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Intrusion Detection in Heterogeneous Networks
with Domain-Adaptive Multi-Modal Learning

Mabin Umman Varghese, Zahra Taghiyarrenani

Abstract—Network Intrusion Detection Systems (NIDS) play a crucial role in safeguarding network infrastructure against cyberattacks.
As the prevalence and sophistication of these attacks increase, machine learning and deep neural network approaches have emerged
as effective tools for enhancing NIDS capabilities in detecting malicious activities. However, the effectiveness of traditional deep neural
models is often limited by the need for extensive labelled datasets and the challenges posed by data and feature heterogeneity across
different network domains. To address these limitations, we developed a deep neural model that integrates multi-modal learning with
domain adaptation techniques for classification. Our model processes data from diverse sources in a sequential cyclic manner,
allowing it to learn from multiple datasets and adapt to varying feature spaces. Experimental results demonstrate that our proposed
model significantly outperforms baseline neural models in classifying network intrusions, particularly under conditions of varying
sample availability and probability distributions. The model’s performance highlights its ability to generalize across heterogeneous
datasets, making it an efficient solution for real-world network intrusion detection.

Index Terms—Domain Adaptation, Heterogeneity, Intrusion Detection

✦

1 INTRODUCTION

Network Intrusion Detection Systems (NIDS) are es-
sential components of modern cybersecurity infrastructure,
designed to monitor and analyze network traffic for signs
of unauthorized access or malicious activity. These systems
can be implemented as software or hardware solutions,
with the primary goal of identifying and mitigating security
breaches in real-time or near real-time. However, as cyber
threats become more sophisticated, traditional signature-
based detection methods struggle to keep pace, often failing
to identify novel attacks that exploit previously unseen
vulnerabilities. This has driven a shift towards machine
learning (ML) and deep learning (DL) techniques, which can
autonomously learn complex patterns from large volumes
of network traffic, significantly enhancing the detection
capabilities of NIDS [1], [2], [3], [4].

Despite their promise, deep neural network-based NIDS
face significant challenges in real-world deployment. One
of the primary hurdles is the phenomenon of domain shift,
which arises from variations in network environments, in-
cluding differences in protocols, traffic patterns, and feature
distributions across different datasets. Traditional neural
models typically assume a fixed input feature space, which
makes them less effective when exposed to diverse real-
world traffic, where feature types and dimensionalities can
vary widely.

To address this, domain adaptation techniques are often
employed to reduce the impact of domain shift by aligning
feature distributions between different domains [5], [6], [7],
[8], [9], [10]. Simultaneously, multi-modal learning aims
to integrate information from diverse sources, each with
different feature sets, enhancing model robustness [11], [12].
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However, in the context of NIDS, there is often significant
feature overlap across different domains, such as common
network statistics and shared traffic characteristics. This
overlap presents a unique opportunity to combine both
domain adaptation and multi-modal learning, leveraging
shared features to enhance generalization while still captur-
ing the unique characteristics of each domain. By integrating
these approaches, a NIDS can learn more comprehensive,
transferable representations to detect intrusions across var-
ied network environments.

To address these challenges, we propose a novel deep
learning-based NIDS framework that integrates domain
adaptation and multi-modal learning to bridge the gap
between isolated network domains. As illustrated in Fig-
ure 1, traditional approaches often train separate models on
individual datasets, each with a fixed feature set, limiting
their ability to generalize across domains. In contrast, our
proposed model is designed to learn from multiple, het-
erogeneous feature sets, enhancing its capacity to detect a
broader spectrum of network intrusions.

The model is trained on multiple source datasets, each
containing diverse feature sets, and validated on heteroge-
neous test data to assess its adaptability and generalization.

The primary contributions of this work include:
Generalized Feature Adaptation: Developing a deep neural
architecture capable of integrating diverse feature sets from
multiple source domains, enabling it to handle the feature
variability often encountered in real-world network traffic.
Improved Transferability: Demonstrating the model’s abil-
ity to generalize across heterogeneous datasets, improving
detection accuracy even under varying network conditions.
Comprehensive Evaluation: Assessing the effectiveness of
the proposed approach across multiple datasets, providing
insights into its practical applicability for real-world NIDS
deployments.
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Fig. 1: Comparison of Traditional and Proposed NIDS
Model - On the left, it illustrates the traditional ap-
proach where models are trained independently on different
datasets, each containing distinct feature sets. The right side
presents the proposed NIDS model, which addresses feature
heterogeneity by integrating features from multiple source
datasets into a single adaptable model. This model is trained
on diverse feature sets from different domains, enabling
it to generalize across various scenarios and improve the
detection of network attacks compared to the traditional
approach.

2 RELATED WORKS

Network security remains a critical concern for modern
enterprises, as breaches can compromise organizational in-
tegrity, privacy, and trust. To mitigate these risks, many
organizations deploy Network Intrusion Detection Systems
(NIDS), leveraging a combination of hardware, software,
and increasingly, cloud-based solutions. These systems are
designed to identify and respond to potential threats by
analyzing network traffic, detecting malicious activities, and
alerting administrators to possible breaches. NIDS typi-
cally operate using three core approaches: signature-based
detection, anomaly-based detection, and stateful protocol
analysis.

Signature-based detection inspects network packets for
predefined patterns or signatures that match known mali-
cious or unauthorized activities. These signatures are crafted
based on observed attack behaviors, including specific byte
sequences, known exploit patterns, or protocol anomalies,
allowing the system to identify and flag known threats with
high precision [13], [3].

Anomaly-based detection identifies potential intrusions
by flagging deviations from established baseline behavior
[3].

Stateful Protocol Analysis monitors network traffic by
comparing observed events against predefined profiles of
legitimate protocol behavior. It tracks the state of communi-
cation sessions and identifies deviations that may indicate
protocol misuse or unauthorized access [14].

