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Abstract

Post-Quantum Cryptographic (PQC) algorithms are mathematically secure and resistant to quantum at-
tacks but can still leak sensitive information in hardware implementations due to natural faults or intentional
fault injections. The intent fault injection in side-channel attacks reduces the reliability of crypto implemen-
tation in future generation network security procesors. In this regard, this research proposes a lightweight,
efficient, recomputation-based fault detection module implemented on a Field Programmable Gate Array
(FPGA) for Number Theoretic Transform (NTT). The NTT is primarily composed of memory units and the
Cooley—Tukey Butterfly Unit (CT-BU), a critical and computationally intensive hardware component es-

sential for polynomial multiplication. NTT and polynomial multiplication are fundamental building blocks
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detection method called : Recomputation with a Modular Offset (REMO) for the logic blocks of the CT-BU
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using Montgomery Reduction and another method called Memory Rule Checkers for the memory compo-

nents used within the NTT. The proposed fault detection framework sets a new benchmark by achieving
high efficiency with significant low implementation cost. It occupies only 16 slices and a single DSP block,
with a power consumption of just 3mW in Artix-7 FPGA. The REMO-based detection mechanism achieves
a fault coverage of 87.2% to 100%, adaptable across various word sizes (w), fault bit counts (7)), and fault
injection modes. Similarly, the Memory Rule Checkers demonstrate robust performance, achieving 50.7%
to 100% fault detection depending on 7 and the nature of injected faults.

KEYWORDS
Polynomial Multiplication, FPGA, Cooly-Tukey Butterfly, Memory, NTT, Modular Multiplication, Mont-

gomery Reduction.

1 | INTRODUCTION

Faults in PQC hardware can occur naturally due to shrinking device dimensions, which increase the probability of errors
caused by ion interference or electromagnetic radiation. These densely packed devices are particularly susceptible to internal
faults induced by ion beam radiation in the Configurable Logic Block (CLB) of FPGAs'!. Additionally, in side-channel attacks,
adversaries deliberately introduce faults into PQC hardware and analyze variations in physical parameters, such as power con-
sumption and execution time, to extract sensitive information. Therefore, mathematically secure PQC algorithms may still be
vulnerable in hardware implementations to various side-channel attacks, such as power analysis, timing analysis, electromag-
netic (EM) attacks and fault injection attacks. Specifically, fault injection attacks“™ exploit deliberate faults introduced into
PQC hardware to expose intermediate states or reveal secret data. Barenghi et al.4 discussed various cost-effective methods for
injecting faults into existing cryptographic systems. Recently, Primas et al.” and Prasanna et al.“ conducted a Soft Analytical
Side-Channel Attack (SASCA) on the NTT, employing a probabilistic model utilizing power and timing data.

Preventing fault occurrences in PQC hardware provides a robust defence against both natural and intentional faults. To
address various fault detection strategies, several fault detection approaches have been proposed in the literature. We categorize
the existing work into two groups: (i) Fault detection solutions for various components of crypto algorithms, and (ii) Fault
detection specifically targeting the NTT (Number Theoretic Transform).
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1.1 | Fault Detection in various Crypto Algorithms [78910TN2 T3 140516

