
WiFinger: Fingerprinting Noisy IoT Event Traffic
Using Packet-level Sequence Matching

Ronghua Li∗, Shinan Liu†, Haibo Hu∗,Qingqing Ye∗,Nick Feamster†
∗The Hong Kong Polytechnic University †University of Chicago

∗cory-ronghua.li@connect.polyu.hk,{haibo.hu, qqing.ye}@polyu.edu.hk
†{shinanliu, feamster}@uchicago.edu

Abstract—IoT environments such as smart homes are suscep-
tible to privacy inference attacks, where attackers can analyze
patterns of encrypted network traffic to infer the state of devices
and even the activities of people. While most existing attacks
exploit on ML techniques for discovering such traffic patterns,
they underperform on wireless traffic, especially Wi-Fi, due to its
heavy noisiness and packet losses of wireless sniffing. In addition,
these approaches commonly target at distinguishing chunked IoT
event traffic samples and they failed at effectively tracking mul-
tiple events simultaneously. In this work, we propose WiFinger,
a fine-grained multi-IoT event fingerprinting approach against
noisy traffic. WiFinger turns the traffic pattern classification
task into a subsequence matching problem and introduces novel
techniques to account for the high time complexity while main-
taining high accuracy. Experiments demonstrate that WiFinger
outperforms existing approaches on Wi-Fi traffic, with an average
recall of 85% (v.s. 49% and 46%) and almost zero false positives
for various IoT events.

I. INTRODUCTION

IoT devices are increasingly ubiquitous in various applica-
tions, including smart homes, smart cities, and industrial au-
tomation. These devices connect to the internet for control and
to transmit sensor data. However, even if the data transmitted
is encrypted to prevent information leakage, existing works
have demonstrated that device activities can still be inferred
and exploited by passively monitoring the encrypted traffic
and analyzing the patterns of traffic flows or packets [1]–[4].
Consequently, this may expose critical information, such as
user behavior or the working status of security-sensitive de-
vices, posing potential security risks for malicious actors (e.g.,
break-in) or leading to privacy breaches through unauthorized
surveillance.

Currently, most existing benign or malicious IoT
event/device fingerprinting methods [1]–[3], [5]–[7] focus
on wired traffic at the TCP/IP layers, with only a few
specifically studying fingerprinting on Wi-Fi traffic [8], [9].
While TCP/IP headers provide verbose information assisting
accurate fingerprinting, TCP/IP sniffing poses stringent
requirement on attackers [10], who must either exploit the
LAN access point or obtain authorized access within the
ISP’s network (WAN). In contrast, since most IoT devices
connect through Wi-Fi, their traffic can be easily sniffed
using a wireless network adapter, significantly lowering the
barrier and increasing the practicality of such attacks.

Given that network event classification has been studied
for decades, an intuitive question arises: can these established

solutions simply work for Wi-Fi layer attacks? Unfortunately,
our findings indicate the opposite. By applying prevalent
methods — both common machine learning-based and packet-
matching approaches — to IoT traffic at the Wi-Fi layer, we
have identified significant limitations and challenges of these
solutions in tuning model performance and reducing manual
efforts, as detailed in Table I.

Methods Features Data
Vol

Label
Acc

Param
Tuning

Traffic
Com-
pleteness

DL [11]–[13] Raw Traf-
fic

↑ ↑ ↑ −

ML [8], [9],
[14]–[18]

Traffic
stats

↓ ↑ ↑ −

Packet Match
[1], [5]

Size & Dir
& Time

↓ ↓ ↓ ↑

WiFinger Size & Dir
& Time

↓ ↓ ↓ ↓

TABLE I: Factors that influence the performance of existing
approaches. ↑ indicates high dependence of performances on
the factor, and vice versa. − indicates a certain level of
robustness against a factor. The lower reliance, the higher
feasibility and scalability.

First, the most widely adopted ML/DL-based traffic analysis
approaches face limitations in adaptability [8], [11]–[13],
granularity [8], [19], [20], and scalability for effective IoT
event fingerprinting. Adaptability: These methods typically
rely on handcrafted features or parameters (e.g., packet size
statistics, flow duration) to classify traffic bursts or flows.
Nonetheless, the most suitable feature/parameter sets vary
among devices and events due to the sparseness and diversity
of IoT traffic [21]. Granularity: ML-based methods are not
fine-grained enough for event identification, particularly when
differentiating events with only slight variations in packet
sizes or timing. Their results can also be easily affected by
heartbeat or other background traffic, which influences flow
characteristics. Scalability: Training these data-driven models
requires a large amount of labeled data from scratch, which
does scale well for large IoT systems.

Second, packet-matching approaches [1], [5], albeit accu-
rate, encounter the following two challenges on Wi-Fi traf-
fic. Packet Losses: Passive Wi-Fi sniffing is susceptible to
packet loss due to variable wireless channel conditions. This
affects both online detection and offline training of packet-

ar
X

iv
:2

50
8.

03
15

1v
1

 [
cs

.C
R

]
 5

 A
ug

 2
02

5

https://arxiv.org/abs/2508.03151v1

matching approaches. Upper-layer Variances: Wi-Fi traffic
inherits variances from upper layers, introducing significant
noise. For example, Ping-Pong [1] filtered retransmission/ACK
TCP packets and only focused on fingerprint TLS application
packets. However, all of them become indistinguishable at the
Wi-Fi layer due to WPA encryption [22], hindering packet-
matching effectiveness.

This work aims to accurately fingerprint Wi-Fi IoT events
by addressing the above limitations and challenges. To this
end, we propose an intuitive and yet noise-agnostic packet-
matching approach for wireless traffic, WiFinger. Inspired by
the findings in [1], [5], WiFinger adopts a similar fingerprint
representation: a sequences of packets with relative times-
tamps, sizes, and directions. Yet, instead of finding exact
match, WiFinger’s focus on detecting whether “traces” of fin-
gerprint are present within the examined sequence. WiFinger
offers three main characteristics: (i) Adaptable: WiFinger uses
a consistent parameter setting for fingerprint extraction and
matching, requiring little parameter tuning for various devices
and events. (ii) Accurate: It is robust against Wi-Fi traffic
noise and variances, and can differentiate subtle differences
in packet size and inter-arrival time features distinguishing
different events. Evaluation on 31 real IoT events shows
that WiFinger achieves excellent performance on continuous
event tracking with almost zero false positives, even including
complex events like voice commands of smart speakers. (iii)
Scalable: WiFinger fingerprints can be extracted efficiently
using a few dozen of event samples, significantly reducing
data collection and labeling costs. In summary, our main
contributions are as follows:

• We provide insights into the differences between the Wi-
Fi and TCP/IP traffic, revealing the main challenges of
fingerprinting IoT event under wireless IoT traffic.

• We identify the current gap between experimental settings
and online settings, showing that the performance of
existing models are often exaggerated and unrealistic.

• We propose WiFinger, a fine-grained IoT event finger-
printing approach on Wi-Fi traffic, formulating the de-
tection as a subsequence matching problem. We tackle
the NP-hard efficiency challenge to ensure fast offline
training and online matching while maintaining high
accuracy. Moreover, we overcome the challenge of ex-
tracting fingerprints from noisy traffic using collective
intelligence.

The rest of the paper is organized as follows. Section II
uses real examples to show the limitations of existing methods
and motivate this work. Section III defines the problem scope
and threat model. Section IV introduces the intuition behind
WiFinger and details its fingerprint extraction and matching
process. Section V compares WiFinger to two state-of-the-
art methods and investigates its performance against defenses.
Section VI provides additional findings on IoT event traffic and
discusses how WiFinger can be extended to other domains.

II. RELATED WORK & MOTIVATION

Traffic analysis and event detection have been widely stud-
ied over the last decade [1]–[3], [5], [6], [8], [23], [24].
However, most existing works struggle with fingerprinting Wi-
Fi IoT events effectively, particularly compared to methods
at higher layers or different protocols. This section uses real
Wi-Fi event sequences to illustrate Wi-Fi IoT traffic charac-
teristics, highlighting limitations and challenges for existing
fingerprinting methods in this domain.

A. Wi-Fi Event Traffic: A Motivating Example

Using a real example, we demonstrate Wi-Fi IoT event
traffic characteristics and their differences from typical TCP/IP
traffic. Since Wi-Fi Control and Management packets are not
related to application-layer behaviors, we only analyze Data
packets with payload, similar to [1] on TCP/IP traffic. Figure 1
shows example Wi-Fi Data packet sequences from a Hue Light
Bulb. Down arrows (Dsize) represent downstream packets
(router to device) and up arrows (Usize) represent upstream
packets (device to router). Ideally, “ON” commands start with
a D254 packet, followed by a U333 upstream packet 0.1 -
0.2s later, and ends with a D129 packet after another 0.4s.
“OFF” commands are similar with “ON”, except their first
two packets are one-byte larger.

INSIGHT #1: Wi-Fi traffic has severe data packet loss
due the nature of wireless sniffing. Though Wi-Fi includes
retransmissions for station-to-AP reliability, they don’t guaran-
tee completeness for a passive sniffer in promiscuous mode.
Compared to ideal event traffic, real event traffic may have
missing components due to the unreliable Wi-Fi sniffing. In
contrast, TCP/IP traffic sniffing via port mirroring is typically
less susceptible to packet loss. According to our experiments,
the best performing adapter suffers from 15-20% data packet
drop, which significantly impacts the detecting performance.