The rapid growth of digital networks has significantly
increased the volume and complexity of data, creating new
challenges for cybersecurity. Traditional network security
tools, such as firewalls, antivirus software, and signature-
based intrusion detection systems (IDS), remain founda-
tional but have critical limitations. Signature-based IDS,
for instance, rely on predefined patterns to detect known
threats, making them precise for familiar attacks but inef-
fective against novel, signature-evasive threats [15]. This ap-

proach also requires frequent database updates, introducing
latency and manual overhead.

To overcome these limitations, machine learning (ML)
and deep learning (DL) have emerged as powerful tools for
network intrusion detection. Unlike static, rule-based sys-
tems, ML and DL models can autonomously learn complex
features from high-dimensional network traffic, capturing
subtle patterns and correlations that might be missed by
conventional methods [16], [17]. This makes them partic-
ularly effective at detecting zero-day attacks and evolving
cyber threats, which often evade traditional defenses.

Additionally, these AI-driven approaches offer several
distinct advantages:
Capturing Complex Attack Behaviors: ML algorithms can iden-
tify subtle, often overlooked indicators of malicious activ-
ity by learning from diverse network traffic, significantly
improving detection accuracy for sophisticated attacks [18],
[16].
Reduced Reliance on Signature Updates: Unlike signature-
based systems that require frequent updates to recognize
new threats, ML models continuously adapt as they process
new data, reducing the need for manual intervention and
improving response times [19], [15].

As networks continue to expand, the demand for scal-
able, adaptive security solutions has become critical. Ac-
cording to the IBM 2023 Cyber Threat Report, the global
average cost of a data breach has surged to USD 4.45 million,
reflecting a 15% increase over the past three years [20]. This
trend highlights the need for more advanced detection sys-
tems that can keep pace with the evolving threat landscape.

However, the success of ML-based Network Intrusion
Detection Systems (NIDS) heavily depends on the avail-
ability of high-quality datasets for training and evaluation
[18]. Comparing the effectiveness of these models across
different datasets is challenging, as each dataset often con-
tains distinct and proprietary feature sets, reflecting the
specific network environments or applications from which
they were captured [3]. Network traffic features can vary
significantly depending on the industry, domain, and de-
vices involved, leading to differences in data distribution
and feature representation. For instance, as shown in Figure
2, some datasets may share a few common features, but
their distributions can vary widely, impacting model per-
formance when deployed in different contexts. This varia-
tion emphasizes the need for standardized feature sets to
enable fair and reliable evaluation of ML models across
diverse network environments [3]. Additionally, obtaining
real-world, labeled network flow datasets is challenging due
to privacy concerns and proprietary restrictions, which often
necessitates the use of synthetic datasets for training and
testing [21]. Figure 1 illustrates this issue, highlighting both
shared and unique feature sets across various network traf-
fic datasets. This diversity in feature distributions and class
ratios underscores the importance of domain adaptation
techniques to ensure effective network intrusion detection
across different environments.
Machine learning and deep learning have been increasingly
used in NIDS because of their ability to process vast
amounts of data and detect complex patterns that
traditional methods may be limited [18], [17]. However, the
effectiveness of these models heavily depends on the quality
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and representativeness of the training data, which often
varies significantly across different domains and datasets.
Several studies have explored the use of ML techniques
for network intrusion and traffic classification [19], [1],
revealing the complexities and challenges associated with
training models under varying conditions. Most statistical
models require re-modeling when data distribution
changes, as network flow data obtained at one time may
not match the distribution at another, regardless of the
industry [22]. This challenge highlights the need for models
that can adapt to these changes without requiring constant
retraining.

The discrepancy between datasets from different domains
presents a significant challenge in training NIDS. In real
industrial scenarios, network attack samples are often a
minority compared to normal samples [22] [23], and their
characteristics may vary depending on the domain of origin
[24]. Traditional machine learning algorithms struggle with
associating different feature distributions, especially when
the feature sets and probability distributions across datasets
are not common [25].

Advanced techniques like Transfer learning, domain
adaptation, and multimodal learning can also be employed
to address the challenges posed by handling heterogeneous
datasets in NIDS. Transfer learning is particularly useful
in scenarios where frequent updating of outdated data
and recalibration are impractical. By leveraging pre-trained
models, transfer learning can predict labels for future
data samples, thereby reducing the need for extensive
labeling efforts [5]. Domain adaptation approaches like
Domain Adversarial Neural Networks (DANN) facilitate
domain invariance between known and variant attack data,
improving the classification of modified attack patterns
[26], [27]. Manifold adaptation is a statistical method to
map datasets to a common attribute space [28]. Another
method to address this challenge is the Maximum Mean
Discrepancy (MMD), which has proven effective in aligning
feature distributions between source and target domains
[13] [5] [29]. This alignment enhances the system’s ability
to detect intrusions, ultimately adapting and improving
generalization across diverse network environments.
Additionally, feature-based transfer learning approaches,
such as Clustering Enhanced Hierarchical Transfer Learning
(CeHTL), enhance system robustness by improving the
detection of new network attacks [30]. CeHTL determines
the relationship between new and known attacks, automates
the relevance finding between source and target domains,
and assesses cluster similarities for better performance.

Deep learning-based algorithms, though effective, require
large amounts of labeled data [1], which can be costly and
time-consuming. Transfer learning and domain adaptation
help mitigate these challenges by transferring knowledge
from existing datasets, making them applicable even
when feature sets differ across datasets. Furthermore, the
application of Generative Adversarial Networks (GANs) in
NIDS has shown promise in generating data for adversarial
training, optimizing the detection models’ performance
even with varying feature sets [22].

Multimodal learning, which involves training models on
diverse modalities, is another effective approach for en-
hancing NIDS performance. This learning method im-
proves model resilience and flexibility by leveraging cross-
modality learning and shared representation learning [31].
Our proposed approach utilizes a cyclic shared representa-
tion learning framework, which aims to determine whether
the learned feature representation can capture correlations
across multiple modalities, potentially leading to modality-
invariant representations.

