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Abstract—Machine Learning as a Service (MLaaS) enables
users to leverage powerful models from third-party cloud plat-
forms. However, this paradigm introduces significant security
risks, as service providers may intentionally or unintentionally
embed backdoors into their models, leaving end-users vulnerable
to targeted attacks. Unfortunately, existing defenses are inapplica-
ble in MLaaS, as their reliance on white-box access—a condition
strictly prohibited by service providers—underscores the critical
need for effective black-box strategies. Therefore, in this paper,
we endeavor to address the challenges of backdoor attacks
countermeasures in black-box scenarios, thereby fortifying the
security of inference under MLaaS.

We first categorize backdoor triggers from a new perspective,
i.e., their impact on the patched area, and divide them into:
high-visibility triggers (HVT), semi-visibility triggers (SVT), and
low-visibility triggers (LVT). Based on this classification, we
propose a progressive defense framework, BDFIREWALL, that
removes these triggers from the most conspicuous to the most
subtle, without requiring model access. First, for HVTs, which
create the most significant local semantic distortions, we identify
and eliminate them by detecting these salient differences. We
then restore the patched area to mitigate the adverse impact
of such removal process. The localized purification designed
for HVTs is, however, ineffective against SVTs, which globally
perturb benign features. We therefore model an SVT-poisoned
input as a mixture of a trigger and benign features, where we
unconventionally treat the benign features as noise. This formu-
lation allows us to reconstruct SVTs by applying a denoising
process that removes these benign ”noise” features. The SVT-
free input is then obtained by subtracting the reconstructed
trigger. Finally, to neutralize the nearly imperceptible but fragile
LVTs, we introduce lightweight noise to disrupt the trigger
pattern and then apply DDPM to restore any collateral impact on
clean features. Comprehensive experiments demonstrate that our
method outperforms state-of-the-art defenses. Compared with
baselines, BDFIREWALL reduces the Attack Success Rate (ASR)
by an average of 33.25%, improving poisoned sample accuracy
(PA) by 29.64%, and achieving up to a 111× speedup in inference
time. Code will be made publicly available upon acceptance.

I. INTRODUCTION

The emergence of large-scale deep learning models has
significantly driven up the computational demands for model
training and deployment. Consequently, the substantial costs of
deploying these models on-premises have become prohibitive
for many individual users and small-to-medium-sized enter-
prises. To circumvent these challenges, users are increasingly
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turning to Machine Learning as a Service (MLaaS) [1],
provided by platforms like Google AI [2] and Microsoft Azure
AI [3], as well as other third-party API providers. Despite its
advantages, MLaaS also introduces serious security concerns
[4], most notably the risk of backdoor attacks [5], [6], which
are particularly challenging to detect due to the black-box
nature of these services.

Backdoor attacks are typically implemented by introducing
specially crafted samples into the training dataset during
model training, resulting in a compromised model. During
inference, a backdoored model behaves normally on clean
samples, but classifies inputs containing the backdoor trigger
as an attacker-specified label with high confidence. In MLaaS
applications, backdoors can be introduced into models through
various means, posing significant security threats to users.
For instance, service providers (SPs) may intentionally deploy
backdoored models for malicious purposes [7]. Alternatively,
a benign provider might inadvertently train a backdoored
model using poisoned data collected from untrusted third-
party sources [8]. Furthermore, recent studies have shown
that attackers can introduce backdoors into MLaaS models by
leveraging seemingly benign data unlearning requests, further
exacerbating the threat landscape in MLaaS [5].

To counteract backdoor attacks, researchers have proposed
various defenses, which can be broadly categorized into ro-
bust training on potentially poisoned data [9] and post-hoc
removal of backdoors from compromised models [10], [11].
Unfortunately, these methods are rendered ineffective in the
MLaaS context because they operate under a critical assump-
tion. Specifically, prevailing white-box defenses presuppose
unrestricted access to the internal parameters of models and,
in some cases, the training data. This assumption is invalid
in MLaaS, where models are proprietary assets to SPs and
users are typically granted only black-box query access. As a
result, users are unable to verify the security of the provided
model and may unknowingly suffer from backdoor attacks.
This predicament motivates our research question: How can
a user, with only black-box access, effectively defend against
potential backdoors embedded in a third-party MLaaS model?

A primary defense direction in the black-box setting is to
purify potentially malicious inputs by removing embedded
triggers before they are fed to the model. Building on this
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idea, recent studies have proposed using diffusion models
to both eliminate backdoor triggers and recover semantic
information in the affected regions [12], [13]. However, ZIP
[12] can only be effective against small triggers and often
inflicts collateral damage on clean features, while also suf-
fering from high computational overhead. SampDetox [13]
advances this by leveraging trigger sensitivity to noise, intro-
ducing region-specific perturbations to disrupt triggers before
purification with a diffusion model. However, the imprecise
noise application of SampDetox often leads to incomplete
trigger removal and unintended corruption of clean features.
Furthermore, despite reducing the number of diffusion steps
compared to earlier methods, SampDetox still requires over
100 steps for purification. This translates to a more than
1000× increase in inference time, rendering it impractical for
real-time applications. Therefore, effectively and expeditiously
locating and removing trigger patterns, while minimizing
semantic information loss, remains a key challenge for black-
box backdoor defense.

In this paper, we propose BDFIREWALL, a novel black-box
backdoor defense framework that employs a three-stage pu-
rification process tailored to different trigger characteristics to
precisely locate, reconstruct, and eliminate backdoor patterns.
We first revisit the attachment mechanisms of existing triggers
and categorize them into high-visibility triggers (HVT), semi-
visibility triggers (SVT), and low-visibility triggers (LVT)
according to their impact on the triggered area. Based on this
categorization, we introduce a progressive defense framework
that applies a specialized removal strategy for each trigger
type. Specifically, we first tackle HVTs, which introduce
stark semantic discrepancies by directly replacing pixel re-
gions. Leveraging these semantic differences, we employ a
segmentation-based network to locate the trigger patch and
then use an inpainting module to reconstruct the clean con-
tent. However, this localized purification is ineffective against
SVTs, which blend with the image’s global features. For
these, we model the poisoned input as a composite of a
benign signal and a trigger signal, and then use a specialized
separation network to isolate and eliminate the latter. Finally,
for the remaining LVTs, we exploit their inherent sensitivity to
perturbations to destroy them. We first inject minimal noise to
disrupt the trigger and then apply a highly efficient single-step
diffusion model to purify the image, which removes both the
injected noise and the latent trigger. Our contributions can be
summarized as follows:

• Fresh Look at Trigger Taxonomy. We conduct a system-
atic study of trigger attachment mechanisms and propose
a new taxonomy based on the impact to the trigger
patched area. Specifically, we classify triggers into: 1)
High-Visibility Trigger (HVT), which create significant
semantic discrepancies due to the pixels replacements; 2)
Semi-Visibility Trigger (SVT), which perturb all benign
features and build the mixture of clean features and
backdoor features; and 3) Low-Visibility Trigger (LVT),
which nearly imperceptible but fragile to noise.

• Progressive Multi-Stage Purification Strategy. Based
on the observation, we propose BDFIREWALL, a pro-
gressive black-box defense framework that can effectively
and expeditiously defend against the backdoor attacks
in MLaaS. In detail, for a backdoor-embedded sample,
we first locate and remove the HVT according to the
significant semantic differences between HVT and clean
features, and then repair the removed area to mitigate the
semantic lost caused by trigger removal. Subsequently,
we consider the clean features in a image as noise, re-
construct the SVT mixed with them and remove the SVT
to obtain the SVT-free input. Finally, we add lightweight
noise to disrupt the LVT according to their low robustness
to noise, and then restore the damaged clean features
through DDPM. Through such processes, we can effec-
tively and expeditiously remove various trigger patterns
embedded in the input before it fed into MLaaS.

• State-of-the-Art Performance. Extensive experiments
against 11 SOTA backdoor attacks demonstrate the su-
periority of BDFIREWALL. Compared with SOTA black-
box defense methods, BDFIREWALL reduces the Attack
Success Rate (ASR) by an average of 33.25% and im-
proves Poisoned-sample-Accuracy (PA) by 29.64% com-
pared to leading defenses, while achieving up to a 111×
speedup in inference time.

II. BACKGROUNDS AND PRELIMINARIES

In this section, we present a brief overview of the back-
grounds of our paper and offers the preliminaries in the
aspect of DNN, backdoor attacks and the concurrent backdoor
defense techniques designed for image classifications.

A. Deep Neural Network

In a K-class image classification task, a deep neural net-
work, denoted as a parameterized function f(·; θ) that maps
an input x ∈ X to a label y ∈ Y , where X represents the input
space drawn from RC,H,W and Y = {1, 2, . . . ,K} represents
the label space. The parameters of network θ are optimized
by fitting on a labeled dataset D =

∑N
i (xi, yi). The training

process aims to find the optimal parameters θ∗ by minimizing
a pre-defined loss function L, which quantifies the discrepancy
between the model’s predictions for an input x and its ground-
truth label y, which can be formally expressed as:

θ∗ = argmin
θ

∑
(x,y)∈D

L(f(x; θ), y), (1)

where a common choice for L is the Cross-Entropy loss,
defined for a single sample as Eq. 2, where 1y=c is an indicator
function that is 1 if c is the true class and 0 otherwise, and pc
is the model’s predicted probability for class c.

LCE = −
K∑
c=1

1y=c log(pc). (2)



B. Backdoor Attacks

In recent years, the remarkable progress of artificial intel-
ligence (AI), particularly in the realm of computer vision,
has also exposed new security vulnerabilities. Among these
vulnerabilities, backdoor attacks have emerged as a prominent
threat, drawing considerable research attention due to their
stealthy and effective nature. The general pipeline of a back-
door attack involves an adversary poisoning a clean training
dataset, Dcln. The adversary selects a subset of clean samples,
embed a trigger pattern ∆ into them, and changes their labels
to a target class yt to creates a poisoned dataset, denoted as
Dpoi. By training on it, a model will be compromised to a
backdoor model fbd which performs normally on the benign
inputs, i.e., fbd(xcln) = y, where y is the ground-truth label
of x, but predicts the samples attached with trigger ∆ to the
target label, i.e., fbd(r(xcln,∆)) = yt, where r(·, ·) is the
fusion function of x and ∆.