INSIGHT #2: Event bursts/flows can be dominated by
noise packets, obscuring actual event patterns. As illus-
trated in Figure 1, observed ’Real’ sequences often deviate
from idealized patterns, being interleaved with packets that are
irrelevant with application behaviors. In contrast to TCP/IP
payload analysis, Wi-Fi frames also encapsulate transport
layer control packets (e.g., ACKs, SYNs), which are not
directly part of the application data and ideally should be
filtered. Furthermore, when IoT events occur concurrently with
other background communication, their flow-level patterns of
events will be mixed with, and potentially buried within,
this larger volume of background noise. Consequently, event
burst patterns no longer pertain to application-layer behaviors,
rendering Wi-Fi flow inherently noisier than TCP/IP flows.

Based on the above insights, we further analyze some
existing traffic classification approaches and why they are
limited in fingerprinting wireless IoT events.

B. Flow-level Analysis

Flow-based analysis is a promising technique adopted in
many network applications, e.g., general traffic analysis [25],

254

333

129
255

334

129

ON OFF

Time

Ideal

254

333

ON

254
129

ON

255

334

129

OFF

111

334

129

OFF

Real

155 155
111

Router-Device

[Num]

Device-Router

Size

Fig. 1: An example of ideal Wi-Fi IoT event traffic v.s. real-world collected traffic. Green arrows represent fingerprint packets
and red arrows are unrelated packets. While the ideal event fingerprints are clean, real-world event traffic may be incomplete
or mixed with noise packets.

[26], anomaly detection [27]–[30], and some network attack
detection [31]–[34]. These approaches analyze the statisti-
cal/meta data of flows (e.g., average packet sizes, inter-arrival
times, flow durations, and etc.), aiming to classify events based
on the similarity of repetitive flow-level features. To this end,
supervised machine learning (deep learning) is usually adopted
for its robustness and accuracy. While being effective in other
applications, applying flow-based ML approaches to Wi-Fi IoT
event fingerprinting faces significant limitations.

20 40 60 80 100
Window Size/Event Duration (%)

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

ICX A/C
Google Home Volume
Gosund Plug

Fig. 2: [8] performance with various sliding window and
devices/events using chunked training/testing samples.

20 40 60 80 100
Window Size/Event Duration (%)

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Google Home Binary
Google Home Multi-class

Fig. 3: [8] performance of binary classification v.s. multi-
event classification using chunked training/testing samples.

LIMIT #1: Collecting labeled training data is too costly
considering the countless types of devices in the market

place. The limit of dataset and the time-consuming data
collection process limits the use of deep learning models.
DL models are notable for their capability of extracting high
dimensional features automatically. However, training such
models require comparable amounts of labeled data. Existing
state of the art DL approaches [11]–[13] mostly focused
on classification tasks with large publicly available datasets,
which are yet unavailable for Wi-Fi event traffic. However,
collecting hundreds or thousands of training samples per event
is time-consuming (hours to days). Even worse, when a new
class (event/device) is introduced, models have to be re-trained
or finetuned, making the system bulky considering the rapid
development of the IoT domain.

LIMIT #2: Parameter tuning and feature set selection have
overly significant impact on the overall performance yet
low adaptability across devices/events. For training-efficient
machine learning models, expertise for feature selection and
model parameters tuning is needed, which are not only labor-
intensive, but also suboptimal-prune. Taking the sliding win-
dow size as an example parameter, [8] suggests setting the
flow window size as a quarter of the event duration based
on empirical observation. Yet, this setting hardly suits every
device. We tested the influence of window size on a binary
classification task among three devices1 and noticed that the
best window size ratio for different devices varies significantly,
as shown in Figure 2. Considering the enormous amount
of features/parameters, testing their combination and tuning
parameters for optimal performance is prohibitively inefficient.

LIMIT #3: Flow-level features are too coarse-grained for
multi-event classification. Some IoT events involve subtle
packet size differences (e.g., single-byte variations) too granu-
lar for effective capture by aggregate flow-level features [14]–
[17]. In addition, as mentioned earlier, these subtle differences
can be easily obscured by flow-level noise [2], [3], [6], such as
periodic device heartbeats, or by countermeasures like traffic
shaping [23]. As shown in Figure 3, multi-class classification
on two similar events (e.g., Google Home Volume Up vs.

1We obtain each device’s event duration by roughly calculating the median
value of all post-event periods that consist the majority of packets.

Down) has a significant performance drop compared to binary
classification.
LIMIT #4: ML approaches are evaluated inappropriately.
Most ML methods are overrated due to their inappropriate
offline evaluation against chunked samples with accurate labels
(isolated flows as samples). However, in a more realistic
real-world scenario, classifiers continuously sniffs windows
of streaming traffic where they may make decisions with
incomplete information. Figure 4 demonstrates the bias of the
two scenarios: classification performance of chunked-sample
are significantly higher for Google Home events than the more
realistic tracking scenario.

20 40 60 80 100
Window Size/Event Duration (%)

0.5

0.6

0.7

0.8

0.9

F1
 S

co
re

Sample-based
Tracking-based

Fig. 4: F1-Score performances of chunked sample-based de-
tection v.s. continuous tracking. Detailed introductions of
“tracking” is in Section V.

LIMIT # 5: ML approaches for wireless traffic rarely
handle the impact of extra noises. Some works specifi-
cally focus transferring ML approaches to fingerprint Wi-Fi
traffic [8], [9], [18]. Nonetheless, they did not handle Wi-Fi
specific noises, degrading the model performances on complex
events or occasional background traffic bursts. Meanwhile,
some works fingerprint events with other wireless protocol
traffic (BLE, Zigbee, Z-Wave [35], [36]). Due to the lower
traffic volume and direct data packet-to-application mapping,
such protocol traffic is less noisy than Wi-Fi and thus results in
better performance. Because of the identical nature of wireless
traffic, we only focuses on fingerprinting the more challenging
Wi-Fi traffic.

C. Packet-level Analysis

Packet-matching fingerprints events by examining se-
quences of packet sizes, directions, and relative times-
tamps [1], [5]. Ping-Pong [1] first utilized unique pairs of
packet sizes, stemming from device-server request-response
patterns, as event identifiers. Extending this, IoTAthena [5]
incorporated timing information to form unique packet size
sequences with timestamps. Both approaches demonstrated
high performance in event fingerprinting, often surpassing
earlier ML-based flow analysis. Unfortunately, both of them
cannot operate reliably in Wi-Fi environments.
LIMIT #6: Packet-level matching approaches are vulner-
able to any packet loss and the effects of upper-layer
variances. The incompleteness of sniffed traffic significantly

impacts online detection methods like [1], [5] due to their exact
matching requirements on every single packet. Figure 5 illus-
trates how moderate simulated packet loss severely degrades
detection performance for [1] and [5]. Furthermore, variances
introduced by upper-layer protocols, combined with Wi-Fi
layer properties, can interfere with their fingerprint extraction
processes. Prior to extraction, Ping-Pong and IoTAthena filter
for application-layer data and rely on the pairwise uniqueness
of packet sizes to identify those related to specific events.
However, WPA-encrypted Wi-Fi traffic prevents Ping-Pong
and IoTAthena from identifying such “real” application data.
In summary, packet-level losses and variations prohibit direct
applications of packet-matching approaches to wireless traffic
fingerprinting.

Ping-Pong
Fingerprint

Sniffed Sequences

Missing
Pair End

Missing
Pair Start

Both
Missing

No Packet
Loss

Fig. 5: Packet-level matching approaches cannot handle packet
losses during sniffing.

D. Verbose Information Analysis

To avoid cumbersome ML feature engineering, some clas-
sification approaches [7], [19], [20], [37] use “verbose” raw
packet information like headers or packet types (e.g., DNS,
ICMP), offering two advantages: (i) reduced feature crafting
effort, and (ii) greater insight into upper-layer communication
protocols and interactions. For example, to avoid repetitive
feature engineering, [20] directly encodes raw pcap traffic
into bit sequences and deploy Autogluon [38] as a novel ML
pipeline, significantly reducing the effort for data preprocess-
ing. [7] identified that some devices always send DNS queries
to specific manufactures, easily exposing their brands and
types. However, for Wi-Fi layer IoT event fingerprinting, ver-
bose upper-layer information is generally infeasible as WPA
encryption renders payloads indistinguishable. Furthermore,
verbose Wi-Fi frame headers are uninformative for identifying
application-layer IoT events. They only reflect local network
conditions rather than application behavior.

III. PROBLEM STATEMENT

A. Threat Model

Consistent with prior research [1], [3], [7], [8], [23], at-
tackers aim to infer IoT device states to violate privacy by
deducing living habits or to gather critical information for sub-
sequent physical intrusions. To achieve this, attackers employ
wireless sniffers operating in promiscuous mode to capture
encrypted traffic. Such a sniffer could be a compromised IoT
device or a self-deployed adapter outside the living space. In
either scenario, attackers do not have access to the encrypted
payload contents. Nonetheless, since Wi-Fi headers are in

plaintext, attackers can separate communications of different
devices by their MAC addresses. Before deploying the attack,
we assume attackers have a list of target devices/events and can
collect labeled training samples for training. During the attack,
attackers need to both identify their target devices and detect
target events from a stream of traffic that involves consecutive
events and idle periods.

