Topp,
¢’ (Ui+l) = Tt+1-, (Tma/—rerl) S MPk:

0 otherwise,
where ¢ is the node type mapping function, v} denotes the
Ty, type of the entity visited at step 4, Ny,11 (v,) denotes
the T),41 type of neighborhood of the entity v;,, Tgp, is
the entity type of app, and p is the number of meta-paths
starting with T}, — T}, 11 in the given meta-path group G.
Note that MP;, will be updated by the meta-path drawn from
G with /& probability when the walker meets the case at the
first line of the above formula.

1
[MPG| [N pmy1(vE,)]

1
[N (v},)]

When the sampling length is long enough, the walker can
traverse the HIN with various combinations of meta-paths
within the given meta-path group. For example, if MPG =
{MP;, MP,}, the walker may traverse based on the combined
meta-paths, e.g., [MP1, MPy, ...], [MPy, MPy, ...], [MP;, MPy,
MP;, MPs, ...]. The sampled paths accurately preserve both
structural and semantic relations between different types of
nodes in the HIN, and thus facilitate the transformation of
HIN structures into sequences. We finally use skip-gram [40]
to generate vectors for entity nodes in the sampled paths.
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TABLE II
PARAMETERS OF OUR MLP-BASED ANDROID MALWARE CLASSIFIER

Designed Layer | Dimension | Activation Function | Using Dropout
Input Layer 128 None No
Hidden Layerl 256 ReLU Yes
Hidden Layer2 128 ReLU No
Hidden Layer3 64 ReLU Yes
Hidden Layer4 32 ReLU No
Hidden Layer5 16 ReLU Yes
Output Layer 1 Sigmoid No

E. Channel-attention-based DNN Classifier

To leverage strengths of the semantics of the heteroge-
neous flows for profiling app behaviors, we design a channel-
attention-based DNN classifier. As shown in Figure 6, for an
app, we treat each feature vector extracted from a view of
flows as a distinct channel and then employ channel attention
to adaptively reweight each feature vector for the fusion of
the semantics. This treatment enhances the most informative
representations while suppressing less relevant ones, making
a more comprehensive and discriminative fused representation
for precise malware classification.

1) Channel-attention-based Semantic Fusion for Hetero-
geneous Flows: We first aggregate semantic information of
the feature vectors V € RX? from the three views by
both average-pooling and max-pooling operations, where c
is the number of channels, and d is the dimension of each
input feature. In our work, ¢ = 3 and d = 128. Average-
pooling preserves overall information and avoid feature loss,
and then max-pooling captures the most dominant features.
These operations generate two intermediate vectors: Vg €
R and V,,,» € R°*!. Both of the vectors are then added
element-wise and forwarded to a network to produce our
channel attention map. The network is composed of two fully-
connected layers with the ReLU activation function.

M, = Softmax(§(W{ (ReLUW{ (Vavg + Vinaz))))) (1)

, where Wy € R¢*6 and W; € R5%¢ are project matrices. ¢
denotes a masking mechanism, which is used to identify and
suppress zero channels, ensuring that they do not affect the
subsequent Softmax computation, thereby improving numeri-
cal stability. M. € R*! is the channel attention map.

After that, we make element-wise multiplication of M,
and V to produce attention-weighted feature vectors. We next
merge the vectors using element-wise summation:

y O =1T(M, - V) )

2) Malware Classifier: The fused feature y(©) € R'*? js
fed into a 6-layer multi-layer perceptron (MLP) to get malware
detection results. The parameters used in the model are listed
in Table II. During the learning process, our model is tuned to
minimize the value of the loss function, i.e., the cross-entropy
function. Moreover, to avoid the overfitting problem, Dropout
regularization is applied for skipping some units randomly
while the model is trained.