Based on the visibility of trigger on the attached area, exist-
ing backdoor attacks are typically categorized into three main
types: i) High-Visibility Trigger (HVT) attacks implant back-
doors by embedding conspicuous patterns, such as replacing a
specific pixel block in clean samples [14], [15], [16], [17]. This
manipulation causes the model to learn a spurious correlation,
focusing on the explicit trigger rather than the legitimate
features of the sample. For instance, BadNets [14] embeds
a small grid pattern into the corner of an image to serve
as the backdoor trigger. Similarly, TrojanNN [16] generates
optimized triggers by leveraging network inversion techniques
to maximize the activation of specific internal neurons, thereby
enhancing the effectiveness of attacks. Moreover, Nguyen et
al. proposed a dynamic backdoor attack where the trigger’s
location and appearance are not fixed but vary across different
inputs [15]. ii) Semi-Visibility Trigger (SVT)-based attacks
create the backdoor samples by mixing the trigger pattern with
clean samples at a low transparency [18], [19], [20]. The most
representative example, Blended [19], generates backdoor
samples by blending benign inputs with a fixed pattern while
SIG [20] employs a sinusoidal signal as the trigger. Noting that
triggers with high-frequency artifacts could be easily detected,
Zeng et al. [18] introduced a smooth backdoor trigger to
evade such detection mechanisms. iii) Low-Visibility Trigger
(LVT), which leverage refined triggers or imperceptible pertur-
bations to ensure attack stealth [21], [22], [23], [24]. Compared
to the previous two trigger types, LVT attacks only slightly
modify pixels in the target region, making them extremely
difficult to detect. For example, WaNet [23] introduces a
warping-based method to create stealthy triggers, which have
been shown to successfully evade human inspection by a wide
margin experiments. ISSBA [21] leverages an encoder-decoder
network to generate sample-specific, invisible additive noise as
triggers. Additionally, BPP [22] leverages image quantization
and dithering as imperceptible backdoor triggers to evade
manual inspection. More recently, WaveAttack [24] introduced
the Discrete Wavelet Transform (DWT) [25] to generate highly
stealthy backdoor triggers.

C. Backdoor Defenses

To counter such stealthy attacks, researchers have proposed
various backdoor defense strategies for deep learning models,
which are broadly categorized as either white-box or black-
box. i) White-box methods assume access to internal model
components, such as training data or model parameters [9],
[10], [26], [27], [28], [29], [30], [31], [32], [33]. They typically
follow two main approaches: training a robust model on the
poisoned dataset or purifying a compromised model by elim-
inating its backdoor functionalities. For instance, MeCa [9], a
state-of-the-art white-box defense framework, trains a clean
model by discriminating and relabeling poisoned samples
within the dataset. Representing the second approach, Gong
et al. proposed SAGE [10], which achieves model purification
via self-distillation on a small set of clean samples. However,
with the increasing prevalence of Machine Learning as a
Service (MLaaS), applying such methods is often impractical
for end-users or smaller organizations who lack access to
the internal model components. ii) Alternatively, black-box
methods, using either detection or sample purification, can
mitigate backdoor threats to inference security in MLaaS.
Current black-box backdoor defense methods aim to detect
or purify samples before they are fed into the model. For
example, CBD [34], a model detection method, effectively
identifies backdoored models by analyzing their predictions.
However, such methods cannot guarantee inference security as
they simply discard suspicious models or samples. In contrast,
sample purification methods aim to remove the trigger from
poisoned samples, thereby restoring their classification on
the compromised model to the benign class. For example,
BDMAE [35] employs a two-step heuristic search to define the
associated mask and a Masked-Auto-Encoder to reconstruct
the masked area. However, relying on model predictions
incurs substantial costs, limiting its applicability. To eliminate
reliance on model outputs, ZIP [12] applies transformations
to destroy the trigger pattern and uses a pre-trained diffusion
model to reconstruct the lost semantic information. More-
over, SampDetox [13] introduces a perturbation-based sample
detoxification method by adding noise to images to disrupt
the trigger. However, as previously discussed, the purification
efficacy of these methods remains unsatisfactory. Moreover,
their reliance on numerous reverse diffusion steps (often 100
to 1000) incurs prohibitive computational costs.

To address the limitations of incomplete purification and
high computational cost in existing black-box backdoor de-
fenses, we propose a novel black-box framework named
BDFIREWALL. Our framework implements a progressive pu-
rification strategy, carefully designed to adapt to the visibility
and inherent characteristics of different trigger types.

III. PROBLEM STATEMENTS AND THREAT MODEL

This paper addresses backdoor attacks against image clas-
sification models within the Machine Learning as a Service
(MLaaS) paradigm, a prevalent and practical threat scenario
in modern applications. In this setting, users access potentially



malicious models through APIs or platforms provided by ser-
vice providers (SPs). These models classify inputs containing
a backdoor trigger pattern to an attacker-specified class with
high confidence while maintaining high accuracy on benign
inputs. Crucially, due to privacy concerns or the proprietary
nature of these models, SPs provide only black-box access to
users which means users can only query the model with inputs
and obtain the resulting predictions, without any access to the
model’s internal architecture, or parameters.

Attacker’s Goal: The attacker aims to deploy a backdoored
model via MLaaS that misclassifies any input embedded
with a specific trigger. Specifically, for any input x attached
with trigger pattern ∆, the backdoored model fbd outputs an
attacker-specified target label yt instead of its ground-truth
label y. This can be formally represented as fbd(r(x,∆)) = yt
where r(·, ·) is the fusion function that fuses x and ∆. The
primary goal is subject to the constraint of stealthiness that the
poisoned sample should remain visually similar to the benign
sample, making it difficult to detect by human inspection. This
is a practical setting because the stealthiness of triggers is an
important factor that attackers must consider.

Attacker’s Knowledge and Capabilities: We consider a
strong attacker who has full control over the model training
process. This includes, but is not limited to, the ability to
poison the training data, manipulate the training pipeline, or
directly modify model parameters post-training.

Defender’s Goal: The defender’s objective is to mitigate
backdoor attacks in the black-box scenario. Specifically, for
a potentially poisoned input xpoi = r(x,∆), the defender
aims to generate its purified version xpur by removing the
trigger pattern while preserving the clean semantics and in-
curring minimal computational overhead. Formally, the goal
of defender is to ensure that fbd(xpur) = y ̸= fbd(r(x,∆)).

Defender’s Knowledge and Capabilities: We consider a
practical and challenging black-box setting where the defender
has no access to the model’s internal components (e.g., param-
eters, gradients) or its training data. Furthermore, we introduce
a stricter, query-free constraint: the defender cannot query
the MLaaS model to obtain predictions for any input. This
assumption is motivated by the significant computational and
financial costs that query-based defenses would impose on
the end-user, making them impractical in many real-world
scenarios. Therefore, the defender can only access and operate
the samples that are going to fed to the model. To facilitate this
process, we assume the defender has access to a small, clean
proxy dataset representative of the task’s data distribution.

IV. METHOD

This section details the proposed black-box backdoor de-
fense framework, BDFIREWALL. First, we present the obser-
vations that motivate our proposed method. Next, we provide
an overview of BDFIREWALL by describing its workflow.
Finally, we describe the design details of BDFIREWALL.

A. Observations
As described earlier, the key to defense is to locate and

remove trigger patterns from samples while minimizing se-
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Fig. 1: Illustration of the relations of different triggers and
their robustness.

mantic information loss. Therefore, it is critical to develop
a reasonable categorization of triggers and apply appropriate
removal strategies accordingly. Recall that SampDetox [13],
a SOTA black-box backdoor defense method, is based on
the observation that triggers with different visibility levels
exhibit varying robustness to noise. Based on this, SampDetox
divides triggers into low visibility and high visibility categories
according to the structural similarity between the clean sam-
ple and its corresponding trigger-patched version (which is
presented in Fig. 1 with pink texture ), and adaptively adds
varying levels of noise to disrupt trigger patterns. However,
the correlation between visibility and robustness does not
always hold. For instance, some triggers may affect only
a small area with minimal impact on the sample’s overall
structural similarity, yet their elimination requires applying
high-intensity noise to the affected region. A classic backdoor
attack, BadNets, that replaces specific pixels, is considered to
have low visibility because such changes do not significantly
alter the overall sample structure, despite their strong impact
on the patched area. As a result, the classification scheme
of SampDetox may face challenges in accurately applying a
sufficient amount of noise to neutralize the trigger, allowing
residual triggers to persist and still activate the backdoor.

To build an effective defense, we propose a new trigger tax-
onomy based on their impact to the patched area. As illustrated
with blue texture in Figure 1, we classify them into: high-
visibility trigger (HVT), semi-visibility trigger (SVT), and
low-visibility trigger (LVT). More specifically, HVTs share the
largest impact to its patched area due to its direct replacements
to the pixels (see the first row in Fig. 2). This replacement
introduces features that do not belong to the original image,
creating a significant and localized semantic difference. SVTs
(see the second row of Fig. 2), typically involve overlaying
a pattern across the entire image with low transparency. Such
triggers subtly alters features globally, resulting in a poisoned
input that is a mixture of benign and trigger-related features.
LVTs, as depicted in the last row of Fig. 2, are integrated
into a clean image in an almost imperceptible manner, making
the poisoned inputs nearly indistinguishable from their clean
counterparts. Despite their stealthiness, LVTs are often fragile
and highly sensitive to perturbations, where even minimal
noise can disrupt the trigger’s effectiveness.



B. Overview
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Fig. 2: Defense observations.In accordance with the trigger classification in the obser-
vation, we propose BDFIREWALL, a progressive black-box
defense framework composed of three distinct stages, each
tailored to neutralize a specific class of trigger. Stage I targets
High-Visibility Triggers (HVTs). We leverage the tremendous
semantic difference between the trigger and the clean content,
employing a segmentation network to distinguish the trigger-
patched region from the clean area. Subsequently, an image
restoration network inpaints the identified trigger area and
recovers its original semantics, thereby preventing the error
prediction. Stage II addresses Semi-Visibility Triggers (SVTs).
Since SVTs blend with the sample’s global features, we
reframe the problem by modeling the poisoned input as a
trigger signal corrupted by “clean feature noise.” Based on
this, we employ a denoising network to precisely reconstruct
the latent trigger pattern from the input. To facilitate a more
accurate reconstruction, we further utilize contrastive learning
to enforce a clear separation between clean and trigger features
in the latent space. Stage III is designed to neutralize the nearly
imperceptible yet fragile Low-Visibility Triggers (LVTs). We
first disrupt the LVT pattern by injecting lightweight noise
into the input. Then, we apply a diffusion model (DDPM) to
progressively denoise the sample to restore the clean features
disturbed by the noise. The overall workflow of BDFIREWALL
is illustrated in Figure 3. The technical details of each stage
are elaborated in the subsequent sections.

C. Detailed Design of BDFIREWALL

Before detailing the design of each stage in BDFIREWALL,
it is crucial to explain the rationale for our progressive defense
order: HVT, followed by SVT, and finally LVT. Specifically,
an HVT affects a localized region of the image. Its removal
relies on detecting the salient local distortions it creates. Con-
versely, defenses against global triggers (SVT and LVT) would
alter the entire image’s feature space. Applying such global
defenses first would inadvertently destroy the precise local
anomalies needed to identify and remove HVTs. Therefore, we
prioritize the removal of HVTs in the first stage. Regarding the
remaining SVT and LVT, we note that LVTs, while difficult
to detect, are inherently fragile. They can be disrupted by
adding lightweight noise. However, applying this noise-based

disruption for LVTs would further entangle the SVT pattern
with the clean features, complicating the subsequent separation
of SVTs. Consequently, we remove SVTs in the second stage
and then neutralize the fragile LVTs in the final stage.