The modular exponentiation is a crucial operation in cryptography. Saced et.al” proposed a recomputation based fault detec-
tion model for modular exponent xX’mod n implemented on an ARM Cortex-A72 processors, AMD/Xilinx Zynq Ultrascale+
and Artix-7 FPGA. Their approach involves recomputing the modular exponent using encoded values of x and y. The pro-
posed method achieves near 100% error detection accuracy with approximately 7% computational overhead and less than
1% area overhead compared to unprotected architectures. Saeed et.al¥ employed the popular Right-to-Left Exponentiation
algorithm™, where the number of iterations depends on the number of ‘1’s in exponent y. This conditional operation makes
the algorithm vulnerable™ to timing analysis attacks. Canto et al.® presented various fault detection mechanisms design for
finite-field operations, including addition, subtraction, multiplication, squaring, and inversion, specifically within the frame-
work of the code-based McEliece cryptosystem. The proposed approaches used different error detection techniques, such as
regular parity, interleaved parity, CRC-2, and CRC-8, to enhance the fault detection capabilities. These methods are applied to
different elements of the Key Generator, focusing on improving error detection accuracy in operations such as multiplications
and inversions in the finite field GF(2'3). Howe et al.” designed a fault detection module for error sampler used in lattice based
cryptography. They introduced three methods: low-cost test, standard test, and expensive test designed for FPGA implementa-
tion to verify whether the output distribution of the error sampler matches its expected Gaussian or binomial shape. The study
in'™ proposed three fault detection models for Multiply and Accumulate (MAC) unit of lattice-based Key Encapsulation Mech-
anisms (KEMs) and applied them to hardware accelerators of three NIST PQC finalists: FrodoKEM, SABER, and NTRU. The
proposed schemes are based on the recomputation technique such as Recomputing with Shifted Operands (RESO), Recomput-
ing with Negated Operands (RENO) and Recomputing with Scaled operands (RECO), implemented on a Kintex UltraScale+
device. Their implementation on FPGA devices demonstrates minimal overhead and significant error detection coverage, en-
suring compatibility with other cryptographic systems utilizes hardware accelerators. Kermani et al.™) introduced a novel error
detection scheme for Galois Counter Mode (GCM) implemented on a 65nm Application Specific Integrated Circuit (ASIC)
platform, specifically developed to improve data integrity verification. The proposed methodology improved compatibility with
various block ciphers and finite field multipliers by employing a technique Re-computation of Swapped Ciphertext and Addi-
tional Authenticated Blocks (RESCAB). In this work, the primary computational unit, Galois Hash (GHASH) computed over
the finite field GF(2!?%), while the RESCAB module processed swapped inputs concurrently within another GF(2'%%) instance.
Then, fault detection achieved by comparing the outputs of GHASH and RESCAB. The architecture inY, demonstrated sig-
nificant design flexibility and reliability, as validated through hardware implementations and fault simulation analyzes. Cintas
et al.™? proposed an error detection mechanism for Goppa arithmetic units used in the McEliece cryptosystem. They used the
algebraic structure of composite fields in this cryptosystem. Their approach included implementing a Parity Checker for var-
ious sub-blocks of McEliece. The proposed methods in“ were not limited to arithmetic units but were also suitable for core
functions of other public-key cryptosystems that relied on composite fields as their mathematical foundation. Additionally, the
authors presented FPGA-based implementations of Goppa polynomial evaluation (GPE) and analyzed the performance over-
head for different configurations. In"~, the authors investigated various techniques to strengthen the resilience of NTRUEncrypt
hardware implementations, against fault analysis attacks. They used the cipher’s algebraic properties, and proposed countermea-
sures based on error detection codes and spatial/temporal redundancies. A detailed evaluation of these methods was provided
by comparing their error detection efficiency along with their impact on decryption throughput and hardware area. Ahmadi et
al.™® proposed a fault detection scheme for the window method in elliptic curve scalar multiplication (ECSM). They introduced
refined algorithms and hardware implementations to address both permanent and transient errors. Using simulation-based fault
injection, the schemes achieved extensive error coverage with less than 3% clock cycle overhead on Cortex-A72 processors and
a 2% area increase on FPGAs. These results demonstrated efficient error detection with minimal resource overhead. Ahmadi
et al.2 addressed a research gap in fault detection for TNAF conversion and Koblitz curve cryptosystems. They proposed an
algorithm-level fault detection scheme for the single TNAF conversion algorithm and developed two additional fault detection
schemes for the double TNAF conversion algorithm. The feasibility of these methods was evaluated through implementation on
ARMVv7 and ARMv8 architectures. This paper'® introduced fault-tolerant and error-detecting structures for elliptic curve scalar
multiplication (ECSM). The proposed methods utilized recomputation, parallel computation, and encoding-decoding schemes
to enhance error detection during ECSM operations. These schemes used scalar and point randomization techniques and were
implemented on Xilinx Virtex 2000E FPGA. This work achieved a high error coverage with minimal computational overhead.
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1.2 | Fault Detection for NTT [[2202122623]

NTT is used as both forward and inverse transforms and is one of the most widely used components in many post-quantum cryp-
tography (PQC) algorithms. The recent NIST standardization of Kyber as Module Lattice-based Key Encapsulation Mechanism
(ML-KEM) and Dilithium as Module Lattice-based Digital Signature Algorithm (ML-DSA) includes the Number Theoretic
Transform (NTT) and KECCAK as the most critical hardware components. The NTT block consists of three main components:
(i) Random Access Memories (RAMs) to store polynomial coefficients, error polynomials and secret vectors, (ii) Read-Only
Memories (ROMs) to store constants such as twiddle factors, and (iii) a CT-BU to perform the core computations of the
NTT. Khan et al.”* implemented a fault-tolerant memory modules (RAMs and ROMs) for storing polynomial coefficients and
twiddle factors of the NTT using Hamming codes and parity bits, resulting in a 29.2% overhead on a Virtex-7 FPGA. They
implemented four fault-tolerant variants for the memory modules of the NTT used in Kyber: (i) Area Optimized (A-O) using
Hamming Code, (ii) Run-Time Optimized (R-O) using Hamming Code, (iii) Area Optimized (R-O) using Hamming Code com-
bined with Parity and (iv) Run-Time Optimized (R-O) using Hamming Code combined with Parity. Sven et al. implemented
a fault-tolerant model for the Number Theoretic Transform (NTT) that can resist faults in multiplication with a twiddle factor
and the addition in a butterfly operation on the ARM Cortex-M4 platform. They used interpolation and, evaluation and inverse
NTT method to detect the faults inside the CT-BU. They have taken a polynomial coefficient £(X), and its inverse NTT is f(w/).
If the Eq.[Ilis satisfied, it indicates that no fault occurred during the NTT computation.

f(u) = evaluation(NTT ' (f(W)))) = Interpolation(f(w')) (1)

Polynomial Evaluation and Interpolation is a method that evaluates a polynomial at powers of a primitive root of unity during
the forward NTT and recovers the original polynomial coefficients through interpolation during the inverse NTT, all over a
finite field. However, the interpolation and evaluation processes introduce additional 3160 and 2979 clock cycles, respectively,
resulting in a significant 72% timing overhead for Dilithium.

Sarker et al.*! implemented a fault detection scheme for the HW/SW co-design of NTT on Spartan-6 and Zynq UltraScale+
platforms, resulting in 12.74% resource overhead and approximately 20% power overhead. They used recomputing with neg-
ative operands (RENO). Depending on the placement of the RENO block in the logic path, Sarker et al.“) proposed three
versions of the NTT. To the best of our knowledge, no existing fault detection solution in the literature has addressed both the
logic unit of the NTT (CT-BU) and the memory units separately.