TABLE III
NUMBER OF APPS IN DIFFERENT CATEGORIES OF OUR DATASET
Category | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Benignware | 1132 | 3126 | 2631 | 2929 | 2314 | 3125 | 1204 | 206
Malware 1022 | 1994 | 2448 | 2096 | 3195 | 1808 | 1893 | 178
IV. EXPERIMENTAL EVALUATION
To evaluate the effectiveness of MalFlows, we seek to

answer the following three questions:

e RQ1: Does MalFlows detect Android malware better than
representative tools? Whether flow2vec facilitates precise
malware detection compared to other typical techniques?
How does MalFlows perform in terms of app evolution?
What’s the time cost of MalFlows?

o RQ2: Is it necessary to perform the flow-context-aware
graph refinement? How effective is flow2vec in represent-
ing app behaviors with different usage of meta-paths?

o RQ3: How effective is the model for fusing the semantics
of heterogeneous flows used in MalFlows for Android
malware detection? What is the stability of the model?

A. Experimental Setup

1) Implementation: We implement a prototype of Mal-
Flows. We use the off-the-shelf tools [4], [5], [33] to get flow-
related analysis results from apps. We set the timeout for each
tool in analyzing an app as 20 minutes. We leverage Deep
Graph Library to build and refine the HIN, and achieve the
meta-path-group-guided random walk. We finally implement
the channel-attention-based DNN classifier by PyTorch. Our
MLP-based classifier is modeled with the dropout rate of 0.5
and the learning rate of 0.001, both of which are commonly-
used in typical DNN-based models. The experiments are
conducted on a machine with AMD Ryzen 5 7600X 6-Core
Processor 4.70 GHz CPU, 128GB memory, Ubuntu 22.04 LTS
(64bit) and NVIDIA GeForce RTX 3080 Ti (12GB) GPU.

2) Dataset: To ensure authenticity and reliability of our
statistics and the experimental results, as shown in Table III,
we randomly collect 31,301 real-world samples spanning
multiple years from AndroZoo [32]. The average size of each
sample is 19.75 MB, where a maximum size of 333.04 MB and
a minimum size of 4 KB. A sample is regarded as malicious
if it is flagged by more than 2 antivirus engines, and a sample
is regarded as benign if no engine reports it.

To extract various flow-based features from the apps above,
we rent 12 cloud servers and run our self-developed ex-
tractor for over 3 months. Note that all the samples are
analyzed by the aforementioned analysis tools without errors
and interruptions. From malware samples, we obtain a total
of 3,926,619 sensitive data-flow paths, 218,021 suspicious
condition structures, and 157,153 ICC links; from benignware
samples, we get a total of 13,905,513 sensitive data-flow
paths, 108,472 suspicious condition structures, and 257,766
ICC links. All extractions are used to build the HIN.

3) Baselines: To demonstrate the effectiveness of our work,
we select four representative and related Android malware
detection tools with different key techniques:

TABLE IV
COMPARISON OF MALFLOWS AND OTHER SELECTED BASELINES ON OUR
WHOLE DATASET, WHERE HINDROID-N2V = HINDROID WITH NODE2VEC,
HINDROID-M2V = HINDROID WITH METAPATH2VEC, HINDROID-REC =
HINDROID WITH API REDUCTION

Technique | Accuracy [ Precision | Recall | F;-score
Detection Tools
HinDroid-n2v 93.42% 95.85% 90.98% 0.9336
HinDroid-m2v 87.33% 88.95% 85.74% 0.8731
HinDroid-rec 95.33% 95.26% 95.57% 0.9542
MaMaDroid 91.14% 94.96% 91.85% 0.9337
Drebin 93.97% 94.30% 92.40% 0.9333
AppPoet 95.81% 91.28% 94.99% 0.9310
Graph Embedding Models
DeepWalk 83.91% 88.80% 75.04% 0.8134
LINE 77.85% 80.37% 73.33% 0.7669
node2vec 90.78% 91.17% 88.54% 0.8983
metapath2vec 93.81% 99.76% 91.33% 0.9536
HAN 94.51% 97.22% 92.01% 0.9455
MalFlows 98.34% 98.98% | 98.64 % 0.9881

o HinDroid [23] models apps, APIs, and their relations as
a HIN, and computes app similarities via multi-kernel
learning over semantic meta-paths. Based on the open-
source project [41], we run HinDroid with three improve-
ments: API reduction, node2vec [29], and metapath2vec.