1) Stage I: Remove the High Visibility Trigger: According
to the observation, a HVT is patched into a benign sample xcln

by replacing a specific region of pixels, that can be formally
represented as:

x′ = xcln ⊙ (1−m) + ∆⊙m, (3)

where m is a binary mask indicating the trigger’s location,
∆ represents the trigger pattern, and ⊙ denotes element-wise
multiplication. Such operation introduces features extraneous
to the clean sample, creating a significant semantic discrepancy
between the clean and trigger-patched regions which provides
an opportunity to defend against them in black-box scenarios.
Therefore, our goal is to accurately locate the HVT-patched
area, as will be detailed next.

Trigger Location. Due to pixel replacement, HVT often
exhibits a high degree of semantic irrelevance to its sur-
rounding pixels, whereas benign images typically have strong
local correlations. Compared to locating varying triggers, such
correlation motivates us to consider trigger localization from
an alternative perspective: identifying the locations of clean
regions, i.e., marking the clean areas in x′. This is analogous
to a semantic segmentation task where the triggers are treated
as background (labeled as 0) and the clean areas as foreground
(labeled as 1). Therefore, we construct a segmentation model-
based locator f ′

remove to perform this task.
Due to the constraints of the black-box setting, we cannot

access the original training data containing backdoor samples
to train f ′

remove. Consequently, we are compelled to introduce
a surrogate dataset D̂ =

∑
(xi, yi) that shares the same label

space as the original training data. We generate a training
set for f ′

remove by creating pairs of patched images and
their corresponding ground-truth masks to enable f ′

remove to
distinguish the clean regions from the trigger region. For each
clean image xi from D̂, we manually generate a surrogate
trigger ∆′

i and a binary mask m′
i = {0, 1} ∈ RH,W where

0 (resp., 1) indicates the trigger area (resp., clean area).
Please note that, to enhance the generalization of f ′

remove,
we randomly patch ∆′

i onto xi according to Eq. 3, which
means the location, shape, and pattern of the synthetic trigger
vary randomly across training epochs. We then train f ′

remove

to identify the unpatched (i.e., clean) areas of an image
by binary cross-entropy (BCE) loss, which is standard for
segmentation tasks. BCE loss encourages the predicted clean
area y′i = f ′

remove(xi) to be close to the ground-truth clean
mask m′

i as Eq. 4, where m′
i,p,q (resp., y′i,p,q) is the (p, q)-th

entry in m′ (resp., y′i).

L′
BCE,i = −

∑
p,q

m′
i,p,q log(y

′
i,p,q)

+(1−m′
i,p,q) log(1− y′i,p,q).

(4)

In addition, due to the trigger areas being much smaller than
the clean areas, training f ′

remove suffers from the challenge of
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label imbalance. Therefore, we further introduce the Dice loss
[36] to mitigate the impact of label imbalance:

L′
Dice,i = 1−

2
∑

p,q m
′
i,p,qy

′
i,p,q∑

p,q m
′
i,p,q +

∑
p,q y

′
i,p,q

. (5)

Therefore, the total loss function for training the segmentation
model f ′

remove is a weighted sum of the BCE and Dice losses:

L′ =
1

N

N∑
i=0

α · L′
BCE,i + β · L′

Dice,i. (6)

After minimizing L′ on D̂, we should obtain a well-trained
f ′
remove that can identify the clean areas in an input. However,

in practice, we observe that the predicted masks are often
incomplete, especially at the edges where trigger is embedded,
i.e., the locations of semantic transitions. One possible reason
is the high intra-class variance of the foreground, as the model
must classify diverse objects (e.g., a cat and a ship) all as
“clean”. Additionally, the diversity of synthetic triggers in
terms of shape, color, and pattern makes it challenging for
the predictor to generalize perfectly. Therefore, we consider
calibrating the predictor based on clean features in each input
to improve segmentation performance [37], [38], [39]. Such
widely-used calibration is achieved by concatenating features
from the decoder with those from the corresponding skip
connection, and then passing them through stacked residual
blocks. By introducing such calibration, f ′

remove can more
accurately identify the clean area. Accordingly, we obtain an
HVT-free version of x′ by x′ ⊙ f ′

remove(x
′).

Semantic Recovery. Although the HVT is removed by
the aforementioned process, the resulting loss of semantic
information after removal may degrade classification accuracy.
Therefore, we aim to reconstruct the information within this
masked region. While addressing this issue is a relatively

new consideration in backdoor defense, the underlying task
is a classic problem in computer vision known as image
restoration. A standard approach to this problem involves train-
ing a fully convolutional network, which takes the corrupted
image concatenated with a binary mask as a 4-channel input
and outputs a restored 3-channel image. Following this, we
employ a U-Net architecture, denoted as f ′

recons, to inpaint
the masked area. In order to guide the model to focus on
repairing the triggered area, we introduce the masked L1 loss,
which penalizes differences between the inpainted image and
the original clean image only within the masked region:

L′
recon,i =

∑
p.q |Reci,p,q − xcln

i,p,q| ·m′
HV T i,p,q∑

p,q m
′
HV T i,p,q + ϵ

, (7)

where m′
HV T,i = 1 −m′

i indicates the area of semantic loss
for i-th sample, and Reci = f ′

recons(x
′
i,m

′
HV T,i) represents

the corresponding reconstructed image.
Accordingly, the final purified result of Stage I can be

expressed as:

m′ = f ′
remove(x

′),
x′
recons = f ′

recons(x
′, 1−m′),

x′
pur = x′ ⊙m′ + (1−m′)⊙ x′

recons.
(8)

Thus, by executing the operations in Eq. 8, we first mask
the HVT and then restore the semantic content of the affected
region, yielding the purified image x′

pur.
2) Stage II: Remove the Semi Visibility Trigger: Due to

the local removal from Stage I is ineffective against the global
influenced SVT and LVT, this stage focuses on eliminating
SVTs from the processed sample. Note that, we denote the
HVT-free version of suspicious input as x′′ for clarity de-
scription.

According to our observation, a backdoor sample x′′
SV T

containing an SVT can be modeled as a mixture of trigger



and clean features, with the clean features being predominant.
Therefore, if we can separate the clean features from the
trigger features, we can isolate and subsequently remove
the trigger from the suspect sample. However, as previously
discussed, we have no prior knowledge of the trigger pattern
nor the ability to formulate a uniform feature that all SVTs
share. This makes the direct removal of the trigger pattern
∆′′ from x′′

SV T extremely challenging. Moreover, training a
reconstruction model on known SVT patterns would likely
fail to generalize to novel or unforeseen attacks. Therefore,
we propose an alternative solution that reframes the problem
entirely. We observe that clean features exhibit more stability
and consistency compared to the diverse and unpredictable
nature of trigger features. This stability allows us to reframe
the problem: instead of targeting the unpredictable trigger,
we can focus on the consistent clean features. More specif-
ically, we treat the clean features as “noise.” Consequently,
the backdoored sample x′′

SV T is treated as a trigger signal
corrupted by high-intensity “noise” from the clean features.
Accordingly, our goal is to train a model that can predict and
reconstruct the latent trigger pattern by separating it from the
clean features—a process we term “de-cleaning”.

Following this intuition, we employ a de-cleaning model,
denoted as f ′′, based on U-Net architecture [40], which
has been proven its efficacy in denoising-related tasks [41],
[42]. In order to endow f ′′ with the ability to remove clean
features, we again leverage the surrogate dataset D̂ to con-
struct a new surrogate dataset D̂′′ consisting of the triplets
{x′′

cln,∆
′′, x′′

SV T } for each sample in it. Here, let x′′
cln be any

of a clean sample from D̂, for which we manually generate
a surrogate SVT, denoted as ∆′′, for it. The corresponding
surrogate backdoored sample is created by blending them:
x′′
SV T = x′′

cln × (1−w′′) +∆′′ ×w′′, where w′′ is a random
number sampled from the range [0.1, 0.4]. 1 For each triplet in
D̂′′, we train f ′′ to remove the clean features and reconstruct
the trigger pattern ∆′′ from the blended input x′′

SV T . On
the one hand, f ′′ should minimize the difference between
f ′′(x′′

SV T ) and ∆′′. We enforce this using an L2 loss, a
common choice for image denoising tasks, represented as:

L′′
recons = ||∆′′ − f ′′(x′′

SV T )||2. (9)

On the other hand, when given a clean input x′′
cln, the model

should ideally output a zero tensor, as no trigger signal is
present to be reconstructed:

L′′
clean = ||f ′′(x′′

cln)− 0||2. (10)

Although combining L′′
recons and L′′

clean yields some success,
it can still cause confusion between clean and mixed samples,
which leads to the incomplete removal in mixed samples. To
address this, we further introduce a contrastive loss to increase
the separation between x′′

SV T and x′′
cln in the feature space.

1Please note that, ∆′′ is different with ∆′ in Stage I, we present the
visualization of them in Fig. 6.

Specifically, we penalize the intermediate features of the triplet
as follows:

LCL =

− log
exp(x′′

SV T,mid·∆
′′/τ)

exp(x′′
SV T,mid·∆′′/τ)+exp(x′′

SV T,mid·x
′′
cln/τ)

.
(11)

Thus, the overall training objective for f ′′ can be summa-
rized as:

L′′ =
1

N

N∑
i

λ′′
1 · L′′

recons,i + λ′′
2 · L′′

clean,i + λ′′
3 · L′′

CL,i. (12)

By minimizing L′′, f ′′ learns to accurately reconstruct the
SVT from a given suspicious input. The suspicious sample
with SVT can then be purified by:

x′′
pur = x′′ − f ′′(x′′). (13)

3) Stage III: Remove the Low Visibility Trigger: In this
final stage, our objective is to eliminate LVTs. LVTs are chal-
lenging to defend against because they are integrated into sam-
ples in a nearly imperceptible manner, making poisoned inputs
almost indistinguishable from their clean counterparts. How-
ever, LVTs are inherently fragile. Previous work has shown
that their patterns can be disrupted by injecting lightweight
noise, which can then be removed using a Denoising Diffusion
Probabilistic Model (DDPM) to purify the sample. We adopt
a similar strategy in this stage, leveraging a two-step process:
a forward noising process to disrupt the LVT, followed by a
reverse denoising process to purify the sample.

Forward process. The forward process disrupts the LVT
pattern by incrementally adding Gaussian noise to the input
sample. Let x′′′ denote the input sample for this stage,
which is the output from Stage II. This process gradu-
ally adds noise to x′′′ over a series of T timesteps. At
t-th step, x′′′

t is obtained by adding noise ϵ ∼ N (0, I)
to x′′′

t−1 according to x′′′
t =
√
1− βtx

′′′
t−1 +

√
βtϵ. The cor-

responding conditional probability can be represented as
q(x′′′

t |x′′′
t−1)=N (x′′′

t ;
√
1− βtx

′′′
t−1, βtI). As the noise adding

in step t only relies on the results of step t − 1, the forward
process can be regarded as a Markov process in the form of
q(x′′′

T |x′′′
0 )=

∏T
t=1 q(x

′′′
t |x′′′

t−1). Therefore, we can obtain the
exact relationship between x′′′

0 and x′′′
t as follows:

x′′′
t =

√
αtx

′′′
0 +
√
1− αtz,

αt=1−βt,

αt=
∏t

i=1(1−βi),
z ∼ N (0, I).

(14)

By applying this forward process up to a specific timestep
T , we add sufficient noise to disrupt the fragile LVT pattern.