3 METHODOLOGY

We propose an architecture that integrates multi-modal
learning with a shared representation framework and do-
main adaptation to effectively handle heterogeneous data
from different networks. These data may differ in their
feature sets and are expected to have distinct probability
distributions. The model processes input from different
domains using private networks, each dedicated to learning
domain-specific features. These private networks project the
input features into a shared latent space, where we minimize
the distributional discrepancy between domains.

The transformed features from the private networks
are then forwarded to a shared network, which captures
domain-invariant representations and performs the final
classification. The model is trained using a combined loss
function that includes class prediction and domain align-
ment. Training is conducted in a sequential cyclic manner,
where each domain is used in turn to update the corre-
sponding private network along with the shared network.
This iterative process enables the model to gradually learn
both shared and domain-specific features, improving gener-
alization across diverse datasets. Although the approach is
scalable to multiple datasets, we focus our discussion on
a two-dataset scenario for clarity. Figure 2 illustrates the
proposed model architecture.
Formal Definitions.

The datasets Ds1 and Ds2 represent two heterogeneous
datasets collected from different domains (networks), de-
noted as s1 and s2, respectively:

Ds1 = {(xs1
i , ys1i )}ns1

i=1 , xs1
i ∈ Rds1

Ds2 =
{(

xs2
j , ys2j

)}ns2

j=1
, xs2

j ∈ Rds2

Here, x denotes the input features and y denotes the cor-
responding class labels. We assume that the datasets have
different feature dimensions, i.e., ds1 ̸= ds2.

The proposed model consists of two private networks,
fs1(·) and fs2(·), along with a shared network fsh(·). The
private networks are responsible for learning feature rep-
resentations specific to each dataset, effectively capturing
domain-specific characteristics and projecting them into a
common latent space Z :

Zs1 = fs1(Xs1) (1)

Zs2 = fs2(Xs2) (2)
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Fig. 2: Model Architecture

The latent representations obtained from the private
networks are then passed to the shared network fsh(·),
which produces the final output prediction y.

A key concept of the proposed model is the adapta-
tion of the transformed features before they are passed to
the shared network fsh(·). This adaptation addresses do-
main shift by computing the Maximum Mean Discrepancy
(MMD) between the transformed feature sets Zs1 and Zs2,
obtained from the respective private networks fs1(·) and
fs2(·). By projecting the features onto a shared latent space,
the model learns domain-invariant representations, aligning
the distributions of inputs from different domains to capture
meaningful and generalizable patterns. This enables the
model to focus on shared representations and minimize
domain-specific discrepancies, thereby improving its ability
to transfer knowledge across domains.

We denote the transformed feature sets as Zs1 ∈ RN×D

and Zs2 ∈ RM×D , where N and M are the number of
samples from each domain, and D is the dimensionality of
the latent space.

The MMD computation is defined as:

MMD(Zs1, Zs2) =

∥∥∥∥∥∥ 1

N

N∑
i=1

ϕ (zs1i )− 1

M

M∑
j=1

ϕ
(
zs2j

)∥∥∥∥∥∥
2

(3)

where zs1i ∈ Zs1 and zs2j ∈ Zs2 are the transformed outputs
of the respective private networks. To capture non-linear
relationships between distributions, we employ a Gaussian
kernel function. The mapping ϕ(z) : Z → H embeds the
feature into a universal Reproducing Kernel Hilbert Space
(RKHS) H [29], enabling a flexible and powerful similarity
measure between samples from different domains.

The empirical MMD loss between the two heterogeneous
datasets is computed as:

MMD =
1

N2

N∑
i=1

N∑
j=1

k
(
zs1i , zs1j

)
+

1

M2

M∑
i=1

M∑
j=1

k
(
zs2i , zs2j

)
− 2

NM

N∑
i=1

M∑
j=1

k
(
zs1i , zs2j

)
(4)

where k(zs1i , zs1j ) denotes the kernel function that computes
the inner product ⟨ϕ(zs1i ), ϕ(zs1j )⟩ in the RKHS. Accordingly,
the first loss function used for training the model is defined
as:

LMMD = MMD(Zs1, Zs2) (5)

The transformed feature set Zs1 is then passed to the
shared network fsh(·), which acts as a classifier to predict
the output. Accordingly, we employ a second loss function:
the cross-entropy loss, defined as:

LCE = −
size∑
i=1

yi · log ŷi, where size ∈ {N,M} (6)

In the first phase of training, we optimize a combined loss
function that integrates the cross-entropy loss LCE and the
Maximum Mean Discrepancy (MMD) loss LMMD to update
the parameters of both the shared network fsh(·) and the
private network fs1(·). The combined loss is expressed as:

Loss = α · LCE + β · LMMD (7)

where α and β are weighting coefficients that balance the
contribution of the two losses.



5

4 EXPERIMENTS

4.1 Experimental Setups
We construct 20 cross-domain datasets using the datasets
listed in Table 1, leveraging four publicly available datasets
[32]. These datasets cover a range of attack categories, in-
cluding HTTP Denial of Service, Web Application Attacks,
and Brute Force Attacks, and provide information on the
percentage distribution of attack samples in each dataset.
All datasets share a common feature set of 77 attributes, with
samples labeled as either NORMAL or by their respective
attack type. The feature sets are detailed in Table 3.

Features and labels classify the samples as either NOR-
MAL or ATTACK, encompassing various attack categories
(e.g., HTTP denial of service, web application attacks, brute
force attacks, etc.). Each of the four datasets contains distinct
types of attack samples (see Table 1). For classification
purposes, we consolidate all attack types into a single class
labeled ”ATTACKS,” while retaining ”NORMAL” for the
remaining samples.