o AppPoet [17] is a LLM-assisted Android malware de-
tector. It firstly extracts string-type features from multi-
ple views. Next, it generates comprehensive cross-view
descriptions through multi-view prompt engineering. Fi-
nally, these descriptions are embedded and used to train
a DNN model for malware detection.

o Drebin [13] is a typical framework that detects an app by
collecting a wide range of features, e.g., used hardware,
API calls and permissions from AndroidManifest.xml and
.dex code, and then trains a SVM-based classifier.

e MaMabDroid [42] abstracts each API on call graph to
build a first-order Markov chain, and then uses transition
probabilities as features. Following prior findings [19],
we adopt the package mode for better performance, and
apply Random Forests for malware classification.

Note that we attempt to find other HIN-based tools [25]—
[27], [43] but they are either not publicly available or their
code fails to run properly. Afterwards, to evaluate the perfor-
mance of flow2vec, we select 5 generic models commonly used
in some well-known malware detection systems as follows:

« HAN [31] is a heterogeneous graph representation learn-
ing model that leverages predefined meta-paths and hier-
archical attention mechanisms for node embedding.

o metapath2vec is a heterogeneous graph representation
learning model that leverages predefined meta-paths and
skip-gram-based random walks for node embedding.

o LINE [44] is a network representation learning model that
preserves both first-order and second-order proximities
for node embedding.

« node2vec is a network representation learning model that
utilizes biased random walks and the skip-gram model
for node embedding.

o DeepWalk [45] is a network representation learning



TABLE V
COMPARISON OF MALFLOWS AND OTHER TOOLS IN THE APP EVOLUTION,
WHERE HINDROID CORRESPONDS TO HINDROID-REC IN TABLE IV AS IT
OBTAINS THE BEST RESULTS OF THE THREE IMPROVEMENTS

Tool App Evolution

AUT(a) | AUT(p) | AUT(r) | AUT(f,)
HinDroid 0.8871 | 0.8860 | 0.8841 | 0.8849
MaMaDroid | 0.8515 | 0.8363 | 0.8370 | 0.8364
Drebin 0.8793 | 0.8715 | 0.8492 | 0.8599
AppPoet 09153 | 09199 | 0.9187 | 0.9185
MalFlows 0.9369 | 0.9275 | 0.9446 | 0.9358

model that utilizes truncated random walks and the skip-
gram model for node embedding.

4) Evaluation Metrics: We define true positives as correctly
classified malware, false positives as misclassified benignware,
true negatives as correctly classified benignware, and false
negatives as misclassified malware. We evaluate with four
metrics, including Precision, Recall, Accuracy and F;-score.

B. RQI: Detection on Real-World Samples

1) Overall Effectiveness: To validate the effectiveness of
MalFlows in malware detection, we randomly select 80% of
apps from our dataset to form the training set, and test on the
rest of the apps. The process above is run for 5 times, each
time using a different subset for testing, and we calculate the
average for each metric as the results. Furthermore, We train
our model with a fixed 100 epochs.