Apart from the fault detection schemes proposed in"#,!, and!, there are a few NTT implementations that incorporate certain
precautions to make side-channel attacks on the NTT more difficult. Jati et al.** implemented a side channel attack protected
configurable Kyber processor on Artix-7 FPGA. Different components of the configurable Kyber processor employ different
fault detection methodologies. For example, alongside the original state machine, a duplicated inverted-logic state machine
was used to verify the control flow integrity of the Kyber processor. Specifically for the NTT operation in the Kyber processor,
they employed a randomized memory addressing technique. Instead of using linear increments for the memory addresses of the
RAMs and ROMs in the CT-BU, the addresses were randomized. This randomization of memory access in the CT-BU helps
decorrelate the relationship between power consumption and NTT iterations, thereby significantly improving resistance against
side-channel attacks on the NTT. Rafael et al.s proposed a locally masked NTT scheme on Artix-7 FPGA in which the input
and output are masked with random twiddle factors. This approach effectively prevents the leakage of computational patterns,
thereby enhancing resistance against side-channel attacks. Ravi et al.“*? implemented both local masking and memory access
randomization techniques in their NTT design on the ARM Cortex-M4 platform to enhance resistance against side-channel
attacks.

To the best of our knowledge, existing literature lacks any lightweight fault detection scheme that independently targets both
the logic component (CT-BU) and the memory subsystem of the NTT. In this paper we propose two fault detection schemes for
CT-BU and Memory Units (RAMs and ROMs) of the NTT core. Our fault detection scheme for the CT-BU targets Montgomery
reduction unit. It is based on the RECO method but is neither RESO nor RENO; rather, it is a recomputation with a modular
offset (REMO). It is important to note that the proposed REMO based fault-tolerant model can serve as a generic fault-resistant
method for any Montgomery multiplication and reduction. To the best of our knowledge, the REMO-based fault detection in the
CT-BU of the NTT is the first of its kind. We also propose a memory address rule checker for the RAMs and ROMs used in the
NTT to detect any ambiguities in memory addressing. The contribution of the paper can be summerized as:
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o This paper introduces a novel fault detection technique based on a modified word-wise Montgomery reduction algorithm,
targeted for the Cooley-Tukey Butterfly Unit (CT-BU) in the NTT architecture. Unlike existing methods, the proposed
REMO scheme integrates fault detection into the core arithmetic logic, offering protection without requiring significant im-
plementation cost. The customizable word size (w) provides significant flexibility in usage of slices without compromising
the fault detection efficiency. Although it is designed for the CT-BU, the versatility of this approach extends seamlessly to
any hardware architecture performing modular polynomial multiplication using Montgomery reduction,

e This work also introduces the Memory Rule Checker (Memory RC), a lightweight and effective mechanism to ensure
structural integrity in memory access patterns. Unlike traditional memory protection techniques that focus solely on content
integrity, the proposed Memory RC monitors and validates the correctness of address sequences during all read/write
operations of polynomial coefficients (Generate Matrix for Kyber), error vectors, secret vectors, etc in RAM and twiddle
factor retrievals from ROM, across both forward and inverse NTT executions. To the best of our knowledge, this is the first
approach that systematically targets address-level faults in memory-intensive cryptographic datapaths.

e The proposed lightweight fault detection framework introduces negligible implementation overhead across leading post
quantum cryptographic schemes, including Kyber, Crystals-Dilithium, Falcon, and NTRU. Uniquely designed for modular
arithmetic and memory bound operations, this model delivers high fault detection accuracy, even under diverse fault scenar-
ios and varying numbers of corrupted bits. This is a robust protection with minimal overhead across multiple PQC standards
in resource-constrained FPGA deployments.

The organization of the article is as follows: Sections [2] and [3] provide detailed descriptions of the proposed fault detection
methods: REMO for the CT-BU and the Memory Rule Checker for the memory units, respectively. The detailed hardware
architecture of the NTT, including the CT-BU, RAMs, and ROMs, along with the REMO and Memory Rule Checker, is presented
in Section[] while the results are discussed in Section[3 Finally, the conclusions are provided in Section [6]

2 | FAULT DETECTION IN CT-BU

The CT-BU is the most computationally intensive hardware block in any polynomial multiplication, as well as both forward
and reverse NTT operations. As shown in Equ.2land Equ.[3] the CT-BU involves two major consecutive steps shown separately
in line [l and [T0] of Algorithm[Il

U=alj+k] (2)

V=a[j+k+é]xwm0dq 3)

Here the U and V are used to calculate the coefficients of inverse NTT @, w is a primitive n root of unity and ¢ is a prime
number. The calculation of V involves a modular reduction on the product of a polynomial coefficient v and the primitive n”"
root of unity w, which is the most hardware-intensive and latency-critical operation in the NTT transformation. We use popular
Montgomery reduction technique which allows an efficient hardware implementation of modular multiplication without com-
puting modular reduction operation on the product of o and w. However, the Montgomery reduction operation remains the most
hardware-intensive process in the CT-BU and NTT transformation. We have chosen Montgomery reduction over Barrett reduc-
tion because Barrett requires more intermediate computations than Montgomery in word-wise form on FPGA. Muller et al.”*>
show that Montgomery reduction often outperforms Barrett in FPGA implementations, especially for word-wise operations.