Reverse process. In this process, we leverage DDPM
to denoise the noise-added inputs x′′′

t . Specifically, given
x′′′
t as input, we can obtain the state at t − 1 as

x′′′
t−1. For given x′′′

0 and x′′′
t , according to Bayes’ The-

orem, we can obtain the probability distribution of x′′′
t−1

as p(x′′′
t−1|x′′′

t , x′′′
0 )=p(x′′′

t |x′′′
t−1)· (x′′′

t−1|x′′′
0 )/p(x′′′

t |x′′′
0 ). Ac-

cording to Eq. 14 [43], x′′′
0 can be approximate by

x′′′
0 = (1/

√
αt) · (x′′′

t −
√
1− αtzt), (15)



where zt = θ(x′′′
t , t) is the estimation of the real noise in step

t. Consequently, x′′′
t−1 can be calculated by:

x′′′
t−1 = 1√

αt
(x′′′

t − 1−αt√
1−αt

θ(x′′′
t , t)) + σtz,

σ2
t = 1−αt−1

1−αt
· βt, z ∼ N (0, I).

(16)

By iteratively applying this reverse step from t = T down
to t = 1 , we effectively recover the disturbed clean features
by the forward process. While powerful, diffusion models are
computationally expensive. To ensure efficiency, we set the
total number of diffusion steps to a small value, T = 20. This
is considerably more lightweight than the 1000 steps used
in methods like ZIP and the 140 steps used in the original
SampDetox. As this stage adopts an existing methodology, we
refer readers to the original SampDetox paper [13] for more
detailed theoretical guarantees of the DDPM-based purifica-
tion process.

Algorithm 1 BDFIREWALL

Input: Backdoored inputs (x), the model set used for three
stage ({f ′

remove, f
′
recons, f

′′, f ′′′}), the number of noise-
adding and denoising steps in stage three (T );

Output: Purified inputs (xpur);
// Stage I: Remove the high-visibility triggers

1: m′ ← f ′
remove(x);

2: x′
recons ← f ′

recons(x,m
′);

3: x′ ← x⊙m′ + (1−m′)⊙ x′
recons; // Eq. 8.

// Stage II: Remove the semi-visibility triggers
4: x′′

recons ← f ′′(x′);
5: x′′ ← x′ − x′′

recons; // Eq. 13
// Stage III: Remove the low-visibility triggers

6: x′′′
T ←

√
αTx

′′ +
√
1− αT z; //z ∼ N (0, I)

7: for all t = T, · · · , 1 do
8: z ∼ N (0, I) if t > 1, else z = 0;
9: σ2

t ← (1− αt−1) · βt/(1− αt);
10: x′′′

t−1 = 1√
αt
(x′′′

t − 1−αt√
1−αt

θ(x′′′
t , t)) + σtz; // Eq. 16

11: end for
12: xpur = x′′′

t=1;
13: return xpur

V. EXPERIMENTS AND EVALUATIONS

A. Experimental Setup

Datasets. We conduct extensive evaluations across multiple
datasets to demonstrate the effectiveness of BDFIREWALL.
More concretely, we use three widely-used image classification
datasets, i.e., CIFAR-10, CIFAR-100 [44], and ImageNette
[45]. Descriptions of these datasets are as follows. 1) Ima-
geNette [45]: ImageNette is a small dataset extracted from the
ImageNet [46]. It contains 9,469 training images and 3,925
test images in JPEG format, with non-uniform resolutions
where both height and width are at least 160 pixels. In our
experiments, we resize all images to a uniform resolution of
160 × 160 pixels using the Resize function from PyTorch.
2) CIFAR-10 [44]: CIFAR-10 contains 60,000 32 × 32 tiny
images with 10 classes. In CIFAR-10, each class has 6,000
samples with 5,000 are training samples and 1,000 testing

TABLE I: Attack Details
Attacks Poison Rate Trigger Clean Label

BadNets 10% 3*3 Grid ✗
InputAware 10% Dynamic ✗
TrojanNN 10% Apple Logo ✗

LC 10% 3*3 Grid *4 ✓
Blended 10% HelloKitty, α = 0.2 ✗

LF 10% Optimized ✗
SIG 10% sinusoidal signal ✓

ISSBA 10% Dynamic ✗
BPP 10% Dynamic ✗

WaNet 10% Dynamic ✗
WaveAttack 5% Dynamic ✗

samples. 3) CIFAR-100 [44]: CIFAR-100 contains 60,000
32×32 tiny images with 100 classes. It is divided into 50,000
training images and 10,000 testing images, with 600 images
per class.

Networks. We conduct our experiments on four deep
learning models: PreActResNet-18, PreActResNet-34 [47],
MobileNet-V2 [48], and Vision Transformer (ViT) [49]. We
implement the aforementioned models via the official code in
BackdoorBench and maintain their default parameter settings.
Note that unless otherwise stated, the default classification
model is the PreActResNet-18.

Metrics. To evaluate the effectiveness of BDFIREWALL,
we adopt three widely-used metrics according to SampDetox
[13]: Clean sample Accuracy (CA), Poisoned sample Accuracy
(PA), and Attack Success Rate (ASR). CA measures the classi-
fication accuracy on benign samples after applying the defense,
evaluating its impact on the model’s original performance. A
higher CA is desirable. PA refers to the accuracy on purified
poisoned samples using their original labels. It measures the
ability of a defense method to restore the correct features of
poisoned inputs. A higher PA is better. ASR is the percentage
of purified poisoned samples that are still misclassified as the
target label. It directly evaluates the effectiveness of trigger
removal, and a lower ASR is desirable. More details are
provided in Appendix A.

Attack Baselines. We employ 11 SOTA backdoor attacks
to evaluate the proposed method in our experiments, including
four HVT-based attacks (BadNets [14], InputAware [15], Tro-
janNN [16] and LC [17]), three SVT-based attacks (Blended
[19], LF [18] and SIG [20]) and four LVT-based attacks
(ISSBA [21], BPP [22], WaNet [23], and WaveAttack [24]).
We implement the attacks using to the open-sourced backdoor
attack toolboxes: BackdoorBench [50] and BackdoorBox [51].
Key attack parameters are reported in Table I, and visualiza-
tions of the triggers can be found in the first row of Fig. 4.

Defense Baselines. We compare BDFIREWALL with two
state-of-the-art black-box backdoor defenses: ZIP [12] and
SampDetox [13]. We implement both baselines following their
respective papers and official open-source code repositories
[52], [53]. Specifically, for ZIP, we utilized the guided-
diffusion model from OpenAI [54], as recommended by the
original authors. For SampDetox, we utilized the pre-trained
diffusion model provided by the authors for the CIFAR-10
task, while for other tasks, we trained new models following



their official implementation. In terms of global and local
purification time-steps, we follow their default setting, where
Tglobal = 20 and Tlocal = 120.

B. Purification Results

Table II presents an extensive performance comparison
between BDFIREWALL and two SOTA black-box backdoor
defense baselines across three widely-used datasets. The re-
sults demonstrate that our proposed BDFIREWALL method
achieves significantly improved purification effectiveness on
backdoor samples, evidenced by a substantial reduction in
Attack Success Rate (ASR). Concurrently, it incurs lower per-
formance degradation on clean samples, as indicated by higher
CA and PA scores. Specifically, on CIFAR-10, BDFIREWALL
outperforms the best-performing baseline by 1.61% in CA
and 45.96% in PA, while achieving a 56.71% greater reduc-
tion in ASR. The corresponding results on CIFAR-100 are
1.84%, 31.16%, and 49.90%, and on Imagenette are 4.26%,
62.29%, and 73.35%. We attribute this superior performance
to our carefully designed purification process. In Stage I, we
leverage the significant semantic differences between high-
visibility triggers and natural image features to identify clean
regions within backdoor inputs and subsequently inpaint the
corrupted areas to restore missing semantic information. This
stage significantly mitigates the attack risk posed by residual
trigger patterns. In the second stage, we reconstruct these
obfuscated malicious patterns and then precisely remove them
to yield a benign input. Combined, these two stages enable
BDFIREWALL to effectively defend against HVT and SVT-
based attacks, achieving an average ASR reduction of 59.99%
compared to the best-performing baseline across all scenarios.

In scenarios involving LVTs, BDFIREWALL demonstrates
performance that is not only comparable to but, in most cases,
superior to the best baseline method. The primary reason
is that SampDetox, the strongest baseline in most scenar-
ios, attempts to neutralize low-visibility triggers via global
detoxification—a principle analogous to the third stage of our
BDFIREWALL. However, as analyzed in Sec. I, SampDetox’s
reliance on inaccurate localization for its local detoxification
process leads to a critical flaw: it fails to precisely isolate the
trigger while erroneously corrupting clean, benign features.
This flaw, however, acts as a double-edged sword. On one
hand, the extensive diffusion steps can inadvertently disrupt
low-visibility triggers, leading to a reduction in ASR. On
the other hand, this same inaccuracy results in incomplete
purification of high-visibility triggers and collateral damage
to clean features, thereby reducing PA and CA. This trade-
off explains why BDFIREWALL, with its precise, staged
approach, consistently achieves superior overall performance.
Overall, BDFIREWALL establishes a new state-of-the-art in
black-box backdoor defense, demonstrating robust and stable
performance across datasets of varying resolutions.

Furthermore, we visualize the purification results for various
backdoor attacks in Fig. 4 which displays the original trigger-
injected inputs in the first row, followed by the corresponding
outputs after being processed by BDFIREWALL and the two

baseline methods. The visualizations clearly illustrate the in-
complete purification by the baseline methods, leaving residual
artifacts that could still expose the model to backdoor attacks.
In contrast, BDFIREWALL effectively eliminates diverse trig-
ger patterns while maximally preserving the integrity of clean
features. Note that, more detailed visualizations are provided
in Appendix E (Fig. 8), offering further visual evidence that
corroborates the superior performance of BDFIREWALL.

C. Compatible to various models.

In this section, We further evaluate the generalizability of
BDFIREWALL across various model architectures. As BD-
FIREWALL operates in a black-box setting without access to
model parameters or feedback (Sec. III), it is inherently model-
agnostic. To validate this, we evaluated its defense capabilities
against backdoor attacks on a diverse set of models, including
PreAct-ResNet18, PreAct-ResNet34, MobileNetV2, and ViT.
The results are reported in Tab. III. The results show that
BDFIREWALL consistently defends against backdoor attacks
across all tested architectures, achieving an average ASR
reduction of 95.06% while exhibiting a minimal CA loss of
only 3.77%. Regarding PA, the average performance drop is
under 10%, a loss primarily attributable to two challenging
SVT backdoor scenarios. After excluding these two attacks,
the average PA loss drops to just 6.7%. The primary challenge
in these cases stems from the semi-visible triggers them-
selves disrupting benign features. This effect is exacerbated
by the inherently lossy nature of the reconstruction process,
collectively leading to the decrease in PA. Despite the minor
PA degradation, the substantial ASR reduction confirms that
BDFIREWALL effectively neutralizes these semi-visible trig-
gers, successfully preventing the attacks. These experimental
results, therefore, demonstrate that BDFIREWALL provides ro-
bust and consistent defense across diverse model architectures,
confirming its model-agnostic nature.