The experimental results are shown at Lines 2-8 and Line
15 of Table IV. From the table, we can see that MalFlows
outperforms all other selected detection tools in Precision,
Recall, Accuracy and F;-score. Specifically, for the three im-
provements of HinDroid, HinDroid-rec outperforms HinDroid-
n2v and HinDroid-m2v, which indicates that retaining Hin-
Droid’s representation method while optimizing API selection
yields better results than replacing its representation method.
Furthermore, the F;-score of HinDroid-rec is better than that
of MaMabDroid, Drebin, and AppPoet. This demonstrates the
value of using the HIN to detect Android malware. Com-
pared to HinDroid-rec, MalFlows provides a comprehensive
assessment of apps by complementarily fusing the semantics
from the views of data flows, control flows, and ICCs, rather
than relying solely on the relations of API calls. Similarly,
MaMaDroid focuses on the sequences of API calls, which
only reflects a portion of the semantics extracted from the
three views used in MalFlows. Moreover, the features used by
AppPoet and Drebin are organized as sets of strings, whereas
MalFlows extracts high-order features from the HIN that con-
tains rich relations based on different types of flows, enabling
the expression of more structural and semantic information.

2) Effectiveness of flow2vec: To verify the effectiveness of
the HIN embedding in MalFlows, we compare flow2vec with
the representative baseline models described above. Specifi-
cally, we replace the graph embedding module in MalFlows,
while keeping the dataset used, as well as the training and test-
ing processes, identical to those described in Section IV-B1.

The experimental results are listed at Lines 9-14 and Line
15 of Table IV, showing that the HIN embedding method

of MalFlows outperforms the other models in all metrics.
Specifically, metapath2vec and HAN perform better than
DeepWalk, LINE, and node2vec. This implies that, com-
pared to modelling Android app behaviors with homoge-
neous graphs, using heterogeneous graphs can describe app
behaviors more precisely and enhance the distinguishability
between malware and benignware. In MalFlows, the meta-
path-group-guided random walk of flow2vec jointly samples
the HIN across multiple meta-paths under specified views,
which helps capture structural and semantic relations in the
HIN. Therefore, the vector representations can profile app
behaviors comprehensively and precisely, leading to the best
detection results performance among all compared schemes.
Note that HAN and metapath2vec are executed based on our
refined HIN. Their performance would likely deteriorate if
evaluated on the standard HIN.

3) Adaptation for App Evolution: Machine learning-based
Android malware detectors face a problem of aging as the
app evolution due to the update of Android version [46].
To construct the required experimental environment, we use
the samples from 2018 as the training set and the samples
from each year between 2019 and 2024 to form six separate
testing sets. Note that the samples from 2017 are not included
due to their insufficient size. The appearance timestamps of
the apps in the training set are earlier than the appearance
timestamps of the apps in the testing set, so we experiment to
figure out whether a malware classifier can identify evolved
Android malware. We use Area Under Time (AUT) to measure
a classifier’s robustness to time decay [47]:

1 = fk+1)+ fk
;( ) + f(k)

AUT(f,N) = 3)

N-1 2

, where f is our evaluation metric, NV is the number of test
slots, and f(k) is the evaluation metric generated at time k.
N is set as 12 months in our experiment and thereby omitted
from AUT expressions in subsequent sections. An AUT metric
that is closer to 1 means better performance over time.

The experimental results are listed in Table V, where
MalFlows outperforms all other tools in AUT(p), AUT(r),
AUT(a) and AUT(f;). This superior effectiveness is attributed
to the complementary nature of the three flow-related views
used by MalFlows, which facilitates capturing intrinsic factors
of apps. Furthermore, it is interesting that AppPoet demon-
strates the best overall performance among all other baseline
tools, which validates that the features embedded from the
content supplemented by LLMs are more stable over time than
only API-related features and discrete string-based features in
our experiment. However, the content in string format cannot
intuitively represent the structural and semantic relations inher-
ent in flow-related information, causing AppPoet to overlook
key invariants in app evolution. This limitation ultimately
results in AppPoet performing less effectively than MalFlows.