TABLE 1: Datasets used for the proposed exploration [32]

Sr# Dataset Datapoints Features Types of
Attacks Attacks(%)

1 CIC-IDS2017 152,055 77 5 79.7
2 CIC-IDS2018 199,997 77 8 26.2
3 SDN20 205,167 77 5 66.6
4 ANDMAL2017 100,521 77 4 15.5

4.2 Cross-domain datasets and Evaluation setups
To evaluate our methodology, we introduce 20 different
cross-domain datasets with unique feature sets, which were
randomly selected from each dataset. Table 4 in the Ap-
pendix shows the description of the different cross-domain
datasets used for the evaluation. For evaluation, we design
the following experiment setups:
Setup 1: Using one single dataset, we construct different
cross-domain datasets by splitting the feature set.
Setup 2: We construct cross-domain datasets using two
different datasets.
Setup 3: We construct cross-domain datasets using three
datasets.

In addition, to validate the robustness of the proposed
model, it is essential to consider how it performs under
varying sample variability and distribution. To assess these
factors, we design the following experiments using the
cross-domain datasets in setup 1.

• We take different combinations of feature sets [5-5],
[15-15], [5-20], [30-5] to see how the difference in
model performance with change in feature dimen-
sionality.

• We sub-sample the second subset of all the combi-
nation subsets to 10%, 50%, 75%, 100% of its orig-
inal size (table 2) while keeping the first subset
unchanged.

For all of the constructed cross-domain datasets, stan-
dard preprocessing techniques were applied using the same
pipeline. Initially, all duplicates and null values were re-
moved. The dataset was split into training, validation, and

TABLE 2: Overview of Datasets with sub-sampled sample
sizes (10%, 50%, 75%)

Dataset Name Total datapoints 10% 50% 75%

CIC-IDS2017 152,055 15,206 76,028 114,041

CIC-IDS2018 199,997 20,000 99,998 149,998

SDN20 205,167 20,517 102,584 153,875

AndMal2017 100,521 10,052 50,260 75,391

testing sets, with stratified sampling to preserve the label
distribution. The training set was further balanced using
two resampling techniques: SMOTE (Synthetic Minority
Over-sampling Technique) to increase the number of minor-
ity class samples, followed by RandomUnderSampler() to
reduce the number of majority class samples. The features
were then transformed using a preprocessing pipeline that
employed StandardScaler() to scale the features.

4.3 Results
We show the results of the experiments in different
plots, as illustrated in Figure 4-23. The plots illustrate
the comparison of the metric scores, Accuracy, F1-score,
Precision, and Recall, between the baseline and proposed
model on both the derived subsets. The plot adapts a color
shading to highlight the comparison between the evaluation
metrics, with lighter shades representing the baseline scores
and the corresponding darker shades representing the
proposed model’s performance.
In the following section, we analyze each combination set
from Table 4 (Sr# 1-20), considering the factors above, and
evaluate and analyze the proposed model performance with
a change in sample variability and feature dimensionality.

4.4 Setup 1
4.4.1 Evaluation of combinatorial sets derived from CIC-
IDS2017 dataset
As mentioned above, we randomly extract subsets of
features from the CIC-IDS2017 dataset, forward them to the
proposed model, and evaluate detection rate scores against
their baseline classifier model.

Figure 3 evaluates the performance of the baseline
and proposed model across different sample ratios (10%,
50%, 75%, and 100%) for two CIC-IDS2017 subsets
(Subset-1 and Subset-2), each with 5 unique features.
On observation, it is evident that the proposed model
consistently outperforms the baseline in all metrics, with
higher mean values, indicating a more reliable performance.
Even with a smaller sample ratio of 10%, the proposed
model shows significant improvement over the baseline,
which suggests that the distribution alignment effectively
leverages the information from both subsets, leading to a
better generalization even with limited data. As the sample
size increases, the performance gap between the proposed
model and the baseline remains, further highlighting
the effective adaptation of multiple domains. This trend
across all sample ratios showcases the proposed model’s
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Fig. 3: Evaluation of two domains with 5 unique feature sets from CIC-IDS2017 - Table 4 (Sr# 6)

robustness and adaptability, demonstrating its effectiveness
in handling variability and effectively learning from both
datasets simultaneously.

Next, we study a new subset with 15-15 features
from the CIC-IDS2017 dataset. Both subsets show consistent
performance with minimal variation across different sample
ratios. Compared to the earlier plot, where only 5 features
were used, the overall mean performance metrics, including
accuracy, F1 score, precision, and recall, show a further
improvement in the detection of samples, suggesting
that additional features contribute to a more informative
representation of the data. The proposed model maintains
higher mean values than the baseline model, regardless
of the sample ratio. Notably, with the increased number
of features, the performance metrics are more stable, with
reduced variability, as shown in figure 4. This highlights
the ability of the proposed model to effectively align and
generalize the distributions between the two datasets,
thereby achieving improved performance.

Following this, we conducted training using a new
Subset-1 (5 features) and Subset-2 (20 features) (Figure 5).
On observing the subset 1 evaluation, the baseline scores
show considerable variability, particularly when using only
10% of the sample data, indicating the model’s struggle
with limited feature representation. On the other hand,
the proposed model manages to improve the performance
metrics consistently, indicating the model’s ability to
generalize well even with fewer features and a variable
sample ratio. While with test subset 2 both the baseline
and the proposed model achieve high and very similar
performance metrics across all evaluation metrics. However,
the proposed model still maintains a marginal improvement
over the baseline, emphasizing its adaptability in aligning
data distributions effectively. We can observe that the
proposed model effectively learns from and adapts to the
available data, benefiting from the shared learning process
between Subset-1 and Subset-2.

Next, we conducted another training using a new set of
subsets with 30-5 feature sets from the CIC-IDS2017 dataset.
The results, as illustrated in figure 6, indicate that the
proposed model’s ability to adapt and learn from multiple
datasets is highly effective, particularly when there is an
imbalance in feature dimensionality between the subsets.
For Subset-1, with its 30 features, both the baseline and pro-
posed model perform well, On the other hand, for Subset-2,
which only has 5 features, the baseline model struggles due
to the limited feature sets, whereas the proposed model’s
superior performance to learn from feature spaces from
both the subsets effectively and compensate for the lower
dimensionality. This adaptability, particularly in handling
scenarios where one dataset has much higher feature sets
than the other, highlights the strength of the proposed
model in heterogeneous environments.