To establish more realistic attacking scenarios, attackers
identify events from streaming traffic instead of chunked
samples. Such attacks are classified into three categories: naive
(binary classification), single-target (targeted event detection),
and multi-target (multi-event monitoring). In the naive sce-
nario, attackers merely focus on separating a single target event
from the idle state, primarily useful in limited contexts (e.g.,
inferring a light is “off” as the last event late at night). In
the single-target scenario, attackers build fingerprints/models
using multi-event training data but aim to distinguish only
one specific event from all other events and idle traffic. This
is helpful when targeting critical events (e.g., door unlocking)
that are important/sensitive and may occur unpredictably. In
the multi-target scenario, attackers aim to monitor and identify
multiple target events occurring on a device. This is the
most challenging case, as misclassified events can impact
subsequent detection results. Despite its challenges, multi-
target tracking provides the most information and is thus the
ultimate goal of such privacy inference attacks.

B. Connection Configurations & Event Triggering

There are two main types of connection configurations for
wireless smart devices: they either connect directly to the home
router via Wi-Fi or connect to a smart hub (e.g., Amazon
Echo, Google Home) which then connects to the router.
Devices with the former configuration usually consume more
power and often have more advanced functions. In contrast,
the latter is more common for BLE or Zigbee devices that
stay idle most of the time. In this work, we focus primarily
on the first type of connection due to its prevalence and
complexity, and our approach could be easily adapted to the
hub-based configuration by sniffing communications between
the hub and devices. Moreover, there are two types of event
triggering schemes: via pre-configured smart home automation
or via manual operations on companion apps. Since the two
schemes result in similar traffic patterns [1], we focus on
the latter scenario, primarily for data collection efficiency and
scalability.

IV. WIFINGER: SYSTEM DESIGN

In this section, we introduce our packet-level fingerprinting
approach, WiFinger. Start with the analysis on Wi-Fi traffic
noises, we demonstrate some intuitions on effective packet-
level fingerprinting. In what follows, we first introduce what
is the ideal packet-level fingerprint for noisy traffic, and how
to deploy online fingerprint matching efficiently. Subsequently,
we address the challenges of obtaining such ideal fingerprints.

A. Intuition on Packet-level Fingerprinting

Ping-Pong [1] initially proposed using the size of unique
data packet pairs as fingerprints. IoTAthena [5] further demon-
strated the significance of both packet sizes and their time in-
tervals for TCP/IP event identification. When such data packets
are transmitted over Wi-Fi, they are encapsulated within Wi-
Fi data frames, adding new headers, footers, and potentially
padding. Although WPA encryption hides the upper-layer
packet structures, observable frame characteristics like size,
direction, and timing are available. We posit that the sequence
of Wi-Fi data frames corresponding to an event, despite
encapsulation overheads, retains a characteristic pattern of
relative timings and frame sizes derived from the original
TCP/IP exchange. As a result, imagining an ideal situation
with no packet loss at both layers, a Wi-Fi IoT event can still
be characterized by a sequence of Wi-Fi data packets with
their sizes, directions, and time intervals. We term this ideal
Wi-Fi traffic sequence the base fingerprint and the constituent
packets as fingerprint packets. Upon an event occurrence, two
key observations regarding deviations from base fingerprints
are: first, occasional packet loss during an event can result in
the removal of fingerprint packets; second, encapsulations of
irrelevant packets or the variations of network environment
can introduce additional packets (noise) into the observed
traffic stream alongside the base fingerprint packets. Regard-
less of these occurrences, some or all fingerprint packets will
remain within the event traffic, maintaining relatively stable
inter-arrival times, as illustrated in Figure 6. Therefore, the
event traffic classification problem can be reformulated as
determining whether a given time series sequence partially
matches the base fingerprint. In what follows, we discuss the
two challenges: 1. Matching base fingerprints efficiently; 2.
Extracting base fingerprints from noisy traffic.

Size

Base Fingerprint 3rd Packet Lost

t

Time

t t

Interposition

Fig. 6: Time intervals between packets remain relatively con-
sistent when there are packet losses or interpositions.

B. Fingerprint Matching

Assuming that base fingerprints have been obtained, we con-
ceptualize the traffic classification problem as a variation of the
Longest Common Subsequence (LCS) problem. Specifically,
we aim to identify similarities between the base fingerprint and
a target sequence by finding a longest common subsequence,
considering packet transmission directions, sizes, and interval
constraints. The closer two sequences match based on this
criterion, the more likely the target sequence corresponds to
the same event. We define the longest common subsequence
of network traffic (NT-LCS) problem as follows:

Definition 1 (NT-LCS). For input sequences Seq1 (base
fingerprint) and Seq2 (sequence to be examined), the NT-LCS
is the longest subsequence between the two sequences:[

pa1 , p
a
2 , . . . , p

a
n

]
, pai ∈ Seqsub1 , Seqsub1 ⊆ Seq1[

pb1, p
b
2, . . . , p

b
n

]
, pbi ∈ Seqsub2 , Seqsub2 ⊆ Seq2

where each element p contains:

pai = { time : ai, size : sai , dir : dai }
pbi = { time : bi, size : sbi , dir : dbi }

subject to:
•
√∑n

i=1(ai − bi)2 ≤ β (time constraints)

• (sai − sbi)
2 ≤ ϵ2 ∀i ∈ [1, n] (similar packet size)

• dai = dbi ∀i ∈ [1, n] (same direction)

Since the NT-LCS problem is NP-hard (proof in Ap-
pendix A), we propose a baseline approximation algo-
rithm, FMLCS (Fuzzily Matching for Longest Common
Subsequence). FMLCS extends the dynamic programming
(DP) approach for LCS, adapted to accommodate permissible
variations in packet size and time intervals, as detailed in
Algorithm 1. In the DP table construction, we use one table
(maxtab) to track common subsequence lengths and another
(lcsstab) to record possible subsequences corresponding to the
lengths at each step. During the DP function, two packets are
matched if they share the same transmission direction and
their size difference is less than or equal to ϵ bytes (line
30). After identifying potential longest common subsequences
(line 6-9), their temporal alignments with the base fingerprint
are measured by calculating the L2Norm distances between
the relative timestamps of the matched packets (line 17-24).
The subsequence with the best temporal alignment (minimum
distance) is selected as the matching result (line 10-12). For
a match to be deemed successful, the selected subsequence’s
length must be at least γ% of the base fingerprint’s length
and exhibit strong temporal alignment (dist ≤ β). During
experiments, we set ϵ = 1, γ = 0.6 (60% of the base
fingerprint), and β = 2. These values serve as the thresholds
for successful matching (line 13).

For smart devices with simple commands (e.g., plugs,
light, A/C controller), FMLCS is already sufficient to detect
IoT events accurately and efficiently. However, for complex
devices with larger volume of traffic (e.g., Amazon Echo
Dot), this baseline has two severe limitations. Computation
efficiency: The algorithm is computationally expensive as
the time complexity of DP increases with target sequence
length. Furthermore, obtaining all possible longest common
subsequences requires either recording all matches during
DP (current implementation) or recursive backtracking (even
slower); both consume unacceptable time for long target
sequences. Accidental mismatch: In rare cases, IoT events
can be mismatched. This occurs because FMLCS only checks
temporal alignment for the longest common subsequences. If
a fingerprint packet is not event-unique, accidentally matched

Algorithm 1 Baseline FMLCS
1: Input: Seq1 (base fingerprint), Seq2 (target sequence)
2: Output: true/false (whether Seq2 matches Seq1)

3: function FMLCS(Seq1, Seq2)
4: maxlen, lcsstab = DP (Seq1, Seq2)
5: distmin = ∞, Seqmatch = []
6: for lcs ∈ lcsstab do
7: if len(lcs) < maxlen then
8: continue
9: disttemporal = T imeAlignment(lcs)

10: if disttemporal < distmin then
11: distmin = disttemporal

12: Seqmatch = lcs

13: if len(Seqmatch) ≥ γ ∗ len(Seq1) & distmin < β then
14: return true
15: else
16: return false

17: function TIMEALIGNMENT(lcs)
18: Subseq1 = Seq1[index[1] for index in lcs]
19: Subseq2 = Seq2[index[2] for index in lcs]
20: time vec1 = [packet[time] for packet in Subseq1]
21: time vec2 = [packet[time] for packet in Subseq2]
22: time1 = time vec1 −mean(time vec1)
23: time2 = time vec2 −mean(time vec2)
24: return l2norm(time1 − time2)

25: function DP(seq1, seq2)
26: paths = Empty list
27: maxtab = [[0] ∗ len(seq1)] ∗ len(seq2)
28: lcsstab = [[paths] ∗ len(seq1)] ∗ len(seq2)
29: for i=1 to len(seq1) do
30: for j=1 to len(seq2) do
31: if seq1[i] ≈ seq2[j] then # match “common” packets
32: maxtab[i][j] = maxtab[i− 1][j − 1] + 1
33: pathall = lcsstab[i− 1][j − 1]
34: for path in pathall do
35: pathall.append([(i, j)])

36: lcsstab[i][j] = pathall

37: else
38: if maxtab[i− 1][j] > maxtab[i][j − 1] then
39: maxtab[i][j] = maxtab[i− 1][j]
40: lcsstab[i][j] = lcsstab[i− 1][j]
41: else if maxtab[i− 1][j] < maxtab[i][j − 1] then
42: maxtab[i][j] = maxtab[i][j − 1]
43: lcsstab[i][j] = lcsstab[i][j − 1]
44: else
45: maxtab[i][j] = maxtab[i− 1][j]
46: lcsstab[i][j] = lcsstab[i− 1][j] + lcsstab[i][j − 1]

47: return maxtab[−1][−1], lcsstab

noise packets can extend the maximum length of common
subsequences and consequently impact the final temporal
alignment, as shown in Figure 7. To tackle these problems,
we further analyze the characteristics of complex event finger-
prints and propose a more advanced approximation algorithm.