We then plot the change trend of the evaluation metrics for
each selected tool over time in Figure 7. Overall, the metrics
of all the tools drop to varying degrees over time. Among
them, MalFlows exhibits the slowest decline in the four AUT
metrics, indicating its robustness against the aging process. In
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contrast, the effectiveness of HinDroid, MaMaDroid, Drebin,
and AppPoet deteriorates after 5 years, with all the metrics
falling below 0.9. Therefore, we suggest that a detection model
should ideally be retrained with newer app data after 4 years
of use in practice. The suggestion is less strict than the one
obtained by LensDroid [16]. Another interesting finding is that
the metrics of AppPoet remain stable or even improve during
2020-2022, followed by a gradual decline. This phenomenon
indicates that the feature descriptions generated by LLMs have
the potential to resist the app evolution.

4) Time Cost: MalFlows consists of two stages. The HIN
embedding stage is relatively time-consuming. The maximum
runtime for a single view on our dataset is approximately 47
minutes. However, this stage is conducted offline and only
once per dataset. Moreover, its efficiency can be improved
through parallelization or enhanced hardware configurations.
In contrast, the detection stage is highly efficient, making the
system suitable for real-time analysis. MalFlows takes roughly
2.50 milliseconds on average to train a batch of 128, resulting
in 1.04 seconds for an epoch over the whole dataset. The
prediction time on average is 0.11 milliseconds.

5) Case Study: To exhibit the preformance of MalFlows,
we present a malware sample named com.runbey.byy’. The
app is detected by MalFlows correctly but misclassified by
all the baselines above. To investigate the reason behind the
app’s classification, we extract the weights from the channel
attention map during detection. The weights corresponding to
the three channels are 0.4103, 0.2543, and 0.3354 respec-
tively. This indicates that MalFlows adaptively emphasizes
more informative views of the flows during the decision-
making process, with particular attention given to the control-
flow view, which contributes most significantly to the final
prediction. Furthermore, we analyze the app from three views
as follows: (a) In the view of control flows, the app frequently
performs file operations when the network-related conditions
are triggered. (b) In the view of data flows, the app repeatedly
writes data to files during execution. (c) In the view of ICCs,
the app makes use of various third-party components (e.g.,
cn.jpush, com.tencent, com.sina) and custom actions of Intents
(e.g., cn.jpush.android.intent. RECEIVE_MESSAGE). Overall,
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the app is suspected to contain Trojan-like behavior and is
capable of downloading unknown files from the network.

C. RQ2: Ablation Study of flow2vec

1) Necessity of Graph Refinement: We illustrate the neces-
sity of the graph refinement based on the detection results. Ex-
cept for not using the graph refinement, we perform the same
experimental environments as described in Section IV-B1.

The results are listed at the third line of Table VI. We
observe that the detection performance of MalFlows drops
significantly across all metrics when the graph refinement
is disabled, compared to when it is employed (i.e., Ours).
After further analysis, we infer that the variant of flow2vec
without graph refinement tends to sample the paths that deviate
from real-world scenarios from the built HIN. This leads
to confusion in the relations between apps, which in turn
negatively affects detection performance.

2) Usage of Different Meta-paths: To verify the effective-
ness of our meta-path groups for flow2vec, we conduct ablation
experiments using 13 different meta-path settings. Experimen-
tal environments are the same as depicted in Section IV-B2.

The experimental results are presented in Table VI, showing
that using all groups of meta-paths (i.e., Ours) yields the
best performance, as the meta-paths under the three views
of the flows effectively capture and represent app behaviors.
We observe that: (a) MPs outperforms the other individual
meta-paths, which indicates that trigger conditions can be
effectively used to differentiate benignware and malware. (b)
MP;,, MP,4, and MPg perform better than MP;, MP3, and
MP;5 correspondingly. The reason is that important semantics
within apps for detecting Android malware aggregated through
action-oriented meta-paths are more beneficial than those ag-
gregated through content-oriented meta-paths. (c) The overall
effectiveness of meta-path groups with our semantic fusion
method is superior to that of most individual meta-paths.
Specifically, the Accuracy and Fp-score of MPG;, MPGa,,
and MPGgs are higher than those of MPy, MP,, and, MPg
respectively. This indicates that, under a single view, joint
sampling based on both action-oriented and content-oriented