D. Robustness to Out-of-Distribution Surrogate Data

By default, BDFIREWALL’s internal purification models are
trained on CIFAR-10, following the configuration of Sam-
pDetox. This section evaluates BDFIREWALL’s performance
under a more challenging constraint where its internal models
are trained on a surrogate dataset (CIFAR-100) that is out-of-
distribution (OOD) with respect to the target task (CIFAR-10).
As shown in Table IV, despite challenging, the performance
degradation of BDFIREWALL remains within an acceptable
range. Across 11 attack types, the average CA decreased by
only 5.31%, PA by 4.88%, while the ASR increased by a
mere 1.14%. The increase in ASR is most pronounced for
the Blended, LF, and SIG attacks. This is because Stage II,
which reconstructs trigger patterns by treating clean features
as noise to be denoised, relies on the assumption that the
purification model is familiar with the distribution of these
”clean” features. The use of a surrogate dataset violates this
assumption, leading to less precise de-clean features and
consequently, a minor increase in the final ASR. Nevertheless,
even under these challenging OOD conditions, BDFIREWALL



TABLE II: Defense performance comparison. The values in parentheses indicates the percentage improvement (resp.,
degradation) of the best-performing baseline. For CA and PA, higher (↑) is better; for ASR, lower (↓) is better. These results
are visualized in Fig. 7.

No Defense ZIP SampDetox Ours

CA↑ PA↑ ASR↓ CA↑ PA↑ ASR↓ CA↑ PA↑ ASR↓ CA↑ PA↑ ASR↓

CIFAR-10

BadNets 91.33 4.66 95.03 74.71 17.28 81.10 86.58 71.90 14.12 87.13 (↑0.55) 84.73 (↑12.83) 2.38 (↓11.74)
InputAware 90.67 1.65 98.25 75.89 58.60 14.10 84.18 48.57 49.49 86.51 (↑2.33) 82.83 (↑24.23) 3.47 (↓10.63)
TrojanNN 93.44 0.00 100.00 78.08 6.47 88.69 86.71 22.95 72.95 88.77 (↑2.06) 84.72 (↑61.77) 2.25 (↓70.70)

LC 91.79 0.04 99.95 79.73 6.17 93.33 85.59 13.10 86.50 87.63 (↑2.04) 87.28 (↑74.18) 1.42 (↓85.08)
Blended 93.47 0.07 99.92 77.97 30.70 29.30 86.59 38.10 54.34 88.52 (↑1.93) 74.69 (↑36.59) 4.01 (↓25.29)

LF 93.19 0.71 99.27 77.22 15.47 77.91 85.80 48.76 44.16 88.27 (↑2.47) 79.26 (↑30.50) 4.41 (↓39.75)
SIG 90.13 0.08 99.91 72.27 2.34 92.70 86.17 3.13 95.31 87.78 (↑1.61) 74.71 (↑71.58) 1.95 (↓90.75)

ISSBA 93.81 0.02 99.97 80.49 70.30 1.42 88.74 89.40 0.92 91.87 (↑3.13) 90.72 (↑1.32) 0.93 (↑0.01)
BPP 90.69 0.21 99.77 79.43 70.53 3.39 86.86 81.09 1.76 87.82 (↑0.96) 82.77 (↑1.68) 1.27 (↓0.49)

WaNet 91.24 9.75 89.71 74.51 41.60 32.20 85.15 83.85 2.47 85.59 (↑0.44) 84.44 (↑0.59) 2.77 (↑0.30)
WaveAttack 92.33 8.77 90.84 78.94 67.81 3.12 82.99 72.91 2.69 84.57 (↑1.58) 80.69 (↑7.78) 2.76 (↑0.07)

CIFAR-100

BadNets 67.21 10.49 87.43 43.97 23.51 74.89 59.26 28.93 56.66 61.20 (↑1.94) 56.89 (↑27.96) 1.85 (↓54.81)
InputAware 65.24 1.18 98.62 44.89 20.29 31.65 58.39 12.15 44.08 59.41 (↑1.02) 52.54 (↑32.25) 4.56 (↓27.09)
TrojanNN 69.90 0.01 99.98 46.51 21.01 77.35 59.10 21.52 50.02 59.81 (↑0.71) 53.39 (↑31.87) 0.13 (↓49.89)
Blended 70.48 5.42 93.66 45.11 16.28 17.72 57.33 16.19 61.66 60.41 (↑3.08) 49.28 (↑33.00) 8.87 (↓8.85)

LF 69.66 8.90 89.31 45.93 13.70 63.94 55.08 23.31 50.41 58.67 (↑3.59) 48.72 (↑25.41) 8.73 (↓41.68)
SIG 69.82 9.14 90.85 45.84 3.90 84.49 58.61 10.38 65.96 59.31 (↑0.70) 38.59 (↑28.21) 5.23 (↓60.73)

ISSBA 57.64 0.01 99.96 43.82 34.19 0.86 51.02 48.56 0.21 50.29 (↓0.73) 50.63 (↑2.07) 0.44 (↑0.23)
BPP 64.01 0.93 98.87 43.24 38.10 0.96 57.01 54.11 0.54 58.83 (↑1.82) 53.29 (↓0.82) 0.35 (↓0.19)

WaNet 64.16 8.38 88.86 48.86 19.65 43.68 54.15 52.70 2.91 55.79 (↑1.64) 53.72 (↑1.02) 1.51 (↓1.40)

Imagenette

BadNets 89.60 1.52 98.47 71.39 18.11 80.09 83.98 20.55 79.16 87.98 (↑4.00) 84.28 (↑63.73) 1.24 (↓77.92)
InputAware 82.29 4.63 94.68 71.03 10.61 87.11 79.02 16.08 59.51 79.29 (↑0.27) 76.42 (↑60.34) 0.48 (↓59.03)
TrojanNN 88.48 0.22 99.77 73.13 17.69 81.34 81.65 19.21 68.18 88.16 (↑6.51) 81.06 (↑61.85) 2.76 (↓65.42)
Blended 88.96 1.10 98.78 67.96 47.11 14.42 79.42 25.07 66.44 86.90 (↑7.48) 67.31 (↑20.20) 7.93 (↓6.49)

LF 88.22 3.44 96.21 69.47 1.92 97.61 81.89 2.31 96.80 87.12 (↑5.23) 81.03 (↑78.72) 1.24 (↓95.56)
SIG 88.63 3.33 96.55 72.17 6.73 91.30 85.31 7.36 92.41 87.35 (↑2.04) 74.22 (↑66.86) 8.76 (↓82.54)

ISSBA 82.83 0.39 99.57 73.10 70.19 5.96 80.16 80.04 1.59 82.11 (↑1.95) 79.05 (↓0.99) 3.55 (↑1.96)
BPP 83.31 0.99 98.86 77.64 76.53 1.29 81.33 80.19 0.43 81.84 (↑0.51) 80.70 (↑0.51) 0.07 (↓0.36)

WaNet 83.77 1.87 98.04 75.48 72.45 8.72 80.91 77.45 8.16 82.81 (↑1.90) 81.68 (↑4.23) 7.81 (↓0.35)

BPPLF SIGLCBadNets TrojanNNIAD Blended ISSBA WaNet Wave

No Defense

SampDetox

ZIP

BDFirewall

Fig. 4: Visualization of purification results of different algorithms.

still achieves a 24.49% improvement in PA and a 29.23%
decrease in ASR compared to the best-performing baseline
reported in Table II. This performance highlights the robust-
ness of BDFIREWALL in defending against backdoor attacks
in the MLaaS setting.

E. Ablation Study

In this section, we conduct ablation studies to validate
the effectiveness of the three stages in BDFIREWALL and to
examine the impact of different trigger removal sequences on
the final results.

Ablation Study on Defense Stages. BDFIREWALL com-
prises three distinct components designed to progressively
remove high/semi-visibility/low-visibility triggers. To validate
their individual contributions, we systematically deactivate
each component and evaluate the corresponding defense per-
formance, with the results presented in Table V. When the
Stage I component is deactivated, the remaining two com-
ponents fail to effectively defend against attacks with high-
visibility triggers (i.e., BadNets, InputAware, and TrojanNN),
causing the ASRs for these attacks to remain high. This
observation holds for the other two components as well, indi-



TABLE III: Performance of BDFIREWALL across different model architectures. Here, w/o CA (resp., w/o ASR) represents
the clean sample accuracy (resp., ASR of backdoor samples) on compromised model without BDFIREWALL. In addition, we
report the changes in CA and PA (resp., ASR) about w/o CA (resp., w/o ASR) after purification by BDFIREWALL in the
brackets after the result. CA and PA decrease lower is better, but ASR drops larger is better.

Models Metrics BadNets InputAware Trojannn Blended SIG BPP WaNet

PreActResNet18

w/o CA 91.33 90.67 93.44 93.47 90.13 90.69 91.24
w/o ASR 95.03 98.25 100.00 99.92 99.91 99.77 89.71

CA↑ 87.13 (↓4.20) 86.51 (↓4.16) 88.77 (↓4.67) 88.52 (↓4.95) 87.78 (↓2.35) 87.82 (↓2.87) 85.59 (↓5.65)
PA↑ 84.73 (↓6.60) 82.83 (↓7.84) 84.72 (↓8.72) 74.69 (↓18.78) 74.71 (↓15.42) 82.77 (↓7.92) 84.44 (↓6.80)

ASR↓ 2.38 (↓92.65) 3.47 (↓94.78) 2.25 (↓97.75) 4.01 (↓95.91) 1.95 (↓97.96) 1.27 (↓98.50) 2.77 (↓86.94)

PreActResNet34

w/o CA 92.50 91.05 93.73 93.73 93.76 91.20 90.46
w/o ASR 100.00 97.13 99.99 99.56 99.88 97.38 96.68

CA↑ 86.69 (↓5.81) 84.88 (↓6.17) 87.96 (↓5.77) 90.12 (↓3.61) 88.67 (↓5.09) 86.70 (↓4.50) 83.12 (↓7.34)
PA↑ 84.11 (↓8.39) 81.05 (↓10.00) 85.29 (↓8.44) 75.62 (↓18.11) 72.33 (↓21.43) 82.61 (↓8.59) 81.54 (↓8.92)

ASR↓ 2.21 (↓97.79) 2.62 (↓94.51) 1.83 (↓98.16) 4.61 (↓94.95) 1.96 (↓97.92) 1.32 (↓96.06) 5.97 (↓90.71)

MobileNet V2

w/o CA 81.84 78.99 82.03 82.16 82.30 82.30 81.26
w/o ASR 99.99 95.81 99.88 97.29 98.94 99.20 91.15

CA↑ 77.97 (↓3.87) 76.89 (↓2.10) 78.73 (↓3.30) 79.98 (↓2.18) 78.31 (↓3.99) 79.41 (↓2.89) 78.12 (↓3.14)
PA↑ 76.55 (↓5.29) 75.28 (↓3.71) 77.38 (↓4.65) 68.93 (↓13.23) 69.93 (↓12.37) 74.90 (↓7.40) 75.81 (↓5.45)

ASR↓ 2.02 (↓97.97) 1.08 (↓94.73) 3.78 (↓96.10) 4.96 (↓92.33) 1.02 (↓97.92) 2.25 (↓96.95) 2.86 (↓88.29)

ViT

w/o CA 95.85 93.62 95.89 96.40 96.06 97.00 94.70
w/o ASR 100.00 93.90 99.99 99.89 95.98 99.69 96.46

CA↑ 93.85 (↓2.00) 88.01 (↓5.61) 94.89 (↓1.00) 94.80 (↓1.60) 94.79 (↓1.27) 94.00 (↓3.00) 92.22 (↓2.48)
PA↑ 91.41 (↓4.44) 86.69 (↓6.93) 90.60 (↓5.29) 75.42 (↓20.98) 75.86 (↓20.20) 93.01 (↓3.99) 90.11 (↓4.59)

ASR↓ 0.73 (↓99.27) 4.48 (↓89.42) 1.88 (↓98.11) 6.43 (↓93.46) 6.89 (↓89.09) 1.24 (↓98.45) 1.60 (↓94.86)

TABLE IV: Robustness to Out-of-Distribution Surrogate Data.