4.4.2 Evaluation of combinatorial sets derived from CIC-
IDS2018 dataset

In the evaluation of a new dataset, CIC18, both Subset-1 and
Subset-2 are assessed using 5 unique feature sets, as shown
in figure 7. The performance metrics reveal consistently
high mean values across different sample ratios for both the
baseline and proposed models. The proposed model gener-
ally achieves slightly higher performance than the baseline
across all metrics. This demonstrates the effectiveness of the
proposed model in maximizing classification performance
even with a limited number of features. In Subset-1, the pro-
posed model still maintains a slight advantage in terms of
higher metric scores and reduced variability, while Subset-
2 shows almost indistinguishable performance between the
baseline and proposed models, especially for larger sample
sizes (50%, 75%, and 100%). Overall, these findings sup-
port the efficacy of the proposed model in heterogeneous
scenarios with feature-limited datasets, achieving consistent
performance metrics across varied sample sizes.

Next, we evaluate the CIC18 dataset with Subset-1
and Subset-2, both having 15 unique features as shown
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Fig. 4: Evaluation of two domains with 15 unique feature sets from CIC-IDS2017 - Table 4 (Sr# 7)

Fig. 5: Evaluation of two domains with 5 and 20 unique feature sets from CIC-IDS2017 - Table 4 (Sr# 8)

in figure 8. The evaluation plots show that the proposed
model consistently handles sample variability well across
different sample ratios, maintaining high metric scores. The
proposed model demonstrates slight improvements over the
baseline model. As the number of features increases, the
model adapts to distribution changes, and its performance
remains stable with minimal variability, showing an upward
trend compared to the baseline scores. This suggests that
the proposed model adapts well to different sample sizes
and also leverages the total number of features and dis-
tribution alignment to achieve better overall classification
performance.

We then take into account two unique subsets with an
imbalance in the total number of features. This can be seen
in figure 9 and 10; the proposed model demonstrates a clear
advantage over individual baseline classifiers by effectively
learning from both the subsets with a different number of
features, one with a high number of features and one with

a low number (Sr#4, Sr#5 in Table 4 in Appendix). The
proposed model is able to align the distributions of these
heterogeneous subsets, leading to improved classification
performance for both test datasets compared to their respec-
tive baseline models.

When one subset has more features, the proposed model
benefits significantly by leveraging this richer information,
which results in improved scores across all metrics, even for
the subset with fewer features. The distribution alignment
allows the proposed model to compensate for the disparity
in feature availability, thereby enhancing learning from both
subsets and providing better results, regardless of variable
sample sizes. This demonstrates the robustness of the pro-
posed model in handling feature imbalance and aligning
distributions to improve overall classification.
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Fig. 6: Evaluation of two domains with 30 and 5 unique feature sets - Table 4 (Sr# 9)

Fig. 7: Evaluation of two domains from CIC18 dataset with 5 and 5 unique feature sets - Table 4 (Sr# 2)

4.4.3 Evaluation of combinatorial sets derived from SDN20
dataset

In evaluating the SDN20 dataset, where both Subset-1
and Subset-2 have 5 unique features each, as shown
in figure 11, the proposed model demonstrates consistent
improvement over the baseline across all metrics at different
sample ratios. The proposed model effectively aligns the
distributions and learns from both subsets, resulting in
enhanced performance on both test datasets despite the
limited number of features. The quality of the selected
features also plays a critical role in this improvement,
suggesting a better classification of both normal and
attack instances. Furthermore, the proposed model shows
the capability to handle feature variability, as indicated
by the reduced variability observed in the smaller error bars.

Similarly, with the CIC-IDS2018 dataset, we now
evaluate the SDN20 dataset, with both Subset-1 and Subset-

2 having 15 unique features each (Figure 12). Here, the
proposed model also demonstrates slight improvement over
the baseline across all metrics at different sample ratios.
The proposed model effectively aligns the distributions
from these increased sets of feature sets and learns from
both subsets, leading to enhanced performance on both test
datasets.

In analyzing the figures and depicting subsets with an
imbalance in the total number of features, as presented
in Figure 13 (Subset-1 with 5 features and Subset-2 with
20 features) and Figure 14 (Subset-1 with 30 features and
Subset-2 with 5 features), the proposed model demonstrates
significant improvement over the individual baseline
classifiers. This improvement, as seen with the previous
datasets, is its ability to effectively learn from both distinct
subsets despite the differences in total number of feature
sets. The proposed model is capable of aligning the
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Fig. 8: Evaluation of two domains from CIC18 dataset with 15 and 15 unique feature sets - Table 4 (Sr# 3)

Fig. 9: Evaluation of two domains from CIC18 dataset with 5 and 20 unique feature sets - Table 4 (Sr# 4)

distributions between these heterogeneous subsets, thereby
resulting in improved classification performance for both
test datasets.

In scenarios where one subset contains more features,
such as Subset-2 in Figure 13 or Subset-1 in Figure 14,
the proposed model significantly benefits from leveraging
this richer feature set, leading to improved scores across
all evaluated metrics, including for the subset with fewer
features, regardless of the variability in sample sizes. These
scores illustrate the robustness of the proposed model in
managing feature imbalance, effectively improving overall
classification performance.

4.5 Setup 2

4.5.1 Evaluation of combinatorial sets derived from two
different datasets

In this phase of the evaluation, we consider the combination
of subsets derived from two entirely different datasets. Each
subset is created by randomly selecting unique feature sets
from the respective datasets. The performance of the pro-
posed model is evaluated by applying it to these subsets and
comparing the results against their individual baseline mod-
els. Here, we aim to assess the model’s ability to generalize
across heterogeneous data sources. This experiment allows
us to investigate the model’s robustness and effectiveness
in aligning distributions and learning from diverse data
subsets to better classify network samples.