C. Advanced Fingerprint Matching

Through careful analysis, we found that the above chal-
lenges stem from the same reason: the current common packet-
matching step (line 30) considers only sizes and directions,
not time. Consequently, if many packets have similar sizes
and directions but different timestamps, the number of sub-

4th Packet Lost

Noise
Packet

t1

4th Packet Mismatched

Temporally
Aligned

Temporally
Unaligned

t2

Match
Base

Fingerprint

Target
Sequence

Fig. 7: Erroneous packet-matching predicated only on sizes
and directions, leading to temporal unalignment.

sequence combinations increases exponentially, even resulting
in erroneously matching of temporally unaligned packets. To
address this issue, we propose two key optimizations to fully
leverage temporal information: Anchor Reference and Finger-
print Segmentation. Anchor Reference: Given an IoT event,
intervals between fingerprint packets remain relatively steady.
This interval steadiness can be utilized to filter unnecessary
packet-matching during DP, as shown in Figure 8. Specifically,
we start by finding the first packet match based only on
sizes and directions. Once matched, these two packets serve
as anchor packets for all subsequent potential matches by
constraining their time intervals relative to the anchor packets,
i.e., abs(t1 − t2) ≤ α. Considering network fluctuation, we
empirically set α to 0.2s to accommodate regular network
jitters. Fingerprint Segmentation: For high-traffic devices,

Baseline

Discarded

t1

Anchor Enhanced

t2

Anchor

MatchBase
Fingerprint

Target
Sequence

Fig. 8: Using anchor packets to filter out erroneous packet-
matching, i.e., abs(t1 − t2) > α.

we additionally introduce segmented matching based on a
critical observation: packets within long base fingerprints
exhibit temporal clustering patterns at finer time scales. This
stems from complex IoT events involving multi-round com-
munications, manifesting as small packet bursts (segments).
Therefore, we decompose the full-sequence matching task into
potentially parallelizable subtasks, each targeting one segment
of the base fingerprint. To achieve this, we divide the base
fingerprint using consecutive packet intervals, with boundaries
set at the middle of intervals exceeding a threshold of 0.5s.
Segments containing fewer than three packets are merged into
subsequent segments. Finally, we apply the anchor-constrained
matching FMLCS to all segments independently and aggregate
the matching results (Figure 9). This approach effectively
mitigates the combinatorial explosion in DP-based packet
matching that scales exponentially with sequence length. Over-
all, the advanced FMLCS (AFMLCS) works as follows:

• 1. Fingerprint segmentation: A long base fingerprint is
divided into several segments.

Full Match

Segment
Boundry

Target Seq Segmented
Match

Base
Fingerprint

Fig. 9: Segmentation reduces the number of processed packet
in each segment, decreasing the computation costs.

• 2. Anchor packet selection: WiFinger sequentially com-
pares fingerprint packets within the first segment with the
target sequence to identify the first matching packet pair as
anchors. If no such match is found, the remaining matching
process is terminated.

• 3. Match the first segment: The anchor-constrained
FMLCS is applied to the first segment and the target
sequence. If this matching fails, matching for the remaining
segments is terminated.

• 4. Merge segmented matching results: After a successful
match for the first segment, the same anchor-constrained
matching is applied to all remaining segments, whose results
will get merged. Such a final result is successful if it involves
at least γ% of the base fingerprint packets and they align
well temporally (e.g., meeting the β distance criterion).

D. Fingerprint Extraction

While the matching approach relies on accurate base fin-
gerprints for detection, acquiring clean and reliable ones
presents fundamental challenges: ideal base fingerprints
need to be obtained from noisy training data exhibiting high
packet losses (5-20% observed rates) and upper-layer vari-
ations. To address this, our solution exploits the collective
intelligence of repeated event executions: each noisy event
traffic burst is assumed to partially manifest the base finger-
print sequence. Building upon this idea, we formulate base
fingerprint extraction as another subsequence matching prob-
lem across all recorded event traffic bursts. Unlike the online
matching paradigm, subsequence matching is used differently
during extraction. We first use FMLCS to extract pairwise
common subsequences among all corrupted traffic bursts to
obtain a set of potential fingerprint components. Then, we
merge these components into one noisy coarse fingerprint
(CF) and leverage statistics of packet matching frequencies to
refine the CF into the base fingerprint. Overall, the fingerprint
extraction process consists of three steps: (i) data collection
and filtering; (ii) coarse fingerprint construction; and (iii)
fingerprint refinement, as illustrated in Figure 10.

1) Data Collection, Filtering, and Compression: To obtain
the training dataset, we use ADB (Android Debug Bridge) [39]
and Python scripts to build an automatic event execution
tool, simulating taps/slides on mobile devices [1]. The tool
initiates a specific event X times (30 in experiments) to trigger
traffic generation from devices/servers. During automated data

1

2

Sliding Window 3Sliding Window

Time

Size
1 2 3 4

1 2

None

1 3 1 4 2 3

None

2 4 3 4

Union merge
None

Event1 Event3 Event4Event2

Time

Size

Time

Fig. 10: Fingerprint extraction process. Step 1 filters out noise packet and cluster packets into groups. Step 2 applies pairwise
AFMLCS to the groups and merge their consensus subsequences. Step 3 refines the coarse fingerprints by measuring packets’
matching frequencies against the training data.

collection, the tool records timestamps of event initiations
(taps/slides) and captures the Wi-Fi packets exchanged be-
tween the device and the router. Random gaps of 30-45
seconds are introduced between each event to ensure the
device finishes the event and returns to the idle state.

After data collection, we first discard Wi-Fi Management
and Control packets, focusing only on Wi-Fi Data packets car-
rying encrypted payload, as discussed in Section II-A. To avoid
collecting repeated data packets of Wi-Fi retransmissions, we
only keep the original packet or one of its retransmitted version
if the original one is not sniffed. For high traffic devices,
we further filter irrelevant noise to reduce computation costs
with the remaining data packets. First, packets are categorized
into classes by their sizes and directions, and those classes
whose frequencies are significantly higher than the average
frequency (e.g., exceeding it by 2σ or more) are discarded.
These exceptionally frequent classes likely correspond to
background noise, such as TCP ACK packets and regular data
uploads. Then, we compress consecutive packets with the same
sizes and directions into one packet. This is because identical
packets mainly cause the combinatorial explosion challenge
in FMLCS, but they do not contribute to the characteristics
of request-response patterns of IoT events [1]. As a result,
this compression significantly reduces the number of packets
to be processed with limited impact on performance. For
example, in our experiments, the number of training packets
for Amazon Echo Dot is reduced from 10000 to 3000 after
compression. Finally, according to [1], IoT events typically
last no more than 10 seconds. Therefore, packets sent beyond
a 15-second window following event initiations are discarded.
In the end, we obtain X groups of 15-second packet traces,
each corresponding to an event.

2) Coarse Fingerprint Extraction: We use the X groups of
preprocessed traffic to construct a coarse fingerprint (CF). A
CF is expected to contain the base fingerprint but may also

include some noise packets. To extract a CF, we leverage the
collective intelligence of traffic groups: every group of event
traffic is assumed to partially embody the base fingerprint.
As a result, we extract consensus subsequences from every
pair of traffic groups and take the union of these consensus
subsequences as the CF. To this end, we adopt an adapted
AFMLCS for the extraction process.
Adaptations: The key difference between the matching and
extraction phases is the noisiness of the two sequences being
compared. In the matching phase, the base fingerprint is
assumed to be noise-free. Thus, the naive anchor packet
selection (based only on packet sizes and directions) does not
severely sacrifice efficiency or accuracy. However, when both
sequences are noisy, selected anchors for both sequences are
very likely to be noise packets, leading to erroneous matches
for all subsequent packets. Even worse, during the extraction,
such mismatched subsequences (full of noise) will also be
treated as potential fingerprint components, consequently re-
sulting in significantly increment of AFMLCS’s computational
cost and introducing considerable noise into the final CF.

To address this, we insert fake packets at the event initiation
timestamps to serve as robust anchor packets. Thanks to the
stable network connection of the attackers’ testbed, traffic
bursts between IoT devices and routers always emerges with a
fixed delay after event initiations. Since the intervals between
fingerprint packets inside the burst are also steady, event
initiation timestamps serve effectively as reference anchors in
AFMLCS. As such, we insert fake anchor packets with a con-
sistent size and direction at each event initiation timestamp and
align sequences temporally with the new anchors, as shown in
Figure 11. After obtaining all pairwise common subsequences,
we naively merge the packets from these pairwisely matched
subsequences into a single coarse fingerprint (CF).

3) Fingerprint Refinement: Owing to the rudimentary union
merging, CF inadvertently incorporates redundant noise pack-

Size

Group1

Time

Fake Anchor Alignment

Fake
Anchor

Group2

Initiate1 Initiate2
Group1

Group2

Fig. 11: Align traffic groups by their event-initiation times-
tamps (fake anchor packets) during the extraction.

ets. To filter such noises, we refine the fingerprint by conduct-
ing AFMLCS against the all groups using a sliding window
scheme, while meticulously recording the matching frequen-
cies for the packets inside CF. This aims to effectively pinpoint
CF packets whose matching frequencies approximately align
with the number of events, i.e., X . While a unidirectional
sliding window might result in elevated matching frequencies
for packets located at the beginning or end of the sequence,
we execute the sliding window analysis in both directions.
In our bidirectional refinement, packets with matching fre-
quencies less than X are discarded. We iteratively execute
the refinement process until no more packet is discarded, and
construct the base fingerprint with all retained packets.