Attacks Default CIFAR-100

CA↑ PA↑ ASR↓ CA↑ PA↑ ASR↓

BadNets 87.13 84.73 2.38 80.56 (↓6.57) 79.34 (↓5.39) 2.61 (↑0.23)
InputAware 86.51 82.83 3.47 80.02 (↓6.49) 77.11 (↓5.72) 3.91 (↑0.44)
TrojanNN 88.77 84.72 2.25 82.75 (↓6.02) 77.57 (↓7.15) 2.61 (↑0.36)

LC 87.63 87.28 1.42 80.09 (↓7.54) 82.51 (↓4.77) 1.31 (↓0.11)
Blended 88.52 74.69 4.01 83.82 (↓4.70) 71.28 (↓3.41) 5.23 (↑1.22)

LF 88.27 79.26 4.41 84.74 (↓3.53) 72.30 (↓6.96) 7.82 (↑3.41)
SIG 87.78 74.71 1.95 80.54 (↓7.24) 70.19 (↓4.52) 8.41 (↑6.46)

ISSBA 91.87 90.72 0.93 87.04 (↓4.83) 87.51 (↓3.21) 0.75 (↓0.18)
BPP 87.82 82.77 1.27 82.50 (↓5.32) 78.12 (↓4.65) 1.02 (↓0.25)

WaNet 85.59 84.44 2.77 82.04 (↓3.55) 80.50 (↓3.94) 1.23 (↓1.54)
WaveAttack 84.57 80.69 2.76 81.92 (↓2.65) 76.78 (↓3.91) 5.23 (↑2.47)

cating that each component is essential for addressing triggers
within its designated scope. when Stage II is deactivated
and Stage III is activate (i.e., Stage II ✗ and Stage III ✓),
the Blended trigger is partially removed. This behavior is
analogous to the global detoxification process in SampDetox.
Unfortunately, this also demonstrates that global detoxification
alone cannot completely remove features of semi-visibility
triggers, resulting in residual triggers that can still activate
the model’s hidden backdoor. Another interesting observation
occurs when Stage II is activate and Stage III is deactivated
(Stage II ✓ and Stage III ✗): the ASRs for BPP and WaNet
slightly decrease. This is because the prediction from f ′′

cannot be perfectly black (despite the loss term in Eq. 10),
which may inadvertently disrupt the subtle features of low-
visibility triggers, rendering some of them ineffective. This
experiment confirms that each stage of BDFIREWALL fulfills
its intended role and that the stages do not exhibit negative
interference with one another.

Effectiveness of Different Purification Orders. We now
evaluate the impact of different purification orders on the
overall defense performance, with the results presented in
Table VI. The relative order of Stage I and Stage II (e.g.,
comparing sequences 1,2,3, 1,3,2, and 2,1,3) has only a minor
effect on PA and ASR for high-visibility triggers, resulting

in a 1.69% PA loss and a 0.59% ASR increase at worst. As
discussed previously, the inaccurate predictions from f ′′ can
slightly corrupt the semantic cues used to locate clean features.
However, the placement of Stage III is far more critical.
Executing Stage III first leads to a substantial degradation
in defense performance for both high-visibility and semi-
visibility triggers, causing a 15.43% PA loss and a 13.59%
ASR increase for the former, and an 18.94% PA loss and
a 23.05% ASR increase for the latter. This side effect also
propagates, leading to inaccurate predictions in Stage I and II
and consequently a slight PA decrease for LVTs. The reason
is that the diffusion process in Stage III disrupts the evidence
required by Stage I. Specifically, the diffusion smooths the
sharp semantic margins that Stage I relies on to identify seg-
mentation shifts, rendering it ineffective. Furthermore, Stage
III intensifies the mixing of clean and backdoor features
within the image, making them more difficult to separate. This
problem is reflected in the results for SVT-based attacks like
Blended and SIG, where the ASR increases by 23.05% and
the PA decreases by 18.94%. The results of this ablation study
thus confirm our analysis in Sec. IV-C regarding the critical
importance of the proposed purification sequence.

F. Inference Time

In this section, we evaluate the inference time of ZIP,
SampDetox, and BDFIREWALL, which is a critical factor for
deploying black-box defense methods in practical applications.
Specifically, we report both sample-level and batch-level infer-
ence times in Table VII, where sample-level time is defined as
the duration to process a single sample, and batch-level time
is the duration to process an entire batch of samples. The
results show that BDFIREWALL purifies suspicious samples
significantly faster, achieving up to a 111× speedup compared
to the best-performing baseline, particularly as the batch size
increases. This efficiency is primarily attributed to Stage I



TABLE V: Ablation Study of BDFIREWALL’s Components. The symbols ✓ and ✗ denote whether a component is activated
or deactivated, respectively.

BadNets InputAware TrojanNN Blended SIG BPP WaNet

Stage I Stage II Stage III PA↑ ASR↓ PA↑ ASR↓ PA↑ ASR↓ PA↑ ASR↓ PA↑ ASR↓ PA↑ ASR↓ PA↑ ASR↓

✗ ✗ ✗ 4.66 95.03 1.65 98.25 0.00 100.00 0.07 99.92 0.71 99.27 0.21 99.77 9.75 89.71
✗ ✗ ✓ 4.95 95.03 6.18 93.16 0.04 99.95 39.35 53.14 1.00 98.88 83.01 1.02 84.54 1.35
✗ ✓ ✗ 5.08 94.91 12.20 79.67 0.00 100.00 70.21 26.14 71.84 14.94 20.83 76.04 35.87 59.73
✗ ✓ ✓ 6.24 92.98 18.93 63.43 0.21 99.73 74.43 4.03 74.53 2.71 81.22 1.07 84.80 2.56
✓ ✗ ✗ 90.67 0.92 85.87 5.24 87.78 3.71 0.53 99.43 0.07 99.92 0.28 99.70 9.77 89.68
✓ ✗ ✓ 86.67 2.77 82.16 3.48 84.68 1.60 39.58 52.70 0.98 98.88 82.41 1.04 85.21 1.62
✓ ✓ ✗ 87.04 1.74 83.46 4.17 87.56 3.60 70.20 26.15 71.80 14.94 0.92 99.01 13.03 86.23
✓ ✓ ✓ 84.73 2.38 82.83 3.47 84.72 2.25 74.69 4.01 74.71 1.95 82.77 1.27 84.44 2.77

TABLE VI: Impact of Purification Order on Defense Performance. Performance metrics are compared against the baseline
sequence (Stage I→ Stage II→ Stage III). Colored arrows indicate the performance change relative to the baseline: ↑ signifies
an increase in the metric’s value, while ↓ signifies a decrease.

Stage 1, 2, 3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1

BadNets PA↑ 84.73 84.05 (↓0.68) 83.21 (↓1.52) 55.98 (↓28.75) 62.84 (↓21.89) 60.34 (↓24.39)
ASR↓ 2.38 2.77 (↑0.39) 0.65 (↓1.73) 33.28 (↑30.90) 24.95 (↑22.57) 28.34 (↑25.96)

InputAware PA↑ 82.83 81.77 (↓1.06) 81.04 (↓1.79) 74.93 (↓7.90) 75.32 (↓7.51) 74.73 (↓8.10)
ASR↓ 3.47 2.31 (↓1.16) 3.75 (↑0.28) 8.78 (↑5.31) 8.46 (↑4.99) 9.12 (↑5.65)

TrojanNN PA↑ 84.72 82.53 (↓2.19) 81.84 (↓2.88) 70.80 (↓13.92) 71.88 (↓12.84) 71.18 (↓13.54)
ASR↓ 2.25 1.63 (↓0.62) 1.56 (↓0.69) 11.68 (↑9.43) 10.66 (↑8.41) 11.35 (↑9.10)

Blended PA↑ 74.69 52.54 (↓22.15) 74.08 (↓0.61) 73.16 (↓1.53) 54.74 (↓19.95) 54.35 (↓20.34)
ASR↓ 4.01 26.32 (↑22.31) 4.00 (↓0.01) 3.29 (↓0.72) 26.38 (↑22.37) 26.21 (↑22.20)

SIG PA↑ 74.71 57.74 (↓16.97) 75.33 (↑0.62) 74.31 (↓0.40) 57.55 (↓17.16) 57.64 (↓17.07)
ASR↓ 1.95 26.00 (↑24.05) 0.33 (↓1.62) 4.84 (↑2.89) 25.93 (↑23.98) 25.35 (↑23.40)

BPP PA↑ 82.77 81.08 (↓1.69) 79.68 (↓3.09) 80.58 (↓2.19) 81.28 (↓1.49) 81.66 (↓1.11)
ASR↓ 1.27 1.17 (↓0.10) 1.13 (↓0.14) 1.02 (↓0.25) 1.04 (↓0.23) 0.95 (↓0.32)

WaNet PA↑ 84.44 84.18 (↓0.26) 82.85 (↓1.59) 83.42 (↓1.02) 84.11 (↓0.33) 84.30 (↓0.14)
ASR↓ 2.77 1.47 (↓1.30) 1.48 (↓1.29) 1.45 (↓1.32) 1.43 (↓1.34) 1.10 (↓1.67)

TABLE VII: Inference Time (s)
ZIP SampDetox BDFIREWALL

Sample-Level 7.49 0.40 0.12 (↑∼3×)

Batch-Level (64) 39.68 118.77 0.65 (↑∼61×)

Batch-Level (128) 89.59 238.48 0.81 (↑∼111×)

and Stage II of BDFIREWALL, which effectively remove
suspected triggers with one-step inference. In contrast, both
baseline methods require multiple reverse diffusion processes
to eliminate backdoor triggers. For instance, removing a high-
visibility trigger requires SampDetox nearly 120 diffusion
steps, even under ideal conditions. Therefore, DDPM-based
methods inevitably cause inference delays due to their high
computational overhead, making it challenging for users to
obtain prediction results in a timely manner. We note that while
ZIP suffers from a tremendous inference delay for a single
sample, it performs well at the batch level. This is because we
follow its official implementation, which batches 64 samples
into a single 256×256 input for the diffusion model, thereby
saving considerable time. Compared with SampDetox, BD-
FIREWALL achieves an even greater speedup of up to 294×.
This highlights the superior expeditiousness of BDFIREWALL
across various inference scales relative to other DDPM-based
methods. Additionally, we discuss the use of DDIM to further
accelerate inference for BDFIREWALL in Sec. VI-B.