21 | REMO Method

In our fault detection method, rather than computing the Montgomery reduction on all / bits of the polynomial coefficient a(x)
at once, we operate on smaller, fixed word sizes of w bits from the total / bits of a(x) where w < [. This modification of
Montgomery reduction is required for three reasons.

o The partial recomputation technique for fault detection requires intermediate data.

o Lower value of w reduces the overhead of hardware resources as w < [.

e The tunable w can adjust the speed, resource usage, and power consumption of the design, offering architectural flexibility
in optimization.
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Algorithm 1 Iterative NTT Algorithm
1: Input: alx), w, ¢

: Output: a(x)

: for i=2 to [ by 2xi do
4 for j=0 to i/2-1 do

w N

5: for k=0 to n—-1 step i do
6: w; = w[29 DK

7: U=alj+k]

8: V = MMRED(alj + k + i2], w, q)
9: alj+kl=U+V

10: alj+k+i2l=U-V

11: end for

12: w=w-w;

13: end for

14: end for
15: return o

2.2 | Modified Montgomery Reduction with REMO

The proposed fault detection method for CT-BU is recomputation based technique where encoding inputs o of Montgomery
reduction can detect permanent and transient errors. This paper proposes a word-wise modified Montgomery reduction that
takes two operands: the multiplicand «, the multiplier 3, a modular base ¢, and the modular inverse ¢’. Here o = o[j +k+ %] and
B = w. For the hardware implementation of Montgomery reduction, the number of bits / in «, 3, ¢, and ¢’ must be divisible by
the word size w. As shown in Algorithm[P] lines[6land[7] pad w — p zeros to « and 3 to ensure that [ is divisible by w. As shown
in lines [9] and the zero-padded o and 3 are then stored in o and 3, respectively. This modified Montgomery reduction
involves two primary computations of y; and ~;. Here p; depends on ~;, aw; and §3’; ; depends on p;, aw; and 3’ where
w1 Ohy). The proposed fault detection method, which relies on recomputation, calculates additional values ;Lf and
'y{ using an encoded form of aw;, denoted aw{. As shown in modified Montgomery Reduction for Fault Detection (MMRFD)
Algorithm[2 line 20 the value of aw{ iS () pp_1--Olhy) + K .g. If there is no faultin ofj + k + 4] or in w, then 'yif with aw{ and ;
with aw; will be the same, where 3 = w. Conventional Montgomery reduction on / bits calculates o.3.R"' mod g. In encoded
form it calculates (v + k.g).3.R™" mod ¢. Both these result must be the same as k.¢.3.R™' mod ¢ term will be canceled out as
k and R™! are integers. However, the proposed modified word-wise Montgomery reduction operates on w bits instead of [ bits
in each loop iteration. This modified word-wise approach still computes the same intermediate values in  for both the encoded

and non-encoded forms.

aw; = («

Lemma 1. [f we divide [ bit o/ in w bit word-wise (segments), each word of o' can be expressed as: aw; = (&},

I . (A /
the encoded word of o'is represented as: aw{ = (ot iy

'y{ computed in the i loop from aw; and aw{ respectively must be same.

Proof. From algorithm[2] line[18 and[19 We have

|--0d,) and
) + K.q where K is a constant and q is the modulus. Then v; and

i = [(Yuts - Y0) + awi(Bl_ys - B1G % 2"
vi = [y + awi(BLy, .. Bo) + piql/2"
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Algorithm 2 Modified Montgomery Reduction for Fault Detection in Hardware with REMO: MMRFD(«, £, q)

w N

21:

22:

23:
24:
25:
26:
27:
28:
29:

: Input: o) =(o,...,a0), B =0Br1,....00), ¢=(qit,---,90)

with R=w!, gcd(g,w)
Output: 7,f

: p <+ Imodw
: if p+#0 then

o + Pad with (w-p) zeros | a()
B+ Pad with (w-p) zeros | B(x)

: else

o +— a(x)

Bl B

: end if

: v+ (0,...,0)

: 4 —(0,...,0)

: 1w+ (0,...,0)

: f+(0,...,0)

: for i=0 to (I+p)w-1 do

AW = (o g - - s Oy

pti <= (-t -2 70) +awi - (B),_1, ..., 5))) - ¢’ mod 2"
Yi 4= (yi+awi - B+ pi - q) 12"

] ) +K g

iwtw—12 ">

il (7';71,...,75)+aw{-(ﬂgv_,,...,5()))-q’modzw
fyfe 7{'+aw{~ﬁ+u{~q)/zw
if v, #+ then
fi+—1
else
fi<0
end if
end for
return 7,f

Now replace the aw; by aw{

ti = (=15 - Y0) + (awi + K.q) (B - Bo)]-q" %o 2
—_——
]
= [(Y-ts -0 Y0) + aWii(Byys s B0) + kg B,y -, B g %02"
/ ! ! /-;l\l ! /
= [(Ywts - Y0) + awi.(B,,_y, - Bo)lg + k. q.q" (B,,_1, .., Bp)%2"
= [(’wals . ’YO) + aW[.(,B:V_] LIRS B(/))]q/ - k(ﬂy/ —12 ** B(/))%ZW

Therefore,

pi + KBy s B) = [t -5 70) + awi (B -y By)lq %2
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Now,

=1+ awi (Bl s B) + piq1/2"
= [’)/l + (an‘ + KCI) '(6[1719 (X B(I)) + [(’YW—] ERX) 70) + awi'(ﬁ‘:;,p . B(I))]ql - k'(ﬁ;{vf]» . ﬁ(l))] Q]/zw
——
awf Ui

k
= [+ @B 1o 50) + 1012 4 0 5 LB B = (Bl D)

t
=[vi + awi.(BLy, - Bh) + 1i-ql2" + q.t
=% tqt

As t is an integer, after applying the Montgomery transformation, the final value of 'yf is:

2.3 | Hardware Architecture of REMO: y{ & v

The values of ~; and fyif shown in lines [[9and 22] of Algorithm[2lare computed by two hardware blocks named ~; Gen and fyif
REMO, respectively. The +; Gen uses three multipliers (x) and two adders (+), whereas the fyif REMO requires four multipliers ( x)
and three adders (+). The ~; Gen and 7{ REMO use one right shifter to shift o’ in each clock cycle, generating word-wise values
aw;. Here w' is 8" and wy, 8., , .., 5} of Algorithm[2] Modulus and division operations are computationally expensive on FPGA
hardware. Therefore, the modulus operations: mod 2" in Algorithm 2] as shown in line [I§] and line 211 are implemented by
retaining only the least significant w bits of y; and u’; . On the other hand, the division operations: /2" in Algorithm[2] as shown
in line [T9 and line 22] are implemented by discarding the least significant w bits of ~; and 7{ . These two approaches make
MMRFD significantly lightweight. The Fig [Ilshows the details hardware architecture of v; Gen and REMO: 'yf .

R
>
o
;w [

Yi mmrfd_fault
comp

Righ
Shifter:2

w ww; : +5
:

o]
<
i o

FIGURE 1 Hardware Architecture of REMO
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231 | 4, Gen

The ~; Gen calculates lines[I8and[[9]of Algorithm[l The X, X, and x3 in ; Gen are used to multiply aw; with wy, 1; with g
and w with aw; respectively. The +; and +, adders are used to compute y; and ~; respectively. If p = 0, the +, block provides the
final output at the ~; register after % cycles. If p # 0, the +, block provides the final output at the ~; register after % + 1 cycles.

232 | REMO:+/

The REMO: 7/ calculates lines ZTland 22| of Algorithm[l The x4, X5 and X in REMO: ~/ are used to multiply aw/ with w), 1/
with g and w with aw{ respectively. The additional multiplier and X is used to compute k, ¢’ in the encoder block. The +4 and
+5 adders are used to compute u’: and 7{ respectively. One additional adder +3 is used to calculate the encoded aw{ dfp =0,
the +s block provides the final output at the 7{ register after % cycles. If p # 0, the +, block provides the final output at the 'yf
register after % + 1 cycles. The comparator block (comp) compares *yf and ;. If they are not equal, the signal mmrfd_fault is
asserted.

3 | FAULT DETECTION IN MEMORY UNITS

NTT uses two types of memory units: RAMs and ROMs. RAMs are used to read and write polynomial coefficients during
forward and inverse NTT operations. The constant terms in Learning With Errors (LWE)-based PQC algorithms, such as
twiddle factors, are stored in ROM. Our fault detection method for the RAMs and ROMs of the NTT uses Memory RC, which
is primarily constructed using i~k RC for RAMs and i—7j RC for ROMs. These are presented in the next two sections based
on the Kyber standard.

31 | Memory Address Protection in RAMs : i-k RC

We have implemented Kyber-768, in which Forward NTT operations are applied during key generation, decryption, and encryp-
tion to the secret vector samples s, the ephemeral secret vector r, the error samples e, and the vector of polynomials u, which
is the result of a matrix-vector multiplication with the public key matrix A. The Inverse NTT (INTT) operations are performed
on ii, iis, ir, AT o #, and T o /. Here it = NTT(Decompress(cipher)), uis = iL.5, fr = 1.7- AT is the Generate matrix during encryp-
tion. For further details on Kyber, please refer to FIPS 203“Y, Our Kyber implementation uses one RAM for each polynomial,
resulting in a total of 10 RAMs used for the key generation, decryption, and encryption processes.

Block NTTs Kyber-512 (k = 2) Kyber-768 (k = 3) Kyber-1024 (k = 4)
#NTT Total Hits Total #NTT Total Hits Total #NTT Total Hits Total
Call on RAMs ROM Hits Call on RAMs ROM Hits Call on RAMs ROM Hits
NTT(s) 2 4096 20438 3 6144 3072 4 8192 4096
KeyGen NTT(e) 2 4096 2048 3 6144 3072 4 8192 4096
INTT 0 0 0 0 0 0 0 0 0
NTT(r) 2 4096 2048 3 6144 3072 4 8192 4096
Encap INTT(AAT oF) 2 4096 2048 3 6144 3072 4 8192 4096
INTT(IAT or) 1 2048 1024 1 20438 1024 1 2048 1024
NTT(r) 2 4096 20438 3 6144 3072 4 8192 4096
NTT(w) 2 4096 2048 3 6144 3072 4 8192 4096
Decap INTT(it) 2 4096 2048 3 6144 3072 4 8192 4096
INTT (uis) 1 2048 1024 1 20438 1024 1 20438 1024
INTT(r) 1 2048 1024 1 2048 1024 1 2048 1024
total 17 34,816 17,408 24 49,152 24,576 31 63,488 31,744

TABLE 1 Pattern of Memory hits in Kyber Variants using i, j & k

In our Kyber, i and k indices are used to generate the addresses of 10 RAMs during read, write operations. In Table [Tl we
present the number of RAM hits using the address bus j during the key generation, decryption, and encryption processes for
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different variants of Kyber. The read and write operation on RAMs are considered as RAM hits. The data output of the RAMs
is denoted by «. The i and k patterns in each loop iteration during forward and inverse NTT is structured and hierarchical,
where the upper bound k are based on i. Therefore, we establish rules for each CT-BU iteration: k < s;, where s; is initialized
to n — 1 and is right-shifted by one bit every 256 iterations. The i — k RC takes i and k indices from i — j — k Gen and check the
above mentioned rule. If the rule is not violated, the ram fault is set to 0; otherwise, it is set to 1.