E. System Workflow

In general, the workflow for WiFinger is shown in Fig-
ure 12. During the extraction phase, WiFinger uses the event
triggering module to trigger each event 30 times, collects the
corresponding Wi-Fi traffic, and extracts base fingerprints for
the events. In the online detection phase, WiFinger selects the
target base fingerprint and match it to newly sniffed device
traffic using either FMLCS or AFMLCS, depending on the
traffic volume and the fingerprint length.

Device

Automated
Event Triggering

Training
Traffic

Base Fingerprints Testing
Traffic

Result

Filtering&Compression

Coarse Fingerprint

Refined Fingerprint

Extraction

FMLCS
Long

 Traffic?
AFMLCS

N

Y

Matching

Fig. 12: WiFinger system workflow.

V. EVALUATION

We conduct extensive experiments corresponding to the
three attacking scenarios to evaluate WiFinger’s performance
against two state-of-the-art ML-based fingerprinting methods
applied to Wi-Fi traffic: Peek-a-boo [8] and IoTBeholder [9].
For Peek-a-boo, we use the same feature set and select their
best-performing model (Random Forest, or RF) for evaluation.
It is worth noting that we could not run Ping-Pong and Io-
TAthena as comparison baselines due to their incapability
of handling packet losses during the experiments.

During the experiments, we assume RF and IoTBeholder
have finished their device classification and only focus on
the event detection. As for WiFinger, we aim to use a single
fingerprint to classify devices and events at the same time.

A. Dynamic Tracking & Evaluation Metrics

We use continuous event tracking to emulate realistic attacks
instead of classifying chunked traffic flow samples. To this
end, every detection method uses a sliding window to dynam-
ically select a group of most recent packets for classification.
For Peek-a-boo, we test various window sizes and select the
best-performing setting for each event. For IoTBeholder, the
window size is set as the burst duration, using the same
definition as [9]. For WiFinger, the window size is set as the
duration of the extracted base fingerprint plus two seconds (to
accommodate potential timing variations). Given a window of
packets, each method determines whether it corresponds to
“idle” (negative) or an event (positive). Whenever an event
is detected, packets within the current window are excluded
from subsequent windows to avoid misclassification of similar
events. Specifically, Peek-a-boo and IoTBeholder skip all
packets in the next 6 seconds, while WiFinger skips all packets
contained within the current window. This setting is practical
as IoT events on the same device seldom occur consecutively
within a very short period, and the collected events in our
dataset have long enough gaps in between.

To evaluate dynamic tracking performance, we use precision
and recall rates as metrics. During detection, true positive
results correspond to events with correct labels, and false
positive results correspond to events with wrong labels or
misclassifications of idle states. Precision is defined as the
ratio of true positive detections to the total number of positive
detections. Recall is defined as the ratio of true positive
detections to the total number of triggered events.

B. Attacking Scenarios

We evaluate methods’ dynamic tracking performance in
three scenarios: naive, single-target, and multi-target tracking
(ultimate objective).2 For Peek-a-boo and IoTBeholder, attack-
ers use various strategies to train models and detect events to
achieve the optimal performance.
• Naive: attackers train simple binary classifiers to distinguish

one target event from idle periods.

2It is worth noting that some event fingerprints (E11-E13, E16-17) are
inseparable, they excluded from the single-target/multi-target experiments.

• Single-target: attackers train multi-event classifiers for each
device and aim to distinguish only the event of interest from
all other events and idle, i.e., attackers discard any report of
non-target events.

• Multi-target: attackers train multi-event classifiers to mon-
itor all occurring events of a device, i.e., attackers accept
reports of any event.

As for WiFinger, attackers use a consistent procedure to extract
event fingerprints and apply (A)FMLCS to match them in all
three scenarios.

C. Testbed Configurations & Dataset Collection

We built an automated event triggering system using a Xi-
aoMi 8 mobile device to trigger IoT events. Traffic generated
by the devices was sniffed and labeled accordingly. We tested
the sniffing performance of a MacBook, a NetGear A6210
adapter [40], and an ALFA AWUS036ACH adapter [41],
and finally chose the A6210 running on Ubuntu-16.04 for
its best capture performance (lowest packet loss). For each
IoT event, we generated 30 samples in a lab environment for
training and 20 samples in a home environment for testing.
All samples had approximately 40-second gaps between them
to ensure completion of events. In total, our dataset includes
10 devices and 31 events (Table VI) representative of smart
devices on the market, including smart home agents, small
smart peripherals, and integrated smart actuators. Devices with
simpler functionality are TP-Link Plug, Gosund Plug, ICX-
RF Controller, and Wiz Hue Light. For complex devices, we
chose Amazon Echo, Google Home, Xiaomi Smart Sweeper
and humidifier, Midea Dishwasher and Dish Sterilizer. Apart
from the tested devices, a laptop and a TV were connected
to the same network serving as background noise traffic. All
devices were connected via 2.4GHz Wi-Fi.

D. Results

1) Detection Performance: The results of the naive binary
classification are shown in Table II, where three models
perform similarly. Under the naive setting, Peek-a-boo obtains
the highest recall rate of 96% and WiFinger achieves the
highest precision rate of 98% on average.

Methods Peek-a-boo RF IoTBeholder WiFinger(ours)
Rec. Prec. Rec. Prec. Rec. Prec.

Average 0.96 0.78 0.92 0.88 0.90 0.98

TABLE II: Three models demonstrate similar performance on
the naive scenario.

Advancing to the single-target setting, WiFinger remains
the excellent performance, but Peek-a-boo and IoTBeholder
start demonstrating a decreasing trend. As shown in Table III,
Peek-a-boo achieves 83% recall and 81% precision, while
IoTBeholder achieves 74% recall and 87% precision. The
performance gap of between both models and WiFinger mainly
lies in the precision. Due to the noisiness of WiFi traffic, flow-
level features within a short window period vary significantly
from time to time. This increases the difficulty of distinguish-
ing events especially when their traffic fingerprints are similar.

Time

Size
Event1Event2 Idle Event packet

Noise packet

Fig. 13: The influence of mismatch in continuous event
tracking. The model skips half of the Event2 packets for
misclassifying Event1.

For example, E7 and E8 (also E9 and E10) only have byte-
level differences inside a window, causing obvious degradation
on Peek-a-boo and IoTBeholder.

In the most advanced and practical scenario, the perfor-
mance gap between WiFinger and the other two models
becomes very significant. WiFinger remains the highest recall
and precision rates of 86% and 95%, while Peek-a-boo and
IoTBeholder now only achieve 49% and 46% recall rates, and
48% and 35% precision rates respectively, barely useable.3

Such results are reflecting the models’ authentic performances
on real-world tracking that have been overrated. Most of the
existing works evaluate classification performances on chun-
ked samples, where the results of different samples are classi-
fied independently. Nonetheless, in the multi-target scenario,
misclassifications may impact the detections of subsequent
events, as shown in Figure 13. Therefore, during event track-
ing, false positive detections have a much higher degradation
on the actual overall performance, emphasizing the importance
of high precision. As a comparison, WiFinger outstands for
its excellent precision rate. Due to the event-unique base
fingerprint features, one event hardly gets matched to a dif-
ferent fingerprint. Furthermore, we experimented matching
fingerprints across devices, and their uniqueness demonstrate
the capability of facilitating simultaneous device fingerprinting
and event identification. Such cross-device uniqueness has also
been verified in previous works [1], [5]. In later sections,
we further provide more detailed packet-level analysis for the
mismatches of WiFinger.

2) Event Base Fingerprint: Case Study: We demonstrate
the metadata of the extracted base fingerprints in Table IV.
First, complex devices may have very different fingerprint
lengths and durations, depending on the commands’ com-
plexity. Alexa Echo’s fingerprints’ (E1-E6) lengths vary from
4 to 41 packets, and the duration varies from 0.2s to 7.7s.
Second, correlated events mostly have very similar pattern.
For instance, events in E11 (or E12-E15) have exactly the
same fingerprints, i.e., same fingerprint lengths, packet sizes,
directions, and similar interval distributions. These events are
inseparable from encrypted traffic analysis. Nevertheless, some
correlated events share subtle differences: on/off commands

3Considering that 30 samples may not be sufficient for training robust ML-
based models for multi-event classification tasks, we tried to further collect
100 training samples for each event, but observe no performance improvement.