VI. DISCUSSION

This paper presented BDFIREWALL, a novel approach for
black-box backdoor defense in MLaaS environments. In this
section, we discuss its primary limitations and the crucial
balance between performance and computational overhead.

A. Limitations of BDFIREWALL

In the previous sections, we conducted extensive experi-
ments across various datasets and models, demonstrating that
the proposed BDFIREWALL can effectively and efficiently
defend against backdoor attacks in black-box settings. Despite
these successes, BDFIREWALL still has limitations in handling
certain types of triggers. The core mechanism of BDFIRE-
WALL, for defending against both HVT and SVT, relies on a
key observation: the semantic differentiability between clean
features and trigger features. Consequently, when triggers are
semantically inseparable from the clean features, as seen in
so-called semantic backdoor attacks, BDFIREWALL is unable
to remove them effectively.

To investigate this limitation, we conducted experiments on
three representative attacks: PhysicalBA [55], REFool [56],
and the Semantic Backdoor attack [57]. Figure 5 presents the
defense performance of BDFIREWALL against the aforemen-
tioned attacks. Surprisingly, BDFIREWALL defended against
PhysicalBA and REFool with satisfactory PAs and ASRs, a
result contrary to our initial hypothesis. Upon re-examining
the backdoor generation process for PhysicalBA and REFool,
we found that although they are categorized as semantic



TABLE VIII: Performance with DDIM. The result in brackets is a comparison between variations and BDFIREWALL.

BadNets InputAware TrojanNN Blend SIG BPP WaNet

BDFIREWALL
Time↓ 0.65 0.65 0.65 0.65 0.65 0.65 0.64
PA↑ 84.73 82.83 84.72 74.69 74.71 82.77 84.44

ASR↓ 2.38 3.47 2.25 4.01 1.95 1.27 2.77

BDFIREWALL-5
Time↓ 0.29(∼2.24×) 0.29(∼2.24×) 0.29(∼2.24×) 0.29(∼2.27×) 0.29(∼2.24×) 0.29(∼2.27×) 0.29(∼2.24×)
PA↑ 81.78(↓2.95) 79.87(↓2.96) 81.02(↓3.70) 61.83(↓12.86) 55.08(↓19.63) 72.68(↓10.09) 76.15(↓8.29)

ASR↓ 0.53(↓1.85) 2.32(↓1.15) 1.05(↓1.20) 8.12(↑4.11) 6.42(↑4.47) 1.23(↓0.04) 1.04(↓1.73)

BDFIREWALL-1
Time↓ 0.08(∼8.13×) 0.08(∼8.13×) 0.07(∼8.90×) 0.08(∼8.13×) 0.08(∼8.44×) 0.08(∼8.55×) 0.08(∼8.31×)
PA↑ 44.15(↓40.58) 47.51(↓35.32) 41.70(↓43.02) 19.08(↓55.61) 28.67(↓46.04) 56.30(↓26.47) 46.97(↓37.47)

ASR↓ 0.25(↓2.13) 2.50(↓0.97) 0.62(↓1.63) 18.05(↑14.04) 18.21(↑16.26) 18.22(↑16.95) 0.21(↓2.56)

BDFIREWALL-0
Time↓ 0.02(∼32.50×) 0.02(∼30.95×) 0.02(∼30.95×) 0.02(∼30.95×) 0.02(∼30.95×) 0.02(∼30.95×) 0.02(∼32.00×)
PA↑ 29.93(↓54.80) 37.53(↓45.30) 27.93(↓56.79) 17.28(↓57.41) 15.47(↓59.24) 50.31(↓32.46) 45.94(↓38.50)

ASR↓ 0.17(↓2.21) 0.93(↓2.54) 0.27(↓1.98) 28.97(↑24.96) 53.26(↑51.31) 29.73(↑28.46) 0.10(↓2.67)
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Fig. 5: Physical Backdoor and Semantic Backdoor
attacks, the triggers they apply are not intrinsic to the original
clean features. This means the backdoor triggers still exhibit
semantic differences from the clean features of the input
images. Such semantic differences allow BDFIREWALL to
successfully identify and neutralize them.

However, BDFIREWALL fails to defend against the Se-
mantic Backdoor attack [57], which leverages green cars as
poisoned samples to induce the backdoor. In this attack, the
backdoored model is trained to misclassify any green car to
an adversary-specified label. Since the backdoor trigger (the
color green) is an intrinsic feature of the benign samples
(cars), our key observation regarding semantic differences
no longer holds, causing BDFIREWALL to fail. Fortunately,
the applicability of such attacks is limited, as they require a
specific subclass of samples for poisoning, unlike more general
attacks that can implant triggers into arbitrary images. We
therefore conclude that while BDFIREWALL has this inherent
limitation, its practical impact is confined to a narrow class
of attacks, leaving the versatility of BDFIREWALL intact for
most real-world scenarios.

B. Balancing timeliness and effectiveness

Diffusion models, with their outstanding performance in
high-quality image generation and restoration, are becoming
a core approach in generative artificial intelligence. Conse-
quently, their powerful image restoration capabilities have
been leveraged in recent research to purify backdoored sam-
ples, enabling backdoor defense in black-box scenarios. In
this paper, we adopt this line of work, defending against
low-visibility triggers by first adding lightweight noise to
suspicious inputs and then applying a DDPM-based method
to denoise them. Although effective, a critical problem of
DDPM-based methods still lingers: their significant compu-
tational overhead. As dictated by Eq. 16, the prediction at

step t − 1 depends on the state at step t, meaning DDPM-
based methods must execute the full sequence of predefined
time steps iteratively, resulting in substantial computational
costs. Although our method employs only 20 time steps and
achieves an inference acceleration of up to 294× compared
to SampDetox, a state-of-the-art DDPM-based method, its
latency is still significant—approximately 30× slower than
vanilla inference. This raises a critical question: how can we
further accelerate the purification process?

One promising solution is to apply Denoising Diffusion
Implicit Models (DDIM) [58], which accelerate image gen-
eration through a non-Markovian process. To explore this
trade-off, we introduce DDIM into our framework and pro-
pose three variants: BDFIREWALL-5, BDFIREWALL-1, and
BDFIREWALL-0. Here, the number in BDFIREWALL-5 and
BDFIREWALL-1 represents the total number of DDIM steps,
while BDFIREWALL-0 represents a baseline where we only
add noise to suspicious inputs without any denoising. As
reported in Tab. VIII, the results reveal that while DDIM
significantly accelerates the purification process, it introduces
a step-dependent performance degradation, particularly in PA,
which shows a clear downward trend as the number of
steps decreases. Thus, how to balance the trade-off between
purification efficiency and defense effectiveness remains a
critical open question. We believe this direction warrants
further investigation from the research community.

VII. CONCLUSION

This paper introduced BDFIREWALL, a progressive black-
box backdoor defense framework based on a refined cate-
gorization of triggers: Fully-Visible Triggers (FVT), Semi-
Visible Triggers (SVT), and Low-Visibility Triggers (LVT)
according to their impact to the patch area. Specifically, we
first capitalize the clear semantic difference of HVT attaching
to identify and reconstruct trigger regions, thereby neutralizing
the threat while recovering the original content. Then, we
model SVT patched inputs as distinct trigger patterns cor-
rupted by clean features and employ a denoising process to
precisely reconstruct and subsequently eliminate the trigger.
In order to further eliminate the LVT, we leverage their
inherent fragility to noise by perturbing suspicious inputs to
destroy them and then applying DDPM to purify them within
a few diffusion steps. Extensive experiments demonstrate
that BDFIREWALL significantly outperforms state-of-the-art
black-box defenses. Compared to the best performance of



them, BDFIREWALL achieves an average of 33.25% ASR
drop, improving poisoned sample accuracy by 29.64%, and
accelerating inference time by up to 111×.

For future work, we identify two critical research directions.
First, developing defenses against semantic backdoors, where
triggers are intrinsically part of the clean features, remains
a major challenge. Second, further optimizing the trade-off
between purification effectiveness and computational latency
is crucial for real-world deployment, potentially by exploring
non-iterative purification models.
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APPENDIX A
DETAILS OF METRICS

• Clean sample Accuracy (CA) measures the accuracy of
the backdoored model on clean samples after they have
been processed by our defense method. A higher CA
indicates that our defense preserves the model’s utility
on benign inputs. It is calculated as:

CA =
1

|Dcln|
∑

(xi,yi)∈Dcln

I(f(P (xi)) = yi), (17)

where Dcln is the set of clean test samples, (xi, yi) is
a sample-label pair from Dcln, P (·) is the purification

function of BDFIREWALL, f(·) is the backdoored model,
and I(·) is the indicator function.

• Poisoned sample Accuracy (PA) refers to the accu-
racy of the backdoored model in predicting the original,
ground-truth labels of poisoned samples after they have
been purified by BDFIREWALL. This metric helps to
evaluate whether the defense can successfully remove the
trigger effect and restore the sample’s original features.
It is defined as:

PA =
1

|Dbd|
∑

(xi,yi)∈Dbd

I(f(P (xi)) = yi), (18)

where Dbd is the set of poisoned test samples and yi is
the original ground-truth label for the sample xi.

• Attack Success Rate (ASR) is the percentage of purified
poisoned samples that are still misclassified as the at-
tacker’s target label by the backdoored model. It directly
measures the effectiveness of our defense in mitigating
the backdoor attack. A lower ASR is desirable. The
formula is:

ASR =
1

|Dbd|
∑

xi∈Dbd

I(f(P (xi)) = ytarget), (19)

where ytarget is the attacker-specified target label.

APPENDIX B
IMPLEMENTATION DETAILS OF BDFIREWALL

Model Architecture. In Stages I and II, we leverage three
carefully designed U-Net models f ′

remove, f ′
recons and f ′′ to

defend against the high-visibility triggers and semi-visibility
triggers in black-box settings. In terms of f ′

remove, it contains
an encoder (four convolutions and two max-pooling layers for
feature extraction), a decoder (two transposed convolutions
and two regular convolutions for mask prediction) and a self-
calibration module from SLBR [38] to guide the final predic-
tion. For f ′

recons, it contains an encoder (three convolutions
layers for feature extraction), one decoder (two transposed
convolutions and one regular convolution for reconstructing
the clean image). For f ′′, it contains a encoder with three
double-convolution layers and three max-pooling layers for
feature extraction, a bottleneck with a double-convolution
layer for processing the middle feature and three transposed
convolution layers for image generation. In Stage III, we
employ a DDPM-based diffusion model, adapted from Sam-
pDetox, to purify inputs against LVTs.

Training Details. We train f ′
remove, f ′

recons and f ′′ for 200
epochs using the AdamW optimizer [59] with a learning rate
of 0.001. In terms of the diffusion model used in Stage III, we
directly use the pre-trained model provided by SampDetox for
the CIFAR-10 task, and utilize the training code of SampDetox
to train new diffusion models for CIFAR-100 and Imagenette.