3.2 | Memory Address Protectionin ROM : i-j RC

Kyber needs a ROM to store Twiddle factors (w), which required to read from ROM in each iteration of forward and inverse
NTT. For more details about w, please refer to FIPS 203"Y, In our Kyber variants, the i and j patterns in each loop iteration
during forward and inverse NTT are also structured and hierarchical, where the upper bound of j depends on i, specifically
j < 2'—1.Thei-jRC takes i and j indices from i — j — k Gen and check the above mentioned rule. If the rules is not violated,
the rom fault is set to 0; otherwise, it is set to 1.

4 | HARDWARE ARCHITECTURE OF NTT WITH CT-BU, REMO& MEMORY RC

As shown in Fig. 2] the CT-BU unit has 3 pipeline stages: (i) For buffering w and U (ii) Calculation of V and (iii) Update
elements of point-wise representation. Our CT — BU inside NTT iterates log x 5 — 1 times where n — 1 is the degree of input
polynomial. For our Kyber n = 256. Therefore, the NTT in our Kyber iterates 1024 times. Line[§] of Algorithm[Ilrepresents the
2" pipeline stage of the CT-BU, which computes the Montgomery modular reduction of ¢ on the product of w and «fj + k + %].

_ buffer V=w X AFKI=U+V
100p=0 | ), U=alj+k1.| agj+k+ir2] % q aB+—k+i/2]=U-v
afj+k+i/2]  |using MMRFD

buffer — [V=wX , ARI=UHY
loop=1 w, U=afj+k],| alj+k+i/2] % q (1[]T+i/2]=U-V
afj+k+i/2] | using MMRFD

buffer V=w X e
afj+k]=U+V
|00p:|092(n)Xn/2 -1 w, U=aj+k], | alj+k+i/2]1 % q —ag+k]+i/2]:u—v
afj+k+i/2]  |using MMRFD

FIGURE 2 Pipeline Stages of CT-BU

As shown in Fig.[3l the polynomial coefficients and twiddle factors w are stored in RAMs and ROM, which can be accessed
by various hardware blocks such as the polynomial multiplier, polynomial adder, NTT and etc. The specific hardware block
that accesses the memory depends on the requirements of the PQC algorithm. The addr, rd_en, wr_en and din of the memory
block can be accessed by different hardware blocks by selecting inputs of the muxes controlled by Control Unit. Similarly
using demux, different hardware blocks can read o from RAMs through dout. Then, « is connected to the CT — BU for the U
and V calculation (line[71and [§ of Algorithm[I). The calculation of V depends on the MMRFD block which follows Algorithm
2l to multiply o and w in a w word-wise fashion. The ~ block shown in Fig.[3] takes w bits named aw; at a time from the o The
~/ block shown in Fig.[3] takes w bits named aw{ at a time from the a.. The encoder block calculates aw{ (line 20]of Algorithm
) and sends it to the 4/ block. The v block executes u; and ~; (line [I8 and line [I9] of Algorithm ). The 4/ block executes
u’: and 'y{ (line 21] and line 22 of Algorithm[2). The modules 2" operation to calculate u; and u’: in the + block and +/ block,
respectively, are performed by restricting the size of u; and u’: to w bits. The division by 2" operation to calculate +; and *y{ in
the ~y block and «/ block, respectively, are performed by removing w bits form the right side of the size of ; and 'y{ . These two
bitwise operations replace resource- and latency-intensive modulus and division operations, significantly reducing slice usage
and delay. The comp block compares v and +/. If both values match, mmrfd_fault = 0 and V is used to calculate a[j + k] and
alj+k+ %]. Otherwise, mmrfd_fault = 1 is initiated. The ofj + k] and ofj + k + %] are calculated by the adder and sub blocks
respectively.
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CTRL
[ Unit L
: . memory fault
| ; : afj+k+i/2]
fﬂ_ L] mux Eh Sub >
Other, :
eawts [Semren] | R I— s W
Twiddle din I
Factor dout |_ mux 'o'(ih'"': a
er : :
ROM Blocks i _i[ o)Yi- REMO
W i
demux bzaeeer
Other : -ecnode
7y BISCKSE  beeeremmrmrrmmrmmiageeeseens MMRFD
CTRL : CT-BU
FIGURE 3 NTT Architecture With CT-BU, REMO & Memory RC
Architecture n, q SECs Slices LUTs FFs DSPs/ Power
BRAMS (mW)
Kyber Montgomery (Baseline) 256, 173 73 242 100 1/0 104
Kyber Montgomery (Protected) 3329 287 89 275 139 2/0 107
CRYSTALS-Dilithium 256, 150 50 121 111 1/0 100
Montgomery (Baseline)
CRYSTALS-Dilithium 8380417 274 74 171 148 2/0 102
Montgomery (Protected)
Falcon Montgomery (Baseline) 512, 136 36 84 70 1/0 99
Falcon Montgomery (Protected) 12289 248 48 128 103 2/0 101
NTRU Montgomery (Baseline) 2048, 132 32 84 78 1/0 106
NTRU Montgomery (Protected) 12289 249 49 122 120 2/0 110

Artix-7 (xc7a100tcsg324-3), w=4, clock=100MHz

TABLE 2 Overhead of REMO & Memory RC in Different PQC Algorithms

5

| RESULTS & DISCUSSIONS

This section first covers the fault detection scheme’s overheads, then its coverage.