Event ID
Single-target Multi-target Single-target/Multi-target

Peek-a-boo RF IoTBeholder Peek-a-boo RF IoTBeholder WiFinger(ours)
Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

E1 0.9 1 0.2 0.67 0.97 1 0.15 0.3 0.9 0.72
E2 1 0.9 1 1 0.05 0.04 0.25 0.25 1 1
E3 0.95 1 0.95 1 0.15 0.11 0.1 0.07 0.95 1
E4 1 0.8 1 1 0.1 0.08 0.1 0.06 1 1
E5 0.7 0.47 1 0.69 0.15 0.08 0.5 0.29 0.95 1
E6 0.9 1 0.05 1 0.97 1 0.05 0.08 0.95 1
E7 0.95 0.41 1 0.74 0.7 0.44 1 0.51 0.7 1
E8 0.95 0.42 1 0.69 0.9 0.51 1 0.5 0.8 1
E9 0.75 0.94 0.9 0.95 0.65 0.41 0.9 0.47 0.85 0.77

E10 0.9 0.72 1 0.59 0.8 0.46 1 0.51 0.75 0.88
E14 0.9 0.86 0.53 1 0.55 0.58 0.2 0.12 0.85 1
E15 0.95 0.97 0.83 0.94 0.85 0.63 0.7 0.93 0.65 1
E18 0.2 1 0.38 1 0.8 0.97 0.05 0.2 0.68 1
E19 0.85 0.97 0.6 1 0 0 0.23 0.43 0.58 1

Average 0.83 0.81 0.74 0.87 0.49 0.48 0.46 0.35 0.85 0.95

TABLE III: Event detection performance under the single-target and multi-target scenarios. The results of WiFinger under two
scenarios are completely and thus merged.

of the Wiz Hue Light (E9-E10) have single-byte differences
on their first two fingerprint packets; the volume up/down
commands of the Google Home (E7-E8) also have single-
byte differences on several fingerprint packets, but the two
commands also have different lengths as well. Last but not
least, complex events traffic typically involve more sub-bursts
(segments) during their span. These sub-bursts increase the
difficulty of burst-classification or window-selection for ML-
based approaches, but turn out to be useful for handling large
volume of traffic with our segmentation technique. In general,
IoT fingerprints have both significant flow-level differences
and subtle packet-level variations, making it harder for tuning
ML models to capture their traffic patterns.

Event ID Packet Num Duration(s) Sub-bursts
E1 4 0.23 1
E2 23 4.5 3
E3 41 7.7 6
E4 28 3.15 3
E5 42 4.03 4
E6 16 0.35 1
E7 9 3.29 2
E8 17 3.41 3
E9 4 0.5 1

E10 4 0.5 1
E11 4 0.2 1
E12 2 0.04 1
E13 20 1.52 2
E14 8 5.69 2
E15 12 5.76 2

TABLE IV: Metadata of the extracted base fingerprints.

3) Fingerprint Robustness: Noise Sensitivity: We manually
analyze the matching results of FNs and FPs to identify their
main causes. FN: WiFinger drops a detection result either for
not matching enough packets of the base fingerprint or the
failure of aligning subsequences temporally, where the former
situation happens much more frequently. In our experiment
settings, a successful match must comprise 60% of the base
fingerprint (except Mi Sweeper). However, when the base
fingerprints are short as 2-4 packets, any packet loss has

significant impact on the detection results. For example, E12
of Mi Sweeper has a fingerprint involving only 2 packets,
indicating that any missing packet will directly causing the
failure of detection. FP: we also notice that packet loss is
the main reason for misclassifying events with similar base
fingerprints. For example, E7 and E8 adjust the volume of the
Google Home speaker, and a few fingerprint packets of E7
are a-byte larger than E8. Nevertheless, if such characteristic
distinguishing packets are lost from E8, its remaining packets
could be perfectly mismatched as an E7 event. Such mis-
matches also happen to some idle states whose traffic exhibits
similar patterns. For instance, idle traffic of Mi Sweeper
can occasionally match 50% or 75% of the E11 fingerprint.
Diving deeper into the situation, we notice that such special
phenomena do not happen to any other devices/events and only
occurs after the “stop sweeping” commands. A reasonable
explanation is that there exists hidden events happening to
share similar traffic patterns, e.g., reporting the “back-to-
charging” status.

In summary, short base fingerprints are much more sensitive
to packet losses, causing the majority of the FNs and FPs.
Nonetheless, depending on the needs, attackers can adjust the
matching percentage parameter for these events to balance the
trade-off between precision and recall. If attackers increase
the matching percentage γ, they could obtain higher precision
but lower recall, or vice versa. For example, during the
experiment, we increase γ for Mi Sweeper device to 100% to
ensure that no FP result is detected, at the cost of degrading
the recall rate to 65% and 85%.

4) Ablation Study on Parameter Setting: While attackers
could adapt parameters to their need on precision and re-
call rates, understanding a balanced setting is also crucial.
WiFinger has three parameters that could be adjusted: similar
packet size gap ϵ, minimum sequence matching percentage
γ, and interval distance threshold β. During the experiment,
we empirically set ϵ as 1, meaning two packets are only
considered similar if they have the exact same sizes and

0.5 1.0 1.5 2.0 2.5 3.0
Beta Parameter

0.0

0.2

0.4

0.6

0.8

1.0
F1

-S
co

re

icx_ac (=0.6)
gosund (=0.6)
alexa_egg (=0.6)
sweeper_sweep (=0.6)
midea_dishwasher (=0.6)

(a) F1-score v.s. β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Gamma Parameter

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

sweeper_sweep (=2.0)
midea_dishwasher (=2.0)
icx_ac (=2.0)
gosund (=2.0)
alexa_egg (=2.0)

(b) F1-score v.s. γ

Fig. 14: Ablation study on parameter β and γ.

transmission directions. The influence of β and γ on the
performance is shown in Figure 14.

By increasing β, WiFinger accommodates more network jit-
ters during the transmission and reaches a stable performance
when β is larger than 2 seconds. Generalizing to various net-
work conditions, setting β = 3 is sufficiently accommodating.
Additionally, WiFinger achieves best performance when γ is
around 0.5-0.6. There are several factors influencing the value.
First, higher γ suggests higher similarity to the base fingerprint
in terms of packet sizes and orders, making the results more
precise, and vice versa. Therefore, either too high or low γ
results in the increment of false negatives or false positives,
respectively, lowering the F1-score. Second, γ also relates to
the sniffing packet loss rate. In an extreme case where all
packets could be sniffed, attackers would expect matching the
whole base fingerprint all the time, i.e., γ = 1. According
to our experiments (under a packet loss rate of around 20%),
we suggest initially set γ as 0.5-0.6, and increase it according
to actual sniffing capability. Lower γ may work, but only for
very unique and long fingerprints.

5) AFMLCS v.s. FMLCS: We introduced anchor reference
and fingerprint segmentation to optimize the efficiency and
accuracy of FMLCS for large-volume traffic devices (E1-E8).
We use the multi-target setting to compare their online match-
ing performance. Each testing file contains 20 events spanning
over 1200 seconds. As shown in Table V, AFMLCS requires
significantly less time to process the traffic, and the time cost
difference increases with traffic volume. For example, during
a sudden burst of traffic exceeding one hundred seconds in
Event 5 (E5), FMLCS spends most of the time handling the
burst but exhibits even worse performance.

Moreover, AFMLCS also plays a very important role in the
base fingerprint extraction. During the extraction, WiFinger
applies FMLCS to extract consensus sequences pairwisely
among all event traffic bursts. However, unlike the online
matching paradigm that matches a noisy target sequence to
a clean base fingerprint, offline extraction discovers matches
between two noisy sequences involving a significant amount
of similar packets. As a result, baseline FMLCS got stuck at
the DP function for its exponential time complexity. During
the experiments, FMLCS could not finish the process for E2-
E8 even after hours of waiting, while AFMLCS only takes less
than a minute to do so. In general, for short fingerprints/traffic
where segmentation techniques are not applicable, WiFinger
degrades AFMLCS to the baseline version for its simplicity

Event ID Packet Num Process Time(s) F1 Score
FMLCS AFMLCS FMLCS AFMLCS

E1 3854 0.13 0.13 0.85 0.80
E2 5740 0.17 0.07 1.00 1.00
E3 8178 2.34 0.15 0.92 0.97
E4 12670 7.97 0.85 0.97 1.00
E5 18011 39.2 1.3 0.33 0.97
E6 1789 0.14 0.15 1.00 0.97

E7/E8 4179 0.34 0.1 0.84 0.86

TABLE V: AFMLCS improves both efficiency and accuracy
for large-volume traffic events.

and effectiveness.

E. Countermeasures

To protect users from such privacy inference attacks, pre-
vious works have proposed several countermeasures, includ-
ing traffic shaping [23], traffic delaying [42], and packet
padding [43], [44]. Traffic delaying delays packet transmission
for a random short period of time to obfuscate the interval pat-
terns between packets. Traffic shaping randomly insert dummy
packets in both direction to change the flow-level patterns and
hide flow bursting characteristics. Packet padding adds dummy
bytes to each packet to obfuscate the size of payload. To
emulate these protection mechanisms, we add random delays
(0-0.05s or 0-0.2s) to packets for traffic delaying, add dummy
packets to the original traffic for traffic shaping, and slightly
increase all packet sizes (1-5 bytes randomly) for packing
padding defense, respectively. We evaluate current fingerprints
against the three defenses under the multi-target setting, and
the effectiveness of these countermeasures against WiFinger
is shown in Figure 15. Generally, WiFinger is more robust to
various defenses than RF and IoTBeholder, which are mostly
disabled by the three defenses.

First, traffic shaping has very limited impact on the WiFin-
ger’s performance. This is because dummy packets does not
influence the intervals between fingerprint packets as well as
their sizes and directions. Consequently, the shaped traffic still
embodies the same event patterns, and thus most events end up
with a similar performance with a slight drop of the recall rate.
Nonetheless, due to the significant amount of packets being
added, WiFinger spent more time to process the traffic and
may fail to finish the process for complicated events timely.