TABLE VII
COMPARISON OF THE MODEL WE USED AND THE ALTERNATIVE MODELS
IN EFFECTIVENESS OF ANDROID MALWARE DETECTION

Fusion Method | Accuracy | Precision | Recall | F;-score
Add-direct 92.00% 92.90% | 89.31% | 0.9105
Add-hybrid 95.26% 95.87% | 96.07% | 0.9597
Self-attn 87.22% 93.58% | 74.57% | 0.8300
Ours 98.34% 98.98% | 98.64% | 0.9881

meta-paths is more effective in capturing key features of the
HIN than sampling based on a single meta-path alone. (d)
With the combined use of multiple groups of meta-paths,
the detection performance of our tool is further improved,
particularly in terms of Accuracy. For instance, with our
semantic fusion method, the Accuracy of {MPG;, MPG,}
is 95.03%, which is higher than the Accuracy of MPG;
(94.11%) and MPG> (94.23%). This further demonstrates the
complementary effect among different groups of meta-paths.

D. RQ3: Performance of Our Fusion Model

1) Effectiveness on Fusing Heterogeneous Flow Semantics:
To validate if the flow semantic fusion in MalFlows facilitates
Android malware detection, we compare the effectiveness of
MalFlows when using the original and alternative models.
The experimental environments are the same as described in
Section IV-B2. We construct three alternatives:

o It uses metapath2vec to generate vectors based on the 6
meta-paths respectively, and then leverages the element-
wise vector addition to fuse the vectors (i.e., Add-direct).

« It uses the meta-path-group-guided random walk to gener-
ate vectors for each view, and then leverages the element-
wise vector addition to fuse the vectors (i.e., Add-hybrid).

« It implements the multi-view fusion by replacing channel
attention as self-attention (i.e., Self-attn).

Table VII presents the experimental results, showing that the
model we used surpasses the alternatives in the effectiveness
of malware detection. Specifically, the methods of Add-direct
and Add-hybrid perform better than the method of Self-attn.
As further analysis, we speculate that the feature vectors
obtained from the three views of flows contain unique semantic
information, all of which make important contributions to
Android malware detection. Vector addition does not alter the
original feature representation, which makes it suitable for
local feature fusion. However, self-attention may disrupt local
semantics. Moreover, compared to Add-direct, Add-hybrid
performs better, mainly because the meta-path-group-guided
random walk can capture potential semantics within the HIN
more effectively. Channel attention can adaptively enhance
the weights of important views while suppressing irrelevant
ones, thereby improving feature representation and achieving
precision Android malware detection.

2) Model Stability: To demonstrates the training stability
of our model, we plot Figure 8, where the experimental con-
figurations and environments are described in Section IV-BI.
Specifically, the left of Figure 8 plots the training losses of
MalFlows. From the figure, we can find that the training
loss decreases sharply during the initial epochs and gradually
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Fig. 8. Evaluation of model stability of MalFlows.

stabilizes after around epoch 50, indicating that the model
converges effectively. The final loss remains consistently low,
demonstrating that the model has successfully learned the
underlying patterns of Android malware behaviors. The right
of Figure 8 shows the ROC (receiver operating characteristic)
curve of of our model, where the overall area under the curve
(AUC) is 0.9946. This indicates that the model has a strong
ability to distinguish between benignware and malware.

V. DISCUSSION
A. Threats for Disabling Our Work

Due to the inherent limitations of the widely-used static
analysis tools, some flow-related information may be missed
or inaccurately captured, potentially affecting the accuracy of
our detection. For example, the tools are hard to handle anti-
analysis mechanisms (e.g., reflection and code obfuscation),
which prevents the collection of involving information flows.
In the future, we plan to introduce more sophisticated program
analysis tools, e.g., hybrid analysis tools [48], to improve the
precision and coverage of the collection of flow-related data.