51 | Overheads

The design is implemented on an Artix-7 (xc7a100tcsg324-3) FPGA using the Vivado 22.02 tool and the VHDL language. The
proposed fault detection model is implemented in Kyber, Crystal Dilithium, Falcon and NTRU algorithms.The implementation
costs of the proposed Fault Detection (FD) model, which includes both REMO and Memory RC, for the Kyber, CRYSTALS-
Dilithium, Falcon, and NTRU algorithms are presented in Table 2l These costs are measured in terms of slices, LUTs, flip-flops,
DSPs, and power consumption. Additionally, we calculate the Slice Equivalent Cost (SEC) as defined in Equ. 4] following the
method described in'“/.

SEC = Slices + DSPs x 100 + BRAMS x 200 4)
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Our REMO model for the Kyber standard, with n = 256 and ¢ = 3329, utilizes only 8 slices (comprising 15 LUTs and 8
Flip-Flops) and a single DSP block, as shown in Table Bl Additionally, Memory RC consumes 8 more slices. Table ] shows
a comparison of error coverage and overheads in terms of area, delay, and energy with existing fault detection literature. The
number of extra slices and DSP required for MMR to detect faults using REMO are 8 and 1 respectively. The Memory RC also
required 8 slices. Therefore, the total Area Overhead (AO) of fault detection of NTT is shown in Equ.

_SEC of REMO + SEC of memory RC y
- SEC of CT - BU

x 100 = 8.5%

AO

100 (5)

_108+8
1356

As shown in Table[d] we compare our fault detection model with other fault detection solutions designed for NTT and other
different computational units of cryptographic algorithms. While the solutions different computational units of cryptographic
algorithms are not directly comparable to our proposed fault detection method, this comparison provides an overview of the
implementation cost required to achieve a given level of error coverage. As shown in Table @] this fault detection module
has a slice overhead of 8.5% compared to the unprotected NTT. The fault detection hardware consumes only 3mW of power,
resulting in a 1.8% power overhead compared to the unprotected NTT. The proposed fault detection method runs in parallel
with the NTT component. Adopting this proposed fault detection logic into the NTT does not impact the critical path, clock
period, or the number of clock cycles required for the baseline NTT. Consequently, the implementation incurs a 0% delay, 8.5%
slice overhead and 1.8% energy overhead, which is highly reasonable and competitive with the existing literature for detecting
87.2% to 100% fault occurrences. It is to be noted that the our fault detection unit operates with a delayed clock compared to
the main N7TT. This is done to enable the detection of both transient and permanent faults.

E Slice
16 Bl Energy
14 A
12 4
g
< 10
0
=
©
£
s 81
>
o
6 4
4
24
0- . .
Kyber CRYSTALS-Dilithium Falcon NTRU

PQC Algorithms
FIGURE 4 Overhead of REMO & Memory RC for Different PQC Algorithms

52 | Error Coverage

To measure the error coverage of the proposed REMO and Memory RC schemes, we simulated the fault injection process
using Python on a i5 processor with 8 GB of RAM, running Ubuntu 24.04. Both the simulation process uses two fault modes:
random faults and burst faults. The random mode flips 77 number of bits randomly, whereas the burst mode flips 77 number of
consecutive bits. In both fault modes, bit flips mean that *0’(s) are turned into *1°(s) and *1°(s) are turned into "0’(s).
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Block SEC| Slices | LUTs FFs DSPs | BRAMs| Power Critical
Names (mW) Path (ns)
Kyber-768 3395| 1795 6008 4404 2 7 425 9.79
(baseline)
NTT/INTT 1356| 556 1711 1204 2 3 163 9.39
(baseline)
CT BU 685 285 778 207 2 1 127 9.39
(baseline)
MMR 173 73 242 100 1 0 104 9.87
(baseline)
REMO 108 8 15 8 1 0 2 9.11
Memory 8 8 18 31 0 0 1 7.64
RC
Artix-7 (xc7a100tcsg324-3), n=256, q=3329, 1=12, w=4, clock=100MHz

TABLE 3 Overhead of REMO & Memory RC for Kyber Standard
Work Type of Fault Baseline Overhead (%) (%) Error
Detection Target HW (for Overhead) Area Delay Energy Coverage
CRC5 sub, add of McEliece McEliece 18.33 11.25 ~0 >99.9
: crypto crypto
. REMO X’ mod n X mod n 0.8 0.27 0.65 97.1-100
look up table based CDT Error Sampler CDT Error 9.09/77.4/ 18.2 NR NR NR
4% output distribution Sampler
check low cost/
standard/ expensive
, RESO MAC unit of Saber/ Saber/ NTRU/ 36.6/39.6/ 28.4 28.3/16.7/ 1.2/3.2/ ~0 >99.9
= NTRU/ FrodoKEM FrodoKEM 327
Recomputing with Galois Counter Mode AES-GCM 4.9/6.7 NR NR 100
H swapped ciphertext
- Spatial duplication NTRU NTRU 6.22 NR NR 100
- 1/2/3-bit parity Goppa Arithmetic McEliece 9.8/11.3/9.6 1.4/0.8/1 2.712.712.7 100
Randomized Memory NTT Kyber NR NR NR NR
“ Addr.
- Local Masked NTT NTT NR NR NR NR
Randomized Memory NTT NTT NR NR NR NR
“ Addr. + Local Masked
- Hamming A-O/ R-O NTT Memory Kyber 16.4/19.2 0/0 NR NR
Hamming+ Parity A-O/ NTT Memory Kyber 10.8/21.5 1.6/ 1.44 NR NR
= R-O
Polynomial Evaluation CT-BU Dilithium NR 72 NR NR
- and Interpolation
) RENO Spartan7 Butterfly Unit NTT 20.2/15.3/21.5 8.46/15.88/13.71 15.6/7.6/11.2 99.51/99.67
- VIN2IV3 /99.41
) RENO Zynq v1/v2/v3 Butterfly Unit NTT 24/7.5/17 9.32/19.66/ 20.47/13.27/ 99.51/99.67
- 21.78 17.26 /99.41
CT-BU & 16.9 0 2.3 87.2-100
Our*| REMO + Memory RC CT-BU & Memories Memories (REMO),
NTT 8.5 0 1.8 50.7-100
Kyber-768 3.18 0 0.7 (Memory RC)