Figure 15 presents the evaluation of the proposed
model compared to the baseline models using subsets
from the CIC-IDS2017 and CIC-IDS2018 datasets, each with
10 unique feature sets. The plots display the mean and
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Fig. 10: Evaluation of two domains from CIC18 dataset with 30 and 5 unique feature sets - Table 4 (Sr# 5)

Fig. 11: Evaluation of two domains from SDN20 dataset with 5 and 5 unique feature sets - Table 4 (Sr# 10)

standard deviation of the metrics, and it is evident that
the proposed model consistently outperforms the baseline
models across all metrics. The baseline accuracy is 79%
for CIC17 and 91% for CIC18, while the proposed model
achieves significantly higher accuracies of 86% and 93%,
respectively. Similarly, F1 score, precision, and recall show
notable improvements with the proposed model. Although
the CIC17 plots exhibit higher variability compared to
CIC18, the proposed model demonstrates a clear trend of
improving classification performance. This highlights the
robustness of the proposed model, even when dealing with
heterogeneous datasets.

The plots in Figure 16 present the evaluation of the
proposed model compared to baseline models using subsets
from the CIC-IDS2017 and SDN20 datasets. Across both
test datasets, the proposed model consistently outperforms
the baseline models across all metrics. For CIC-IDS2017,

the baseline accuracy is 79.30%, while the proposed
model achieves a significantly higher accuracy of 86.87%.
Similarly, the F1 score, precision, and recall show notable
improvements, surpassing the baseline evaluation. For
SDN20, the baseline accuracy is 92.50%, and the proposed
model increases this to 94.17%, showing improvements
across all other metrics as well. There is a notable variability
in the scores with CIC-IDS2017, suggesting fluctuations in
performance across different runs. However, the proposed
model still demonstrates clear superiority over the baseline
models. These results, derived from a combination of
diverse test datasets, demonstrate the ability of the
proposed model to efficiently handle heterogeneous data,
align feature distributions, and improve the classification
outcomes compared to the baseline models.

Figure 17 presents the evaluation of the proposed model
using subsets from the ANDMAL2017 and CIC-IDS2017
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Fig. 12: Evaluation of two domains from SDN20 dataset with 15 and 15 unique feature sets - Table 4 (Sr# 11)

Fig. 13: Evaluation of two test subsets from SDN20 dataset with 5 and 20 unique feature sets - Table 4 (Sr# 12)

datasets, showing the mean and standard deviation for
each metric. For ANDMAL2017, the proposed model
demonstrates significant improvement over the baseline,
with accuracy increasing from 75.07% to 87.37%. Similar
improvements are observed in the F1 score, precision, and
recall. However, the higher variability in the ANDMAL2017
results, indicated by larger error bars, suggests variability
in performance, possibly due to the quality of samples
and label imbalances within the dataset, as discussed in
Appendix . For CIC-IDS2017, the baseline accuracy is
79.27%, and the proposed model improves this to 85.63%,
with more consistent results and lower variability compared
to ANDMAL2017. These improvements across both
datasets highlight the robustness of the proposed model in
aligning feature distributions and enhancing classification
performance, even with diverse and imbalanced datasets.

Figure 18 presents an evaluation of the proposed model

using subsets from the CIC-IDS2018 and SDN20 datasets,
each containing randomly selected 10 unique feature sets.
For CIC-IDS2018, the baseline accuracy is 91.85%, while
the proposed model improves this to 93.22%, showing a
clear enhancement in performance across all metrics with
relatively low variability. For SDN20, the baseline accuracy
is 91.62%, and the proposed model increases this to 94.54%,
with less variability in the evaluation, indicating more
stable and consistent results. Overall, the proposed model
demonstrates superior performance for both CIC-IDS2018
and SDN20, highlighting its robustness and ability to
align feature distributions effectively, leading to better
classification outcomes across heterogeneous datasets.

figure 19 presents an evaluation of the proposed model
using randomly selected subsets from the ANDMAL2017
and CIC-IDS2018 datasets. For ANDMAL2017, the baseline
accuracy is as low as 57.33%, while the proposed model
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Fig. 14: Evaluation of two test subsets from SDN20 dataset with 30 and 5 unique feature sets - Table 4 (Sr# 13)

Fig. 15: Evaluation of two test subsets from CIC-IDS2017
and CIC-IDS2018 dataset with 10 unique feature sets - Table
4 (Sr# 14). The evaluation plots compare the metrics from
the proposed model and the respective baseline model.

Fig. 16: Evaluation of two test subsets from CIC-IDS2017
and SDN20 dataset with 10 unique feature sets - Table 4
(Sr# 15). The evaluation plots compare the metrics from the
proposed model and the respective baseline model.

Fig. 17: Evaluation of two test subsets from CIC-IDS2017
and ANDMAL2017 dataset with 10 unique feature sets -
Table 4 (Sr# 16). The evaluation plots compare the metrics
from the proposed model and the respective baseline model.

Fig. 18: Evaluation of two test subsets from SDN20 and CIC-
IDS2018 dataset with 10 unique feature sets - Table 4 (Sr# 17).
The evaluation plots compare the metrics from the proposed
model and the respective baseline model.
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Fig. 19: Evaluation of two test subsets from ANDMAL and
CIC-IDS2018 dataset with 10 unique feature sets - Table 4
(Sr# 18). The evaluation plots compare the metrics from the
proposed model and the respective baseline model.