As a ML-based detection technique, MalFlows is also sus-
ceptible to adversarial Android malware attacks [49]. Specif-
ically, MalFlows performs malware detection based on the
flow-based features extracted from multiple views. Therefore,
if the app code is modified from selected few of the views,
MalFlows can still detect malware by leveraging the comple-
mentary information provided by other views. Moreover, one
of the fundamental principles of adversarial example genera-
tion is to preserve the functionality of the target app [50]. The
flow-based features used by MalFlows are highly correlated
with the app’s functionality, which contributes to ensuring
the invariance of these features. In the future, we plan to
select feature sources that are difficult to tamper with, e.g.,
information flows within C-level code.

Furthermore, our current approach is primarily designed
for offline detection scenarios. In future work, we plan to
incorporate out-of-distribution learning techniques [26], [43]
to establish a more comprehensive detection framework.

B. Selection of HIN Representation Techniques

MalFlows extends a random-walk-based HIN representation
method to obtain feature vectors under each views. It is
well known that DNN-based HIN representation methods
are also commonly used. The rationale behind our technical
choice lies in its accuracy and convenience in joint sampling
based on multiple meta-paths. As explained in Section III-D2,
multi-path joint sampling can capture complex associations



among different apps, which is beneficial for the accurate
detection of Android malware. The meta-path-group-guided
random walk approach is well suited to our needs and enables
accurate capture of joint sampling results from diverse meta-
path combinations. Furthermore, the approach is an extension
of metapath2vec and is easy to implement.

As a typical DNN-based method, HGT [51] lacks semantic
constraints imposed by predefined meta-paths, which may
lead to the capture of irrelevant semantics and negatively
affect detection performance. Since HAN [31] is inherently
designed based on individual meta-paths, adapting it to support
our multi-meta-path joint sampling task is non-trivial. It may
require redesigning the attention mechanism to simultaneously
handle multiple semantic contexts.

C. Usage of Meta-paths and Semantic Fusion Methods

We define 6 meta-paths and divide them into 3 groups based
on the views of heterogeneous flows. Meta-paths within a
group are used to describe contents and actions of apps under a
given view respectively. Experimental results demonstrate that
our simplified meta-path design achieves effective detection
while maintaining computational efficiency. We will discover
more suitable meta-paths automatically by LLMs [52].

MalFlows uses the channel attention to perform the seman-
tic fusion of the heterogeneous flows. Given the semantic inde-
pendence and interrelation among different meta-path groups,
this fusion method is well-suited for our work. In the future,
we plan to try more advanced alternatives [53]. Nevertheless,
we believe that the selection of the fusion method and the core
contributions of our work are orthogonal.

VI. RELATED WORK

A. Flow-based App Analysis

1) Static Analysis Tools: Mainstream detection views in
static analysis include data flows, control flows, ICC usages.
Specifically, static data-flow tracking techniques [4], [36]
detected if there exist sensitive data leaks in apps. MUD-
FLOW [6] further identified malware based on usage char-
acteristics of sensitive data. Complex-Flows [8] leveraged app
behavior along with information flows for classifying benign
and malicious Android apps. Static control-flow analysis are
commonly adopted to find suspicious trigger conditions in
apps [11], [35]. The results of ICC detection can complement
the tools above to enhance the overall detection coverage [5].
ICCDetector [9] detected malware based on the specified
ICC patterns. Each of the schemes has its own advantages
in disclosing a certain type of malicious app behaviors. In
comparison, MalFlows unifies the strengths of given schemes
for more comprehensive app examinations.

2) Dynamic Analysis Tools: TaintART [54] executed multi-
level data-flow tracking for the ART environment. Compared
with TaintART, Malton [55] monitored taint propagation in-
structions at more system layers. In the future, the dynamic
information-flow features can be utilized in modeling the HIN
and identifying malicious behaviors complementarily.