Traffic delaying is more effective due to its variations on
the intervals between fingerprint packets. During the defense,
transmission delays will be accumulated for each packet, i.e.,
if a request is delayed, its response will be also delayed for the
same amount of time plus its own random delay. Consequently,
as the volume of packets being transmitted increases, the
intervals between tail packets and header packets increases
significantly. When such variations exceeds the temporal
alignment threshold of FMLCS, events cannot be detected
effectively. Nonetheless, we notice that traffic delaying has
biased performances among events. For instance, it has high
impact on long-fingerprint events with large traffic volume,
dropping the recall/precision rates for E2-E5 to 0%. Yet, when

Delay 0.05 Delay 0.2 Shaping Padding
Defense Methods

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

=5

=1

Peek-a-boo
IoTBeholder
WiFinger

Fig. 15: The three methods’ attacking performances against
different defenses.

the event traffic is short, accumulated delay of 0.1-0.2s has
bare effect on WiFinger’s performance.

Traffic padding demonstrates to be the most effective de-
fense against WiFinger if no further adaptation is applied.
AFMLCS matches packets by examining their sizes and di-
rections. Due to the direct change of the packet sizes, the
whole matching process is significantly deconstructed. As a
result, the recall and precision rates drop to 0% for all events
if WiFinger still requires exact matches on packet sizes, i.e.,
ϵ = 1. However, as we adapt WiFinger to the defense by
loosing ϵ to 5 bytes, the performance of WiFinger recovers to
a degree as if no defense is applied. For a padding defense
to be effective, we suggest that it should add enough dummy
bytes (e.g., ≥ 100) so that packets of different types could be
padded to a similar size level and get obfuscated.
Cost-Effectiveness tradeoff: Since WiFinger aims at the first-
hand WiFi traffic, protections must be implemented on the
devices to influence the traffic patterns sniffed by attackers. As
a result, this inevitably increases the burden of IoT application
developers and manufactures. Moreover, the three defenses
come at different costs.4

Traffic shaping takes more bandwidth for the significant
amount of extra dummy packets to be transmitted. Trans-
mission rates of events are several times (from two to over
ten times) higher than their regular rate, causing unacceptable
overhead. Traffic delaying increases the latency of an event
execution. For large-volume traffic events, their full executions
are extended 7 to 30 seconds, severely impacting the device
utility. Although the accumulated delays of 0.5-1 seconds for
small-volume traffic event maintain the regular functioning,
they are not sufficient for protecting traffic from WiFinger
attacks. Packet padding applies relative small packet-level
overheads, but achieves strong effects on breaking fingerprint-
ing approaches relying on the size of the payload. By randomly
padding 1-100 dummy bytes to packets, it disables WiFinger
at the cost of around 10% overhead on the transmission band-
width. Therefore, we suggest that packet padding should be the
first line of defenses against WiFinger, as well as other similar
fingerprinting attacks. Some valid implementation options of
randomizing the payload sizes include using OkHttp [45] to

4Detailed defense costs can be found in Appendix C

pad HTTP headers or using padding functionalities of the
middleware protocols such as TLS. The results also indicate
a urgent need for actual implementation of random padding
defenses in real IoT systems.

VI. DISCUSSION

Streaming IoT Devices/Events. Streaming IoT devices such
as Smart Cameras and Smart Doorbells belong to another
dominant class. When turned on, these devices constantly
stream video data to the cloud using the UDP protocol, and
users can always view such data lively via the companion app.
However, when triggering commands such as “photo capture”
or “video recording”, some experimented devices (e.g., Wyze
Camera, XiaoMi Camera) did not demonstrate characteristic
traffic patterns. Diving deeper into their TCP/IP traffic [46],
we notice that no TCP packet was transmitted during events,
yet photos and videos are always successfully stored locally
on the mobile device. This indicates that “photo capture”
and “video recording” for some cameras are actually local
operations where the mobile device takes a snapshot of the
video stream. Therefore, for streaming devices, some events
are not observable from the network traffic perspective and
cannot be fingerprinted at all. Nonetheless, most streaming
devices demonstrate obvious traffic volume differences that
can be utilized to determine their on/off states or “motion
detected” events [7].

Potentials Beyond WiFi and Smart Home. WiFinger has the
potential to be applied to other non-invasive benign monitoring
scenarios. For example, in the healthcare domain, fingerprint-
ing medical devices such as blood glucose meters and heart
rate monitors provides multi-modal information for detecting
anomaly behaviors [47], e.g., uneven heartbeat. In the indus-
trial domain, WiFinger can be used to fingerprint smart meters
or smart sensors and help detect anomalies in the power grid
or manufacturing processes. Apart from IoT systems, WiFin-
ger also demonstrates its potential of fingerprinting complex
network events. For instance, fingerprinting mobile application
behaviors can be useful for unveiling privacy leaking activities
in the background by detecting known network traffic patterns
corresponding to different apps [48], [49].

VII. CONCLUSION

In this work, we proposed WiFinger, an explainable and
granular packet-level IoT event fingerprinting approach based
on a sequence-matching algorithm. We demonstrated that the
current trend of using ML approaches for fingerprinting IoT
events has inherent overheads and limitations, especially when
applied to noisy Wi-Fi traffic. Additionally, we identified a gap
in existing evaluation methodologies, which often use chunked
traffic samples rather than the more appropriate approach
of detecting events within continuous traffic streams. Our
experiments show that WiFinger achieves the best performance
under more practical settings, maintaining very low false
positive rates.

REFERENCES

[1] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky, “Ping-
pong: Packet-level signatures for smart home device events,” arXiv
preprint arXiv:1907.11797, 2019.

[2] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer iot devices: A multi-
dimensional, network-informed measurement approach,” in Proceedings
of the Internet Measurement Conference, 2019, pp. 267–279.

[3] B. Copos, K. Levitt, M. Bishop, and J. Rowe, “Is anybody home?
inferring activity from smart home network traffic,” in 2016 IEEE
Security and Privacy Workshops (SPW). IEEE, 2016, pp. 245–251.

[4] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based iot deployments,” in 2019 IEEE symposium
on security and privacy (sp). IEEE, 2019, pp. 1362–1380.

[5] Y. Wan, K. Xu, F. Wang, and G. Xue, “Iotathena: Unveiling iot
device activities from network traffic,” IEEE Transactions on Wireless
Communications, vol. 21, no. 1, pp. 651–664, 2021.

[6] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-
R. Sadeghi, “Homesnitch: Behavior transparency and control for smart
home iot devices,” in Proceedings of the 12th conference on security
and privacy in wireless and mobile networks, 2019, pp. 128–138.

[7] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feam-
ster, “Spying on the smart home: Privacy attacks and defenses on
encrypted iot traffic,” arXiv preprint arXiv:1708.05044, 2017.

[8] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your
smart home activities, even encrypted!” in Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
2020, pp. 207–218.

[9] Q. Zou, Q. Li, R. Li, Y. Huang, G. Tyson, J. Xiao, and Y. Jiang,
“Iotbeholder: A privacy snooping attack on user habitual behaviors
from smart home wi-fi traffic,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 7, no. 1, pp. 1–26,
2023.

[10] J. Li, H. Zhou, S. Wu, X. Luo, T. Wang, X. Zhan, and X. Ma,
“{FOAP}:{Fine-Grained}{Open-World} android app fingerprinting,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
1579–1596.

[11] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapè, “Mimetic: Mobile
encrypted traffic classification using multimodal deep learning,” Com-
puter networks, vol. 165, p. 106944, 2019.

[12] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and
M. Saberian, “Deep packet: A novel approach for encrypted traffic
classification using deep learning,” Soft Computing, vol. 24, no. 3, pp.
1999–2012, 2020.

[13] S. Rezaei, B. Kroencke, and X. Liu, “Large-scale mobile app identifi-
cation using deep learning,” IEEE Access, vol. 8, pp. 348–362, 2019.

[14] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, 2018.

[15] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for
security enforcement in iot,” in 2017 IEEE 37th international conference
on distributed computing systems (ICDCS). IEEE, 2017, pp. 2177–
2184.

[16] S. Dong, Z. Li, D. Tang, J. Chen, M. Sun, and K. Zhang, “Your
smart home can’t keep a secret: Towards automated fingerprinting of iot
traffic,” in Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, 2020, pp. 47–59.

[17] X. Ma, J. Qu, J. Li, J. C. Lui, Z. Li, W. Liu, and X. Guan, “Inferring
hidden iot devices and user interactions via spatial-temporal traffic
fingerprinting,” IEEE/ACM Transactions on Networking, vol. 30, no. 1,
pp. 394–408, 2021.

[18] M. Alyami, I. Alharbi, C. Zou, Y. Solihin, and K. Ackerman, “Wifi-
based iot devices profiling attack based on eavesdropping of encrypted
wifi traffic,” in 2022 IEEE 19th Annual Consumer Communications &
Networking Conference (CCNC). IEEE, 2022, pp. 385–392.

[19] S. J. Saidi, A. M. Mandalari, R. Kolcun, H. Haddadi, D. J. Dubois,
D. Choffnes, G. Smaragdakis, and A. Feldmann, “A haystack full of
needles: Scalable detection of iot devices in the wild,” in Proceedings
of the ACM Internet Measurement Conference, 2020, pp. 87–100.