Note: NR = Not Reported; * =Eq.H]is used to calculate area overhead.

TABLE 4 Overhead Comparison with literature
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53 | Error Coverage of REMO

This simulation method utilized 1.5 million samples. The random and burst fault modes inject faulty bits into «, w, and both «
and w. Table 5| shows that the fault detection efficiency varies from 87.2% to 100%, depending on the word size w, the number
of faulty bits 77 and the fault mode. From Table [ three conclusions can be drawn:

o The size of w has minimal impact on fault detection efficiency but significantly affects the area, as measured by SECs.
e As the number of faulty bits increases, the fault detection efficiency improves.
e The fault detection efficiency is higher in random mode compared to burst mode.

w # Fault Detection Efficiency(%) SECs
fault fault in o fault in w faultin o & w of REMO
bits(n) random burst random burst random burst (Eq.[4)
1 87.24 - 98.33 - 98.89 -
3 96.72 93.67 100 99.99 100 100
5 99.03 96.83 100 100 100 100
2 11 99.95 99.61 100 99.99 100 100 103
17 99.99 99.95 100 100 100 100
23 99.99 99.99 100 100 100 100
1 87.21 - 98.26 - 98.89 -
3 95.94 90.34 99.01 99.97 100 100
5 98.3 93.68 100 100 100 100
4 11 99.68 97.63 100 99.99 100 100 108
17 99.87 99.27 100 100 100 100
23 99.98 99.79 100 100 100 100
1 87.2 - 97.65 - 98.87 -
3 94.43 88.51 99.99 99.81 100 100
5 96.55 89.98 100 99.99 100 100
8 11 98.19 94.28 100 100 100 100 179
17 99.03 97.1 100 99.99 100 100
23 99.85 98.33 100 99.99 100 100
1=24, sample size=1.5 million

TABLE 5 Error Detecting Efficient for 7 bit Random & Burst Flipping using REMO

54 | Error Coverage of Memory RC

To measure the error coverage of the Memory RC, we executed the key generation, decryption and encryption processes of
Kyber-768 a total of 300 times. Each execution of Kyber-768 results in 49, 152 RAM accesses (as shown in Table[I)) and 24, 576
ROM accesses to read the twiddle factors. Among these 300 executions, faults were injected using three different modes, with
100 executions allocated to each mode: (i) faults in both RAM and ROM, (ii) faults only in ROM, and (iii) faults only in RAM.
Table 6] shows that the fault detection efficiency varies from 50.7% to 100%, depending on the number of faulty bits 77 and the
fault mode.

6 | CONCLUSION

In this manuscript, we present a light wight modified Montgomery reduction integrated within a CT-BU for fault detection,
capable of addressing both permanent and transient faults. It uses the REMO method. The results demonstrate that our fault
detection scheme achieves a high fault detection rate with minimal resource and power overhead, without affecting the critical
path of the original design. Although the fault detection scheme proposed in this paper is specifically designed for Montgomery
reduction within the CT-BU, it can also be applied to any hardware implementing polynomial multiplication with modular
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TABLE 6 Error Detecting Efficient for n bit Random & Burst Flipping using Memory RC for Kyber Standard

Fault Detection Efficiency(%)
# Faulty Bits () | Faulty addr in RAMs and ROM (j & k) | Faulty addr in ROM (j only) | Faulty addr in RAMs (k only)
Random (%) Burst (%) Random (%) Burst (%) Random (%) Burst (%)

1 87.79 - 53.63 - 50.07 -

2 98.57 93.78 67.53 58.13 66.53 56.12
3 99.93 98.16 75.33 63.54 75.01 62.35
4 100 100 80.27 69.34 79.99 68.76
5 100 100 83.41 75.37 83.41 75.11
6 100 100 85.81 81.44 85.81 81.24
7 100 100 87.5 87.5 87.5 87.5

reduction, where Montgomery reduction is utilized. The Memory RC can detect between 50.7% and 100% of faults in the
memory units used in the NTT. To the best of our knowledge, our fault detection method has one of the lowest slice overheads
among existing fault-tolerant techniques in the literature on PQC. It is important to note that we have not explored fault detection
methods for the contents of the memory units, as several efficient techniques such as hamming codes, parity bits, and CRC are
already well-established in the literature"™ for protecting memory contents. The code of this work is uploaded to GitHub @
Acknowledgment This publication has emanated from research conducted with the financial support of Taighde Eireann -
Research Ireland under Grant number 13/RC/2077_P2 at CONNECT: the Research Ireland Centre for Future Networks.
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