Surrogate Triggers. Since we cannot access the training
data of the model provided by the service provider, we have
no way of obtaining information about the triggers. For this
reason, we use different surrogate triggers in Stage I and Stage
II, according to our observations of different types of triggers.
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TABLE IX: Performances on Different Trigger Patterns. The
number after represents the gap compared to the results in
Table II. For CA and PA, higher (i.e., ↑) is better, and ASR
is opposite.

Attacks w/o CA PA ASR

BadNets 5,5, grid 93.31 87.25 (↑0.12) 84.02 (↓0.71) 0.60 (↓1.78)
BadNets, 3, 3, random 92.98 86.31 (↓0.82) 83.83 (↓0.90) 1.20 (↓1.18)

TrojanNN FireFox 93.26 87.12 (↓1.65) 83.81 (↓0.91) 0.87 (↓1.38)
Blended Kitty2 93.28 87.30 (↓1.22) 76.65 (↑1.96) 5.35 (↑1.34)

SIG 6 20 93.38 88.86 (↑1.08) 77.41 (↑2.70) 2.76 (↑0.81)
SIG 3 40 93.52 87.45 (↓0.33) 59.12 (↓15.59) 7.67 (↑5.72)

In Stage I, we use randomly generated triangles, squares, and
circles as shapes and fill them with various patterns, such as
mosaics, random noise, and solid colors to manually create
clear semantic distinctions. In Stage II, we combine shapes
with different colors and randomly generated backgrounds
for them to generate surrogate triggers whose size matches
that of the inputs, and then randomly overlay them on the
original samples with random transparency (10% ∼ 40%).
This process trains f ′′ to treat the benign image content as
”noise” and effectively separate it from the underlying trigger
pattern.

APPENDIX C
GENERALIZATION FOR DIFFERENT TRIGGER PATTERNS.

In this section, we evaluate BDFIREWALL on different
triggers to demonstrate the generalization, the corresponding
results are presented in table IX where the colorful num-
bers and arrows represent the performance variations with
respect to the CIFAR-10 in Sec. V-B. Specifically, we replace
the trigger pattern across three categories of trigger (high-
visibility trigger and semi-visibility trigger). We select four
representative attacks (BadNets, TrojanNN, Blended, and SIG)
and replace their standard triggers with alternative patterns
to generate new backdoored models. We do not perform this
experiment for Low-Visibility Triggers (LVTs) because their
triggers, such as the warping fields in WaNet or imperceptible
perturbations in BPP, are not simple, replaceable patterns but
rather complex, sample-specific transformations.

The results show that BDFIREWALL’s performance is
highly consistent across different trigger patterns, exhibiting

only minor deviations from the baseline results. On average,
the performance changes were minimal: a -0.50% change
in CA, a +1.44% change in PA, and a -0.44% change in
ASR. The results indicate that the BDFIREWALL is generic
for different types of triggers, rather than being limited to
specific triggers. It is noteworthy that BDFIREWALL does
not achieve particularly satisfactory results in the SIG 3 40
with its PA decreasing by 15.59% compared to the baseline
and its ASR increasing by 5.72%. The reason is that the
trigger increases/decreases pixel values by a maximum of
40/255, which means that, under ideal conditions, removing
the backdoor would require a cost of approximately 80/255,
severely damaging the original semantic information of the
image. However, despite the significant decrease compared to
the baseline, there is still a substantial improvement compared
to SampDetox which PA is 4.01% and ASR is 95.67%.

APPENDIX D
VISUALIZED PERFORMANCE COMPARISON.

Figure 8 visualizes the performance data from Tab. II
to illustrate the core defense objectives: purifying backdoor
samples to be inferred as their ground-truth labels on the
backdoor model. We focus on two key metrics: PA and ASR
Drop. Note that, the ASR drop, defined as the difference
between the baseline ASR (’No Defense’) and the post-defense
ASR, is used to unify the comparison. Consequently, for both
PA and ASR drop, higher values indicate superior perfor-
mance. As the figure illustrates, our method (BDFIREWALL)
consistently occupies a larger area on the chart, signifying
its superior overall performance compared to the two other
leading methods, especially against HVT- and SVT-based
attacks. A detailed analysis of these results is presented in
Sec. V-B. To complement these results, we also provide a
analysis of the purification process, offering visual evidence
that explains the superior performance of BDFIREWALL.

APPENDIX E
DETAILS OF PURIFICATION.

In this section, we visualize the purification processes of
ZIP, SampDetox, and BDFIREWALL to provide an intuitive
analysis of their respective shortcomings and advantages. To
provide a concrete example, we apply these methods to sam-
ples from the CIFAR-10 dataset. Specifically, ZIP’s procedure
includes two intermediate processes—gray-scaling and blur-
ring (implemented via average pooling)—while SampDetox
utilizes one intermediate process, which we term ’Location’.
In contrast, the process of BDFIREWALL also involves two
key intermediate steps: locating the HVT and reconstructing
the SVT. Accordingly, we illustrate the intermediate and final
purification results of these methods in Figure 8.

ZIP [12] employs gray-scaling and blurring as linear trans-
formations to destroy potential triggers, subsequently using
a pre-trained diffusion model to restore the damaged image
content. Ideally, the intermediate result of this process should
be a trigger-free version of the original input. However, the
visualizations in the second and third rows demonstrate that
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decreasing value compare which the ASR of no defense. For PA and ASR Drop, the higher the better, which means that
methods that occupy a larger area in the graph have better defensive effects.

a simple global transformation not only fails to effectively
destroy triggers—especially large patterns like TrojanNN and
attacks based on SVT, but also inflicts irreversible damage
on clean features. This leads to both incomplete trigger re-
moval (e.g., BadNets , TrojanNN , LF , SIG ) and collateral
damage to the image’s benign content (e.g., IAD, Blended,
WaNet). The intrinsic reason for ZIP’s failure lies in its
reliance on a uniform, global purification strategy for all
triggers, rather than adapting the destruction method to specific
trigger characteristics. Consequently, this approach struggles
to simultaneously achieve significant ASR reduction, preserve
PA (PA), and maintain CA.

SampDetox [13] leverages a ’Location’ operation to iden-
tify HVT and purifies them by applying adaptive high-intensity
noise to the identified regions. Ideally, this ’Location’ oper-
ation should precisely identify triggers with minimal error.
However, the visualizations reveal that the ’Location’ results
are far from accurate. For attacks based on SVT and LVT,
SampDetox’s design implies that they should be handled by a
global purification mechanism. Consequently, the ’Location’
operation is expected to find no specific trigger region, pro-
ducing a nearly white output. However, the actual outputs
are far from this expectation. Most of them neither located
the trigger nor produced the expected white image, with the
notable exception of WaNet . As a consequence, balancing
Prediction Accuracy (PA) and Attack Success Rate (ASR) for
SVT and LVT attacks becomes challenging, a point further
discussed in Sec. V-B. The method fails to precisely isolate
the trigger and, in turn, erroneously corrupts benign features.
Furthermore, this inaccuracy extends to the noise addition of
HVT purification, results in the HVT are hard to be purified

(e.g., BadNets , IAD , TrojanNN , and LC ). The root cause
of these suboptimal outcomes is that SampDetox establishes
a flawed correlation between model robustness and trigger
visibility, which leads to misguided noise application.

Finally, BDFIREWALL leverages a progressive black-box
framework to defend against the HVTs, SVTs and LVTs in
successive order. In Stage I, we introduce a segmentation
model to predict the location of HVTs, generating a binary
mask denoted as m′. Ideally, the black area of m′ should
precisely overlap with the HVT regions while remaining
blank (i.e., white) for all other conditions. Stage II, in turn,
focuses on reconstructing SVTs, producing an output denoted
as x′′

recons. The goal is to reconstruct the SVT pattern with
minimal information loss while generating a black output for
non-SVT inputs. Since Stage III is a straightforward noise-
and-denoise process whose output is the final purified image,
we do not visualize its intermediate results separately.

The visualizations demonstrate that Stage I achieves ex-
cellent predictive accuracy, significantly outperforming Sam-
pDetox’s ’Location’ module. Specifically, the predicted mask
m′ accurately covers the trigger-patched areas for HVTs and
remains correctly blank for SVT and LVT attacks. One notable
exception occurs with the LC attack: its black-and-white grid
trigger was expected to produce a solid square mask in m′

LC .
However, the resulting mask m′

LC only captures the white
portions of the trigger pattern. This discrepancy stems from
our defense’s core intuition: discriminating based on semantic
differences between clean and poisoned features. Since the
background pixels in that region are also black, there is no
discernible semantic difference between the black parts of the
trigger and the clean area. Consequently, our method only
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Fig. 8: Visualization of Intermediate Purification Steps. Attacks are color-coded by trigger type: blue backgrounds ( HVT )
for High-Visibility Trigger, pink ( SVT ) for Semi-Visible Trigger, and gray ( LVT ) for Low-Visibility Trigger. Each row
visualizes the intermediate and final outputs for a specific defense method: ZIP, SampDetox, and BDFIREWALL.

identifies the white trigger pixels that exhibit a clear semantic
deviation. However, this partial detection does not impede
trigger removal, as replacing black pixels with other black
pixels has no effect on the outcome. This behavior, in fact,
reflects that Stage I is operating precisely as designed. In
terms of Stage II, we present both the original reconstructed
output (x′′

recons) and an enhanced version (x′′
recons ver. En-

hance) created by magnifying the original output threefold
for better visibility. Stage II successfully reconstructs various
SVTs—such as the Hello Kitty pattern in Blended , the purple
region in LF , and the sinusoidal signal in SIG —while
keeping the output for other attacks predominantly black.
Note that, although the reconstruction model was trained with
constraints, it cannot produce a perfect zero output (i.e., pure
black), thus naturally introducing a slight bias. This explains
why Stage II can cause minor degradation to clean features.
However, compared to the baseline methods, our approach
not only removes SVTs more effectively but also significantly
reduces collateral damage to benign features.

In terms of Stage II, we present the origin results (x′′
recons)

and we also present the corresponding enhanced version

(x′′
recons ver. Enhance) by directly magnifying x′′

recons three
times. We can see that Stage II effectively reconstruct the
SVTs (the hellokitty of Blended , the purple area of LF
and the sinusoidal signal of SIG ) and kept black as much
as possible for other attacks. Note that, although we restricted
f ′′ during training, since a model cannot output 0 (i.e., pure
black) completely, it naturally introduces bias. This explains
why the introduction of Stage II introduces some damage
to clean features. However, compared with the two baseline
methods, our method not only effectively removes SVTs but
also significantly reduces damage to clean features.

In summary, we have presented a detailed analysis of the in-
termediate outputs generated during the purification processes
of ZIP, SampDetox, and BDFIREWALL. These visualizations
elucidate why prior methods falter, while simultaneously
demonstrating how BDFIREWALL can effectively and effi-
ciently neutralize such backdoors. Furthermore, these visual
results provide compelling, intuitive evidence that corroborates
our quantitative experimental findings, confirming both the
accuracy of our analysis and the superiority of our proposed
method.