B. Heterogeneous Graph based Android Malware Detection

HinDroid [23] modeled the relations between APIs and
apps with HIN and identifies malware using multi-kernel
learning. Scorpion [24] proposed metagraph2vec, a new HIN
embedding method, to represent and characterize sly malware.
AiDroid [43] performed the HIN in-sample node embeddings
and then represents each out-of-sample app with convolutional
neural networks. Dr.HIN [25] integrated domain priors gener-
ated from different views to devise an adversarial disentangler
based on the HIN embeddings. Hawk [26] modeled Android
entities and behavioral relationships as a HIN and then iden-
tifies malware with graph attention networks. GHGDroid [27]
proposed a graph-based approach that leverages a global het-
erogeneous graph built from sensitive APIs and graph neural
embeddings to finish Android malware detection.

MalFlows and the previous HIN-based techniques profile
Android apps from disparate perspectives. Specifically, the
previous techniques typically build heterogeneous graphs us-
ing existence-based information (e.g., APIs or files [23], [24],
[26], [27], apk signatures or affiliations [25], [43]). In con-
trast, MalFlows constructs the HIN from fine-grained program
analysis results (e.g., data-flow paths, control dependencies),
and then fuses the feature vectors based on their contributions
to the malware classification. As a result, MalFlows is able
to capture richer behavioral semantics of apps. Moreover,
MalFlows introduces a flow-context-aware graph refinement
strategy to better exploit flow-related semantics, thereby en-
hancing the effectiveness of Android malware detection. In the
future, MalFlows and the existing techniques can complement
each other to enrich the compositions of the HIN, thereby
enabling the detection of a wider variety of malware samples.

C. Android Malware Detection based on Semantic Fusion

With the rapid development of deep learning techniques,
many advanced Android malware detection approaches based
on multi-view fusion are proposed. LensDroid [16] visual-
ized app behaviors from three related but distinct views of
behavioral sensitivities, operational contexts, and supported
environments. It then fused the corresponding semantics to
facilitate Android malware detection. AppPoet [17] designed
the multi-view prompt engineering technique based on LLMs
to integrate discrete static program features and identify
malicious behaviors within apps. Li et al. [56] combined
features from both source code and binary code modalities
of apps to find their maliciousness. CorDroid [19] developed
an obfuscation-resilient Android malware analysis based on
enhanced sensitive function call graphs and opcode-based
markov transition matrixes. AndroAnalyzer [20] fused mi-
croscopic features extracted from abstract syntax trees and
the macroscopic features extracted from sensitive function
call graphs for Android malware detection. Qiu et al. [18]
extracted features from source code, API callgraphs, and Smali
opcode to find Android malware. Kim et al. [15] extracted both
existence-based and similarity-based features from Android
apps, and then fed the resulting vectors into a multimodal
deep neural network to identify malware.



Previous studies have primarily focus on fusing app behav-
ior information from different modalities or views that lack
explicit semantic correlations. For example, CorDroid utilizes
callgraphs and opcodes, while LensDroid combines opcodes
with the content of .so files. As a result, much of the effort
has been devoted to feature extraction and semantic alignment
across heterogeneous sources. In contrast, the heterogeneous
flow information we incorporate, e.g., function call sequences
and control dependencies, naturally exhibits contextual seman-
tic relations. This makes it more suitable for direct semantic
fusion and enables more effective characterization and rep-
resentation of semantics of app behaviors, thereby providing
more accurate support for malicious behavior identification.

VII. CONCLUSION

We propose and implement MalFlows, a novel technique
that detects Android malware by fusing heterogeneous flow
semantics. Our experiments show that MalFlows achieves an
Accuracy of 98.34% and a F;-score of 0.9881 in the detection,
outperforming the selected baseline techniques. We validate
the effectiveness of a new context-aware HIN embedding
technique named flow2vec and demonstrate that the channel-
attention-based semantic fusion model for different types of
program flows can enhance malware detection.
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