Fig. 20: Evaluation of two test subsets from ANDMAL and
SDN20 dataset with 10 unique feature sets - Table 4 (Sr# 19).
The evaluation plots compare the metrics from the proposed
model and the respective baseline model.

significantly improves this to 86.90%, demonstrating an
enhancement in performance across all metrics. However,
the higher variability in the results may be attributed
to the quality of the data and label imbalances to have
a biased result, which was similarly observed in the
evaluation with CIC-IDS2017-ANDMAL (Table 4 - Sr# 16).
For CIC-IDS2018, the baseline accuracy is 91.47%, and the
proposed model increases this to 93.40%, showing more
stable and consistent performance when compared with
ANDMAL2017 scores. These results demonstrate that the
proposed model tries to achieve a synergistic improvement,
enhancing the detection of samples from both diverse
datasets and improving overall classification performance.
The findings emphasize the model’s robustness and ability
to align feature distributions, delivering better classification
outcomes across heterogeneous datasets.

Our final combination of two diverse datasets,
ANDMAL2017 and SDN20, as illustrated in Figure
20, presents the evaluation of the proposed model in
comparison to the baseline scores. Interestingly, for
ANDMAL2017, the baseline accuracy exceeds that of the
proposed model, which underperforms with an accuracy of
66.37%, a trend that is similar across F1 score, precision, and

Fig. 21: Comparison of evaluation scores between the base-
line and proposed models across three distinct datasets with
unique feature sets from‘ CICIDS17, CICIDS18 and SDN20
- Table 4 (Sr# 20).

recall. Additionally, the results for ANDMAL2017 exhibit
significant variability, indicating inconsistent performance
across repeated runs. This variability could be attributed to
data quality issues and label imbalances in the ANDMAL
dataset, which were also observed in previous analyses,
both when evaluated individually and when combined
with other datasets. In contrast, for the SDN20 dataset, the
proposed model outperforms the baseline model across all
metrics, demonstrating minimal variability and consistent
performance across repeated experiments. These results
suggest that, while the proposed model generally performs
well and shows robustness with SDN20, it struggles with
datasets like ANDMAL2017, which contain complex or
imbalanced data. Despite these challenges, the proposed
model still demonstrates its effectiveness in improving
classification performance, particularly with more balanced
and stable datasets.

4.6 Setup 3

4.6.1 Evaluation of combinatorial sets derived from three
different datasets
To further evaluate the capability of the proposed model in
handling multiple datasets, we introduced three different
datasets for testing. Given that the model is designed to
adapt to datasets from different domains, each representing
varied sample distributions, the objective here is to assess
the model’s effectiveness in learning from unique feature
sets across three different datasets and its ability to
generalize across diverse distributions. Figure 21 presents
the performance evaluation scores of the proposed model on
the test subsets compared to their respective baseline scores.

The figure presents an evaluation of the proposed
model using subsets from three datasets: CIC-IDS2017, CIC-
IDS2018, and SDN20. These datasets were selected due to
their balanced nature and higher data quality compared
to ANDMAL, as observed in previous experiments. Three
subsets with 10 unique feature sets were extracted, as de-
tailed in Table 4 (Sr# 20). The proposed model improves
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Fig. 22: Comparison of evaluation scores between the base-
line and proposed models across distinct subsets with 10
and 5 unique feature sets(Dataset1 - Dataset2) derived from
the CIC-IDS18dataset - Table 4 (Sr# 1).

accuracy from 85.15% to 91.33% for CIC-IDS2017, with
similar improvements in F1 score, precision, and recall. For
CIC-IDS2018, the baseline accuracy is 70.23%, while the
proposed model achieves a significantly higher accuracy of
93%, along with substantial improvements in F1 score, preci-
sion, and recall. In the case of SDN20, both the baseline and
proposed models exhibit high accuracy, with the baseline at
95.87% and the proposed model slightly improving this to
96%. All other metrics for SDN20 show minimal variability,
indicating stable performance.

Overall, these results demonstrate that the proposed
model consistently outperforms the baseline across all three
datasets, where it shows significant classification improve-
ments. The evaluation validates that the proposed model
adapts well to heterogeneous datasets, leading to enhanced
classification performance and better detection of network
samples.

4.7 Monitoring the alignment of the domains in the
latent space by MMD
We extracted two subsets of features from the CIC-IDS2018
dataset, randomly selecting 10 and 5 unique feature sets
to simulate a cross-domain scenario, as detailed in Table 4
(Sr# 1). The pre-processed subsets were first passed through
the baseline classifier to evaluate classification scores and
then through the proposed model. Figure 22 illustrates the
results of this experiment. From the plot, we observe that the
proposed model effectively learns and adapts from both do-
mains, improving network intrusion detection across them,
as seen in the increasing trend of the classification scores
in figure 22. We hypothesize that this improvement is due
to the minimization of the Maximum Mean Discrepancy
(MMD), leading to better alignment between the datasets.
Figure 23 supports this hypothesis, showing a decreasing
trend in MMD throughout the training process of the pro-
posed model.

5 CONCLUSION

This paper presents a novel neural network architecture
for network intrusion detection, addressing the challenge

Fig. 23: A plot illustrating the mean maximum discrepancy
value over the entire training cycle for the CIC18 subsets,
showing a decreasing trend that indicates the alignment of
feature distributions.

of handling heterogeneous datasets. The proposed model is
designed to integrate multiple domain-specific feature sets,
enabling it to learn domain-invariant representations from
varying input features, samples, and distributions. This
design aims to enhance the accuracy and generalizability
of intrusion detection and classification systems.

The core of the model is a feature extraction mechanism
that incorporates multimodal learning within a domain
adaptation framework. This allows the model to effectively
capture domain-specific variations while aligning distribu-
tions across domains. To evaluate the model, we conducted
four experiments: (1) testing on two distinct feature subsets
from a single dataset, (2) analyzing the effect of shared
features across subsets, (3) using random feature subsets,
and (4) evaluating performance on multiple datasets with
varying sample sizes and distributions.
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TABLE 3: Comprehensive list of 78 network traffic features that are consistently present across four intrusion detection
datasets: CIC-IDS2017, CIC-IDS2018, SDN 2020, and ANDMAL.