[20] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New directions in
automated traffic analysis,” in Proceedings of the 2021 ACM SIGSAC
conference on computer and communications security, 2021, pp. 3366–
3383.

[21] I. Analytics, “State of iot 2024: Number of connected iot devices
growing 13

[22] W. Alliance, “Discovery wifi: Security.” [Online]. Available:
https://www.wi-fi.org/discover-wi-fi/security

[23] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster,
“Keeping the smart home private with smart (er) iot traffic shaping,”
arXiv preprint arXiv:1812.00955, 2018.

[24] D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “Iot
inspector: Crowdsourcing labeled network traffic from smart home
devices at scale,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 4, no. 2, pp. 1–21, 2020.

[25] G. Wan, S. Liu, F. Bronzino, N. Feamster, and Z. Durumeric,
“{CATO}:{End-to-End} optimization of {ML-Based} traffic analysis
pipelines,” in 22nd USENIX Symposium on Networked Systems Design
and Implementation (NSDI 25), 2025, pp. 1523–1540.

[26] K. Fauvel, F. Chen, and D. Rossi, “A Lightweight, Efficient and
Explainable-by-Design Convolutional Neural Network for Internet Traf-
fic Classification,” in Proceedings of the 29th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2023.

[27] Y. Jin, E. Sharafuddin, and Z.-L. Zhang, “Unveiling core network-
wide communication patterns through application traffic activity graph
decomposition,” ACM SIGMETRICS Performance Evaluation Review,
vol. 37, no. 1, pp. 49–60, 2009.

[28] S. Zhao, M. Chandrashekar, Y. Lee, and D. Medhi, “Real-time network
anomaly detection system using machine learning,” in 2015 11th inter-
national conference on the design of reliable communication networks
(drcn). IEEE, 2015, pp. 267–270.

[29] M. K. Hooshmand, M. D. Huchaiah, A. R. Alzighaibi, H. Hashim,
E.-S. Atlam, and I. Gad, “Robust network anomaly detection using
ensemble learning approach and explainable artificial intelligence (xai),”
Alexandria Engineering Journal, vol. 94, pp. 120–130, 2024.

[30] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal, and
K. Han, “Enhanced network anomaly detection based on deep neural
networks,” IEEE access, vol. 6, pp. 48 231–48 246, 2018.

[31] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW). IEEE, 2018, pp. 29–35.

[32] M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised machine
learning approach for ddos detection,” Applied Intelligence, vol. 48, pp.
3193–3208, 2018.

[33] S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B. Yang, “Predicting
network attack patterns in sdn using machine learning approach,” in
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). IEEE, 2016, pp. 167–172.

[34] A. Churcher, R. Ullah, J. Ahmad, S. Ur Rehman, F. Masood, M. Gogate,
F. Alqahtani, B. Nour, and W. J. Buchanan, “An experimental analysis
of attack classification using machine learning in iot networks,” Sensors,
vol. 21, no. 2, p. 446, 2021.

[35] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra,
“Iotgaze: Iot security enforcement via wireless context analysis,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 884–893.

[36] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “Homonit:
Monitoring smart home apps from encrypted traffic,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1074–1088.

[37] R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis, “Iotfinder:
Efficient large-scale identification of iot devices via passive dns traffic
analysis,” in 2020 IEEE european symposium on security and privacy
(EuroS&P). IEEE, 2020, pp. 474–489.

[38] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and
A. Smola, “Autogluon-tabular: Robust and accurate automl for structured
data,” arXiv preprint arXiv:2003.06505, 2020.

[39] A. Developers, “Android debug bridge.” [Online]. Available:
https://developer.android.com/tools/adb

[40] Netgear, “Netgear a6210.” [Online]. Available:
https://www.netgear.com/home/wifi/adapters/a6210/

[41] ALFA, “Alfa awus036ach.” [Online]. Available:
https://www.alfa.com.tw/products/awus036ach 1

[42] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society, 2014, pp. 121–130.

[43] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i
still see you: Why efficient traffic analysis countermeasures fail,” in 2012
IEEE symposium on security and privacy. IEEE, 2012, pp. 332–346.

[44] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, 2014, pp. 227–238.

[45] OkHttp, “Okhttp webpage.” [Online]. Available:
https://square.github.io/okhttp/

[46] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information Exposure for Consumer IoT Devices: A
Multidimensional, Network-Informed Measurement Approach,” in Proc.
of the Internet Measurement Conference (IMC), 2019.

[47] N. Mashnoor and B. Charyyev, “Network traffic analysis of medical
devices,” in 2024 International Conference on Smart Applications,
Communications and Networking (SmartNets). IEEE, 2024, pp. 1–6.

[48] T. Van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois,
M. Lindorfer, D. Choffnes, M. Van Steen, and A. Peter, “Flowprint:
Semi-supervised mobile-app fingerprinting on encrypted network traf-
fic,” in Network and distributed system security symposium (NDSS),
vol. 27, 2020.

[49] M. Jiang, Z. Li, P. Fu, W. Cai, M. Cui, G. Xiong, and G. Gou, “Accurate
mobile-app fingerprinting using flow-level relationship with graph neural
networks,” Computer Networks, vol. 217, p. 109309, 2022.

APPENDIX

A. NP-hard Proof

To prove the NP-hardness of the problem, we reduce the
Maximum Cardinality Subset (MCS) problem to the FMLCS
with time constraints problem. The Maximum Cardinality
Subset problem is defined as follows. Giving a non negative
set,

S = {a1, a2, a3, . . . , an}

the target is to find a subset S′ ⊆ S with the most elements
such that the sum of the elements in S′ does not exceed
threshold K. The Maximum Cardinality Subset problem has
already been proven to be NP-complete.

1) Reduction: We reduce the MCS problem to the FMLCS
problem. For the FMLCS problem, two sequences are con-
structed:

Seq1 = [{time :
√
a1, size : 1, dir : 1},

{time :
√
a2, size : 1, dir : 1},

{time :
√
a3, size : 1, dir : 1}, . . . ,

{time :
√
an, size : 1, dir : 1}],

ai ∈ S

(1)

Seq2 = [{time : 0, size : 1, dir : 1},
{time : 0, size : 1, dir : 1},
{time : 0, size : 1, dir : 1}, . . . ,
{time : 0, size : 1, dir : 1}]

(2)

For each element ai ∈ S, we construct a sequence Seq1
with each element using ai as the timestamp, and another
sequence Seq2 with all elements having time = 0. As the
elements in both Seq have the same size, the only constraint is
that the L2Norm distance between timestamps of the selected
subsequence should be lower than

√
K.

2) Equivalence: If there exists a subset S′ ⊆ S such that
the sum of the elements in S′ does not exceed threshold K,
then the FMLCS problem has a solution. The solution is to
select the elements in Seq1 that correspond to the elements in
S′, and the L2Norm distance between the timestamps of the
selected elements is less than

√
K.∑

ai∈S′

ai ≤ K ⇒
∑
ai∈S′

(
√
ai − 0)2 ≤ (

√
K)2 (3)

Therefore, since MCS is NP-Complete, FMLCS has a poly-
nomial time solution only if P=NP.

B. Events ID

Table VI lists the events and devices used in the experi-
ments.

C. Detailed Defense Overheads

Detailed event-level performance against the three defenses
(delay0.2s, shaping, and padding) are shown in Fig. 16,
Fig. 17, and Fig. 18. Results are expected to be close to
the origin point (strong impact on performance with low
costs). Randomly padding 1 - 100 bytes to packets introduce
the lowest overhead to the bandwidth and complete prohibit
WiFinger from identifying events.

0 4 8 12 16 20 24 28 32
Delaying Overhead (s)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

E1
E2
E3
E4
E5
E6
E7/E8
E9/E10
E11

E12
E13
E14
E15
E16
E17
E18
E19

Fig. 16: Additional event execution overhead (seconds) intro-
duced by traffic delaying defense.

0 4 8 12
BPS Overhead (X)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re E1

E2
E3
E4
E5
E6
E7/E8
E9/E10
E11

E12
E13
E14
E15
E16
E17
E18
E19

Fig. 17: Additional bandwidth overhead (# times of bps)
introduced by traffic shaping defense.

ID Device Type Device Related Events
E1

Agentic Controller
Alexa Echo Dot

DND/UnDND
E2 (H) Q1: What time is it?
E3 (H) Q2: What’s the price of eggs?
E4 (H) Q3: What’s the weather now?
E5 (H) Q4: What’s the weather like in X?

E6 Volume Up/Down
E7 (H) Google Home Volume Up
E8 (H) Volume Down

E9

Smart Peripherals

Wiz Hue Light On
E10 Off
E11 TP-Link Plug On/Off
E12 ICX-RF A/C Controller On/Off
E13 Gosund Plug On/Off
E14

Integrated Smart Actuator

Mi Sweeper On/Off
E15 Mode Silent/Standard/Strong
E16 Midea Dishwasher On/Off
E17 Midea Dish Sterilizer On/Off
E18 Xiaomi Humidifier On/Off
E19 Continuous humidification/Close

TABLE VI: Event and the corresponding IDs. “H” indicates high speed traffic events.

0.0 0.1 0.2 0.3
BPS Overhead (X)

0.00

0.02

0.04

0.06

0.08

F1
-S

co
re

E1
E2
E3
E4
E5
E6
E7/E8
E9/E10
E11

E12
E13
E14
E15
E16
E17
E18
E19

Fig. 18: Additional bandwidth overhead (# times of bps)
introduced by packet padding defense.