Feat ID Feature Name Feat ID Feature Name

1 Protocol 40 Max Packet Length
2 Flow Duration 41 Packet Length Mean
3 Total Fwd Packets 42 Packet Length Std
4 Total Backward Packets 43 Packet Length Variance
5 Total Length of Fwd Packets 44 FIN Flag Count
6 Total Length of Bwd Packets 45 SYN Flag Count
7 Fwd Packet Length Max 46 RST Flag Count
8 Fwd Packet Length Min 47 PSH Flag Count
9 Fwd Packet Length Mean 48 ACK Flag Count

10 Fwd Packet Length Std 49 URG Flag Count
11 Bwd Packet Length Max 50 CWE Flag Count
12 Bwd Packet Length Min 51 ECE Flag Count
13 Bwd Packet Length Mean 52 DownUp Ratio
14 Bwd Packet Length Std 53 Average Packet Size
15 Flow Bytess 54 Avg Fwd Segment Size
16 Flow Packetss 55 Avg Bwd Segment Size
17 Flow IAT Mean 56 Fwd Avg BytesBulk
18 Flow IAT Std 57 Fwd Avg PacketsBulk
19 Flow IAT Max 58 Fwd Avg Bulk Rate
20 Flow IAT Min 59 Bwd Avg BytesBulk
21 Fwd IAT Total 60 Bwd Avg PacketsBulk
22 Fwd IAT Mean 61 Bwd Avg Bulk Rate
23 Fwd IAT Std 62 Subflow Fwd Packets
24 Fwd IAT Max 63 Subflow Fwd Bytes
25 Fwd IAT Min 64 Subflow Bwd Packets
26 Bwd IAT Total 65 Subflow Bwd Bytes
27 Bwd IAT Mean 66 Init Win bytes forward
28 Bwd IAT Std 67 Init Win bytes backward
29 Bwd IAT Max 68 act data pkt fwd
30 Bwd IAT Min 69 min seg size forward
31 Fwd PSH Flags 70 Active Mean
32 Bwd PSH Flags 71 Active Std
33 Fwd URG Flags 72 Active Max
34 Bwd URG Flags 73 Active Min
35 Fwd Header Length 2 74 Idle Mean
36 Bwd Header Length 75 Idle Std
37 Fwd Packetss 76 Idle Max
38 Bwd Packetss 77 Idle Min
39 Min Packet Length 78 multilabel
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TABLE 4: Feature ID combinations selected from four different network intrusion datasets (CICIDS2017, CICIDS2018,
SDN-2020, ANDMAL) for validating the proposed novel model. Sr#1 to Sr#13 represent combinations where features were
randomly selected from a single individual dataset. Sr#14 to Sr#19 involve combinations drawn from two different datasets.
The table lists the exact Feature IDs used in each combination for reproducibility and further analysis.

Sr# Dataset/s Feature Combination Dataset 1 (Feat. Id) Dataset 2 (Feat. Id) Dataset 3 (Feat. Id)

1 CIC18 10-5 1,10,11,24,34,35
,40,50,73,77 9,37,52,62,65

2

CIC18

5-5 13,20,26,33,72 3,7,25,37,64

3 15-15 4,5,7,10,15,19,20,21,
22,24,26,41,42,47,57

13,14,17,23,27,35,
37,48,50,56,59,

68,71,73,77

4 5-20 14,24,45,68,73
1,10,13,15,16,21,

22,23,29,31,38,41,42,
56,58,60,64,65,70,72

5 30-5

1,2,3,5,8,13,17,19,20,
21,25,31,39,40,42,46,47,

53,56,57,58,61,62,65,
66,67,70,74,76,77

24,29,30,41,44,78

6

CIC17

5-5 12,14,18,53.70 10,22,30,54,73

7 15-15
9,11,15,22,32,35,
41,45,47,53,54,

56,58,65,67

13,14,16,28,34,40,
44,51,59,60,64,

68,71,72,74

8 5-20 29,62,71,75,77

6,15,24,25,27,35,41,
44,47,49,50,52,53,

61,64,66,67,
69,74,76

9 30-5

1,2,3,4,5,6,7,15,16,18,
20,22,23,24,25,29,32,

36,37,39,43,45,49,
51,57,62,65,69,74,75

8,31,33,61,67

10

SDN20

5-5 6,27,30,36,69 13,15,20,62,66

11 15-15
5,6,16,19,20,21,
23,24,26,33,52,

53,65,75,77

2,3,9,13,14,29,
34,41,51,60,67,

71,73,74,76

12 5-20 2,31,35,70,73

1,11,12,14,15,16,17,
18,20,24,28,33,44,

50,54,56,66,
69,71,77

13 30-5

2,4,6,8,14,18,19,23,
25,26,30,36,37,38,40,
44,45,52,55,56,57,59,

61,63,65,70,73,74,75,77

11,15,29,33,47

14 CIC17-CIC18 10-10 5,12,15,25,33,51,
64,66,67,77

11,17,26,29,31,
32,37,45,56,73

15 CIC17-SDN20 10-10 5,12,15,25,33,
51,64,66,67,77

1,6,7,9,28,54,
55,63,65,74

16 CIC17-ANDMAL 10-10 5,12,15,25,33,
51,64,66,67,77

4,22,35,42,43,46,
48,50,69,71

17 CIC18-SDN20 10-10 11,17,26,29,31,
32,37,45,56,73

1,6,7,9,28,54,
55,63,65,74

18 CIC18-ANDMAL 10-10 11,17,26,29,31,
32,37,45,56,73

4,22,35,42,43,
46,48,50,69,71

19 SDN20-ANDMAL 10-10 1,6,7,9,28,54,
55,63,65,74

4,22,35,42,43,
46,48,50,69,71

20 CIC17-CIC18-SDN20 10-10-10
1,3,7,10,18,26,
38,48,54,55,56,

68,69,71,75

6,7,9,10,15,16,
19,21,22,27,37,

40,46,48,58,
70,74

8,10,15,17,21,
34,38,51,55,56,
59,63,67,69,73


